WorldWideScience

Sample records for acute microvascular plasticity

  1. Acute effects of coffee on skin blood flow and microvascular function.

    Science.gov (United States)

    Tesselaar, Erik; Nezirevic Dernroth, Dzeneta; Farnebo, Simon

    2017-11-01

    Studies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin. We measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermal iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee. Vasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26±0.20PU/mmHg vs. 1.13±0.38PU/mmHg, Pcoffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (-1.36PU/mmHg vs. -0.52PU/mmHg, P=0.002). Caffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  3. Microvascular resistance of the culprit coronary artery in acute ST-elevation myocardial infarction

    Science.gov (United States)

    Carrick, David; Haig, Caroline; Carberry, Jaclyn; McCartney, Peter; Welsh, Paul; Ahmed, Nadeem; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Lindsay, Mitchell; Hood, Stuart; Watkins, Stuart; Rauhalammi, Samuli M.O.; Mordi, Ify; Ford, Ian; Radjenovic, Aleksandra; Sattar, Naveed; Oldroyd, Keith G.

    2016-01-01

    BACKGROUND. Failed myocardial reperfusion is common and prognostically important after acute ST-elevation myocardial infarction (STEMI). The purpose of this study was to investigate coronary flow reserve (CFR), a measure of vasodilator capacity, and the index of microvascular resistance (IMR; mmHg × s) in the culprit artery of STEMI survivors. METHODS. IMR (n = 288) and CFR (n = 283; mean age [SD], 60 [12] years) were measured acutely using guide wire–based thermodilution. Cardiac MRI disclosed left ventricular pathology, function, and volumes at 2 days (n = 281) and 6 months after STEMI (n = 264). All-cause death or first heart failure hospitalization was independently adjudicated (median follow-up 845 days). RESULTS. Myocardial hemorrhage and microvascular obstruction occurred in 89 (42%) and 114 (54%) patients with evaluable T2*-MRI maps. IMR and CFR were associated with microvascular pathology (none vs. microvascular obstruction only vs. microvascular obstruction and myocardial hemorrhage) (median [interquartile range], IMR: 17 [12.0–33.0] vs. 17 [13.0–39.0] vs. 37 [21.0–63.0], P < 0.001; CFR: 1.7 [1.4–2.5] vs. 1.5 [1.1–1.8] vs. 1.4 [1.0–1.8], P < 0.001), whereas thrombolysis in myocardial infarction blush grade was not. IMR was a multivariable associate of changes in left ventricular end-diastolic volume (regression coefficient [95% CI] 0.13 [0.01, 0.24]; P = 0.036), whereas CFR was not (P = 0.160). IMR (5 units) was a multivariable associate of all-cause death or heart failure hospitalization (n = 30 events; hazard ratio [95% CI], 1.09 [1.04, 1.14]; P < 0.001), whereas CFR (P = 0.124) and thrombolysis in myocardial infarction blush grade (P = 0.613) were not. IMR had similar prognostic value for these outcomes as <50% ST-segment resolution on the ECG. CONCLUSIONS. IMR is more closely associated with microvascular pathology, left ventricular remodeling, and health outcomes than the angiogram or CFR. TRIAL REGISTRATION. NCT02072850. FUNDING. A

  4. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbergen, Inge; Veer, Marcel van ' t [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Lammers, Jeroen; Ubachs, Joey [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Pijls, Nico H.J., E-mail: nico.pijls@cze.nl [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-03-15

    Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3–5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p = 0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p = 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. - Highlights: • We measured absolute coronary blood flow and microvascular resistance in STEMI patients in the acute phase and in the subacute phase, using the technique of thermodilution with low grade intracoronary continuous infusion of saline. • These measurements are safe and feasible during PPCI in STEMI patients. • In STEMI patients, absolute flow

  5. Graft microvascular disease in solid organ transplantation.

    Science.gov (United States)

    Jiang, Xinguo; Sung, Yon K; Tian, Wen; Qian, Jin; Semenza, Gregg L; Nicolls, Mark R

    2014-08-01

    Alloimmune inflammation damages the microvasculature of solid organ transplants during acute rejection. Although immunosuppressive drugs diminish the inflammatory response, they do not directly promote vascular repair. Repetitive microvascular injury with insufficient regeneration results in prolonged tissue hypoxia and fibrotic remodeling. While clinical studies show that a loss of the microvascular circulation precedes and may act as an initiating factor for the development of chronic rejection, preclinical studies demonstrate that improved microvascular perfusion during acute rejection delays and attenuates tissue fibrosis. Therefore, preservation of a functional microvasculature may represent an effective therapeutic strategy for preventing chronic rejection. Here, we review recent advances in our understanding of the role of the microvasculature in the long-term survival of transplanted solid organs. We also highlight microvessel-centered therapeutic strategies for prolonging the survival of solid organ transplants.

  6. Radioisotope albumin flux measurement of microvascular lung permeability: an independent parameter in acute respiratory failure?

    International Nuclear Information System (INIS)

    Hoegerle, S.; Nitzsche, E.U.; Reinhardt, M.J.; Moser, E.; Benzing, A.; Geiger, K.; Schulte Moenting, J.

    2001-01-01

    Aim: To evaluate the extent to which single measurements of microvascular lung permeability may be relevant as an additional parameter in a heterogenous clinical patient collective with Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Methods: In 36 patients with pneumonia (13), non pneumogenic sepsis (9) or trauma (14) meeting the consensus conference criteria of ALI or ARDS double-isotope protein flux measurements ( 51 Cr erythrocytes as intravascular tracer, Tc-99m human albumin as diffusible tracer) of microvascular lung permeability were performed using the Normalized Slope Index (NSI). The examination was to determine whether there is a relationship between the clinical diagnosis of ALI/ARDS, impaired permeability and clinical parameters, that is the underlying disease, oxygenation, duration of mechanical ventilation and mean pulmonary-artery pressure (PAP). Results: At the time of study, 25 patients presented with increased permeability (NSI > 1 x 10 -3 min -1 ) indicating an exudative stage of disease, and 11 patients with normal permeability. The permeability impairment correlated with the underlying disease (p > 0.05). With respect to survival, there was a negative correlation to PAP (p [de

  7. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Limb, Marie C; Williams, John P; Smith, Kenneth

    2016-05-01

    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism.

  8. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction

    International Nuclear Information System (INIS)

    Cochet, Alexandre A.; Lalande, Alain; Walker, Paul M.; Touzery, Claude; Brunotte, Francois; Lorgis, Luc; Beer, Jean-Claude; Cottin, Yves; Zeller, Marianne; Wolf, Jean-Eric

    2009-01-01

    The aim of this study was to compare the prognostic significance of microvascular obstruction (MO) and persistent microvascular obstruction (PMO) as assessed by cardiac magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). CMR was performed in 184 patients within the week following successfully reperfused first AMI. First-pass images were performed to evaluate extent of MO and late gadolinium-enhanced images to assess PMO and infarct size (IS). Major adverse cardiac events (MACE) were collected at 1-year follow-up. MO and PMO were found in 127 (69%) and 87 (47%) patients, respectively. By using univariate logistic regression analysis, high Global Registry of Acute Coronary Events (GRACE) risk score (odds ratio [OR] 95% confidence interval [CI]: 3.6 [1.8-7.4], p < 0.001), IS greater than 10% (OR [95% CI]: 2.7 [1.1-6.9], p = 0.036), left ventricular ejection fraction less than 40% (OR [95% CI]: 2.4 [1.1-5.2], p = 0.027), presence of MO (OR [95% CI]: 3.1 [1.3-7.3], p = 0.004) and presence of PMO (OR [95% CI]:10 [4.1-23.9], p < 0.001) were shown to be significantly associated with the outcome. By using multivariate analysis, presence of MO (OR [95% CI]: 2.5 [1.0-6.2], p = 0.045) or of PMO (OR [95% CI]: 8.7 [3.6-21.1], p < 0.001), associated with GRACE score, were predictors of MACE. Presence of microvascular obstruction and persistent microvascular obstruction is very common in AMI patients even after successful reperfusion and is associated with a dramatically higher risk of subsequent cardiovascular events, beyond established prognostic markers. Moreover, our data suggest that the prognostic impact of PMO might be superior to MO. (orig.)

  9. Basic Microvascular Anastomosis Simulation Hub Microsurgery Course: An Innovative Competency-Based Approach to Microsurgical Training for Early Year's Plastic Surgery Trainees.

    Science.gov (United States)

    Ali, Stephen

    2018-04-01

    Early year's plastic surgery trainees are faced with a large choice of microsurgery courses to select from. In the context of dwindling study budgets and busy on-call rotas, the pressure to select a high yield course that delivers value for money is of paramount importance.The Basic Microvascular Anastomosis Simulation Hub Microsurgery Course is a GBP £600 (US $790) 5-day 40-hour course based at Barts and The London School of Medicine and Dentistry increasing in popularity among junior trainees to fit this brief.

  10. Acute Cutaneous Microvascular Flow Responses to Whole-Body Tilting in Humans

    Science.gov (United States)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Hargens, Alan R.

    1993-01-01

    The transition from upright to head-down tilt (HDT) posture in humans increases blood pressure superior to the heart and decreases pressure inferior to the heart. Consequently, above heart level, myogenic arteriolar tone probably increases with HDT, in opposition to the withdrawal of baroreceptor-mediated sympathetic tone. We hypothesized that due to antagonism between central and local controls, the response of the facial cutaneous microcirculation to acute postural change will be weaker than that in the leg, where these two mechanisms reinforce each other. Cutaneous microvascular flow was measured by laser Doppler flowmetry simultaneously at the shin and the neck of 7 male and 3 female subjects. Subjects underwent a stepwise tilt protocol from standing control to 54 deg head-up tilt (HUT), 30 deg, 12 deg, O deg, -6 deg (HDT), -12 deg, -6 deg, O deg, 12 deg, 30 deg, 54 deg, and standing, for 30-sec periods with 10-sec transitions between postures. Flows at the shin and the neck increased significantly (P less than 0.05) from standing baseline to 12 deg HUT (252 +/- 55 and 126 +/- 9% (bar X +/- SE) of baseline, respectively). From 12 deg to -12 deg tilt, flows continued to increase at the shin (509 +/- 71% of baseline) but decreased at the neck to baseline levels (100 +/- 15% of baseline). Cutaneous microvascular flow recovered at both sites during the return to standing posture with significant hysteresis. Flow increases from standing to near-supine posture are attributed at both sites to baroreceptor-mediated vasodilation. The great dissimilarity in flow response magnitudes at the two measurement sites may be indicative of central/local regulatory antagonism above heart level and reinforcement below heart level.

  11. Longitudinal study of microvascular involvement by nailfold capillaroscopy in children with Henoch-Schönlein purpura.

    Science.gov (United States)

    Zampetti, Anna; Rigante, Donato; Bersani, Giulia; Rendeli, Claudia; Feliciani, Claudio; Stabile, Achille

    2009-09-01

    The aim of this study is to describe by video-nailfold capillaroscopy the microvascular involvement and capillary changes in children with Henoch-Schönlein purpura (HSp) and to establish a possible correlation with clinical outcome. Thirty-one patients underwent capillaroscopic evaluation through a videomicroscope during the acute phase and after 6 months. Twenty sex/age-matched controls were also examined. All capillaroscopic variables were statistically examined in combination with laboratoristic/clinical data. Architectural and morphological changes recorded during the acute phase were statistically significant in comparison to the controls (p capillaroscopy changes, laboratoristic/clinical data, and outcome. Video-nailfold capillaroscopy can be a simple tool to evaluate microvascular abnormalities in the acute phase of HSp, and the persistence of oedema could suggest an incomplete disease resolution at a microvascular level.

  12. Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction.

    Science.gov (United States)

    Stefaniak, A B; LeBouf, R F; Duling, M G; Yi, J; Abukabda, A B; McBride, C R; Nurkiewicz, T R

    2017-11-15

    Fused deposition modeling (FDM™), or three-dimensional (3D) printing has become routine in industrial, occupational and domestic environments. We have recently reported that 3D printing emissions (3DPE) are complex mixtures, with a large ultrafine particulate matter component. Additionally, we and others have reported that inhalation of xenobiotic particles in this size range is associated with an array of cardiovascular dysfunctions. Sprague-Dawley rats were exposed to 3DPE aerosols via nose-only exposure for ~3h. Twenty-four hours later, intravital microscopy was performed to assess microvascular function in the spinotrapezius muscle. Endothelium-dependent and -independent arteriolar dilation were stimulated by local microiontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). At the time of experiments, animals exposed to 3DPE inhalation presented with a mean arterial pressure of 125±4mmHg, and this was significantly higher than that for the sham-control group (94±3mmHg). Consistent with this pressor response in the 3DPE group, was an elevation of ~12% in resting arteriolar tone. Endothelium-dependent arteriolar dilation was significantly impaired after 3DPE inhalation across all iontophoretic ejection currents (0-27±15%, compared to sham-control: 15-120±21%). Endothelium-independent dilation was not affected by 3DPE inhalation. These alterations in peripheral microvascular resistance and reactivity are consistent with elevations in arterial pressure that follow 3DPE inhalation. Future studies must identify the specific toxicants generated by FDM™ that drive this acute pressor response. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. My First 100 Consecutive Microvascular Free Flaps: Pearls and Lessons Learned in First Year of Practice

    Directory of Open Access Journals (Sweden)

    Edward I. Chang, MD

    2013-07-01

    Conclusions: As a young plastic surgeon embarking in reconstructive plastic surgery at an academic institution, the challenges and dilemmas presented in the first year of practice have been daunting but also represent opportunities for learning and improvement. Skills and knowledge acquired from time, experience, and mentors are invaluable in optimizing outcomes in microvascular free flap reconstruction.

  14. Microvascular Cranial Nerve Palsy

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Leer en Español: ¿Qué es una parálisis ...

  15. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  16. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction: implications for non-contrast-enhanced infarct assessment.

    Science.gov (United States)

    Robbers, Lourens F H J; Nijveldt, Robin; Beek, Aernout M; Teunissen, Paul F A; Hollander, Maurits R; Biesbroek, P Stefan; Everaars, Henk; van de Ven, Peter M; Hofman, Mark B M; van Royen, Niels; van Rossum, Albert C

    2018-02-01

    Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI. Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium. Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, pvalues. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI. • Microvascular injury after acute myocardial infarction affects local T1 and T2* values. • Infarct zone T1 values are lower if microvascular injury is present. • T2* mapping suggests that low infarct T1 values are likely haemorrhage. • T1 and T2* values are complimentary for correctly assessing post-infarct myocardium.

  17. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    Directory of Open Access Journals (Sweden)

    Elisa Dorantes-Acosta

    2012-01-01

    Full Text Available Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.

  18. GLP-1-Based Therapies Have No Microvascular Effects in Type 2 Diabetes Mellitus: An Acute and 12-Week Randomized, Double-Blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Smits, Mark M; Tonneijck, Lennart; Muskiet, Marcel H A; Hoekstra, Trynke; Kramer, Mark H H; Diamant, Michaela; Serné, Erik H; van Raalte, Daniël H

    2016-10-01

    To assess the effects of glucagon-like peptide (GLP)-1-based therapies (ie, GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) on microvascular function in patients with type 2 diabetes mellitus. We studied 57 patients with type 2 diabetes mellitus (mean±SD age: 62.8±6.9 years; body mass index: 31.8±4.1 kg/m(2); HbA1c [glycated hemoglobin] 7.3±0.6%) in an acute and 12-week randomized, placebo-controlled, double-blind trial conducted at the Diabetes Center of the VU University Medical Center. In the acute study, the GLP-1 receptor agonist exenatide (therapeutic concentrations) or placebo (saline 0.9%) was administered intravenously. During the 12-week study, patients received the GLP-1 receptor agonist liraglutide (1.8 mg daily), the dipeptidyl peptidase-4 inhibitor sitagliptin (100 mg daily), or matching placebos. Capillary perfusion was assessed by nailfold skin capillary videomicroscopy and vasomotion by laser Doppler fluxmetry, in the fasting state and after a high-fat mixed meal. In neither study, treatment affected fasting or postprandial capillary perfusion compared with placebo (P>0.05). In the fasting state, acute exenatide infusion increased neurogenic vasomotion domain power, while reducing myogenic domain power (both P12-week study, no effects on vasomotion were observed. Despite modest changes in vasomotion, suggestive of sympathetic nervous system activation and improved endothelial function, acute exenatide infusion does not affect skin capillary perfusion in type 2 diabetes mellitus. Twelve-week treatment with liraglutide or sitagliptin has no effect on capillary perfusion or vasomotion in these patients. Our data suggest that the effects of GLP-1-based therapies on glucose are not mediated through microvascular responses. © 2016 American Heart Association, Inc.

  19. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  20. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    International Nuclear Information System (INIS)

    Gutiérrez-Barrios, Alejandro; Camacho-Jurado, Francisco; Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier

    2015-01-01

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  1. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  2. The role of the immune system in central nervous system plasticity after acute injury.

    Science.gov (United States)

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Alternative wavelengths for sutureless laser microvascular anastomosis: a preliminary study on acute samples.

    Science.gov (United States)

    Bass, L S; Oz, M C; Libutti, S K; Treat, M R

    1992-06-01

    Attempts to improve the speed and patency of microvascular anastomosis with laser-assisted techniques have provided a modest reduction in operative time and comparable success rates. Using sutureless microvascular anastomoses, 30 end-to-end anastomoses were created in the rat carotid artery using the gallium-aluminum-arsenide diode laser (808 nm). Indocyanine green and fibrinogen were applied to enhance tissue absorption of the laser energy and strengthen the bond created. These were compared with previously reported welds using the THC:YAG laser (2150 nm). Mean welding times were 140 and 288 s, and mean bursting pressures immediately after welding were 515 and 400 mmHg for the diode and THC:YAG laser groups, respectively. Histologically, both lateral and vertical spread of thermal damage was limited. Since both lasers create welds of adequate initial strength without stay sutures and are faster and easier to use than existing systems, evaluation of long-term patency would be worthwhile.

  4. CT findings of foreign body reaction to retained endoloop ligature plastic tube mimicking acute appendicitis: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Hong; Kang, Chae Hoon; Choi, Soo Jung; Park, Man Soo; Jung, Seung Mun; Ryu, Dae Shick; Shin, Dong Rock [Dept. of Radiology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung (Korea, Republic of)

    2016-07-15

    Many hospitals experience one or more retained surgical instrument events with risk of patient morbidity and medicolegal problems. Identification of retained surgical instrument is important. The radiologists should be familiar with imaging finding of retained surgical instrument. In a 62-year-old female with a retained plastic tube, localized peritoneal infiltration around air-containing tubular structure mimicked acute appendicitis on abdomen computed tomography (CT), one year after laparoscopic cholecystectomy. We reported CT findings of foreign body reaction related to retained Endoloop ligature plastic tube mimicking acute appendicitis.

  5. CT findings of foreign body reaction to retained endoloop ligature plastic tube mimicking acute appendicitis: A case report

    International Nuclear Information System (INIS)

    Ahn, Jae Hong; Kang, Chae Hoon; Choi, Soo Jung; Park, Man Soo; Jung, Seung Mun; Ryu, Dae Shick; Shin, Dong Rock

    2016-01-01

    Many hospitals experience one or more retained surgical instrument events with risk of patient morbidity and medicolegal problems. Identification of retained surgical instrument is important. The radiologists should be familiar with imaging finding of retained surgical instrument. In a 62-year-old female with a retained plastic tube, localized peritoneal infiltration around air-containing tubular structure mimicked acute appendicitis on abdomen computed tomography (CT), one year after laparoscopic cholecystectomy. We reported CT findings of foreign body reaction related to retained Endoloop ligature plastic tube mimicking acute appendicitis

  6. Overview of Facial Plastic Surgery and Current Developments

    Science.gov (United States)

    Chuang, Jessica; Barnes, Christian; Wong, Brian J. F.

    2016-01-01

    Facial plastic surgery is a multidisciplinary specialty largely driven by otolaryngology but includes oral maxillary surgery, dermatology, ophthalmology, and plastic surgery. It encompasses both reconstructive and cosmetic components. The scope of practice for facial plastic surgeons in the United States may include rhinoplasty, browlifts, blepharoplasty, facelifts, microvascular reconstruction of the head and neck, craniomaxillofacial trauma reconstruction, and correction of defects in the face after skin cancer resection. Facial plastic surgery also encompasses the use of injectable fillers, neural modulators (e.g., BOTOX Cosmetic, Allergan Pharmaceuticals, Westport, Ireland), lasers, and other devices aimed at rejuvenating skin. Facial plastic surgery is a constantly evolving field with continuing innovative advances in surgical techniques and cosmetic adjunctive technologies. This article aims to give an overview of the various procedures that encompass the field of facial plastic surgery and to highlight the recent advances and trends in procedures and surgical techniques. PMID:28824978

  7. A tissue in the tissue: models of microvascular plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Hornbech, Morten Sonne; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    network. The pronounced plasticity and the inherently complex nature of vascular networks have spurred an enduring interest in mathematical modeling of the microcirculation. This has been advanced by the continuous increase in computing power over recent decades enabling simulation of increasingly...

  8. CT Findings of Foreign Body Reaction to a Retained Endoloop Ligature Plastic Tube Mimicking Acute Appendicitis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Hong; Kang, Chae Hoon; Choi, Soo-Jung; Park, Man Soo; Jung, Seung Mun; Ryu, Dae Shick; Shin, Dong Rock [Department of Radiology, Asan Foundation, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440 (Korea, Republic of)

    2016-11-01

    Many hospitals experience one or more retained surgical instrument events with risk of patient morbidity and medicolegal problems. Identification of retained surgical instrument is important. The radiologists should be familiar with imaging finding of retained surgical instrument. In a 62-year-old female with a retained plastic tube, localized peritoneal infiltration around air-containing tubular structure mimicked acute appendicitis on abdomen computed tomography (CT), one year after laparoscopic cholecystectomy. We reported CT findings of foreign body reaction related to retained Endoloop ligature plastic tube mimicking acute appendicitis.

  9. Evaluating microvascular obstruction after acute myocardial infarction using cardiac magnetic resonance imaging and 201-thallium and 99m-technetium pyrophosphate scintigraphy

    International Nuclear Information System (INIS)

    Onishi, Takayuki; Kobayashi, Isshi; Onishi, Yuko; Kawashima, Tomoyuki; Muramoto, Hirotaka; Nakamura, Hiroaki; Nagata, Yasutoshi; Umezawa, Shigeo; Niwa, Akihiro

    2010-01-01

    Few studies have compared the ability of cardiac magnetic resonance (CMR) with that of scintigraphy using 201-thallium (201-Tl) and 99m-technetium pyrophosphate (99m-Tc PYP) to evaluate microvascular obstructions (MOs). In the present study the relationship between the scintigraphic and CMR characteristics of MOs after acute myocardial infarction (MI) was examined. The 14 patients (age 69±8 years, 11 males) underwent 201-Tl/99m-Tc PYP single photon emission computed tomography (SPECT) 7±3 days, initial CMR 16±12 days, and follow-up CMR 193±20 days after a reperfused first acute MI. Each image was analyzed using a 17-segment model. Segmental extent of delayed enhancement (DE), wall motion (WM) and degree of 201-Tl uptake were scored in 238 segments. Of 91 MI segments, MO was recognized in 22 (25%) segments on CMR. WM was significantly better in proportion to 201-Tl uptake (P=0.01) in MO segments. All 8 MO segments with WM improvement at follow-up had 99m-Tc PYP uptake, although only 3 (21%) of 14 MO segments that did not show WM improvement at follow-up had 99m-Tc PYP uptake (P=0.001). 99m-Tc PYP and 201-Tl scintigraphy have the potential to predict WM status and improvement of the MO region after reperfused acute MI. (author)

  10. CMR of microvascular obstruction and hemorrhage in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Wu Katherine C

    2012-09-01

    Full Text Available Abstract Microvascular obstruction (MO or no-reflow phenomenon is an established complication of coronary reperfusion therapy for acute myocardial infarction. It is increasingly recognized as a poor prognostic indicator and marker of subsequent adverse LV remodeling. Although MO can be assessed using various imaging modalities including electrocardiography, myocardial contrast echocardiography, nuclear scintigraphy, and coronary angiography, evaluation by cardiovascular magnetic resonance (CMR is particularly useful in enhancing its detection, diagnosis, and quantification, as well as following its subsequent effects on infarct evolution and healing. MO assessment has become a routine component of the CMR evaluation of acute myocardial infarction and will increasingly play a role in clinical trials of adjunctive reperfusion agents and strategies. This review will summarize the pathophysiology of MO, current CMR approaches to diagnosis, clinical implications, and future directions needed for improving our understanding of this common clinical problem.

  11. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  12. Restrictive use of perioperative blood transfusion does not increase complication rates in microvascular breast reconstruction.

    Science.gov (United States)

    O'Neill, Anne C; Barandun, Marina; Cha, Jieun; Zhong, Toni; Hofer, Stefan O P

    2016-08-01

    With increasing appreciation of the possible adverse effects of peri-operative blood transfusion, restrictive policies regarding use of blood products have been adopted in many surgical specialties. Although microvascular breast reconstruction has become a routine procedure, high peri-operative transfusion rates continue to be reported in the literature. In this study we examine the impact of our restrictive approach on blood transfusion rates and postoperative complications in patients undergoing microvascular blood transfusion. A retrospective review of patients undergoing microvascular breast reconstruction with abdominal flaps at a single institution was performed. Patient age and body mass index as well as type, timing and laterality of reconstruction was recorded. Pre-operative and post-operative hemoglobin and hematocrit were recorded. Peri-operative blood transfusion rates were calculated. Post-operative complication rates were compared between patients with higher and lower post-operative hemoglobin levels. Five hundred and twelve patients were included in this study. The peri-operative transfusion rate was 0.98% in this series. There was no significant difference between transfusion rates in unilateral and bilateral reconstructions (0.68 vs 1.36% p = 0.08) or immediate and delayed reconstructions (1.02 vs 0.51% p = 0.72 and 1.01 vs 1.60% p = 0.09 for unilateral and bilateral respectively). Lower post-operative hemoglobin levels were not associated with increased flap related, surgical or medical complications rates. A restrictive approach to peri-operative blood transfusion can be safely adopted in microvascular breast reconstruction without compromising flap viability or overall complication rates. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  14. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  15. Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange.

    Science.gov (United States)

    Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T

    1997-03-01

    A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.

  16. Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia

    NARCIS (Netherlands)

    Johannes, Tanja; Mik, Egbert G.; Klingel, Karin; Dieterich, Hans-Jürgen; Unertl, Klaus E.; Ince, Can

    2009-01-01

    There is growing evidence that impairment in intrarenal oxygenation and hypoxic injury might contribute to the pathogenesis of septic renal failure. An important molecule known to act on the renal microvascular tone and therefore consequently being involved in the regulation of intrarenal oxygen

  17. Differential effects of glucagon-like peptide-1 on microvascular recruitment and glucose metabolism in short- and long-term Insulin resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Jeppesen, Jacob Fuglsbjerg

    2015-01-01

    Acute infusion of glucagon-like-peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. High fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether......-mediated glucose uptake in skeletal muscle by 90% (Prights...

  18. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex.

    Science.gov (United States)

    Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina

    2017-01-01

    It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Experimental diode laser-assisted microvascular anastomosis.

    Science.gov (United States)

    Reali, U M; Gelli, R; Giannotti, V; Gori, F; Pratesi, R; Pini, R

    1993-05-01

    An experimental study to evaluate a diode-laser approach to microvascular end-to-end anastomoses is reported. Studies were carried out on the femoral arteries and veins of Wistar rats, and effective welding of vessel tissue was obtained at low laser power, by enhancing laser absorption with indocyanine green (Cardio-green) solution. The histologic and surgical effects of this laser technique were examined and compared with those of conventional microvascular sutured anastomoses.

  20. Transit time homogenization in ischemic stroke - A novel biomarker of penumbral microvascular failure?

    DEFF Research Database (Denmark)

    Engedal, Thorbjørn S; Hjort, Niels; Hougaard, Kristina D

    2017-01-01

    Cerebral ischemia causes widespread capillary no-flow in animal studies. The extent of microvascular impairment in human stroke, however, is unclear. We examined how acute intra-voxel transit time characteristics and subsequent recanalization affect tissue outcome on follow-up MRI in a historic...... cohort of 126 acute ischemic stroke patients. Based on perfusion-weighted MRI data, we characterized voxel-wise transit times in terms of their mean transit time (MTT), standard deviation (capillary transit time heterogeneity - CTH), and the CTH:MTT ratio (relative transit time heterogeneity), which...... tissue, prolonged mean transit time (>5 seconds) and very low cerebral blood flow (≤6 mL/100 mL/min) was associated with high risk of infarction, largely independent of recanalization status. In the remaining mismatch region, low relative transit time heterogeneity predicted subsequent infarction...

  1. Expression of Glutamate and GABA during the Process of Rat Retinal Synaptic Plasticity Induced by Acute High Intraocular Pressure

    International Nuclear Information System (INIS)

    Zhou, Lihong; Huang, Jufang; Wang, Hui; Luo, Jia; Zeng, Leping; Xiong, Kun; Chen, Dan

    2013-01-01

    Acute high intraocular pressure (HIOP) can induce plastic changes of retinal synapses during which the expression of the presynaptic marker synaptophysin (SYN) has a distinct spatiotemporal pattern from the inner plexiform layer to the outer plexiform layer. We identified the types of neurotransmitters in the retina that participated in this process and determined the response of these neurotransmitters to HIOP induction. The model of acute HIOP was established by injecting normal saline into the anterior chamber of the rat eye. We found that the number of glutamate-positive cells increased successively from the inner part to the outer part of the retina (from the ganglion cell layer to the inner nuclear layer to the outer nuclear layer) after HIOP, which was similar to the spatiotemporal pattern of SYN expression (internally to externally) following HIOP. However, the distribution and intensity of GABA immunoreactivity in the retina did not change significantly at different survival time post injury and had no direct correlation with SYN expression. Our results suggested that the excitatory neurotransmitter glutamate might participate in the plastic process of retinal synapses following acute HIOP, but no evidence was found for the role of the inhibitory neurotransmitter GABA

  2. Acute decrease in renal microvascular PO2 during acute normovolemic hemodilution

    NARCIS (Netherlands)

    Johannes, Tanja; Mik, Egbert G.; Nohé, Boris; Unertl, Klaus E.; Ince, Can

    2007-01-01

    Large differences in the tolerance of organ systems to conditions of decreased O(2) delivery such as hemodilution exist. The kidney receives approximately 25% of the cardiac output and O(2) delivery is in excess of the oxygen demand under normal circumstances. In a rat model of acute normovolemic

  3. Correlates of time to microvascular complications among diabetes ...

    African Journals Online (AJOL)

    Socio-demographic and clinical factors have been known to affect the time to microvascular complications and survival probabilities of diabetes mellitus patients. The objective of this study was to identify risk factors and estimate average survival times for the time to the development of microvascular complications of ...

  4. Microvascular pericytes in healthy and diseased kidneys

    Science.gov (United States)

    Pan, Szu-Yu; Chang, Yu-Ting; Lin, Shuei-Liong

    2014-01-01

    Pericytes are interstitial mesenchymal cells found in many major organs. In the kidney, microvascular pericytes are defined anatomically as extensively branched, collagen-producing cells in close contact with endothelial cells. Although many molecular markers have been proposed, none of them can identify the pericytes with satisfactory specificity or sensitivity. The roles of microvascular pericytes in kidneys were poorly understood in the past. Recently, by using genetic lineage tracing to label collagen-producing cells or mesenchymal cells, the elusive characteristics of the pericytes have been illuminated. The purpose of this article is to review recent advances in the understanding of microvascular pericytes in the kidneys. In healthy kidney, the pericytes are found to take part in the maintenance of microvascular stability. Detachment of the pericytes from the microvasculature and loss of the close contact with endothelial cells have been observed during renal insult. Renal microvascular pericytes have been shown to be the major source of scar-forming myofibroblasts in fibrogenic kidney disease. Targeting the crosstalk between pericytes and neighboring endothelial cells or tubular epithelial cells may inhibit the pericyte–myofibroblast transition, prevent peritubular capillary rarefaction, and attenuate renal fibrosis. In addition, renal pericytes deserve attention for their potential to produce erythropoietin in healthy kidneys as pericytes stand in the front line, sensing the change of oxygenation and hemoglobin concentration. Further delineation of the mechanisms underlying the reduced erythropoietin production occurring during pericyte–myofibroblast transition may be promising for the development of new treatment strategies for anemia in chronic kidney disease. PMID:24465134

  5. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  6. Microvascular Anastomosis Training in Neurosurgery: A Review

    Directory of Open Access Journals (Sweden)

    Vadim A. Byvaltsev

    2018-01-01

    Full Text Available Cerebrovascular diseases are among the most widespread diseases in the world, which largely determine the structure of morbidity and mortality rates. Microvascular anastomosis techniques are important for revascularization surgeries on brachiocephalic and carotid arteries and complex cerebral aneurysms and even during resection of brain tumors that obstruct major cerebral arteries. Training in microvascular surgery became even more difficult with less case exposure and growth of the use of endovascular techniques. In this text we will briefly discuss the history of microvascular surgery, review current literature on simulation models with the emphasis on their merits and shortcomings, and describe the views and opinions on the future of the microvascular training in neurosurgery. In “dry” microsurgical training, various models created from artificial materials that simulate biological tissues are used. The next stage in training more experienced surgeons is to work with nonliving tissue models. Microvascular training using live models is considered to be the most relevant due to presence of the blood flow. Training on laboratory animals has high indicators of face and constructive validity. One of the future directions in the development of microsurgical techniques is the use of robotic systems. Robotic systems may play a role in teaching future generations of microsurgeons. Modern technologies allow access to highly accurate learning environments that are extremely similar to real environment. Additionally, assessment of microsurgical skills should become a fundamental part of the current evaluation of competence within a microneurosurgical training program. Such an assessment tool could be utilized to ensure a constant level of surgical competence within the recertification process. It is important that this evaluation be based on validated models.

  7. Apolipoprotein B level and diabetic microvascular complications ( is there a correlation?

    Directory of Open Access Journals (Sweden)

    Mary N. Rizk

    2013-01-01

    Conclusion Apo B levels are strongly correlated to diabetic microvascular complications. The higher the degree of nephropathy, the higher the Apo B level. The presence of more than one microvascular complication correlates positively with high levels of Apo B. This suggests the possible use of Apo B as a sensitive biomarker of the presence of early diabetic microvascular complications.

  8. Fifty Years of Innovation in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Richard M Kwasnicki

    2016-03-01

    Full Text Available BackgroundInnovation has molded the current landscape of plastic surgery. However, documentation of this process only exists scattered throughout the literature as individual articles. The few attempts made to profile innovation in plastic surgery have been narrative, and therefore qualitative and inherently biased. Through the implementation of a novel innovation metric, this work aims to identify and characterise the most prevalent innovations in plastic surgery over the last 50 years.MethodsPatents and publications related to plastic surgery (1960 to 2010 were retrieved from patent and MEDLINE databases, respectively. The most active patent codes were identified and grouped into technology areas, which were subsequently plotted graphically against publication data. Expert-derived technologies outside of the top performing patents areas were additionally explored.ResultsBetween 1960 and 2010, 4,651 patents and 43,118 publications related to plastic surgery were identified. The most active patent codes were grouped under reconstructive prostheses, implants, instruments, non-invasive techniques, and tissue engineering. Of these areas and other expert-derived technologies, those currently undergoing growth include surgical instruments, implants, non-invasive practices, transplantation and breast surgery. Innovations related to microvascular surgery, liposuction, tissue engineering, lasers and prostheses have all plateaued.ConclusionsThe application of a novel metric for evaluating innovation quantitatively outlines the natural history of technologies fundamental to the evolution of plastic surgery. Analysis of current innovation trends provides some insight into which technology domains are the most active.

  9. Renal microvascular disease in an aging population: a reversible process?

    Science.gov (United States)

    Futrakul, Narisa; Futrakul, Prasit

    2008-01-01

    Renal microvascular disease and tubulointerstitial fibrosis are usually demonstrated in aging in humans and animals. It has recently been proposed that renal microvascular disease is the crucial determinant of tubulointerstitial disease or fibrosis. Enhanced circulating endothelial cell loss is a biomarker that reflects glomerular endothelial injury or renal microvascular disease, and fractional excretion of magnesium (FE Mg) is a sensitive biomarker that reflects an early stage of tubulointerstitial fibrosis. In aging in humans, both of these biomarkers are abnormally elevated. In addition, a glomerular endothelial dysfunction determined by altered hemodynamics associated with peritubular capillary flow reduction is substantiated. A correction of such hemodynamic alteration with vasodilators can effectively improve renal perfusion and restore renal function. Thus, anti-aging therapy can reverse the renal microvascular disease and dysfunction associated with the aging process.

  10. Microvascular free-flap reconstruction of a large defect of the scalp. Experience in a community hospital

    International Nuclear Information System (INIS)

    Singer, J.B.; Gulin, S.P.; Needham, C.W.

    1990-01-01

    The authors present a patient who had postradiation necrosis of the skull and scalp measuring over 300 cm square which was reconstructed with a free latissimus dorsi muscle flap with overlying skin grafts. The procedure was performed in a community hospital with a team comprising two plastic surgeons and a neurosurgeon, with backup from physicians assistants and nursing staff. The successful outcome of this procedure was a direct result of the concerted effort of the surgical team. We believe that microvascular free-flap reconstruction, although a complicated procedure, can be performed at the community hospital as long as appropriate measures for the care of the patient are planned and carried out

  11. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  12. [Recent advances on pericytes in microvascular dysfunction and traditional Chinese medicine prevention].

    Science.gov (United States)

    Liu, Lei; Liu, Jian-Xun; Guo, Hao; Ren, Jian-Xun

    2017-08-01

    Pericytesis a kind of widespread vascular mural cells embedded within the vascular basement membrane of blood microvessels, constituting the barrier of capillaries and tissue spaces together with endothelial cells. Pericytes communicate with microvascular endothelial cells through cell connections or paracrine signals, playing an important role in important physiological processes such as blood flow, vascular permeability and vascular formation. Pericytes dysfunction may participate in some microvascular dysfunction, and also mediate pathological repair process, therefore pericytes attracted more and more attention. Traditional Chinese medicine suggests that microvascular dysfunction belongs to the collaterals disease; Qi stagnation and blood stasis in collaterals result in function imbalance of internal organs. Traditional Chinese medicine (TCM) has shown effects on pericytes in microvascular dysfunction, for example qi reinforcing blood-circulation activating medicines can reduce the damage of retinal pericytes in diabetic retinopathy. However, there are some limitations of research fields, inaccuracy of research techniques and methods, and lack of mechanism elaboration depth in the study of microvascular lesion pericytes. This paper reviewed the biological characteristics of pericytes and pericytes in microvascular dysfunction, as well as the intervention study of TCM on pericytes. The article aims to provide reference for the research of pericytes in microvascular dysfunction and the TCM study on pericytes. Copyright© by the Chinese Pharmaceutical Association.

  13. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  14. Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.

    Science.gov (United States)

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Connelly, Rhykka; Nakano, Yoshimitsu; Traber, Lillian D; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-11-01

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each). This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  15. Chronic resuscitation after trauma-hemorrhage and acute fluid replacement improves hepatocellular function and cardiac output.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1998-01-01

    To determine whether prolonged (chronic) resuscitation has any beneficial effects on cardiac output and hepatocellular function after trauma-hemorrhage and acute fluid replacement. Acute fluid resuscitation after trauma-hemorrhage restores but does not maintain the depressed hepatocellular function and cardiac output. Male Sprague-Dawley rats underwent a 5-cm laparotomy (i.e., trauma was induced) and were bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of maximal bleed-out volume was returned in the form of Ringer's lactate (RL). The animals were acutely resuscitated with RL using 4 times the volume of maximum bleed-out over 60 minutes, followed by chronic resuscitation of 0, 5, or 10 mL/kg/hr RL for 20 hours. Hepatocellular function was determined by an in vivo indocyanine green clearance technique. Hepatic microvascular blood flow was assessed by laser Doppler flowmetry. Plasma levels of interleukin-6 (IL-6) were determined by bioassay. Chronic resuscitation with 5 mL/kg/hr RL, but not with 0 or 10 mL/kg/hr RL, restored cardiac output, hepatocellular function, and hepatic microvascular blood flow at 20 hours after hemorrhage. The regimen above also reduced plasma IL-6 levels. Because chronic resuscitation with 5 mL/kg/hr RL after trauma-hemorrhage and acute fluid replacement restored hepatocellular function and hepatic microvascular blood flow and decreased plasma levels of IL-6, we propose that chronic fluid resuscitation in addition to acute fluid replacement should be routinely used in experimental studies of trauma-hemorrhage.

  16. Constrained pattern of viral evolution in acute and early HCV infection limits viral plasticity.

    Directory of Open Access Journals (Sweden)

    Katja Pfafferott

    2011-02-01

    Full Text Available Cellular immune responses during acute Hepatitis C virus (HCV and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%. The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

  17. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  18. Microvascular obstruction after successful fibrinolytic therapy in acute myocardial infarction. Comparison of reteplase vs reteplase+abciximab: A cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Tiziano Gherli

    2010-05-01

    Full Text Available Background. About one third of patients with TIMI 3 after reperfusion have evidence of microvascular obstruction (MO which represents an independent predictor of myocardial wall rupture. This explains all efforts made to prevent MO. Magnetic resonance imaging (MRI has proved to be particularly useful in detecting MO. The aim of this study was to evaluate with MRI if different fibrinolytic regimens in acute myocardial infarction display different effects on left ventricle (LV volumes and ejection fraction (EF, as well as on myocardial infarct size (MIsz and MO. Methods. Twenty male patients, mean age 58 years, affected by acute myocardial infarction, ten anterior and ten inferior, were treated with: full dose reteplase in ten, and half dose reteplase plus full dose abciximab (R+Abcx in the other ten patients. In the fourth day after hospital admission, MRI STIR T2 images were used to quantify MIsz, while 2dflash cineloops were used after the injection of gadolinium, to quantify LV volumes, EF and to detect MO. Results. LV EF was higher in R+Abcx 51±10 than in reteplase 41±8. MIsz was similar in both treatment groups: however a close relationship was present between MIsz and EF in the reteplase group indicating that the greater the MIsz the lower the EF. In R+Abcx this relationship was no longer present, suggesting a protective effect of the drug on microcirculation. In fact extensive MO was present in 25% of all cases, 80% of which in the reteplase group while only 20% in R+Abcx. Conclusion. R+Abcx prevents MO: compared to traditional fibrinolytic therapy it allows better LV function and most likely improved long term survival.

  19. Microvascular dysfunction in the immediate aftermath of chronic total coronary occlusion recanalization.

    Science.gov (United States)

    Ladwiniec, Andrew; Cunnington, Michael S; Rossington, Jennifer; Thackray, Simon; Alamgir, Farquad; Hoye, Angela

    2016-05-01

    The aim of this study was to compare microvascular resistance under both baseline and hyperemic conditions immediately after percutaneous coronary intervention (PCI) of a chronic total occlusion (CTO) with an unobstructed reference vessel in the same patient Microvascular dysfunction has been reported to be prevalent immediately after CTO PCI. However, previous studies have not made comparison with a reference vessel. Patients with a CTO may have global microvascular and/or endothelial dysfunction, making comparison with established normal values misleading. After successful CTO PCI in 21 consecutive patients, coronary pressure and flow velocity were measured at baseline and hyperemia in distal segments of the CTO/target vessel and an unobstructed reference vessel. Hemodynamics including hyperemic microvascular resistance (HMR), basal microvascular resistance (BMR), and instantaneous minimal microvascular resistance at baseline and hyperemia were calculated and compared between reference and target/CTO vessels. After CTO PCI, BMR was reduced in the target/CTO vessel compared with the reference vessel: 3.58 mm Hg/cm/s vs 4.94 mm Hg/cm/s, difference -1.36 mm Hg/cm/s (-2.33 to -0.39, p = 0.008). We did not detect a difference in HMR: 1.82 mm Hg/cm/s vs 2.01 mm Hg/cm/s, difference -0.20 (-0.78 to 0.39, p = 0.49). Instantaneous minimal microvascular resistance correlated strongly with the length of stented segment at baseline (r = 0.63, p = 0.005) and hyperemia (r = 0.68, p = 0.002). BMR is reduced in a recanalized CTO in the immediate aftermath of PCI compared to an unobstructed reference vessel; however, HMR appears to be preserved. A longer stented segment is associated with increased microvascular resistance. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  1. Blood-based biomarkers of microvascular pathology in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Ewers, Michael

    2012-02-01

    Sporadic Alzheimer\\'s disease (AD) is a genetically complex and chronically progressive neurodegenerative disorder with molecular mechanisms and neuropathologies centering around the amyloidogenic pathway, hyperphosphorylation and aggregation of tau protein, and neurofibrillary degeneration. While cerebrovascular changes have not been traditionally considered to be a central part of AD pathology, a growing body of evidence demonstrates that they may, in fact, be a characteristic feature of the AD brain as well. In particular, microvascular abnormalities within the brain have been associated with pathological AD hallmarks and may precede neurodegeneration. In vivo assessment of microvascular pathology provides a promising approach to develop useful biological markers for early detection and pathological characterization of AD. This review focuses on established blood-based biological marker candidates of microvascular pathology in AD. These candidates include plasma concentration of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) that are increased in AD. Measures of endothelial vasodilatory function including endothelin (ET-1), adrenomedullin (ADM), and atrial natriuretic peptide (ANP), as well as sphingolipids are significantly altered in mild AD or during the predementia stage of mild cognitive impairment (MCI), suggesting sensitivity of these biomarkers for early detection and diagnosis. In conclusion, the emerging clinical diagnostic evidence for the value of blood-based microvascular biomarkers in AD is promising, however, still requires validation in phase II and III diagnostic trials. Moreover, it is still unclear whether the described protein dysbalances are early or downstream pathological events and how the detected systemic microvascular alterations relate to cerebrovascular and neuronal pathologies in the AD brain.

  2. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    Science.gov (United States)

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.

  3. Pilot study on microvascular anastomosis: performance and future educational prospects.

    Science.gov (United States)

    Berretti, G; Colletti, G; Parrinello, G; Iavarone, A; Vannucchi, P; Deganello, A

    2017-11-30

    The introduction of microvascular free flaps has revolutionised modern reconstructive surgery. Unfortunately, access to training opportunities at standardised training courses is limited and expensive. We designed a pilot study on microvascular anastomoses with the aim of verifying if a short course, easily reproducible, could transmit microvascular skills to participants; if the chosen pre-test was predictive of final performance; and if age could influence the outcome. A total of 30 participants (10 students, 10 residents and 10 surgeons) without any previous microvascular experience were instructed and tested during a single 3 to 5 hour course. The two microanastomoses evaluated were the first ever performed by each participant. More than the half of the cohort was able to produce both patent microanastomoses in less than 2 hours; two-thirds of the attempted microanastomoses were patent. The pretest predicted decent scores from poor performances with a sensitivity of 61.5%, specificity of 100%, positive predictive value of 100% and negative predictive value of 40%. Students and residents obtained significantly higher scores than surgeons. Since our course model is short, cost-effective and highly reproducible, it could be introduced and implemented anywhere as an educational prospect for preselecting young residents showing talent and natural predisposition and having ambitions towards microvascular reconstructive surgery. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale.

  4. Insulin-resistant glucose metabolism in patients with microvascular angina--syndrome X

    DEFF Research Database (Denmark)

    Vestergaard, H; Skøtt, P; Steffensen, R

    1995-01-01

    Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study was to exa......Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study...... was to examine whether patients with MA are insulin-resistant. Nine patients with MA and seven control subjects were studied. All were sedentary and glucose-tolerant. Coronary arteriography was normal in all participants, and exercise-induced coronary ischemia was demonstrated in all MA patients. A euglycemic...... metabolism (8.4 +/- 0.9 v 12.5 +/- 1.3 mg.kg FFM-1.min-1, P

  5. Profile of Microvascular Disease in Type 2 Diabetes in a Tertiary ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is a metabolic disorder complicated by microvascular and macrovascular diseases. The clinical profile of these complications has not been adequately studied in many tertiary health care centers in India. Aim: The authors studied the clinical profile of microvascular diabetes ...

  6. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules

    OpenAIRE

    Zhang, Wujie; Choi, Jung K.; He, Xiaoming

    2017-01-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. ...

  7. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  8. Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels.

    Science.gov (United States)

    Cuchiara, Michael P; Gould, Daniel J; McHale, Melissa K; Dickinson, Mary E; West, Jennifer L

    2012-11-07

    Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self-assembling pro-vasculogenic co-culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self-assembly and employs an anastomotic interface for integration of self-assembled micro-vascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra-vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo.

  9. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Moran

    2015-01-01

    Full Text Available Peroxisome-proliferator activated receptor-alpha (PPARα is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα’s effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.

  10. Association between the resolution of the ST with microvascular obstruction and the size of the infarction assessed by cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lluveras, N.; Parma, G.; Florio, L; Zamoro, J

    2012-01-01

    The absence of ST-segment resolution (STR) in patients with an ST-elevation myocardial infarction (STEMI) after reperfusion strategy has been related to impaired myocardial perfusion. This is likely due to extensive microvascular obstruction (MVO) and reperfusion tissue injury. The aim of the study was to analyze the value of STR in the prediction of infarct size, perfusion impairment and left ventricular function assessed with cardiac magnetic resonance (CMR) in acute STEMI

  11. A review of the surgical management of breast cancer: plastic reconstructive techniques and timing implications.

    Science.gov (United States)

    Rosson, Gedge D; Magarakis, Michael; Shridharani, Sachin M; Stapleton, Sahael M; Jacobs, Lisa K; Manahan, Michele A; Flores, Jaime I

    2010-07-01

    The oncologic management of breast cancer has evolved over the past several decades from radical mastectomy to modern-day preservation of chest and breast structures. The increased rate of mastectomies over recent years made breast reconstruction an integral part of the breast cancer management. Plastic surgery now offers patients a wide variety of reconstruction options from primary closure of the skin flaps to performance of microvascular and autologous tissue transplantation. Well-coordinated partnerships between surgical oncologists, plastic surgeons, and patients address concerns of tumor control, cosmesis, and patients' wishes. The gamut of breast reconstruction options is reviewed, particularly noting state-of-the-art techniques, as well as the advantages and disadvantages of various timing modalities.

  12. Conditional RARα Knockout Mice Reveal Acute Requirement for Retinoic Acid and RARα in Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Federica eSarti

    2012-02-01

    Full Text Available All-trans retinoic acid (RA plays important roles in brain development through regulating gene transcription. Recently, a novel postdevelopmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA then activated dendritic protein synthesis and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to be mediated by its canonical receptor RARα but no genetic evidence was available. Thus, we here tested the fundamental requirement of RARα in homeostatic plasticity using conditional RARα knockout mice, and additionally performed a structure-function analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA’s effect on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic synaptic plasticity. By expressing various RARα rescue constructs in RARα knockout neurons, we found that the DNA-binding domain of RARα was dispensable for its role in regulating synaptic strength, further supporting the notion that RA and RARα act in a non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD and the mRNA-binding domain (F-domain are both necessary and sufficient for the function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic regulation performed by the LBD/F domains leads to insertion of calcium-permeable AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and RARα perform essential non-transcriptional functions in regulating synaptic strength, and establish a functional link between the various domains of RARα and their involvement in regulating protein synthesis and excitatory synaptic transmission during

  13. Gap filling of 3-D microvascular networks by tensor voting.

    Science.gov (United States)

    Risser, L; Plouraboue, F; Descombes, X

    2008-05-01

    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.

  14. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    Science.gov (United States)

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-06-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  15. Design and Rationale for the Endothelin-1 Receptor Antagonism in the Prevention of Microvascular Injury in Patients with non-ST Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention (ENDORA-PCI) Trial.

    Science.gov (United States)

    Liou, Kevin; Jepson, Nigel; Buckley, Nicolas; Chen, Vivien; Thomas, Shane; Russell, Elizabeth Anne; Ooi, Sze-Yuan

    2016-04-01

    Peri-procedural myocardial infarction (PMI) occurs in a small but significant portion of patients undergoing percutaneous intervention (PCI). The underlying mechanisms are complex and may include neurohormonal activation and release of vasoactive substances resulting in disruption of the coronary microcirculation. Endothelin in particular has been found in abundance in atherosclerotic plaques and in systemic circulation following PCI, and may be a potential culprit for PMI through its action on microvascular vasoconstriction, and platelet and neutrophil activation. In this study we aim to characterize the behavior of the coronary microcirculation during a PCI with the index of microvascular resistance (IMR) and the effect of peri-procedural endothelin antagonism. The ENDORA-PCI trial is a randomized, double-blind, placebo-controlled, single-center clinical trial designed to evaluate the efficacy of endothelin antagonism in attenuating the peri-procedural rise in IMR as a surrogate marker for PMI. The patients of interest are those with non-ST elevation acute coronary syndrome (NSTEACS) undergoing PCI, and we aim to recruit 52 patients overall to give the study a power of 80 % at an α level of 5 %. Patients will be randomized in a 1:1 fashion to either Ambrisentan, an endothelin antagonist, or placebo, prior to their PCI. IMR will be measured before and after PCI. The primary endpoint is the difference in peri-procedural changes in patients' IMR between the two groups. The ENDORA-PCI study will investigate whether endothelin antagonism with Ambrisentan attenuates the peri-procedural rise in IMR in patients with NSTEACS undergoing PCI, and thus potentially the risk of PMI.

  16. Perioperative antibiotics in the setting of microvascular free tissue transfer: current practices

    NARCIS (Netherlands)

    Reiffel, Alyssa J.; Kamdar, Mehul R.; Kadouch, Daniel J. M.; Rohde, Christine H.; Spector, Jason A.

    2010-01-01

    Microvascular free tissue transfer is a ubiquitous and routine method of restoring anatomic defects. There is a paucity of data regarding the role of perioperative antibiotics in free tissue transfer. We designed a survey to explore usage patterns among microvascular surgeons and thereby define a

  17. Interactions of the gasotransmitters contribute to microvascular tone (dysregulation in the preterm neonate.

    Directory of Open Access Journals (Sweden)

    Rebecca M Dyson

    Full Text Available Hydrogen sulphide (H2S, nitric oxide (NO, and carbon monoxide (CO are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow.90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions.No relationship was observed between NO and CO (p = 0.18, r = 0.18. A positive relationship between NO and H2S (p = 0.008, r = 0.28 and an inverse relationship between CO and H2S (p = 0.01, r = -0.33 exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented.The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.

  18. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    Science.gov (United States)

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  19. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    Science.gov (United States)

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  1. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bekkers, Sebastiaan C.A.M.; Gorgels, Anton P.M.; Passos, Valeria Lima; Waltenberger, Johannes; Crijns, Harry J.G.M.; Schalla, Simon [Maastricht University Medical Center, Department of Cardiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Backes, Walter H.; Snoep, Gabriel [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Kim, Raymond J. [Duke University Medical Center, Duke Cardiovascular Magnetic Resonance Center, PO Box 3934, Durham, NC (United States)

    2009-12-15

    Several cardiovascular magnetic resonance imaging (CMR) techniques are used to detect microvascular obstruction (MVO) after acute myocardial infarction (AMI). To determine the prevalence of MVO and gain more insight into the dynamic changes in appearance of MVO, we studied 84 consecutive patients with a reperfused AMI on average 5 and 104 days after admission, using an optimised single breath-hold 3D inversion recovery gradient echo pulse sequence (IR-GRE) protocol. Early MVO (2 min post-contrast) was detected in 53 patients (63%) and late MVO (10 min post-contrast) in 45 patients (54%; p = 0.008). The extent of MVO decreased from early to late imaging (4.3 {+-} 3.2% vs. 1.8 {+-} 1.8%, p < 0.001) and showed a heterogeneous pattern. At baseline, patients without MVO (early and late) had a higher left ventricular ejection fraction (LVEF) than patients with persistent late MVO (56 {+-} 7% vs. 48 {+-} 7%, p < 0.001) and LVEF was intermediate in patients with early MVO but late MVO disappearance (54 {+-} 6%). During follow-up, LVEF improved in all three subgroups but remained intermediate in patients with late MVO disappearance. This optimised single breath-hold 3D IR-GRE technique for imaging MVO early and late after contrast administration is fast, accurate and allows detection of patients with intermediate remodelling at follow-up. (orig.)

  2. Reduced microvascular volume and hemispherically deficient vasoreactivity to hypercapnia in acute ischemia: MRI study using permanent middle cerebral artery occlusion rat model.

    Science.gov (United States)

    Suh, J Y; Shim, Woo H; Cho, Gyunggoo; Fan, Xiang; Kwon, Seon J; Kim, Jeong K; Dai, George; Wang, Xiaoying; Kim, Young R

    2015-06-01

    Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology.

  3. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy?

    Science.gov (United States)

    Borges, Juliana Pereira; Mendes, Fernanda de Souza Nogueira Sardinha; Lopes, Gabriella de Oliveira; Sousa, Andréa Silvestre de; Mediano, Mauro Felippe Felix; Tibiriçá, Eduardo

    2018-08-15

    Chronic Chagas cardiomyopathy (CCC) and cardiomyopathies due to other etiologies involve differences in pathophysiological pathways that are still unclear. Systemic microvascular abnormalities are associated with the pathogenesis of ischemic heart disease. However, systemic microvascular endothelial function in CCC remains to be elucidated. Thus, we compared the microvascular endothelial function of patients presenting with CCC to those with ischemic cardiomyopathy disease. Microvascular reactivity was assessed in 21 patients with cardiomyopathy secondary to Chagas disease, 21 patients with cardiomyopathy secondary to ischemic disease and 21 healthy controls. Microvascular blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with iontophoresis of acetylcholine (ACh). Peak increase in forearm blood flow with ACh iontophoresis in relation to baseline was greater in healthy controls than in patients with heart disease (controls: 162.7 ± 58.4% vs. ischemic heart disease: 74.1 ± 48.3% and Chagas: 85.1 ± 68.1%; p < 0.0001). Patients with Chagas and ischemic cardiomyopathy presented similar ACh-induced changes from baseline in skin blood flow (p = 0.55). Endothelial microvascular function was equally impaired among patients with CCC and ischemic cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation

    NARCIS (Netherlands)

    Sinaasappel, M.; van Iterson, M.; Ince, C.

    1999-01-01

    1. The aim of this study was to investigate the relation between microvascular and venous oxygen pressures during haemorrhagic shock and resuscitation in the pig intestine. To this end microvascular PO2 (microPO2) was measured by quenching of Pd-porphyrin phosphorescence by oxygen and validated for

  5. Transfer of Learning from Practicing Microvascular Anastomosis on Silastic Tubes to Rat Abdominal Aorta.

    Science.gov (United States)

    Mokhtari, Pooneh; Tayebi Meybodi, Ali; Lawton, Michael T; Payman, Andre; Benet, Arnau

    2017-12-01

    Learning to perform microvascular anastomosis is difficult. Laboratory practice models using artificial vessels are frequently used for this purpose. However, the efficacy of such practice models has not been objectively assessed for the performance of microvascular anastomosis during live surgical settings. This study was conducted to assess the transfer of learning from practicing microvascular anastomosis on tubes to anastomosing rat abdominal aorta. Ten surgeons without any experience in microvascular anastomosis were randomly assigned to an experimental or a control group. Both groups received didactic and visual training on end-to-end microvascular anastomosis. The experimental group received 24 sessions of hands-on training on microanastomosis using Silastic tubes. Next, both groups underwent recall tests on weeks 1, 2, and 8 after training. The recall test consisted of completing an end-to-end anastomosis on the rat's abdominal aorta. Anastomosis score, the time to complete the anastomosis, and the average time to place 1 stitch on the vessel perimeter were compared between the 2 groups. Compared with the control group, the experimental group did significantly better in terms of anastomosis score, total time, and per-stitch time. The measured variables showed stability and did not change significantly between the 3 recall tests. The skill of microvascular anastomosis is transferred from practicing on Silastic tubes to rat's abdominal aorta. Considering the relative advantages of Silastic tubes to live rodent surgeries, such as lower cost and absence of ethical issues, our results support the widespread use of Silastic tubes in training programs for microvascular anastomosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. COAGULATION PROFILE IN DIABETES MELLITUS AND ITS ASSOCIATION WITH MICROVASCULAR COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Uma Shankar Mishra

    2017-12-01

    Full Text Available BACKGROUND This study intends to assess the changes in the simple routine coagulation parameters in diabetes mellitus and to investigate whether any relationship exists among changes in these coagulation parameters and development of microvascular complication in diabetes mellitus. MATERIALS AND METHODS Period of study was from 2010-2012. It was done in M.K.C.G. Medical College with the approval from Berhampur University. It is a case control study. 50 diabetic patients and 50 age and sex matched non-diabetic patients were randomly selected. Simple coagulation parameters like Activated Partial Thromboplastin Time (aPTT, Prothrombin Time (PT, serum fibrinogen, platelet count and Plasminogen Activator Inhibitor-1 (PAI-1 were measured. Statistical study was done using unpaired t-test and analysis and calculations were done using GraphPad software. RESULTS Serum fibrinogen was found to be increased in diabetic patients when compared to non-diabetic patients (mean 278 ± 26.9 v/s 232.52 ± 16.5, P value - 0.009, significant. PAI-1 levels was found to be higher among the diabetics when compared to nondiabetics (47.64 ± 8.82 v/s 31.06 ± 7.12, the two-tailed P value is <0.0001, considered extremely significant. Platelet count through within normal limits. It was found to be decreased in diabetic patient when compared to non-diabetic (2.25 ± 0.18 v/s 2.33 ± 0.03, P value - 0.022. Prothrombin Time (PT (13.15 ± 0.52 v/s 13.04 ± 0.49, P value - 0.28 and PTT (33.04 ± 1.31 v/s 32.99 ± 1.29, P value 0.85, found to be statistically insignificant. Among 50 diabetic patients, 24 had neuropathy, 20 had nephropathy, 10 had retinopathy and 21 had none of these complications. On comparing diabetic patients with microvascular complications and without microvascular complications, significant age difference was observed (59.55 ± 5.06 v/s 51.00 ± 3.31, P=0.003. This probably was a reflection of increase in microvascular complications with increasing duration

  7. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    L. Zafrani (Lara); B. Ergin (Bulent); Kapucu, A. (Aysegul); C. Ince (Can)

    2016-01-01

    textabstractBackground: The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods: Twenty-seven Wistar

  8. Microvascular transplantation and replantation of the dog submandibular gland.

    Science.gov (United States)

    Su, Wan Fu; Jen, Yee Min; Chen, Shyi Gen; Nieh, Shin; Wang, Chih-Hung

    2006-05-01

    Transplantation and replantation of the submandibular gland with microvascular techniques were demonstrated in a previous study, with good gland survival. The application of radiation on the neck bed was attempted to address an actual clinical scenario in this study. Five canine submandibular glands were transplanted using microvascular techniques to the ipsilateral femoral system. Radiotherapy at a dosage level of 3,600 cGy using 600 cGy q.d was delivered to the nasopharyngeal and neck regions 2 weeks after transplantation. The transferred glands were then reintroduced into the original but radiated neck bed. The glands were harvested for histological examination 8 weeks later. Four of five canine submandibular glands can withstand microvascular transplantation and then replantation into a radiated neck bed for at least 8 weeks. However, the salivary function was depleted. The canine submandibular gland can survive the transplantation and replantation for at least 8 weeks in spite of precipitating radiation insult on the neck bed for 3 weeks. Neurorraphy is, however, essential to maintaining the glandular function.

  9. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    Science.gov (United States)

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM

  10. Free and microvascular bone grafting in the irradiated dog mandible

    International Nuclear Information System (INIS)

    Altobelli, D.E.; Lorente, C.A.; Handren, J.H. Jr.; Young, J.; Donoff, R.B.; May, J.W. Jr.

    1987-01-01

    Microvascular and free rib grafts were placed in 4.5 cm defects in an edentate mandibular body defect 18 to 28 days after completion of 50 Gy of irradiation from a 60 Co source. The animals were sacrificed from two to forty weeks postoperatively and evaluated clinically, radiographically, and histologically. There was a marked difference in the alveolar mucosal viability with the two grafts. Mucosal dehiscence was not observed over any of the microvascular grafts, but was present in seven-eighths of the free grafts. Union of the microvascular bone graft to the host bone occurred within six weeks. In contrast, after six weeks the free graft was sequestered in all the animals. An unexpected finding with both types of graft was the marked subperiosteal bone formation. This bone appeared to be derived from the host bed, stabilizing and bridging the defects bilaterally. The results suggest that radiated periosteum may play an important role in osteogenesis

  11. Microvascular Anastomosis: Proposition of a Learning Curve.

    Science.gov (United States)

    Mokhtari, Pooneh; Tayebi Meybodi, Ali; Benet, Arnau; Lawton, Michael T

    2018-04-14

    Learning to perform a microvascular anastomosis is one of the most difficult tasks in cerebrovascular surgery. Previous studies offer little regarding the optimal protocols to maximize learning efficiency. This failure stems mainly from lack of knowledge about the learning curve of this task. To delineate this learning curve and provide information about its various features including acquisition, improvement, consistency, stability, and recall. Five neurosurgeons with an average surgical experience history of 5 yr and without any experience in bypass surgery performed microscopic anastomosis on progressively smaller-caliber silastic tubes (Biomet, Palm Beach Gardens, Florida) during 24 consecutive sessions. After a 1-, 2-, and 8-wk retention interval, they performed recall test on 0.7-mm silastic tubes. The anastomoses were rated based on anastomosis patency and presence of any leaks. Improvement rate was faster during initial sessions compared to the final practice sessions. Performance decline was observed in the first session of working on a smaller-caliber tube. However, this rapidly improved during the following sessions of practice. Temporary plateaus were seen in certain segments of the curve. The retention interval between the acquisition and recall phase did not cause a regression to the prepractice performance level. Learning the fine motor task of microvascular anastomosis adapts to the basic rules of learning such as the "power law of practice." Our results also support the improvement of performance during consecutive sessions of practice. The objective evidence provided may help in developing optimized learning protocols for microvascular anastomosis.

  12. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-01-01

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into

  13. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Redwood Simon

    2009-08-01

    Full Text Available Abstract Background The presence and extent of microvascular obstruction (MO after acute myocardial infarction can be measured by first-pass gadolinium-enhanced perfusion cardiovascular magnetic resonance (CMR or after gadolinium injection with early or late enhancement (EGE/LGE imaging. The volume of MO measured by these three methods may differ because contrast agent diffusion into the MO reduces its apparent extent over time. Theoretically, first-pass perfusion CMR should be the most accurate method to measure MO, but this technique has been limited by lower spatial resolution than EGE and LGE as well as incomplete cardiac coverage. These limitations of perfusion CMR can be overcome using spatio-temporal undersampling methods. The purpose of this study was to compare the extent of MO by high resolution first-pass k-t SENSE accelerated perfusion, EGE and LGE. Methods 34 patients with acute ST elevation myocardial infarction, treated successfully with primary percutaneous coronary intervention (PPCI, underwent CMR within 72 hours of admission. k-t SENSE accelerated first-pass perfusion MR (7 fold acceleration, spatial resolution 1.5 mm × 1.5 mm × 10 mm, 8 slices acquired over 2 RR intervals, 0.1 mmol/kg Gd-DTPA, EGE (1–4 minutes after injection with a fixed TI of 440 ms and LGE images (10–12 minutes after injection, TI determined by a Look-Locker scout were acquired. MO volume was determined for each technique by manual planimetry and summation of discs methodology. Results k-t SENSE first-pass perfusion detected more cases of MO than EGE and LGE (22 vs. 20 vs. 14, respectively. The extent of MO imaged by first-pass perfusion (median mass 4.7 g, IQR 6.7 was greater than by EGE (median mass 2.3 g, IQR 7.1, p = 0.002 and LGE (median mass 0.2 g, IQR 2.4, p = 0.0003. The correlation coefficient between MO mass measured by first-pass perfusion and EGE was 0.91 (p Conclusion The extent of MO following acute myocardial infarction appears larger on

  14. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Microvascular Remodeling and Wound Healing: A Role for Pericytes

    Science.gov (United States)

    Dulmovits, Brian M.; Herman, Ira M.

    2012-01-01

    Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474

  16. [Microvascular decompression for hemifacial spasm. Ten years of experience].

    Science.gov (United States)

    Revuelta-Gutiérrez, Rogelio; Vales-Hidalgo, Lourdes Olivia; Arvizu-Saldaña, Emiliano; Hinojosa-González, Ramón; Reyes-Moreno, Ignacio

    2003-01-01

    Hemifacial spasm characterized by involuntary paroxistic contractions of the face is more frequent on left side and in females. Evolution is progressive and in a few cases may disappear. Management includes medical treatment, botulinum toxin, and microvascular decompression of the nerve. We present the results of 116 microvascular decompressions performed in 88 patients over 10 years. All patients had previous medical treatment. All patients were operated on with microsurgical technique by asterional craniotomy. Vascular compression was present in all cases with one exception. Follow-up was from 1 month to 133 months. Were achieved excellent results in 70.45% of cases after first operation, good results in 9.09%, and poor results in 20.45% of patients. Long-term results were excellent in 81.82%, good in 6.82%, and poor in 11.36% of patients. Hypoacusia and transitory facial palsy were the main complications. Hemifacial spasm is a painless but disabling entity. Medical treatment is effective in a limited fashion. Injection of botulinum toxin has good response but benefit is transitory. Microvascular decompression is treatment of choice because it is minimally invasive, not destructive, requires minimum technical support, and yields best long-term results.

  17. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity.

    Science.gov (United States)

    Woodside, John D S; Gutowski, Mariusz; Fall, Lewis; James, Philip E; McEneny, Jane; Young, Ian S; Ogoh, Shigehiko; Bailey, Damian M

    2014-12-01

    Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (V̇O2 max ). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine V̇O2 max in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at V̇O2 max to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower V̇O2 max (P exercise-induced increase in oxidative-nitrosative-inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower V̇O2 max in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  18. Microvascular lesions of the true vocal fold.

    Science.gov (United States)

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  19. Preventing microvascular complications in type 1 diabetes mellitus

    Science.gov (United States)

    Viswanathan, Vijay

    2015-01-01

    Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM) by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c) level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour. PMID:25941647

  20. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  1. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  2. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Science.gov (United States)

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  3. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study.

    Science.gov (United States)

    Barcelos, Amanda; Lamas, Cristiane; Tibiriça, Eduardo

    2017-07-28

    Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.

  4. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    Science.gov (United States)

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  5. [Construction of 2-dimensional tumor microvascular architecture phenotype in non-small cell lung cancer].

    Science.gov (United States)

    Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo

    2008-08-01

    To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.

  6. Microvascular and Macrovascular Abnormalities and Cognitive and Physical Function in Older Adults: Cardiovascular Health Study.

    Science.gov (United States)

    Kim, Dae Hyun; Grodstein, Francine; Newman, Anne B; Chaves, Paulo H M; Odden, Michelle C; Klein, Ronald; Sarnak, Mark J; Lipsitz, Lewis A

    2015-09-01

    To evaluate and compare the associations between microvascular and macrovascular abnormalities and cognitive and physical function Cross-sectional analysis of the Cardiovascular Health Study (1998-1999). Community. Individuals with available data on three or more of five microvascular abnormalities (brain, retina, kidney) and three or more of six macrovascular abnormalities (brain, carotid artery, heart, peripheral artery) (N = 2,452; mean age 79.5). Standardized composite scores derived from three cognitive tests (Modified Mini-Mental State Examination, Digit-Symbol Substitution Test, Trail-Making Test (TMT)) and three physical tests (gait speed, grip strength, 5-time sit to stand) Participants with high microvascular and macrovascular burden had worse cognitive (mean score difference = -0.30, 95% confidence interval (CI) = -0.37 to -0.24) and physical (mean score difference = -0.32, 95% CI = -0.38 to -0.26) function than those with low microvascular and macrovascular burden. Individuals with high microvascular burden alone had similarly lower scores than those with high macrovascular burden alone (cognitive function: -0.16, 95% CI = -0.24 to -0.08 vs -0.13, 95% CI = -0.20 to -0.06; physical function: -0.15, 95% CI = -0.22 to -0.08 vs -0.12, 95% CI = -0.18 to -0.06). Psychomotor speed and working memory, assessed using the TMT, were only impaired in the presence of high microvascular burden. Of the 11 vascular abnormalities considered, white matter hyperintensity, cystatin C-based glomerular filtration rate, large brain infarct, and ankle-arm index were independently associated with cognitive and physical function. Microvascular and macrovascular abnormalities assessed using noninvasive tests of the brain, kidney, and peripheral artery were independently associated with poor cognitive and physical function in older adults. Future research should evaluate the usefulness of these tests in prognostication. © 2015, Copyright the Authors Journal compilation © 2015

  7. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.

    Science.gov (United States)

    Hassan, Atiq; Arnold, Breanna M; Caine, Sally; Toosi, Behzad M; Verge, Valerie M K; Muir, Gillian D

    2018-01-01

    One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions

  8. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  9. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    Science.gov (United States)

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Preventing microvascular complications in type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Vijay Viswanathan

    2015-01-01

    Full Text Available Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour.

  11. Impaired coronary microvascular function in diabetics

    International Nuclear Information System (INIS)

    Tsujimoto, Go

    2000-01-01

    Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase (ΔMTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global ΔMTU was significantly lower in the diabetics than in control subjects (14.4±5.4% vs. 21.7±8.5%, p<0.01). Regional ΔMTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between ΔMTU in the 4 left ventricular regions in the same group. ΔMTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics. (author)

  12. Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Vipul J. Patel

    2018-01-01

    Full Text Available Introduction. Acute respiratory distress syndrome (ARDS is a complex clinical syndrome characterized by acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure and death. Current best practice for ARDS involves “lung-protective ventilation,” which entails low tidal volumes and limiting the plateau pressures in mechanically ventilated patients. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Areas Covered. In recent years, several natural products have been studied in experimental models and have been shown to inhibit multiple inflammatory pathways associated with acute lung injury and ARDS at a molecular level. Because of the pleiotropic effects of these agents, many of them also activate antioxidant pathways through nuclear factor erythroid-related factor 2, thereby targeting multiple pathways. Several of these agents are prescribed for treatment of inflammatory conditions in the Asian subcontinent and have shown to be relatively safe. Expert Commentary. Here we review natural remedies shown to attenuate lung injury and inflammation in experimental models. Translational human studies in patients with ARDS may facilitate treatment of this devastating disease.

  13. Microvascular versus macrovascular cerebral vasomotor reactivity in patients with severe internal carotid artery stenosis or occlusion.

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-02-01

    In patients with severe internal carotid artery steno-occlusive lesions (ISOL), impaired cerebrovascular reactivity (CVR) is predictive of future ischemic stroke (IS) or transient ischemic attack (TIA). Therefore, the evaluation of CVR in ISOL patients may be a means to evaluate the risk for IS/TIA and decide on an intervention. Our aim was (1) to explore the feasibility of concurrent near-infrared spectroscopy (NIRS-DOS), diffuse correlation spectroscopy, and transcranial Doppler for CVR assessment in ISOL patients, and (2) to compare macrovascular and microvascular CVR in ISOL patients and explore its potential for IS/TIA risk stratification. Twenty-seven ISOL patients were recruited. The changes in continuous microvascular and macrovascular hemodynamics upon acetazolamide injection were used to determine CVR. Oxyhemoglobin (HbO2, by near-infrared spectroscopy), microvascular cerebral blood flow (CBF, by diffuse correlation spectroscopy) and CBF velocity (by transcranial Doppler) showed significant increases upon acetazolamide injection in all subjects (P < .03). Only macrovascular CVR (P = .024) and none of the microvascular measures were significantly dependent on the presence of ISOL. In addition, while CBF was significantly correlated with HbO2, neither of these microvascular measures correlated with macrovascular CBF velocity. We demonstrated the simultaneous, continuous, and noninvasive evaluation of CVR at both the microvasculature and macrovasculature. We found that macrovascular CVR response depends on the presence of ISOL, whereas the microvascular CVR did not significantly depend on the ISOL presence, possibly due to the role of collaterals other than those of the circle of Willis. The concurrent microvascular and macrovascular CVR measurement in the ISOL patients might improve future IS/TIA risk assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  14. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Gui-Zhen [Department of Health, Linyi People' s Hospital, Shandong University, Shandong (China); Tian, Wei [Department of Nursing, Linyi Oncosurgical Hospital, Shandong (China); Fu, Hai-Tao [Department of Ophthalmology, Linyi People' s Hospital, Shandong University, Shandong (China); Li, Chao-Peng, E-mail: lcpcn@163.com [Eye Institute of Xuzhou, Jiangsu (China); Liu, Ban, E-mail: liuban@126.com [Department of Cardiology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai (China)

    2016-02-26

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  15. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    International Nuclear Information System (INIS)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao; Li, Chao-Peng; Liu, Ban

    2016-01-01

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  16. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  17. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    Science.gov (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  18. Design, manufacture and in-vitro evaluation of a new microvascular anastomotic device.

    Science.gov (United States)

    Huang, Shao-Fu; Wang, Tien-Hsiang; Wang, Hsuan-Wen; Huang, Shu-Wei; Lin, Chun-Li; Kuo, Hsien-Nan; Yu, Tsung-Chih

    2013-01-01

    Many microvascular anastomoses have been proposed for use with physical assisted methods, such as cuff, ring-pin, stapler, clip to the anastomose blood vessel. The ring-pin type anastomotic device (e.g., 3M Microvascular Anastomotic System) is the most commonly used worldwide because the anastomotic procedure can be conducted more rapidly and with fewer traumas than using sutures. However, problems including vessel leakage, ring slippage, high cost and high surgical skill demand need to be resolved. The aim of this study is to design and manufacture a new anastomotic device for microvascular anastomosis surgery and validate the device functions with in-vitro testing. The new device includes one pair of pinned rings and a set of semi-automatic flap apparatus designed and made using computer-aided design / computer-aided manufacture program. A pair of pinned rings was used to impale vessel walls and establish fluid communication with rings joined. The semi-automatic flap apparatus was used to assist the surgeon to invert the vessel walls and impale onto each ring pin, then turning the apparatus knob to bring the rings together. The device was revised until it became acceptable for clinical requires. An in-vitro test was performed using a custom-made seepage micro-fluid system to detect the leakage of the anastomotic rings. The variation between input and output flow for microvascular anastomoses was evaluated. The new microvascular anastomotic device was convenient and easy to use. It requires less time than sutures to invert and impale vessel walls onto the pinned rings using the semi-automatic flap apparatus. The in-vitro test data showed that there were no tears from the joined rings seam during the procedures. The new anastomotic devices are effective even with some limitations still remaining. This device can be helpful to simplify the anastomosis procedure and reduce the surgery time.

  19. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion.

    Science.gov (United States)

    Yang, Chuang-Bo; Zhang, Shuang; Jia, Yong-Jun; Yu, Yong; Duan, Hai-Feng; Zhang, Xi-Rong; Ma, Guang-Ming; Ren, Chenglong; Yu, Nan

    2017-10-01

    To study the clinical value of dual-energy spectral CT in the quantitative assessment of microvascular invasion of small hepatocellular carcinoma. This study was approved by our ethics committee. 50 patients with small hepatocellular carcinoma who underwent contrast enhanced spectral CT in arterial phase (AP) and portal venous phase (VP) were enrolled. Tumour CT value and iodine concentration (IC) were measured from spectral CT images. The slope of spectral curve, normalized iodine concentration (NIC, to abdominal aorta) and ratio of IC difference between AP and VP (RIC AP-VP : [RIC AP-VP =(IC AP -IC VP )/IC AP ]) were calculated. Tumours were identified as either with or without microvascular invasion based on pathological results. Measurements were statistically compared using independent samples t test. The receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of tumours microvascular invasion assessment. The 70keV images were used to simulate the results of conventional CT scans for comparison. 56 small hepatocellular carcinomas were detected with 37 lesions (Group A) with microvascular invasion and 19 (Group B) without. There were significant differences in IC, NIC and slope in AP and RIC AP-VP between Group A (2.48±0.70mg/ml, 0.23±0.05, 3.39±1.01 and 0.28±0.16) and Group B (1.65±0.47mg/ml, 0.15±0.05, 2.22±0.64 and 0.03±0.24) (all phepatocellular carcinoma with and without microvascular invasion. Quantitative iodine concentration measurement in spectral CT may be used to provide a new method to improve the evaluation for small hepatocellular carcinoma microvascular invasion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  1. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    Science.gov (United States)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  2. Acute pancreatitis during sickle cell vaso-occlusive painful crisis.

    Science.gov (United States)

    Ahmed, Shahid; Siddiqui, Anita K; Siddiqui, Rina K; Kimpo, Miriam; Russo, Linda; Mattana, Joseph

    2003-07-01

    Sickle cell disease is characterized by chronic hemolytic anemia and vaso-occlusive painful crisis. The vascular occlusion in sickle cell disease is a complex process and accounts for the majority of the clinical manifestations of the disease. Abdominal pain is an important component of vaso-occlusive painful crisis and may mimic diseases such as acute appendicitis and cholecystitis. Acute pancreatitis is rarely included as a cause of abdominal pain in patients with sickle cell disease. When it occurs it may result form biliary obstruction, but in other instances it might be a consequence of microvessel occlusion causing ischemia. In this series we describe four cases of acute pancreatitis in patients with sickle cell disease apparently due to microvascular occlusion and ischemic injury to the pancreas. All patients responded to conservative management. Acute pancreatitis should be considered in the differential diagnosis of abdominal pain in patients with sickle cell disease. Copyright 2003 Wiley-Liss, Inc.

  3. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  4. Early microvascular changes in the preterm neonate: a comparative study of the human and guinea pig.

    Science.gov (United States)

    Dyson, Rebecca M; Palliser, Hannah K; Lakkundi, Anil; de Waal, Koert; Latter, Joanna L; Clifton, Vicki L; Wright, Ian M R

    2014-09-17

    Dysfunction of the transition from fetal to neonatal circulatory systems may be a major contributor to poor outcome following preterm birth. Evidence exists in the human for both a period of low flow between 5 and 11 h and a later period of increased flow, suggesting a hypoperfusion-reperfusion cycle over the first 24 h following birth. Little is known about the regulation of peripheral blood flow during this time. The aim of this study was to conduct a comparative study between the human and guinea pig to characterize peripheral microvascular behavior during circulatory transition. Very preterm (≤28 weeks GA), preterm (29-36 weeks GA), and term (≥37 weeks GA) human neonates underwent laser Doppler analysis of skin microvascular blood flow at 6 and 24 h from birth. Guinea pig neonates were delivered prematurely (62 day GA) or at term (68-71 day GA) and laser Doppler analysis of skin microvascular blood flow was assessed every 2 h from birth. In human preterm neonates, there is a period of high microvascular flow at 24 h after birth. No period of low flow was observed at 6 h. In preterm animals, microvascular flow increased after birth, reaching a peak at 10 h postnatal age. Blood flow then steadily decreased, returning to delivery levels by 24 h. Preterm birth was associated with higher baseline microvascular flow throughout the study period in both human and guinea pig neonates. The findings do not support a hypoperfusion-reperfusion cycle in the microcirculation during circulatory transition. The guinea pig model of preterm birth will allow further investigation of the mechanisms underlying microvascular function and dysfunction during the initial extrauterine period. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Treatment of Angina and Microvascular Coronary Dysfunction

    Science.gov (United States)

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment

  6. Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium

    KAUST Repository

    Smith, Amy F.

    2014-05-28

    Transmural variations in the relationship between structural and fluid transport properties of myocardial capillary networks are determined via continuum modeling approaches using recent three-dimensional (3D) data on the microvascular structure. Specifically, the permeability tensor, which quantifies the inverse of the blood flow resistivity of the capillary network, is computed by volume-averaging flow solutions in synthetic networks with geometrical and topological properties derived from an anatomically-detailed microvascular data set extracted from the rat myocardium. Results show that the permeability is approximately ten times higher in the principal direction of capillary alignment (the "longitudinal" direction) than perpendicular to this direction, reflecting the strong anisotropy of the microvascular network. Additionally, a 30% increase in capillary diameter from subepicardium to subendocardium is shown to translate to a 130% transmural rise in permeability in the longitudinal capillary direction. This result supports the hypothesis that perfusion is preferentially facilitated during diastole in the subendocardial microvasculature to compensate for the severely-reduced systolic perfusion in the subendocardium.

  7. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  8. Sleep quality and duration are related to microvascular function: the Amsterdam Growth and Health Longitudinal Study

    NARCIS (Netherlands)

    Bonsen, T.; Wijnstok, N.J.; Hoekstra, T.; Eringa, E.C.; Serne, E.H.; Smulders, Y.M.; Twisk, J.W.R.

    2015-01-01

    Sleep and sleep disorders are related to cardiovascular disease, and microvascular function is an early cardiovascular disease marker. Therefore, the relationship of sleep (measured in sleep quality and duration) with microvascular function was examined in healthy adults. Sleep quality was assessed

  9. Microvascular anastomosis using the vascular closure device in free flap reconstructive surgery: A 13-year experience.

    Science.gov (United States)

    Reddy, Chaitan; Pennington, David; Stern, Harvey

    2012-02-01

    The achievement of patency of the microvascular anastomosis in free flap surgery is dependent on a number of factors, central to which is atraumatic handling of the vessel lumen, and intimal apposition. Initial laboratory studies demonstrating the superiority of the non-penetrating vascular closure staple (VCS - Anastoclip ®) were followed by our report in 1999 on a series of free flaps. There is still a paucity of data in the literature on the use of non-penetrating devices for microvascular anastomosis, and our review gives evidence to support the routine use of the VCS in microsurgical free flap surgery. We now report on its successful use over a thirteen year period in 819 free flap reconstructions. Our data indicates the VCS device to be as effective as sutured anastomoses in free tissue transfer surgery. There is also statistically significant data (Barnard's Exact Test) to demonstrate a higher vascular patency rate of the VCS device over sutured anastomoses when sub group analysis is performed. 'Take-back' revision rates were lower amongst flaps that employed VCS use. For arterial anastomoses, this equated to 3/654(0.05%) vs 4/170(2.4%) with hand-sewn anastomoses (p = 0.02). Similarly, for venous anastomoses the 'take-back' revision rate was 7/661(1.1%) vs 8/165(4.8%) with hand-sewn anastomoses (p = 0.003). Furthermore, the major advantage of the VCS is reduction in anastomosis time, from approximately 25 min per anastomosis for sutures to between five and 10 min for staples. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  11. Microvascular filtration is increased in the forearms of patients with breast cancer-related lymphedema

    DEFF Research Database (Denmark)

    Jensen, Mads Radmer; Simonsen, Lene; Karlsmark, Tonny

    2013-01-01

    -enhanced ultrasound; venous occlusion strain-gauge plethysmography; lower-body negative pressure; noninvasive blood pressure measurements; and skin (99m)Tc-pertechnetate clearance technique. Measurements were performed bilaterally and simultaneously in the forearms, enabling use of the nonedematous forearm...... relative microvascular volume, forearm blood flow, skin blood flow, or central or local sympathetic vascular reflexes. Forearm microvascular filtration is increased in patients with BCRL, and more so in the edematous arm. The vascular sympathetic control mechanisms seem to be preserved. We propose...... with unilateral BCRL, the following aspects of upper extremity peripheral circulation were examined: muscle relative microvascular volume; capillary filtration coefficient; central and local sympathetic vascular reflexes; skin blood flow; and forearm blood flow. These were studied via real-time, contrast...

  12. Microvascularization on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke

    2012-01-01

    and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae...... into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base...

  13. Microvascular Architecture of Hepatic Metastases in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Darshini Kuruppu

    1997-01-01

    Full Text Available Development of effective treatment for hepatic metastases can be initiated by a better understanding of tumour vasculature and blood supply. This study was designed to characterise the microvascular architecture of hepatic metastases and observe the source of contributory blood supply from the host. Metastases were induced in mice by an intrasplenic injection of colon carcinoma cells (106 cells/ml. Vascularization of tumours was studied over a three week period by scanning electron microscopy of microvascular corrosion casts. Metastatic liver involvement was observed initially within a week post induction, as areas approximately 100 μm in diameter not perfused by the casting resin. On histology these spaces corresponded to tumour cell aggregates. The following weeks highlighted the angiogenesis phase of these tumours as they received a vascular supply from adjacent hepatic sinusoids. Direct sinusoidal supply of metastases was maintained throughout tumour growth. At the tumour periphery most sinusoids were compressed to form a sheath demarcating the tumour from the hepatic vasculature. No direct supply from the hepatic artery or the portal vein was observed. Dilated vessels termed vascular lakes dominated the complex microvascular architecture of the tumours, most tapering as they traversed towards the periphery. Four vascular branching patterns could be identified as true loops, bifurcations and trifurcations, spirals and capillary networks. The most significant observation in this study was the direct sinusoidal supply of metastases, together with the vascular lakes and the peripheral sinusoidal sheaths of the tumour microculature.

  14. Impact of an endothelial progenitor cell capturing stent on coronary microvascular function: comparison with drug-eluting stents.

    Science.gov (United States)

    Choi, Woong Gil; Kim, Soo Hyun; Yoon, Hyung Seok; Lee, Eun Joo; Kim, Dong Woon

    2015-01-01

    Although drug-eluting stents (DESs) effectively reduce restenosis following percutaneous coronary intervention (PCI), they also delay re-endothelialization and impair microvascular function, resulting in adverse clinical outcomes. Endothelial progenitor cell (EPC) capturing stents, by providing a functional endothelial layer on the stent, have beneficial effects on microvascular function. However, data on coronary microvascular function in patients with EPC stents versus DESs are lacking. Seventy-four patients who previously underwent PCI were enrolled in this study. Microvascular function was evaluated 6 months after PCI based on the index of microvascular resistance (IMR) and the coronary flow reserve (CFR). IMR was calculated as the ratio of the mean distal coronary pressure at maximal hyperemia to the inverse of the hyperemic mean transit time (hTmn). The CFR was calculated by dividing the hTmn by the baseline mean transit time. Twenty-one patients (age, 67.2 ± 9.6 years; male:female, 15:6) with an EPC stent and 53 patients (age, 61.5 ± 14.7 years; male:female, 40:13) with second-generation DESs were included in the study. There were no significant differences in the baseline clinical and angiographic characteristics of the two groups. Angiography performed 6 months postoperatively did not show significant differences in their CFR values. However, patients with the EPC stent had a significantly lower IMR than patients with second-generation DESs (median, 25.5 [interquartile range, 12.85 to 28.18] vs. 29.0 [interquartile range, 15.42 to 39.23]; p = 0.043). Microvascular dysfunction was significantly improved after 6 months in patients with EPC stents compared to those with DESs. The complete re-endothelialization achieved with the EPC stent may provide clinical benefits over DESs, especially in patients with microvascular dysfunction.

  15. Conflicting interactions of apolipoprotein A and high density lipoprotein cholesterol with microvascular complications of type 2 diabetes.

    Science.gov (United States)

    Aryan, Zahra; Afarideh, Mohsen; Ghajar, Alireza; Esteghamati, Sadaf; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2017-11-01

    This study is amid at investigating the associations, and interactions of serum lipid biomarkers with microvascular complications of type 2 diabetes (T2D). A nested case-control study was conducted within an ongoing prospective study on patients with T2D. Microvascular complications of T2D including diabetic neuropathy, diabetic retinopathy and diabetic nephropathy were investigated. A total of 444 cases with at least one of the microvascular complications of T2D and 439 age- and gender-matched controls free of any of the chronic microvascular complications of T2D were included. The associations and interactions of a panel of serum lipid biomarkers with the microvascular complications of T2D were investigated. Serum triglyceride had the strongest association with microvascular complications of T2D (crude model: β=0.632, P value=0.045). Each standard deviation increment in serum TG was associated with 3.7 times increased frequency of microvascular complications. Despite high density lipoprotein cholesterol (HDL-C), serum apolipoprotein A1 (Apo A1) was positively associated with the presence of diabetic neuropathy. Each standard deviation increment in serum ApoA1 was associated with increased frequency of diabetic neuropathy (OR, 1.2, 95% CI, (1.1-1.3), P value=0.006). The frequency of diabetic neuropathy was higher in 2nd and 3rd quartiles of serum Lp(a) compared to diabetic patients in the first quartile (OR, 5.52, 95% (1.17-25.8), P value=0.047). ApoA1 but not HDL-C is straightly associated with diabetic neuropathy. Even Slight rise in serum Lp(a) is associated with increased frequency of diabetic retinopathLipid variables could serve as specific predictors of vascular complications in diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  17. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  18. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  19. Topical combinations aimed at treating microvascular dysfunction reduce allodynia in rat models of CRPS-I and neuropathic pain.

    Science.gov (United States)

    Ragavendran, J Vaigunda; Laferrière, André; Xiao, Wen Hua; Bennett, Gary J; Padi, Satyanarayana S V; Zhang, Ji; Coderre, Terence J

    2013-01-01

    Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected

  20. Microvascular responses to (hyper-)gravitational stress by short-arm human centrifuge: arteriolar vasoconstriction and venous pooling.

    Science.gov (United States)

    Habazettl, H; Stahn, Alexander; Nitsche, Andrea; Nordine, Michael; Pries, A R; Gunga, H-C; Opatz, O

    2016-01-01

    We hypothesized that lower body microvessels are particularly challenged during exposure to gravity and hypergravity leading to failure of resistance vessels to withstand excessive transmural pressure during hypergravitation and gravitation-dependent microvascular blood pooling. Using a short-arm human centrifuge (SAHC), 12 subjects were exposed to +1Gz, +2Gz and +1Gz, all at foot level, for 4 min each. Laser Doppler imaging and near-infrared spectroscopy were used to measure skin perfusion and tissue haemoglobin concentrations, respectively. Pretibial skin perfusion decreased by 19% during +1Gz and remained at this level during +2Gz. In the dilated area, skin perfusion increased by 24 and 35% during +1Gz and +2Gz, respectively. In the upper arm, oxygenated haemoglobin (Hb) decreased, while deoxy Hb increased with little change in total Hb. In the calf muscle, O2Hb and deoxy Hb increased, resulting in total Hb increase by 7.5 ± 1.4 and 26.6 ± 2.6 µmol/L at +1Gz and +2Gz, respectively. The dynamics of Hb increase suggests a fast and a slow component. Despite transmural pressures well beyond the upper myogenic control limit, intact lower body resistance vessels withstand these pressures up to +2Gz, suggesting that myogenic control may contribute only little to increased vascular resistance. The fast component of increasing total Hb indicates microvascular blood pooling contributing to soft tissue capacitance. Future research will have to address possible alterations of these acute adaptations to gravity after deconditioning by exposure to micro-g.

  1. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction. Implications for non-contrast-enhanced infarct assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robbers, Lourens F.H.J.; Nijveldt, Robin; Beek, Aernout M.; Teunissen, Paul F.A.; Hollander, Maurits R.; Biesbroek, P.S.; Everaars, Henk; Royen, Niels van; Rossum, Albert C. van [VU University Medical Centre, Department of Cardiology, Amsterdam (Netherlands); Ven, Peter M. van de [VU University Medical Centre, Department of Clinical Epidemiology and Biostatistics, Amsterdam (Netherlands); Hofman, Mark B.M. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2018-02-15

    Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI. Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium. Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, p<0.001). The presence of MVI profoundly affects MOLLI-measured native T1 values. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI. (orig.)

  2. Microvascular anastomosis simulation using a chicken thigh model: Interval versus massed training.

    Science.gov (United States)

    Schoeff, Stephen; Hernandez, Brian; Robinson, Derek J; Jameson, Mark J; Shonka, David C

    2017-11-01

    To compare the effectiveness of massed versus interval training when teaching otolaryngology residents microvascular suturing on a validated microsurgical model. Otolaryngology residents were placed into interval (n = 7) or massed (n = 7) training groups. The interval group performed three separate 30-minute practice sessions separated by at least 1 week, and the massed group performed a single 90-minute practice session. Both groups viewed a video demonstration and recorded a pretest prior to the first training session. A post-test was administered following the last practice session. At an academic medical center, 14 otolaryngology residents were assigned using stratified randomization to interval or massed training. Blinded evaluators graded performance using a validated microvascular Objective Structured Assessment of Technical Skill tool. The tool is comprised of two major components: task-specific score (TSS) and global rating scale (GRS). Participants also received pre- and poststudy surveys to compare subjective confidence in multiple aspects of microvascular skill acquisition. Overall, all residents showed increased TSS and GRS on post- versus pretest. After completion of training, the interval group had a statistically significant increase in both TSS and GRS, whereas the massed group's increase was not significant. Residents in both groups reported significantly increased levels of confidence after completion of the study. Self-directed learning using a chicken thigh artery model may benefit microsurgical skills, competence, and confidence for resident surgeons. Interval training results in significant improvement in early development of microvascular anastomosis skills, whereas massed training does not. NA. Laryngoscope, 127:2490-2494, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  4. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    Bassma M. El Sabaa

    2012-01-13

    Jan 13, 2012 ... Eleven cases were low grade and 19 were high-grade cases. VEGF expression .... increasing microvascular permeability,26 degradation of extra- ...... soluble receptors in pre-invasive, invasive and recurrent cervical cancer.

  5. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  6. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  7. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach.

    Science.gov (United States)

    Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G

    2012-11-13

    We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular

  8. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach

    Directory of Open Access Journals (Sweden)

    Panazzolo Diogo G

    2012-11-01

    Full Text Available Abstract Background We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Methods Data from 189 female subjects (34.0±15.5 years, 30.5±7.1 kg/m2, who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA. PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI, waist circumference, systolic and diastolic blood pressure (BP, fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c, low-density lipoprotein cholesterol (LDL-c, triglycerides (TG, insulin, C-reactive protein (CRP, and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV at rest and peak after 1 min of arterial occlusion (RBCVmax, and the time taken to reach RBCVmax (TRBCVmax. Results A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCVmax varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCVmax, but in the opposite way. Principal component 3 was

  9. Microvascular obstruction on delayed enhancement cardiac magnetic resonance imaging after acute myocardial infarction, compared with myocardial {sup 201}Tl and {sup 123}I-BMIPP dual SPECT findings

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hiroaki [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Cardiology, Kainan Hospital, Yatomi (Japan); Isobe, Satoshi, E-mail: sisobe@med.nagoya-u.ac.jp [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Sakai, Shinichi [Department of Cardiology, Kainan Hospital, Yatomi (Japan); Yamada, Takashi [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Watanabe, Naoki; Miura, Manabu [Department of Cardiology, Kainan Hospital, Yatomi (Japan); Uchida, Yasuhiro; Kanashiro, Masaaki; Ichimiya, Satoshi [Department of Cardiology, Yokkaichi Municipal Hospital, Yokkaichi (Japan); Okumura, Takahiro; Murohara, Toyoaki [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2015-08-15

    Highlights: • The percentage infarct size (%IS) was significantly greater in the microvascular obstruction (MO) group than in the non-MO group. • The percentage mismatch score (%MMS) on dual scintigraphy significantly correlated with the %IS and the percentage MO. • The %MMS was significantly greater in the non-MO group than in the MO group, and was an independent predictor for MO. - Abstract: Background: The hypo-enhanced regions within the hyper-enhanced infarct areas detected by cardiac magnetic resonance (CMR) imaging reflect microvascular obstruction (MO) after acute myocardial infarction (AMI). The combined myocardial thallium-201 ({sup 201}Tl)/iodine-123-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid ({sup 123}I-BMIPP) dual single-photon emission computed tomography (SPECT) is a useful tool for detecting myocardial reversibility after AMI. We evaluated whether MO could be an early predictor of irreversible myocardial damage in comparison with {sup 201}Tl and {sup 123}I-BMIPP dual SPECT findings in AMI patients. Methods: Sixty-two patients with initial AMI who successfully underwent coronary revascularization were enrolled. MO was defined by CMR imaging. Patients were divided into 2 groups as follows: MO group (n = 32) and non-MO group (n = 30). Scintigraphic defect scores were calculated using a 17-segment model with a 5-point scoring system. The mismatch score (MMS) was calculated as follows: the total sum of (Σ) {sup 123}I-BMIPP defect score minus Σ{sup 201}Tl defect score. The percentage mismatch score (%MMS) was calculated as follows: MMS/(Σ{sup 123}I-BMIPP score) × 100 (%). Results: The percentage infarct size (%IS) was significantly greater in the MO group than in the non-MO group (32.2 ± 13.8% vs. 18.3 ± 12.1%, p < 0.001). The %MMS significantly correlated with the %IS and the percentage MO (r = −0.26, p = 0.03; r = −0.45, p < 0.001, respectively). The %MMS was significantly greater in the non-MO group than in the MO group (45.4

  10. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    Science.gov (United States)

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  11. Microvascular inflammation in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Laura Vitiello

    2014-06-01

    Full Text Available Atherogenesis is the pathogenetic process leading to formation of the atheroma lesion. It is associated to a chronic inflammatory state initially stimulated by an aberrant accumulation of lipid molecules beyond the endothelial barrier. This event triggers a cascade of deleterious events mainly through immune cell stimulation with the consequent liberation of potent pro-inflammatory and tissue damaging mediators. The atherogenetic process implies marked modifications of endothelial cell functions and a radical change in the endothelial–leukocyte interaction pattern. Moreover, accumulating evidence shows an important link between microvascular and inflammatory responses and major cardiovascular risk factors. This review illustrates the current knowledge on the effects of obesity, hypercholesterolemia and diabetes on microcirculation; their pathophysiological implications will be discussed.

  12. Microvascular free flaps in the management of war wounds with tissue defects

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2003-01-01

    Full Text Available Background. War wounds caused by modern infantry weapons or explosive devices are very often associated with the defects of soft and bone tissue. According to their structure, tissue defects can be simple or complex. In accordance with war surgical doctrine, at the Clinic for Plastic Surgery and Burns of the Military Medical Academy, free flaps were used in the treatment of 108 patients with large tissue defects. With the aim of closing war wounds, covering deep structures, or making the preconditions for reconstruction of deep structures, free flaps were applied in primary, delayed, or secondary term. The main criteria for using free flaps were general condition of the wounded, extent, location, and structure of tissue defects. The aim was also to point out the advantages and disadvantages of the application of free flaps in the treatment of war wounds. Methods. One hundred and eleven microvascular free flaps were applied, both simple and complex, for closing the war wounds with extensive tissue defects. The main criteria for the application of free flaps were: general condition of the wounded, size, localization, and structure of tissue defects. For the extensive defects of the tissue, as well as for severely contaminated wounds latissimus dorsi free flaps were used. For tissue defects of distal parts of the lower extremities, scapular free flaps were preferred. While using free tissue transfer for recompensation of bone defects, free vascularized fibular grafts were applied, and in skin and bone defects complex free osteoseptocutaneous fibular, free osteoseptocutaneous radial forearm, and free skin-bone scapular flaps were used. Results. After free flap transfer 16 (14,4% revisions were performed, and after 8 unsuccessful revisions another free flaps were utilized in 3 (37,5% patients, and cross leg flaps in 5 (62,5% patients. Conclusion. The treatment of war wounds with large tissue defects by the application of free microvascular flaps

  13. Clinical reference value of retinal microvascular changes in patients with cerebral microbleeds

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Guo

    2014-12-01

    Full Text Available AIM: To study clinical reference value of retinal microvascular changes in patients with cerebral microbleeds(CMBsand discuss its clinical significance. METHODS:From January 2012 to December 2013, 125 hospitalized patients were collected, including 81 cases were male, 44 cases were female, mean age 76.3±11.2 years old. For all patients, functions of liver and kidney, blood-lipoids, blood sugar and blood biochemical examination were tested, and fundus photography and cerebral MR was done. According to the fundus camera eyes, retinal arteriolar equivalent(RAE, retinal venular equivalent(RVE, retinal vein diameter ratio(AVRand arteriovenous crossing sign(AVNwere identified, CMBs were classified with cerebral MRI. All the data were processed by SPSS statistical software. RESULTS: The central retinal arteriolar equivalent(CRAE, central retinal venular equivalent(CRVEand AVR values in the eyes were found no statistical difference(PPCOCLUSION: The results show that retinal microvascular changes, especially small retinal vein arteriovenous cross width, and arteriovenous crossing phenomenon, in which CMBs will happen more likely. After sex, age, hypertension and hyperglycemia in patients with traditional cardiovascular risk factors being ruled out, the retinal microvascular changes are still relatively factors of CMB's occurrence.

  14. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2013-09-01

    Full Text Available Extrasynaptic γ-aminobutyric acid type A (GABAA receptors that contain the δ subunit (δGABAA receptors are expressed in several brain regions including the dentate gyrus (DG and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p. on memory performance in wild-type (WT and δGABAA receptor null mutant (Gabrd–/– mice. Additionally, the effects of THIP on long-term potentiation (LTP, a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd–/– mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd–/– mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.

  15. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Science.gov (United States)

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  16. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  17. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Ubiquitin-Proteasome System and Microvascular Complications of Diabetes

    Directory of Open Access Journals (Sweden)

    Saeed Yadranji Aghdam

    2013-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is the mainstay of protein quality control which regulates cell cycle, differentiation and various signal transduction pathways in eukaryotic cells. The timely and selective degradation of surplus and/or aberrant proteins by the UPS is essential for normal cellular physiology. Any disturbance, delay or exaggeration in the process of selection, sequestration, labeling for degradation and degradation of target proteins by the UPS will compromise cellular and tissue homeostasis. High blood glucose or hyperglycemia caused by diabetes disrupts normal vascular function in several target organs including the retina and kidney resulting in the development of diabetic retinopathy (DR and diabetic nephropathy (DN. We and others have shown that hyperglycemia and oxidative stress modulate UPS activity in the retina and kidney. The majority of studies have focused on the kidney and provided insights into the contribution of dysregulated UPS to microvascular damage in DN. The eye is a unique organ in which a semi-fluid medium, the vitreous humor, separates the neural retina and its anastomosed blood vessels from the semi-solid lens tissue. The complexity of the cellular and molecular components of the eye may require a normal functioning and well tuned UPS for healthy vision. Altered UPS activity may contribute to the development of retinal microvascular complications of diabetes. A better understanding of the molecular nature of the ocular UPS function under normal and diabetic conditions is essential for development of novel strategies targeting its activity. This review will discuss the association of retinal vascular cell UPS activity with microvascular damage in DR with emphasis on alterations of the PA28 subunits of the UPS.

  19. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    Energy Technology Data Exchange (ETDEWEB)

    Kali, Avinash; Cokic, Ivan; Tang, Richard; Dohnalkova, Alice; Kovarik, Libor; Yang, Hsin-Jung; Kumar, Andreas; Prato, Frank S.; Wood, John C.; Underhill, David; Marban, Eduardo; Dharmakumar, Rohan

    2016-11-01

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI to characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r

  20. Tezosentan reduces the microvascular filtration coefficient in isolated lungs from rats subjected to cecum ligation and puncture.

    Science.gov (United States)

    Kuklin, Vladimir; Sovershaev, Mikhail; Andreasen, Thomas; Skogen, Vegard; Ytrehus, Kirsti; Bjertnaes, Lars

    2005-01-01

    We recently demonstrated that the non-selective endothelin-1 (ET-1) receptor blocker tezosentan antagonizes ovine acute lung injury (ALI) following infusion of endotoxin or ET-1 by reducing the enhanced lung microvascular pressure, although we could not exclude the possibility of a simultaneous decline in microvascular permeability. In the present study, our aim was to find out if tezosentan reverses the rise in microvascular filtration coefficient (Kfc) in rat lungs that have been isolated and perfused 12 h after cecum ligation and puncture (CLP) or infusion of ET-1. Wistar rats (n = 42) were subjected to CLP. Postoperatively, rats were randomized to a CLP group (n = 7) and a CLP + tezosentan group (n = 7); the latter received tezosentan 30 mg/kg. A sham-operated group (n = 5) underwent laparotomy without CLP. Twelve hours postoperatively, the lungs were isolated and perfused with blood from similarly treated rats that also were used to assess plasma concentration of ET-1 and protein kinase Calpha (PKCalpha) in lung tissue. Additionally, isolated blood perfused lungs from healthy rats were randomized to a control group (n = 8), an ET-1 group (n = 7) subjected to pulmonary arterial injection of ET-1 10 nM, and an ET-1 + tezosentan group (n = 7) that received tezosentan 30 mg/kg. All lung preparations received papaverine 0.1 microg/kg added to the perfusate for vasoplegia. Pulmonary hemodynamic variables, Kfc and lung compliance (CL) were assessed. After CLP, the plasma concentration of ET-1 increased. Papaverine abolished the vasoconstrictor response to ET-1 and the pulmonary vascular pressures remained close to baseline throughout the experiments. Both CLP and injection of ET-1 caused significant changes in Kfc and CL that were prevented in tezosentan-treated rats. Compared to sham-operated animals, CLP increased the content of PKCalpha by 50% and 70% in the cytosolic and the membrane fractions of lung tissue homogenates, respectively. Tezosentan prevented the

  1. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity.

    Science.gov (United States)

    Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P

    2014-10-15

    Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and

  2. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern.

    Science.gov (United States)

    Peevy, K J; Hernandez, L A; Moise, A A; Parker, J C

    1990-06-01

    To study the pulmonary microvascular injury produced by ventilation barotrauma, the isolated perfused lungs of 4 to 6-wk-old New Zealand white rabbits were ventilated by one of the following methods: peak inspiratory pressure (PIP) 23 cm H2O, gas flow rate 1.1 L/min (group 1); PIP 27 cm H2O, gas flow rate 6.9 L/min (group 2); PIP 50 cm H2O, gas flow rate 1.9 L/min (group 3); or PIP 53 cm H2O, gas flow rate 8.3 L/min (group 4). Microvascular permeability was assessed using the capillary filtration coefficient (Kfc) before and 5, 30, and 60 min after a 15-min period of ventilation. Baseline Kfc was not significantly different between groups. A significant increase over the baseline Kfc was noted at 60 min in group 2 and in all postventilation Kfc values in groups 3 and 4 (p less than .05). Group 1 Kfc values did not change significantly after ventilation. At all post-ventilation times, values for Kfc were significantly greater in groups 3 and 4 than in group 1 (p less than .05). Group 4 Kfc values were significantly greater than those in group 2 at 5 and 30 min postventilation. These data indicate that high PIP, and to a lesser extent, high gas flow rates cause microvascular injury in the compliant nonadult lung and suggest that the combination of high PIP and high gas flow rates are the most threatening to microvascular integrity.

  3. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  4. Improved myocardial perfusion after transmyocardial laser revascularization in a patient with microvascular coronary artery disease

    Directory of Open Access Journals (Sweden)

    Peyman Mesbah Oskui

    2014-03-01

    Full Text Available We report the case of a 59-year-old woman who presented with symptoms of angina that was refractory to medical management. Although her cardiac catheterization revealed microvascular coronary artery disease, her symptoms were refractory to optimal medical management that included ranolazine. After undergoing transmyocardial revascularization, her myocardial ischemia completely resolved and her symptoms dramatically improved. This case suggests that combination of ranolazine and transmyocardial revascularization can be applied to patients with microvascular coronary artery disease.

  5. Depth-dependent flow and pressure characteristics in cortical microvascular networks.

    Directory of Open Access Journals (Sweden)

    Franca Schmid

    2017-02-01

    Full Text Available A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm the largest pressure drop takes place in the capillaries (37%, while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.

  6. Hydrocephalus: an underrated long-term complication of microvascular decompression for trigeminal neuralgia. A single institute experience.

    Science.gov (United States)

    Muratorio, Francesco; Tringali, G; Levi, V; Ligarotti, G K I; Nazzi, V; Franzini, A A

    2016-11-01

    Hydrocephalus is a common complication of posterior fossa surgery, but its real incidence after microvascular decompression (MVD) for idiopathic trigeminal neuralgia (TN) still remains unclear. The aim of this study was to focus on the potential association between MVD and hydrocephalus as a surgery-related complication. All patients who underwent MVD procedure for idiopathic TN at our institute between 2009 and 2014 were reviewed to search for early or late postoperative hydrocephalus. There were 259 consecutive patients affected by idiopathic TN who underwent MVD procedure at our institution between 2009 and 2014 (113 men, 146 women; mean age 59 years, range 30-87 years; mean follow-up 40.92 months, range 8-48 months). Nine patients (3.47 %) developed communicating hydrocephalus after hospital discharge and underwent standard ventriculo-peritoneal shunt. No cases of acute hydrocephalus were noticed. Our study suggests that late communicating hydrocephalus may be an underrated potential long-term complication of MVD surgery.

  7. Data set characterizing the systemic alterations of microvascular reactivity and capillary density, in patients presenting with infective endocarditis.

    Science.gov (United States)

    Tibirica, Eduardo; Barcelos, Amanda; Lamas, Cristiane

    2018-06-01

    This article represents data associated with a prior publication from our research group, under the title: Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy [1]. Patients with definite infective endocarditis, under stable clinical conditions, were prospectively included. The clinical and laboratory features are presented for each of them in raw form. Microvascular reactivity was evaluated using a laser speckle contrast imaging (LSCI) system with a laser wavelength of 785 nm. LSCI was used in combination with the iontophoresis of acetylcholine (ACh) or sodium nitroprusside (SNP) for the noninvasive, continuous measurement of cutaneous microvascular perfusion changes in arbitrary perfusion units (APU). The images were analyzed using the manufacturer's software. One skin site on the ventral surface of the forearm was chosen for the experiment. Microvascular reactivity was also evaluated using post-occlusive reactive hyperemia, whereby arterial occlusion was achieved with supra-systolic pressure (50 mmHg above the systolic arterial pressure) using a sphygmomanometer for three minutes. Following the release of pressure, maximum flux was measured. Data on cutaneous microvascular density were obtained using intravital video-capillaroscopy. The data obtained may be helpful by showing the usefulness of laser-based noninvasive techniques in systemic infectious diseases other than sepsis, in different clinical settings and countries.

  8. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  9. The effect of nitroglycerin on microvascular perfusion and oxygenation during gastric tube reconstruction.

    Science.gov (United States)

    Buise, Marc P; Ince, Can; Tilanus, Hugo W; Klein, Jan; Gommers, Diederik; van Bommel, Jasper

    2005-04-01

    Esophagectomy followed by gastric tube reconstruction is the surgical treatment of choice for patients with esophageal cancer. Complications of the cervical anastomosis are associated with impaired microvascular blood flow (MBF) and ischemia in the gastric fundus. The aim of the present study was to differentiate whether the decrease in MBF is a result of arterial insufficiency or of venous congestion. To do this we assessed MBF, microvascular hemoglobin oxygen saturation (muHbSo(2)), and microvascular hemoglobin concentration (muHbcon) simultaneously during different stages of gastric tube reconstruction. In 14 patients, MBF was determined with laser Doppler flowmetry, and muHbSo(2) and muHbcon were determined with reflectance spectro- photometry. After completion of the anastomosis, nitroglycerin was applied at the fundus. Although MBF did not change significantly in the pylorus, MBF decreased progressively during surgery in the fundus from 210 +/- 18 Arbitrary Units at baseline (normal stomach) to 52 +/- 9 Arbitrary Units after completion of reconstruction (mean +/- sem; P tube reconstruction but that muHbSo(2) and muHbcon do not. This decrease might be the result of venous congestion, which can partly be counteracted by application of nitroglycerin.

  10. ANAEMIA AS A RISK FACTOR FOR MICROVASCULAR COMPLICATIONS IN TYPE 2 DM- A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Kamanuru Ethirajulu Govindarajulu

    2016-11-01

    Full Text Available BACKGROUND It is well known that diabetes adversely affects the kidneys finally leading to anaemia by various mechanisms. Several studies had postulated that anaemia developing before renal complications has an independent association with microvascular complication in type 2 diabetic patients. The aim of the study is to estimate the prevalence of anaemia in persons with type 2 diabetes mellitus and its role as a risk factor for the presence and the severity of microvascular complication in a populationbased study. MATERIALS AND METHODS This is a cross-sectional study conducted in patients coming to OPD of the Department of General Medicine in Government Vellore Medical College for a duration of 3 months from June 01, 2016, to August 31, 2016. Type 2 DM patients between the age group 20-60 years attending our diabetic clinic of both sex were included in our study. RESULTS From a total of 100 patients, 41% had anaemia including 34% with normochromic normocytic, 65.85% with hyperchromic microcytic anaemia and none of the patient had macrocytic anaemia. Patients who are anaemic had more frequent microvascular complications. There was no significant difference between males and females. The average duration of diabetes has a positive correlation with anaemia. All the microvascular complications like neuropathy, nephropathy and retinopathy had significant association with the presence of anaemia in type 2 patients. Nephropathy had a significant higher frequency compared to others as a complication in type 2 DM. CONCLUSION Our study shows that there is increased prevalence of anaemia in type 2 DM patients and the prevalence of microvascular complications is significantly higher among the diabetic patients with anaemia.

  11. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  12. Preventing microvascular complications in type 1 diabetes mellitus

    OpenAIRE

    Viswanathan, Vijay

    2015-01-01

    Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM) by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progressi...

  13. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  14. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7...... by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas...

  15. Transcranial diffuse optical assessment of the microvascular reperfusion after thrombolysis for acute ischemic stroke.

    Science.gov (United States)

    Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan

    2018-03-01

    In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.

  16. Time-Dependent Behavior of Microvascular Blood Flow and Oxygenation: A Predictor of Functional Outcomes.

    Science.gov (United States)

    Kuliga, Katarzyna Z; Gush, Rodney; Clough, Geraldine F; Chipperfield, Andrew John

    2018-05-01

    This study investigates the time-dependent behaviour and algorithmic complexity of low-frequency periodic oscillations in blood flux (BF) and oxygenation signals from the microvasculature. Microvascular BF and oxygenation (OXY: oxyHb, deoxyHb, totalHb, and SO 2 %) was recorded from 15 healthy young adult males using combined laser Doppler fluximetry and white light spectroscopy with local skin temperature clamped to 33  °C and during local thermal hyperaemia (LTH) at 43 °C. Power spectral density of the BF and OXY signals was evaluated within the frequency range (0.0095-1.6 Hz). Signal complexity was determined using the Lempel-Ziv (LZ) algorithm. Fold increase in BF during LTH was 15.6 (10.3, 22.8) and in OxyHb 4.8 (3.5, 5.9) (median, range). All BF and OXY signals exhibited multiple oscillatory components with clear differences in signal power distribution across frequency bands at 33 and 43 °C. Significant reduction in the intrinsic variability and complexity of the microvascular signals during LTH was found, with mean LZ complexity of BF and OxyHb falling by 25% and 49%, respectively ( ). These results provide corroboration that in human skin microvascular blood flow and oxygenation are influenced by multiple time-varying oscillators that adapt to local influences and become more predictable during increased haemodynamic flow. Recent evidence strongly suggests that the inability of microvascular networks to adapt to an imposed stressor is symptomatic of disease risk which might be assessed via BF and OXY via the combination signal analysis techniques described here.

  17. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  18. Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy.

    Science.gov (United States)

    Barcelos, Amanda; Tibirica, Eduardo; Lamas, Cristiane

    2018-07-01

    To evaluate the systemic microcirculation of patients with infective endocarditis (IE). This is a comparative study of patients with definite IE by the modified Duke criteria admitted to our center for treatment. A reference group of sex- and age-matched healthy volunteers was included. Microvascular flow was evaluated in the forearm using a laser speckle contrast imaging system, for noninvasive measurement of cutaneous microvascular perfusion, in combination with skin iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to test microvascular reactivity. Microvascular density was evaluated using skin video-capillaroscopy. We studied 22 patients with IE; 15 were male and seven female. The mean age and standard deviation (SD) were 45.5 ± 17.3 years. Basal skin microvascular conductance was significantly increased in patients with IE, compared with healthy individuals (0.36 ± 0.13 versus 0.21 ± 0.08 APU/mmHg; P < 0.0001). The increase in microvascular conductance induced by ACh in patients was 0.21 ± 0.17 and in the reference group, it was 0.37 ± 0.14 APU/mmHg (P = 0.0012). The increase in microvascular conductance induced by SNP in patients was 0.18 ± 0.14 and it was 0.29 ± 0.15 APU/mmHg (P = 0.0140) in the reference group. The basal mean skin capillary density of patients (135 ± 24 capillaries/mm 2 ) was significantly higher, compared with controls (97 ± 21 capillaries/mm 2 ; P < 0.0001). The main findings in the microcirculation of patients with IE were greater basal vasodilation and a reduction of the endothelium-dependent and -independent microvascular reactivity, as well as greater functional skin capillary density compared to healthy individuals. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  20. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    Science.gov (United States)

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  1. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  2. Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    2016-01-01

    Full Text Available The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input.

  3. Hemifacial spasm : Intraoperative electromyographic monitoring as a guide for microvascular decompression

    NARCIS (Netherlands)

    Mooij, JJA; Mustafa, MK; van Weerden, TW

    2001-01-01

    OBJECTIVE: Microvascular decompression is the logical and well-accepted treatment of choice for hemifacial spasm (HFS). In experienced hands, good to excellent results can be obtained. However, sometimes the exact site of the vascular compression is unclear. The aim of this study was to analyze

  4. MICROVASCULAR CHANGES IN AGED RAT FOREBRAIN - EFFECTS OF CHRONIC NIMODIPINE TREATMENT

    NARCIS (Netherlands)

    de Jong, Giena; Weerd, H. de; Schuurman, T.; Traber, J.; Luiten, P.G.M.

    1990-01-01

    In the present study the effects of long-term treatment with the 1,4-dihydropyridine calcium antagonist nimodipine on ultrastructural alterations of the microvascular morphology were examined in the frontoparietal cortex, entorhinal cortex and CA1 of the hippocampus in the aged rat. Qualitative

  5. Significance of determination of bone mineral density and osteocalcin in diabetic patients with diabetic microvascular complications

    International Nuclear Information System (INIS)

    Kong Xianghui; Mu Junqing; Lu Kuan

    2003-01-01

    Objective: To study the influence of diabetic microvascular complications on bone mineral density (BMI) and osteocalcin (BGP). Methods: 60 patients with type 2 diabetes mellitus were studied, including 33 with microvascular complications (retinopathy, nephropathy, neuropathy) (group 1) and 27 without complications (group 2). Fasting blood glucose, serum fructosamine (GSP), total alkaline phosphatase (TALP), calcium (Ca 2+ ) levels were measured by biochemical method; osteocalcin (BGP) level was detected by RIA. BMD of the lumbar spine and femur was measured by dual energy X-ray absorptiometry in all patients. Body mass index (BMI) was calculated from the height and body weight. Results: The BMI, GSP, FBG, TALP and Ca 2+ values in the two groups were not much different, but BGP and BMD in group 1 were significantly lower than those in group 2. Conclusion: Bone mineral density (BMD) and BGP values were closely related to the microvascular complications in diabetes, which could decrease bone formation and increase the frequency of osteoporosis

  6. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  7. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. In-vivo assessment of microvascular functional dynamics by combination of cmOCT and wavelet transform

    Science.gov (United States)

    Smirni, Salvatore; MacDonald, Michael P.; Robertson, Catherine P.; McNamara, Paul M.; O'Gorman, Sean; Leahy, Martin J.; Khan, Faisel

    2018-02-01

    The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular function, with the advantage of also providing spatial resolution and structural information compared to the traditional laser Doppler techniques.

  9. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  10. Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study.

    Science.gov (United States)

    Sörensen, Ben M; Houben, Alfons J H M; Berendschot, Tos T J M; Schouten, Jan S A G; Kroon, Abraham A; van der Kallen, Carla J H; Henry, Ronald M A; Koster, Annemarie; Sep, Simone J S; Dagnelie, Pieter C; Schaper, Nicolaas C; Schram, Miranda T; Stehouwer, Coen D A

    2016-11-01

    Type 2 diabetes (T2DM) is associated with an increased risk of cardiovascular disease. This can be partly explained by large-artery dysfunction, which already occurs in prediabetes ("ticking clock hypothesis"). Whether a similar phenomenon also applies to microvascular dysfunction is not known. We therefore tested the hypothesis that microvascular dysfunction is already present in prediabetes and is more severe in T2DM. To do so, we investigated the associations of prediabetes, T2DM, and measures of hyperglycemia with microvascular function measured as flicker light-induced retinal arteriolar dilation and heat-induced skin hyperemia. In the Maastricht Study, a T2DM-enriched population-based cohort study (n=2213, 51% men, aged [mean±standard deviation] 59.7±8.2 years), we determined flicker light-induced retinal arteriolar %-dilation (Dynamic Vessel Analyzer), heat-induced skin %-hyperemia (laser-Doppler flowmetry), and glucose metabolism status (oral glucose tolerance test; normal glucose metabolism [n=1269], prediabetes [n=335], or T2DM [n=609]). Differences were assessed with multivariable regression analyses adjusted for age, sex, body mass index, smoking, physical activity, systolic blood pressure, lipid profile, retinopathy, estimated glomerular filtration rate, (micro)albuminuria, the use of lipid-modifying and blood pressure-lowering medication, and prior cardiovascular disease. Retinal arteriolar %-dilation was (mean±standard deviation) 3.4±2.8 in normal glucose metabolism, 3.0±2.7 in prediabetes, and 2.3±2.6 in T2DM. Adjusted analyses showed a lower arteriolar %-dilation in prediabetes (B=-0.20, 95% confidence interval -0.56 to 0.15) with further deterioration in T2DM (B=-0.61 [-0.97 to -0.25]) versus normal glucose metabolism (P for trend=0.001). Skin %-hyperemia was (mean±standard deviation) 1235±810 in normal glucose metabolism, 1109±748 in prediabetes, and 937±683 in T2DM. Adjusted analyses showed a lower %-hyperemia in prediabetes (B=-46

  11. Periodicity during hypercapnic and hypoxic stimulus is crucial in distinct aspects of phrenic nerve plasticity.

    Science.gov (United States)

    Stipica, I; Pavlinac Dodig, I; Pecotic, R; Dogas, Z; Valic, Z; Valic, M

    2016-01-01

    This study was undertaken to determine pattern sensitivity of phrenic nerve plasticity in respect to different respiratory challenges. We compared long-term effects of intermittent and continuous hypercapnic and hypoxic stimuli, and combined intermittent hypercapnia and hypoxia on phrenic nerve plasticity. Adult, male, urethane-anesthetized, vagotomized, paralyzed, mechanically ventilated Sprague-Dawley rats were exposed to: acute intermittent hypercapnia (AIHc or AIHc(O2)), acute intermittent hypoxia (AIH), combined intermittent hypercapnia and hypoxia (AIHcH), continuous hypercapnia (CHc), or continuous hypoxia (CH). Peak phrenic nerve activity (pPNA) and burst frequency were analyzed during baseline (T0), hypercapnia or hypoxia exposures, at 15, 30, and 60 min (T60) after the end of the stimulus. Exposure to acute intermittent hypercapnia elicited decrease of phrenic nerve frequency from 44.25+/-4.06 at T0 to 35.29+/-5.21 at T60, (P=0.038, AIHc) and from 45.5+/-2.62 to 37.17+/-3.68 breaths/min (P=0.049, AIHc(O2)), i.e. frequency phrenic long term depression was induced. Exposure to AIH elicited increase of pPNA at T60 by 141.0+/-28.2 % compared to baseline (P=0.015), i.e. phrenic long-term facilitation was induced. Exposure to AIHcH, CHc, or CH protocols failed to induce long-term plasticity of the phrenic nerve. Thus, we conclude that intermittency of the hypercapnic or hypoxic stimuli is needed to evoke phrenic nerve plasticity.

  12. Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests

    NARCIS (Netherlands)

    Mejia-Renteria, H.; Hoeven, N. van der; Hoef, T.P. van de; Heemelaar, J.; Ryan, N.; Lerman, A.; Royen, N. van; Escaned, J.

    2017-01-01

    The coronary microcirculation plays a key role in modulating blood supply to the myocardium. Several factors like myocardial oxygen demands, endothelial and neurogenic conditions determine its function. Although there is available evidence supporting microvascular dysfunction as an important cause

  13. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Niekerk, Cornelis G. van; Laak, Jeroen A.W.M. van der; Kaa, Christina A.H. de [Radboud University Medical Centre, Department of Pathology, P.O. Box 9101, Nijmegen (Netherlands); Hambrock, Thomas; Huisman, Henk-Jan; Barentsz, Jelle O. [Radboud University Medical Centre, Department of Radiology, Nijmegen (Netherlands); Witjes, J.A. [Radboud University Medical Centre, Department of Urology, Nijmegen (Netherlands)

    2014-10-15

    To correlate pharmacokinetic parameters of 3-T dynamic contrast-enhanced (DCE-)MRI with histopathologic microvascular and lymphatic parameters in organ-confined prostate cancer. In 18 patients with unilateral peripheral zone (pT2a) tumours who underwent DCE-MRI prior to radical prostatectomy (RP), the following pharmacokinetic parameters were assessed: permeability surface area volume transfer constant (K{sup trans}), extravascular extracellular volume (Ve) and rate constant (K{sub ep}). In the RP sections blood and lymph vessels were visualised immunohistochemically and automatically examined and analysed. Parameters assessed included microvessel density (MVD), area (MVA) and perimeter (MVP) as well as lymph vessel density (LVD), area (LVA) and perimeter (LVP). A negative correlation was found between age and K{sup trans} and K{sub ep} for tumour (r = -0.60, p = 0.009; r = -0.67, p = 0.002) and normal (r = -0.54, p = 0.021; r = -0.46, p = 0.055) tissue. No correlation existed between absolute values of microvascular parameters from histopathology and DCE-MRI. In contrast, the ratio between tumour and normal tissue (correcting for individual microvascularity variations) significantly correlated between K{sub ep} and MVD (r = 0.61, p = 0.007) and MVP (r = 0.54, p = 0.022). The lymphovascular parameters showed only a correlation between LVA and K{sub ep} (r = -0.66, p = 0.003). Significant correlations between DCE-MRI and histopathologic parameters were found when correcting for interpatient variations in microvascularity. (orig.)

  14. Hepatitis B and C seroprevalence in patients with diabetes mellitus and its relationship with microvascular complications

    Directory of Open Access Journals (Sweden)

    Kadir Gisi

    2016-12-01

    Full Text Available Introduction: Diabetic patients are susceptible to bacterial, viral and fungal infections because of various deficiencies in the immune system. Aim: To investigate a possible link between hepatitis B/C prevalence and microvascular complications as well as duration of diabetes. Material and methods: In total 1263 diabetic patients (1149 type 2, 114 type 1 were enrolled in the study. The control group consisted of 1482 healthy blood donors who were over 40 years old. All diabetic patients were tested for HBsAg, anti-HBs and anti-HCV beside routine laboratory tests. Diabetic patients were divided into three groups according to their diabetes duration, and all of the patients were scanned for microvascular complications. Demographic data of all patients were recorded. Results : HBsAg seropositivity was 3.7% in diabetic patients and 1.08% in the control group; this difference was statistically significant (p < 0.001. HBsAg positivity rates in type 1 and type 2 diabetics were 0.8% and 4%, respectively (p = 0.09. HCV seropositivity was 2.2% for diabetics and 0.5% for the control group; this difference was statistically significant (p 0.05. Also, no relationship was found between microvascular complications of diabetes and hepatitis B/C seropositivity. Conclusions : Hepatitis B and C seroprevalence was found to be increased in diabetes mellitus; however, there was no relationship between hepatitis seroprevalence and the duration or microvascular complications of diabetes.

  15. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    Science.gov (United States)

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10 -7 -102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME ( N G -nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10 -20 -10 -4 mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 log EC50 ; P Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P =0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had preeclampsia have persistent microvascular dysfunction postpartum

  16. Photocoagulation of microvascular and hemorrhagic lesions of the vocal fold with the KTP laser.

    Science.gov (United States)

    Hirano, Shigeru; Yamashita, Masaru; Kitamura, Morimasa; Takagita, Shin-ichi

    2006-04-01

    Ectasias and varices of the vocal fold are microvascular lesions that are often due to chronic abuse of the voice, and are occasionally encountered in association with other disorders such as polyps, Reinke's edema, and hematoma. The KTP laser can be used for photocoagulation of small vascular lesions, because the laser beam is well absorbed by hemoglobin, and damage to the epithelium is minimal. The present pilot study examined how the KTP laser could be used for microvascular lesions and their associated lesions. Twelve patients who had undergone phonomicrosurgery were enrolled in the present study. The microvascular lesions were treated by photocoagulation with the laser set at a low power of 1.5 W in the continuous mode, while preserving the epithelium, and associated lesions were then treated by microdissection with cold instruments. The postoperative phonatory function was assessed by maximum phonation time, a perceptual test rating (GRBAS scale), and stroboscopy. The procedures were completed successfully in all cases. An exceptional case of a small hemorrhagic polyp allowed treatment with the laser only. The postoperative stroboscopic findings, maximum phonation time, and perceptual test rating all showed significant improvement compared with the preoperative state. No adverse effects, such as scarring or reduction of the mucosal wave, were observed in the current series. KTP laser photocoagulation is a relatively simple and safe procedure for treating microvascular lesions of the vocal fold. It is not recommended for photocoagulation of hemorrhagic polyps or hematomas, because such lesions have little blood flow inside and thus photocoagulation is usually impossible or requires too much laser energy. However, photocoagulation of perimeter or feeding vessels of such disorders may facilitate the following procedure by avoiding unnecessary bleeding, as well as preventing recurrence of hemorrhagic lesions.

  17. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    Science.gov (United States)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  18. A Systematic Review of the Role of Robotics in Plastic and Reconstructive Surgery—From Inception to the Future

    Directory of Open Access Journals (Sweden)

    Thomas D. Dobbs

    2017-11-01

    Full Text Available BackgroundThe use of robots in surgery has become commonplace in many specialties. In this systematic review, we report on the current uses of robotics in plastic and reconstructive surgery and looks to future roles for robotics in this arena.MethodsA systematic literature search of Medline, EMBASE, and Scopus was performed using appropriate search terms in order to identify all applications of robot-assistance in plastic and reconstructive surgery. All articles were reviewed by two authors and a qualitative synthesis performed of those articles that met the inclusion criteria. The systematic review and results were conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA guidelines.ResultsA total of 7,904 articles were identified for title and abstract review. Sixty-eight studies met the inclusion criteria. Robotic assistance in plastic and reconstructive surgery is still in its infancy, with areas such as trans-oral robotic surgery and microvascular procedures the dominant areas of interest currently. A number of benefits have been shown over conventional open surgery, such as improved access and greater dexterity; however, these must be balanced against disadvantages such as the lack of haptic feedback and cost implications.ConclusionThe feasibility of robotic plastic surgery has been demonstrated in several specific indications. As technology, knowledge, and skills in this area improve, these techniques have the potential to contribute positively to patient and provider experience and outcomes.

  19. Better microvascular function on long-term treatment with lisinopril than with nifedipine in renal transplant recipients.

    Science.gov (United States)

    Asberg, A; Midtvedt, K; Vassbotn, T; Hartmann, A

    2001-07-01

    The prevalence of hypertension in renal transplant recipients is high but the pathophysiology is poorly defined. Impaired endothelial function may be a factor of major importance. The present study addresses the effects of long-term treatment with either lisinopril or slow-release nifedipine on microvascular function and plasma endothelin in renal transplant recipients on cyclosporin A (CsA). Seventy-five hypertensive renal transplant recipients were double-blind randomized to receive slow-release nifedipine (NIF, n=40) or lisinopril (LIS, n=35). Ten normotensive, age-matched recipients served as controls. All patients received CsA-based immunosuppressive therapy including prednisolone and azathioprine. Microvascular function was assessed in the forearm skin vasculature, using laser Doppler flowmetry in combination with post-occlusive reactive hyperaemia and endothelial-dependent function during local acetylcholine (ACh) stimulation. The analysis of microvascular function (AUC(rh)) showed that nifedipine-treated patients had significantly lower responses compared with lisinopril-treated patients (20+/-17 and 43+/-20 AU x min respectively, P=0.0016). Endothelial function was borderline significantly lower in the NIF group compared with the LIS group (640+/-345 and 817+/-404 AU x min respectively, P=0.056). The responses in the LIS group were comparable with those in non-hypertensive controls (AUC(rh) was 37+/-16 and AUC(ACh) was 994+/-566 AU x min). Plasma endothelin-1 concentrations were significantly higher in the NIF group compared with the LIS group (0.44+/-0.19 vs. 0.34+/-0.10 fmol/ml respectively, P=0.048), and were 0.29+/-0.09 fmol/ml in the control patients. AUC(ACh) was associated with plasma endothelin-1 (P=0.0053), while AUC(rh) was not (P=0.080). The study indicates that long-term treatment with lisinopril, when compared with nifedipine, yields a more beneficial effect on microvascular function in hypertensive renal transplant recipients on CsA. The

  20. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures.

    Science.gov (United States)

    Sun, Tao; Shi, Qing; Huang, Qiang; Wang, Huaping; Xiong, Xiaolu; Hu, Chengzhi; Fukuda, Toshio

    2018-01-15

    Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular

  1. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  2. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    Science.gov (United States)

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; pfunction and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. The pleiotropic effects of simvastatin on retinal microvascular endothelium has important implications for ischaemic retinopathies.

    Directory of Open Access Journals (Sweden)

    Reinhold J Medina

    Full Text Available BACKGROUND: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo. METHODS AND FINDINGS: Retinal microvascular endothelial cells (RMECs were treated with 0.01-10 microM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 microM simvastatin significantly increasing proliferation (p<0.05, and 0.01 microM simvastatin significantly promoting migration (p<0.05, sprouting (p<0.001, and tubulogenesis (p<0.001. High concentration of simvastatin (10 microM had the opposite effect, significantly inhibiting proliferation (p<0.01, migration (p<0.01, sprouting (p<0.001, and tubulogenesis (p<0.05. Furthermore, simvastatin concentrations higher than 1 microM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin (0.2 mg/Kg promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01. By contrast, high dose simvastatin(20 mg/Kg significantly prevented re-vascularisation (p<0.01 and concomitantly increased pathological neovascularisation (p<0.01. We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures. CONCLUSIONS: A beneficial effect of low

  4. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram Vinod; Hansen, Stinus; Nielsen, Morten Frost Munk

    2016-01-01

    OBJECTIVE AND DESIGN: Patients with type 2 diabetes mellitus (T2D) have an increased fracture risk despite a normal or elevated bone mineral density (BMD). The aim of this cross-sectional in vivo study was to assess parameters of peripheral bone microarchitecture, estimated bone strength and bone...... remodeling in T2D patients with and without diabetic microvascular disease (MVD+ and MVD- respectively) and to compare them with healthy controls. METHODS: Fifty-one T2D patients (MVD+ group: n=25) were recruited from Funen Diabetic Database and matched for age, sex and height with 51 healthy subjects. High...... deficits are not a characteristic of all T2D patients but of a subgroup characterized by the presence of microvascular complications. Whether this influences fracture rates in these patients needs further investigation....

  5. Improving diagnosis and treatment of women with angina pectoris and microvascular disease

    DEFF Research Database (Denmark)

    Prescott, Eva; Abildstrøm, Steen Zabell; Aziz, Ahmed

    2014-01-01

    BACKGROUND: The iPOWER study aims at determining whether routine assessment of coronary microvascular dysfunction (CMD) in women with angina and no obstructive coronary artery disease is feasible and identifies women at risk. METHODS: All women with angina referred to invasive angiographic assess...

  6. Presence of diabetic microvascular complications does not incrementally increase risk of ischemic stroke in diabetic patients with atrial fibrillation

    Science.gov (United States)

    Chou, Annie Y.; Liu, Chia-Jen; Chao, Tze-Fan; Wang, Kang-Ling; Tuan, Ta-Chuan; Chen, Tzeng-Ji; Chen, Shih-Ann

    2016-01-01

    Abstract Conventional stroke risk prediction tools used in atrial fibrillation (AF) incorporate the presence of diabetes mellitus (DM) as a risk factor. However, it is unknown whether this risk is homogenous or dependent on the presence of diabetic microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. The present study examined the risk of ischemic stroke in diabetic patients with and without microvascular complications. The present study used the National Health Insurance Research Database in Taiwan with detailed healthcare data on all-comers to the Taiwanese medical system from January 1, 1996 to December 31, 2011. AF and DM were identified when listed as discharge diagnoses or confirmed more than twice in the outpatient department. Patients on antithrombotic agents were excluded. The clinical endpoint was ischemic stroke. Among the 50,180 AF patients with DM, the majority had no microvascular complications (72.7%), while 2.6% had diabetic retinopathy, 8.4% had diabetic nephropathy, and 16.1% had diabetic neuropathy. Ischemic stroke occurred in 6003 patients, with a 4.74% annual risk of ischemic stroke. When compared with DM patients without microvascular complications, those with diabetic retinopathy, nephropathy, or neuropathy had higher incidences of ischemic stroke (4.65 vs 5.07, 4.77, or 5.20 per 100 person-years, respectively). However, after adjusting for confounding factors, the differences were no longer significant. In a large nationwide AF cohort with DM, risk of ischemic stroke was similar between patients with and without microvascular complications, suggesting that risk stratification of these patients does not require inclusion of diabetic retinopathy, nephropathy, and neuropathy. PMID:27399075

  7. [Microvascular injury effects and possibility of early anastomosis in the maxillofacial region following high velocity missile wound: an experimental study in dogs].

    Science.gov (United States)

    Yan, Y

    1990-02-01

    In order to provide the basis of microvascular anastomosis for reconstruction of maxillofacial defects from firearm injury by using vascularized free tissue transplantation, we studied the mechanism and pathology of microvascular injuries and the possibility of their early anastomosis. The dogs' face were wounded by 0.7 g or 1.03 g steel spheres whose muzzle velocity were 1300 m/s or 1500 m/s. The injury effects of microvascular angiograms were recorded through high speed X-ray camera at the impacting moment the specimens of small vessel were collected for light and electron microscopy at different times after wound. Some dogs were used for performing microvascular anastomosis in the wound region at different times after wound. We found that there were temporary cavity effects in maxillofacial firearm wounds, in and around which small vessel blunt injuries were found, which spread 3 cm from the wound edge. Microvascular anastomosis 3 days after the wound could get higher shortterm patency rate. These results support the conclusion that if we use microsurgical methods to repair defects in maxillofacial firearm wound region, the pedicles of the flap should be laid beyond 3 cm from the wound edge, and the reconstructive operation should be done 3 days after the wound.

  8. Change in reimbursement and costs in German oncological head and neck surgery over the last decade: ablative tongue cancer surgery and reconstruction with split-thickness skin graft vs. microvascular radial forearm flap.

    Science.gov (United States)

    Hoefert, Sebastian; Lotter, Oliver

    2018-05-01

    Defects after ablative tongue cancer surgery can be reconstructed by split-thickness skin grafts or free microvascular flaps. The different surgical options may influence costs, reimbursement, and therefore possible profits. Our goal was to analyze the development of these parameters for different procedures in head and neck reconstruction in Germany over the last decade. After tumor resection and neck dissection of tongue cancer, three different scenarios were chosen to calculate costs, reimbursement, length of stay (LoS), and profits. Two options considered were reconstruction by split-thickness skin graft with (option Ia) and without (option Ib) tracheotomy. In addition, we analyzed microvascular reconstruction with radial forearm flap (option II). Furthermore, unsatisfactory results after options Ia and Ib may make secondary tongue plastic with split-thickness skin grafting necessary (option I+). The calculations were performed considering the German Diagnosis Related Group (DRG) system and compared to the specific DRG cost data of 250 German reference hospitals. The overall average length of stay (aLoS) declined from 16.7 to 12.8 days with a reduction in every option. Until 2011, all options showed similar accumulated DRG reimbursement. From 2012 onwards, earnings almost doubled for option II due to changes in the DRG allocation. As was expected, the highest costs were observed in option II. Profits (reimbursement minus costs) were also highest for option II (mean 2052 €, maximum 3630 Euros in 2015) followed by options Ia (765 €) and Ib/I+ (681 €). Average profits over time would be 17 to 19% higher if adjusted for inflation. We showed the development of the DRG allocation of two commonly used methods of reconstruction after ablative tongue cancer surgery and the associated LoS, reimbursement, costs, and profits. As expected, the highest values were found for microvascular reconstruction. Microvascular reconstruction may also be the primary choice of

  9. Mandibular reconstruction with composite microvascular tissue transfer

    International Nuclear Information System (INIS)

    Coleman, J.J. III; Wooden, W.A.

    1990-01-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons [lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)]. Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure

  10. Mandibular reconstruction with composite microvascular tissue transfer

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J. III; Wooden, W.A. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  11. Quantitative evaluation of capillaroscopic microvascular changes in patients with established coronary heart disease.

    Science.gov (United States)

    Sanchez-Garcia, M Esther; Ramirez-Lara, Irene; Gomez-Delgado, Francisco; Yubero-Serrano, Elena M; Leon-Acuña, Ana; Marin, Carmen; Alcala-Diaz, Juan F; Camargo, Antonio; Lopez-Moreno, Javier; Perez-Martinez, Pablo; Tinahones, Francisco José; Ordovas, Jose M; Caballero, Javier; Blanco-Molina, Angeles; Lopez-Miranda, Jose; Delgado-Lista, Javier

    2018-02-23

    Microcirculation disturbances have been associated to most of the cardiovascular risk factors as well as to multiple inflammatory diseases. However, whether these abnormalities are specifically augmented in patients with coronary heart disease is still unknown. We aimed to evaluate if there is a relationship between the presence of coronary heart disease and the existence of functional and structural capillary abnormalities evaluated in the cutaneous microcirculation by videocapillaroscopy. Two matched samples of 30 participants with and without coronary heart disease but with similar clinical and anthropometric characteristics were evaluated by videocapillaroscopy at the dorsal skin of the third finger of the non-dominant hand. We calculated basal capillary density as well as capillary density after a period of arterial and venous occlusion in order to evaluate functionality and maximum capillary density. We also measured capillary recruitment. Microvascular capillary density at rest was significantly lower in patients suffering from coronary heart disease than in controls. This fact was also found after dynamic tests (arterial and venous occlusion), suggesting functional impairments. Capillary recruitment of the samples was not different in our sample. In our study, patients with coronary heart disease exhibit functional and structural microvascular disturbances. Although this is a very preliminary study, these findings open the door for further studying the microvascular functionality in coronary patients and how it relates to the response to treatment and/or the prognosis of the disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. Vitamin D levels and microvascular complications in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2014-01-01

    Full Text Available Background: Vitamin D has important actions on glucose metabolism. These include improved insulin exocytosis, direct stimulation of insulin receptor, improved uptake of glucose by peripheral tissues, improving insulin resistance. It has got various pleiotropic effects like suppression of cell mediated immunity, regulation of cell proliferation, stimulation of neurotropic factors such as nerve growth factor, Glial cell line-derived neurotrophic factor, neurotropin, suppression of RAAS, reduction of albuminuria, immunomodulatory effects, and anti-inflammatory effects. Thus, vitamin D is implicated in many ways in the pathogenesis of retinopathy, neuropathy and nephropathy. Objectives: To study the correlation of vitamin D levels with microvascular complications in type 2 diabetes. Materials and Methods: Cross-sectional case-control study of 18 patients (18-70 years, who met the American Diabetes Association 2011 criteria for type 2 diabetes, was conducted. Age and sex matched healthy controls were taken. Subjects were evaluated for the presence of microvascular complications by clinical evaluation, urine examination, fundus examination, nerve conduction studies, and various biochemical tests. 25-OH cholecalciferol levels were done for each. Cut off level for vitamin D deficiency was 20 ng/ml. Results: Mean vitamin D was lower in type 2 diabetics than healthy subjects (19.046 vs. 27.186 ng/ml. Prevalence of vitamin D deficiency and insufficiency was found to significantly higher in diabetics when compared to healthy subjects (P = 0.0001. Vitamin D deficiency was found to be significantly associated with neuropathy (χ2 = 5.39, df = 1, P = 0.020, retinopathy, (χ2 = 6.6, df = 1, P = 0.010 and nephropathy (χ2 = 10. 52, df = 1, P = 0.001. Lower levels of vitamin D were found to be associated with increasing prevalence of combinations of microvascular complications namely neuropathy with retinopathy (P = 0.036, neuropathy with nephropathy (P = 0

  13. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  14. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  15. Added Healthcare Charges Conferred by Smoking in Outpatient Plastic Surgery.

    Science.gov (United States)

    Sieffert, Michelle R; Johnson, R Michael; Fox, Justin P

    2018-01-31

    A history of smoking confers additional risk of complications following plastic surgical procedures, which may require hospital-based care to address. To determine if patients with a smoking history experience higher rates of complications leading to higher hospital-based care utilization, and therefore greater healthcare charges, after common outpatient plastic surgeries. Using ambulatory surgery data from California, Florida, Nebraska, and New York, we identified adult patients who underwent common facial, breast, or abdominal contouring procedures from January 2009 to November 2013. Our primary outcomes were hospital-based, acute care (hospital admissions and emergency department visits), serious adverse events, and cumulative healthcare charges within 30 days of discharge. Multivariable regression models were used to compare outcomes between patients with and without a smoking history. The final sample included 214,761 patients, of which 10,426 (4.9%) had a smoking history. Compared to patients without, those with a smoking history were more likely to have a hospital-based, acute care encounter (3.4% vs 7.1%; AOR = 1.36 [1.25-1.48]) or serious adverse event (0.9% vs 2.2%; AOR = 1.38 [1.18-1.60]) within 30 days. On average, these events added $1826 per patient with a smoking history. These findings were consistent when stratified by specific procedure and controlled for patient factors. Patients undergoing common outpatient plastic surgery procedures who have a history of smoking are at risk for more frequent complications, and incur higher healthcare charges than patients who are nonsmokers. © 2018 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  16. Encouraging effects of a short-term, adapted Nordic diet intervention on skin microvascular function and skin oxygen tension in younger and older adults.

    Science.gov (United States)

    Rogerson, David; McNeill, Scott; Könönen, Heidi; Klonizakis, Markos

    2018-05-01

    The microvascular benefits of regional diets appear in the literature; however, little is known about Nordic-type diets. We investigated the effects of a short-term, adapted, Nordic diet on microvascular function in younger and older individuals at rest and during activity. Thirteen young (mean age: 28 y; standard deviation: 5 y) and 15 older (mean age: 68 y; standard deviation: 6 y) participants consumed a modified Nordic diet for 4 wk. Laser Doppler flowmetry and transcutaneous oxygen monitoring were used to assess cutaneous microvascular function and oxygen tension pre- and postintervention; blood pressure, body mass, body fat percentage, ratings of perceived exertion, and peak heart rate during activity were examined concurrently. Axon-mediated vasodilation improved in older participants (1.17 [0.30] to 1.30 [0.30]; P Nordic diet might improve microvascular health. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Elevated plasma plasminogen activator inhibitor type-1 is an independent predictor of coronary microvascular dysfunction in hypertension

    International Nuclear Information System (INIS)

    Naya, Masanao; Tsukamoto, Takahiro; Inubushi, Masayuki; Morita, Koichi; Katoh, Chietsugu; Furumoto, Tomoo; Fujii, Satoshi; Tsutsui, Hiroyuki; Tamaki, Nagara

    2007-01-01

    Elevated plasma plasminogen activator inhibitor-1 (PAI-1) is related to cardiovascular events, but its role in subclinical coronary microvascular dysfunction remains unknown. Thus, in the present study it was investigated whether elevated plasma PAI-1 activity is associated with coronary microvascular dysfunction in hypertensive patients. Thirty patients with untreated essential hypertension and 10 age-matched healthy controls were studied prospectively. Myocardial blood flow (MBF) was measured by using 15 O-water positron emission tomography. Clinical variables associated with atherosclerosis (low-density lipoprotein-cholesterol, high-density lipoprotein (HDL)-cholesterol, triglyceride, homeostasis model assessment (HOMA-IR), and PAI-1 activity) were assessed to determine their involvement in coronary microvascular dysfunction. Adenosine triphosphate (ATP)-induced hyperemic MBF and coronary flow reserve (CFR) were significantly lower in hypertensive patients than in healthy controls (ATP-induced MBF: 2.77±0.82 vs 3.49±0.71 ml·g -1 ·min -1 ; p<0.02 and CFR: 2.95±1.06 vs 4.25±0.69; p<0.001). By univariate analysis, CFR was positively correlated with HDL-cholesterol (r=0.46, p<0.02), and inversely with HOMA-IR (r=-0.39, p<0.05) and PAI-1 activity (r=-0.61, p<0.001). By multivariate analysis, elevated PAI-1 activity remained a significant independent determinant of diminished CFR. Elevated plasma PAI-1 activity was independently associated with coronary microvascular dysfunction, which suggests that plasma PAI-1 activity is an important clue linking hypofibrinolysis to the development of atherosclerosis. (author)

  18. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging.

    Science.gov (United States)

    Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased

  19. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  20. CT findings of plastic bronchitis in children after a Fontan operation

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea); Jhang, Won Kyoung; Kim, Young Hwee; Ko, Jae Kon; Park, In Sook [University of Ulsan College of Medicine, Department of Pediatric Cardiology, Asan Medical Center, Seoul (Korea); Park, Jeong-Jun; Yun, Tae-Jin; Seo, Dong-Man [University of Ulsan College of Medicine, Department of Pediatric Cardiac Surgery, Asan Medical Center, Seoul (Korea)

    2008-09-15

    Plastic bronchitis is a rare cause of acute obstructive respiratory failure in children. Life-threatening events are much more frequent in patients with repaired cyanotic congenital heart disease, and most frequent following a Fontan operation. Commonly, the diagnosis is not made until bronchial casts are expectorated. Detailed CT findings in plastic bronchitis have not been described. To describe the CT findings in plastic bronchitis in children after a Fontan operation. Three children with plastic bronchitis after a Fontan operation were evaluated by chest CT. Bronchial casts were spontaneously expectorated and/or extracted by bronchoscopy. Airway and lung abnormalities seen on CT were analyzed in the three children. CT demonstrated bronchial casts in the central airways with associated atelectasis and consolidation in all children. The affected airways were completely or partially obstructed by the bronchial casts without associated bronchiectasis. The airway and lung abnormalities rapidly improved after removal of the bronchial casts. CT can identify airway and lung abnormalities in children with plastic bronchitis after a Fontan operation. In addition, CT can be used to guide bronchoscopy and to monitor treatment responses, and thereby may improve clinical outcomes. (orig.)

  1. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  2. The effect of nitroglycerin on microvascular perfusion and oxygenation during gastric tube reconstruction

    NARCIS (Netherlands)

    Buise, Marc P.; Ince, Can; Tilanus, Hugo W.; Klein, Jan; Gommers, Diederik; van Bommel, Jasper

    2005-01-01

    Esophagectomy followed by gastric tube reconstruction is the surgical treatment of choice for patients with esophageal cancer. Complications of the cervical anastomosis are associated with impaired microvascular blood flow (MBF) and ischemia in the gastric fundus. The aim of the present study was to

  3. GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Smits, Mark M.; Tonneijck, Lennart; Muskiet, Marcel H.A.; Hoekstra, Trynke; Kramer, Mark H.H.; Diamant, Michaela; Serné, Erik H.; Van Raalte, Daniël H.

    2016-01-01

    Objective - To assess the effects of glucagon-like peptide (GLP)-1-based therapies (ie, GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) on microvascular function in patients with type 2 diabetes mellitus. Approach and Results - We studied 57 patients with type 2 diabetes mellitus

  4. Preservation of intestinal microvascular Po2 during normovolemic hemodilution in a rat model

    NARCIS (Netherlands)

    van Bommel, J.; Siegemund, M.; Henny, C. P.; van den Heuvel, D. A.; Trouwborst, A.; Ince, C.

    2000-01-01

    The effect of hemodilution on the intestinal microcirculatory oxygenation is not clear. The aim of this study was to determine the effect of moderate normovolemic hemodilution on intestinal microvascular partial oxygen pressure (Po2) and its relation to the mesenteric venous Po2 (Pmvo2).

  5. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Hoon Young Choi

    Full Text Available We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188, bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.

  6. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  7. Microvascular volume in symptomatic Achilles tendons is associated with VISA-A score.

    Science.gov (United States)

    Praet, S F E; Ong, J H; Purdam, C; Welvaert, M; Lovell, G; Dixon, L; Gaida, J E; Anglim, J; Manzanero, S; Vlahovich, N; Hughes, D; Waddington, G

    2018-05-15

    The role of neovascularisation in tendinopathy is still poorly understood, potentially due to technical limitations of conventional power Doppler ultrasound. This study aimed to investigate the association between contrast-enhanced ultrasound (CEUS) microvascular volume (MV), Victorian Institute of Sports Assessment-Achilles (VISA-A) scores and intrinsic Achilles tendon tenderness, as well as two different Power Doppler modes. Cross-sectional study. 20 individuals with uni- or bilateral Achilles tendinopathy completed a VISA-A questionnaire, and underwent microvascular volume measurements of the Achilles tendon mid-portion using both conventional, ultrasensitive (SMI™) power Doppler ultrasound and CEUS. Intrinsic tendon tenderness was assessed with sensation detection threshold to extracorporeal shock waves (ESW). Linear Mixed Model analysis was used to determine the association between microvascular volume (MV), VISA-A, and ESW-detection threshold for both symptomatic and asymptomatic Achilles tendons. There was a significant association between VISA-A and MV (B=-5.3, 95%CI=[-8.5; -2.0], P=0.0004), and between MV and symptom duration (B=-1.7, 95%CI=[-3.2; -5.0], P=0.023). No significant associations were found between power Doppler ultrasound and CEUS-based MV or between CEUS-based MV and ESW-detection threshold. In comparison with conventional power Doppler ultrasound, SMI™ showed on average similar detection capacity for neovessels in the mid-portion of the Achilles tendon, whilst being superior for detecting neovessels within Kager's fat pad (t=3.46, 95%CI=[0.27; 1.03], P<0.005). Our results indicate that CEUS-based MV of the Achilles tendon is moderately associated with Achilles tendon symptoms. In accordance, CEUS-detected MV could be a novel target for treatment as it seems to be more sensitive than PDU and is correlated with symptoms. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma

    DEFF Research Database (Denmark)

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin

    2015-01-01

    Objectives: Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome...... than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods: Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and COV, its ratio to blood mean transit time, provide indices...... of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival...

  9. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet

    NARCIS (Netherlands)

    van Haare, Judith; Kooi, M. Eline; Vink, Hans; Post, Mark J.; van Teeffelen, Jurgen W. G. E.; Slenter, Jos; Munts, Chantal; Cobelens, Hanneke; Strijkers, Gustav J.; Koehn, Dennis; van Bilsen, Marc

    2015-01-01

    It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic

  10. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. [Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results].

    Science.gov (United States)

    Secchi, M E; Sulli, A; Pizzorni, C; Cutolo, M

    2009-01-01

    Systemic sclerosis (SSc) is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC) is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF) can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Twenty-seven SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns ("Early", "Active", "Late"). LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36 degrees C. Statistical evaluation was carried out by non-parametric procedures. Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05). The heating of the probe to 36 degrees C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05), however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05). The SSc patients with NVC "Late" pattern, showed lower values of peripheral blood flow than patients with NVC "Active" or "Early" patterns (p<0.05). Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud's phenomenon (p <0.03). LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  12. DETECTION OF MICROVASCULAR COMPLICATIONS OF TYPE 2 DIABETES BY EZSCAN AND ITS COMPARISON WITH STANDARD SCREENING METHODS

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2016-08-01

    Full Text Available BACKGROUND EZSCAN is a new, noninvasive technique to detect sudomotor dysfunction and thus neuropathy in diabetes patients at an early stage. It further predicts chances of development of other microvascular complications. In this study, we evaluated EZSCAN for detection of microvascular complications in Type 2 diabetes patients and compared accuracy of EZSCAN with standard screening methods. MATERIALS AND METHODS 104 known diabetes patients, 56 males and 48 females, were studied. All cases underwent the EZSCAN test, Nerve Conduction Study (NCS test, Vibration perception threshold test (VPT, Monofilament test, Fundus examination and Urine micral test. The results of EZSCAN were compared with standard screening methods. The data has been analysed and assessed by applying appropriate statistical tests within different groups. RESULTS Mean age of the subjects was 53.5 ± 11.4 years. For detection of diabetic neuropathy, sensitivity and specificity of EZSCAN was found to be 77.0 % and 95.3%, respectively. Odd’s ratio (OR was 68.82 with p < 0.0001. AUC in ROC curve was 0.930. Sensitivity and specificity of EZSCAN for detection of nephropathy were 67.1% and 94.1%, respectively. OR = 32.69 with p < 0.0001. AUC was 0.926. Sensitivity of EZSCAN for detection of retinopathy was 90% while specificity is 70.3%. OR = 21.27; p< 0.0001. AUC came out to be 0.920. CONCLUSION Results of EZSCAN test compared significantly to the standard screening methods for the detection of microvascular complications of diabetes and can be used as a simple, noninvasive and quick method to detect microvascular complications of diabetes.

  13. [Evaluation of three-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell carcinoma and its significance].

    Science.gov (United States)

    Zhou, Hui; Liu, Jinkang; Chen, Shengxi; Xiong, Zeng; Zhou, Jianhua; Tong, Shiyu; Chen, Hao; Zhou, Moling

    2012-06-01

    To explore the degree, mechanism and clinical significance of three-dimensional tumor microvascular architecture phenotype heterogeneity (3D-TMAPH) in non-small cell carcinoma (NSCLC). Twenty-one samples of solitary pulmonary nodules were collected integrally. To establish two-dimensional tumor microvascular architecture phenotype (2D-TMAP) and three-dimensional tumor microvascular architecture phenotype (3D-TMAP), five layers of each nodule were selected and embedded in paraffin. Test indices included the expressions of vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), EphB4, ephfinB2 and microvascular density marked by anti-CD34 (CD34-MVD). The degrees of 3D-TMAPH were evaluated by the coefficient of variation and extend of heterogeneity. Spearman rank correlation analysis was used to investigate the relationships between 2D-TMAP, 3D-TMAP and clinicopathological features. 3D-TMAPH showed that 2D-TMAP heterogeneity was expressed in the tissues of NSCLC. The heterogeneities in the malignant nodules were significantly higher than those in the active inflammatory nodules and tubercular nodules. In addition, different degrees of heterogeneity of CD34-MVD and PCNA were found in NSCLC tissues. The coefficients of variation of CD34- MVD and PCNA were positively related to the degree of differentiation (all P0.05). The level of heterogeneity of various expression indexes (ephrinB2, EphB4, VEGF) in NSCLC tissues were inconsistent, but there were no significant differences in heterogeneity in NSCLC tissues with different histological types (P>0.05). 3D-TMAPH exists widely in the microenvironment during the genesis and development of NSCLC and has a significant impact on its biological complexity.

  14. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  15. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, P.A.; McBride, C.R.; Yi, J.; Nurkiewicz, T.R., E-mail: tnurkiewicz@hsc.wvu.edu

    2015-11-01

    With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO{sub 2} aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m{sup 3}, 5 h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10{sup −4} M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated. - Highlights: • Female reproductive health associated with nanomaterial exposure is understudied. • We examined uterine microvascular alterations 24-hours after nano

  16. Inter-arm Blood Pressure Difference and its Relationship with Retinal Microvascular Calibres in Young Individuals: The African-PREDICT Study.

    Science.gov (United States)

    Strauss, Michél; Smith, Wayne; Schutte, Aletta E

    2016-08-01

    Bilateral systolic blood pressure (SBP) differences > 10mmHg is a common finding in clinical practice. Such BP differences in older individuals are associated with peripheral vascular disease, linked to microvascular dysfunction. Investigating retinal vessel calibres could provide insight into systemic microvascular function and may predict cardiovascular outcomes. Therefore we investigated the link between inter-arm systolic blood pressure differences (IASBPD) and the retinal microvasculature to determine the usefulness of IASBPD as an early marker of microvascular changes. In this cross-sectional study, we used data from 403 apparently healthy participants (20-30 years) (42% men; 49% black) taking part in the African-PREDICT study. Participants underwent retinal vessel imaging, anthropometric measurements and blood sampling. Brachial BP was measured sequentially in both arms to determine the mean IASBPD. Participants were stratified into two groups with an IASBPD difference in characteristics being a higher right arm SBP in the latter group (p=0.005). We found no association between IASBPD and retinal vessel calibres in any group. Less than 2% of the variance in IASBPD was explained by potential risk factors, with only SBP associating independently with IASBPD (β=115; p=0.039). In a young population an increased IASBPD is not related to retinal vessel diameters suggesting that it does not reflect early microvascular alterations. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  17. Coronary Microvascular Function and Cardiovascular Risk Factors in Women With Angina Pectoris and No Obstructive Coronary Artery Disease

    DEFF Research Database (Denmark)

    Mygind, Naja Dam; Michelsen, Marie Mide; Peña, Adam

    2016-01-01

    BACKGROUND: The majority of women with angina-like chest pain have no obstructive coronary artery disease when evaluated with coronary angiography. Coronary microvascular dysfunction is a possible explanation and associated with a poor prognosis. This study evaluated the prevalence of coronary...... microvascular dysfunction and the association with symptoms, cardiovascular risk factors, psychosocial factors, and results from diagnostic stress testing. METHODS AND RESULTS: After screening 3568 women, 963 women with angina-like chest pain and a diagnostic coronary angiogram without significant coronary.......01), hypertension (P=0.02), current smoking (Ppain characteristics or results from diagnostic stress testing...

  18. Factors associated with acute postoperative pain following breast reconstruction

    Directory of Open Access Journals (Sweden)

    Anita R. Kulkarni

    2017-03-01

    Conclusions: This study identifies patients at risk for severe acute postoperative pain following breast reconstruction. These findings will allow plastic surgeons to better tailor postoperative care to improve patient comfort, reduce clinical morbidity, and enhance patient satisfaction with their surgical outcome.

  19. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  20. Obesity is associated with increased health care charges in patients undergoing outpatient plastic surgery.

    Science.gov (United States)

    Sieffert, Michelle R; Fox, Justin P; Abbott, Lindsay E; Johnson, R Michael

    2015-05-01

    Obesity is associated with greater rates of surgical complications. To address these complications after outpatient plastic surgery, obese patients may seek care in the emergency department and potentially require admission to the hospital, which could result in greater health care charges. The purpose of this study was to determine the relationship of obesity, postdischarge hospital-based acute care, and hospital charges within 30 days of outpatient plastic surgery. From state ambulatory surgery center databases in four states, all discharges for adult patients who underwent liposuction, abdominoplasty, breast reduction, and blepharoplasty were identified. Patients were grouped by the presence or absence of obesity. Multivariable regression models were used to compare the frequency of hospital-based acute care, serious adverse events, and hospital charges within 30 days between groups while controlling for confounding variables. The final sample included 47,741 discharges, with 2052 of these discharges (4.3 percent) being obese. Obese patients more frequently had a hospital-based acute care encounter [7.3 percent versus 3.9 percent; adjusted OR, 1.35 (95% CI,1.13 to 1.61)] or serious adverse event [3.2 percent versus 0.9 percent; adjusted OR, 1.73 (95% CI, 1.30 to 2.29)] within 30 days of surgery. Obese patients had adjusted hospital charges that were, on average, $3917, $7412, and $7059 greater (p Obese patients who undergo common outpatient plastic surgery procedures incur substantially greater health care charges, in part attributable to more frequent adverse events and hospital-based health care within 30 days of surgery. Risk, II.

  1. Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk.

    Science.gov (United States)

    Roy, Hemant K; Gomes, Andrew; Turzhitsky, Vladimir; Goldberg, Michael J; Rogers, Jeremy; Ruderman, Sarah; Young, Kim L; Kromine, Alex; Brand, Randall E; Jameel, Mohammed; Vakil, Parmede; Hasabou, Nahla; Backman, Vadim

    2008-10-01

    We previously used a novel biomedical optics technology, 4-dimensional elastically scattered light fingerprinting, to show that in experimental colon carcinogenesis the predysplastic epithelial microvascular blood content is increased markedly. To assess the potential clinical translatability of this putative field effect marker, we characterized the early increase in blood supply (EIBS) in human beings in vivo. We developed a novel, endoscopically compatible, polarization-gated, spectroscopic probe that was capable of measuring oxygenated and deoxygenated (Dhb) hemoglobin specifically in the mucosal microcirculation through polarization gating. Microvascular blood content was measured in 222 patients from the endoscopically normal cecum, midtransverse colon, and rectum. If a polyp was present, readings were taken from the polyp tissue along with the normal mucosa 10-cm and 30-cm proximal and distal to the lesion. Tissue phantom studies showed that the probe had outstanding accuracy for hemoglobin determination (r(2) = 0.99). Augmentation of microvasculature blood content was most pronounced within the most superficial ( approximately 100 microm) layer and dissipated in deeper layers (ie, submucosa). EIBS was detectable within 30 cm from the lesion and the magnitude mirrored adenoma proximity. This occurred for both oxygenated hemoglobin and DHb, with the effect size being slightly greater for DHb. EIBS correlated with adenoma size and was not engendered by nonneoplastic (hyperplastic) polyps. We show, herein, that in vivo microvascular blood content can be measured and provides an accurate marker of field carcinogenesis. This technological/biological advance has numerous potential applications in colorectal cancer screening such as improved polyp detection and risk stratification.

  2. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Gustafsson, Finn; Holstein-Rathlou, N.-H.

    2003-01-01

    Adequate function of the microcirculation is vital to any tissue. To maintain an optimal function, microvascular networks must be able to adapt structurally to changes in the physical environment. Here we present a mathematical network model based on vessel wall mechanics. We assume based...... diameter, until equilibrium is restored. The model explains several of the key features observed experimentally in the microcirculation in normotension and hypertension. Most importantly, it suggests a scenario where overall network structure and network hemodynamics depend on adaptation to local...... hemodynamic stimuli in the individual vessel. Simulated results show emanating microvascular networks with properties similar to those observed in vivo. The model points to an altered endothelial function as a key factor in the development of vascular changes characteristic of hypertension....

  3. Concomitant macro and microvascular complications in diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Alwakeel Jamal

    2009-01-01

    Full Text Available To determine the prevalence of concomitant microvascular and macrovascular complica-tions of diabetic nephropathy we retrospectively reviewed the medical records of all 1,952 type 2 dia-betic patients followed-up at Security Forces Hospital, Riyadh, Saudi Arabia from January 1989 to December 2004. There were 626 (32.1% patients (294 (47% were males who developed diabetic nephropathy. Their mean age was 66.9 ± 11.4 years, mean duration of diabetes was 15.4 ± 7.5 years, mean age at the onset of nephropathy was 61.5 ± 12.4 years, and mean duration of nephropathy was 3.9 ± 3.8 years. Concomitant diabetic complications included cataract (38.2%, acute coronary syndrome (36.1%, peripheral neuropathy (24.9%, myocardial infarction (24.1%, background retinopathy (22.4%, stroke (17.6%, proliferative retinopathy (11.7%, foot infection (7.3%, limb amputation (3.7% and blindness (3%. Hypertension was documented in 577 (92.2% patients, dyslipidemia in 266 (42.5% and mortality from all causes in 86 (13.7%. There were 148 (23.6% patients with one complication, 81 (12.9% with two, 83 (13.3% with three, and 61 (9.7% with four or more. Dete-rioration of glomerular filtration rate was observed in 464 (74% patients and doubling of serum creatinine in 250 (39.9%, while 95 (15.2% developed end-stage renal disease (ESRD at the end of study and 79 (12.6% required dialysis. Complications were significantly more prevalent among males with greater number reaching ESRD level than females (P< 0.05. Relative risks of developing com-plications were significant after the onset of nephropathy; ACS (1.41, MI (1.49, stroke (1.48, diabetic foot (1.6, amputation (1.58 and death (1.93. We conclude that complications of diabetes are aggre-ssive and progressive including high prevalence of diabetic nephropathy. Careful monitoring and proper institution of management protocols should be implemented to identify diabetic patients at high risk for complications and mitigate progression

  4. Concomitant macro and microvascular complications in diabetic nephropathy

    International Nuclear Information System (INIS)

    Alwakeel, Jamal S; AlSuwaida, Abdulkareem; Isnani, Arthur C; AlHarbi, Ali; Alam Awatif

    2009-01-01

    To determine the prevalence of concomitant microvascular and macro vascular complications of diabetic nephropathy we retrospectively reviewed the medical records of all 1,952 type 2 dia-betic patients followed-up at Security Forces Hospital, Riyadh, Saudi Arabia from January 1989 to December 2004. There were 626 (32.1%) patients (294 (47%) were males) who developed diabetic nephropathy. Their mean age was 66.9 + -11.4 years, mean duration of diabetes was 15.4 + -7.5 years, mean age at the onset of nephropathy was 61.5 + - 12.4 years, and mean duration of nephropathy was 3.9 + - 3.8 years. Concomitant diabetic complications included cataract (38.2%), acute coronary syndrome (36.1%), peripheral neuropathy (24.9%), myocardial infarction (24.1%), background retinopathy (22.4%), stroke (17.6%), proliferative retinopathy (11.7%), foot infection (7.3%), limb amputation (3.7%) and blindness (3%). Hypertension was documented in 577 (92.2%) patients, dyslipidemia in 266 (42.5%) and mortality from all causes in 86 (13.7%). There were 148 (23.6%) patients with one complication, 81 (12.9%) with two, 83 (13.3%) with three, and 61 (9.7%) with four or more. Deterioration of glomerular filtration rate was observed in 464 (74%) patients and doubling of serum creatinine in 250 (39.9%), while 95 (15.2%) developed end-stage renal disease (ESRD) at the end of study and 79 (12.6%) required dialysis. Complications were significantly more prevalent among males with greater number reaching ESRD level than females (P< 0.05). Relative risks of developing complications were significant after the onset of nephropathy; ACS (1.41), MI (1.49), stroke (1.48), diabetic foot (1.6), amputation (1.58) and death (1.93). We conclude that complications of diabetes are aggressive and progressive including high prevalence of diabetic nephropathy. Careful monitoring and proper institution of management protocols should be implemented to identify diabetic patients at high risk for complications and mitigate

  5. Concomitant macro and microvascular complications in diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Alwakeel, Jamal S; AlSuwaida, Abdulkareem [Div. of Nephrology, Dept. of Medicine, King Khalid Univ., Hospital, Riyadh (Saudi Arabia); Isnani, Arthur C [Dept. of Family and Community Medicine, King Khalid Univ. Hospital, Riyadh (Saudi Arabia); AlHarbi, Ali [Coll. of Medicine and Research Center, King Khalid Univ. Hospital, Riyadh (Saudi Arabia); Awatif, Alam [Div. of Nephrology, Dept. of Medicine, Security Forces Hospital, Riyadh (Saudi Arabia)

    2009-07-01

    To determine the prevalence of concomitant microvascular and macro vascular complications of diabetic nephropathy we retrospectively reviewed the medical records of all 1,952 type 2 dia-betic patients followed-up at Security Forces Hospital, Riyadh, Saudi Arabia from January 1989 to December 2004. There were 626 (32.1%) patients (294 (47%) were males) who developed diabetic nephropathy. Their mean age was 66.9 + -11.4 years, mean duration of diabetes was 15.4 + -7.5 years, mean age at the onset of nephropathy was 61.5 + - 12.4 years, and mean duration of nephropathy was 3.9 + - 3.8 years. Concomitant diabetic complications included cataract (38.2%), acute coronary syndrome (36.1%), peripheral neuropathy (24.9%), myocardial infarction (24.1%), background retinopathy (22.4%), stroke (17.6%), proliferative retinopathy (11.7%), foot infection (7.3%), limb amputation (3.7%) and blindness (3%). Hypertension was documented in 577 (92.2%) patients, dyslipidemia in 266 (42.5%) and mortality from all causes in 86 (13.7%). There were 148 (23.6%) patients with one complication, 81 (12.9%) with two, 83 (13.3%) with three, and 61 (9.7%) with four or more. Deterioration of glomerular filtration rate was observed in 464 (74%) patients and doubling of serum creatinine in 250 (39.9%), while 95 (15.2%) developed end-stage renal disease (ESRD) at the end of study and 79 (12.6%) required dialysis. Complications were significantly more prevalent among males with greater number reaching ESRD level than females (P< 0.05). Relative risks of developing complications were significant after the onset of nephropathy; ACS (1.41), MI (1.49), stroke (1.48), diabetic foot (1.6), amputation (1.58) and death (1.93). We conclude that complications of diabetes are aggressive and progressive including high prevalence of diabetic nephropathy. Careful monitoring and proper institution of management protocols should be implemented to identify diabetic patients at high risk for complications and mitigate

  6. Acute Social Stress Engages Synergistic Activity of Stress Mediators in the VTA to Promote Pavlovian Reward Learning

    OpenAIRE

    Kan, Russell; Pomrenze, Matthew; Tovar-Diaz, Jorge; Morikawa, Hitoshi; Drew, Michael; Pahlavan, Bahram

    2017-01-01

    Stressful events rapidly trigger activity-dependent synaptic plasticity in certain brain areas, driving the formation of aversive memories. However, it remains unclear how stressful experience affects plasticity mechanisms to regulate learning of appetitive events, such as intake of addictive drugs or palatable foods. Using rats, we show that two acute stress mediators, corticotropin-releasing factor (CRF) and norepinephrine (NE), enhance plasticity of NMDA receptor-mediated glutamatergic tra...

  7. Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results

    Directory of Open Access Journals (Sweden)

    C. Pizzorni

    2011-06-01

    Full Text Available Objectives: Systemic sclerosis (SSc is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Methods: 27 SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns (“Early”, “Active”, “Late”. LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36°C. Statistical evaluation was carried out by non-parametric procedures. Results: Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05. The heating of the probe to 36°C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05, however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05. The SSc patients with NVC “Late” pattern, showed lower values of peripheral blood flow than patients with NVC “Active” or “Early” patterns (p<0.05. Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud’s phenomenon (p <0.03. Conclusions: LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  8. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction?

    Science.gov (United States)

    Prato, Frank S; Butler, John; Sykes, Jane; Keenliside, Lynn; Blackwood, Kimberley J; Thompson, R Terry; White, James A; Mikami, Yoko; Thiessen, Jonathan D; Wisenberg, Gerald

    2015-02-01

    Inflammation that occurs after acute myocardial infarction plays a pivotal role in healing by facilitating the creation of a supportive scar. (18)F-FDG, which is taken up avidly by macrophages, has been proposed as a marker of cell-based inflammation. However, its reliability as an accurate indicator of inflammation has not been established, particularly in the early postinfarction period when regional myocardial perfusion is often severely compromised. Nine adult dogs underwent left anterior descending coronary occlusion with or without reperfusion. Animals were imaged between 7 and 21 d after infarction with PET/MR imaging after bolus injection of gadolinium-diethylenetriaminepentaacetic acid (DTPA), bolus injection of (18)F-FDG, bolus injection of (99)Tc-DTPA to simulate the distribution of gadolinium-DTPA (which represents its partition coefficient in well-perfused tissue), and injection of (111)In-labeled white blood cells 24 h earlier. After sacrifice, myocardial tissue concentrations of (18)F, (111)In, and (99)Tc were determined in a well counter. Linear regression analysis evaluated the relationships between the concentrations of (111)In and (18)F and the dependence of the ratio of (111)In/(18)F to the apparent distribution volume of (99m)Tc-DTPA. In 7 of 9 animals, (111)In increased as (18)F increased with the other 2 animals, showing weak negative slopes. With respect to the dependence of (111)In/(18)F with partition coefficient, 4 animals showed no dependence and 4 showed a weak positive slope, with 1 animal showing a negative slope. Further, in regions of extensive microvascular obstruction, (18)F significantly underestimated the extent of the presence of (111)In. In the early post-myocardial infarction period, (18)F-FDG PET imaging after a single bolus administration may underestimate the extent and degree of inflammation within regions of microvascular obstruction. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    International Nuclear Information System (INIS)

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-01-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding

  10. Microvascular Outcomes of Pediatric-Onset Type 1 Diabetes Mellitus: A Single-Center Observational Case Reviews in Sana’a, Yemen

    Directory of Open Access Journals (Sweden)

    Abdallah Ahmed Gunaid

    2018-01-01

    Full Text Available Microvascular complications of pediatric-onset type 1 diabetes are common in low-income countries. In this study, we aimed at reviewing microvascular outcomes in 6 cases with type 1 diabetes over 14 to 31 years of follow-up. Severe proliferative diabetic retinopathy (PDR and/or diabetic macular edema (maculopathy (DME and overt diabetic nephropathy (macroalbuminuria were seen among 4 of 6 patients, whereas severe diabetic peripheral neuropathy with Charcot neuroarthropathy was seen in 1 patient only, who had the longest duration of follow-up. The weighted mean (SD (95% confidence interval hemoglobin A 1c was 8.9 (1.6 (8.4-9.4% [74 (17 (68-80 mmol/mol] for PDR/DME and 8.6 (1.7 (8.0-9.0% [71 (19 (65-77 mmol/mol] for macroalbuminuria. Thyroid autoimmunity was positive in 3 patients with overt hypothyroidism in 2 of them. Worse microvascular outcomes among these cases might be attributed to poor glycemic control, lack of knowledge, and limited financial resources.

  11. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  12. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  13. Changes in microvascular permeability of the middle ear mucosa following the occulsion of the eustachian tube of rabbits

    International Nuclear Information System (INIS)

    Kikuchi, Yasutaka

    1988-01-01

    Serial changes in submucosal microvascular permeability of the middle ear and the response to histamine after occlusion of the eustachian tube were functionally investigated using radioisotope in rabbits with experimentally induced otitis media with effusion. Tritium water was administered through intravenous injection and transference of tritium water into the middle ear cavity was measured by radioactivity of the middle ear perfusate. Morphological changes were concurrently examined for comparison. Vascular permeability, as measured one, 7, and 14 days after occlusion of the eustachian tube, increased with time. A histological study showed an edematous hypertrophy of the submucosal tissue of the middle ear, suggesting a noticeable increase in microvascular permeability. The response of the middle ear mucosa to histamine, which was added to the fluid for perfusion, gradually decreased after occlusion of the eustachian tube, although the effect of histamine tended to persist for a long time, irrespective of the amount of administration. The results indicated that the mucosal membrane of the middle ear has a noticeable permeability at least up to 14 days after occlusion, and that histamine may be responsible for the increase of submucosal microvascular permeability not only in the normal middle ear cavity but also in otitis media with effusion which results in the persistance of the disease. The presence of factors permeable to the blood, other than histamine, caused microvascular peameability to increase, probably resulting in chronic or irreversible inflammation. This may be explained by markedly proliferative or parenchymatous connective tissues observed 7 and l0 weeks after occlusion. It should be noted that surgical treatment be performed as early as possible in the case of otitis media with effusion. (Namekawa, K) 80 refs

  14. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  15. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microvascular decompression for the patient with painful tic convulsif after Bell palsy.

    Science.gov (United States)

    Jiao, Wei; Zhong, Jun; Sun, Hui; Zhu, Jin; Zhou, Qiu-Meng; Yang, Xiao-Sheng; Li, Shi-Ting

    2013-05-01

    Painful tic convulsif is referred to as the concurrent trigeminal neuralgia and hemifacial spasm. However, painful tic convulsif after ipsilateral Bell palsy has never been reported before. We report a case of a 77-year-old woman with coexistent trigeminal neuralgia and hemifacial spasm who had experienced Bell palsy half a year ago. The patient underwent microvascular decompression. Intraoperatively, the vertebrobasilar artery was found to deviate to the symptomatic side and a severe adhesion was observed in the cerebellopontine angle. Meanwhile, an ectatic anterior inferior cerebellar artery and 2 branches of the superior cerebellar artery were identified to compress the caudal root entry zone (REZ) of the VII nerve and the rostroventral cisternal portion of the V nerve, respectively. Postoperatively, the symptoms of spasm ceased immediately and the pain disappeared within 3 months. In this article, the pathogenesis of the patient's illness was discussed and it was assumed that the adhesions developed from inflammatory reactions after Bell palsy and the anatomic features of the patient were the factors that generated the disorder. Microvascular decompression surgery is the suggested treatment of the disease, and the dissection should be started from the caudal cranial nerves while performing the operation.

  17. Microvascular Blood Flow Improvement in Hyperglycemic Obese Adult Patients by Hypocaloric Diet.

    Science.gov (United States)

    Mastantuono, T; Di Maro, M; Chiurazzi, M; Battiloro, L; Starita, N; Nasti, G; Lapi, D; Iuppariello, L; Cesarelli, M; D'Addio, G; Colantuoni, A

    2016-11-01

    The present study was aimed to assess the changes in skin microvascular blood flow (SBF) in newly diagnosed hyperglycemic obese subjects, administered with hypocaloric diet. Adult patients were recruited and divided in three groups: NW group (n=54), NG (n=54) and HG (n=54) groups were constituted by normal weight, normoglycemic and hyperglycemic obese subjects, respectively. SBF was measured by laser Doppler perfusion monitoring technique and oscillations in blood flow were analyzed by spectral methods under baseline conditions, at 3 and 6 months of dietary treatment. Under resting conditions, SBF was lower in HG group than in NG and NW ones. Moreover, all subjects showed blood flow oscillations with several frequency components. In particular, hyperglycemic obese patients revealed lower spectral density in myogenic-related component than normoglycemic obese and normal weight ones. Moreover, post-occlusive reactive hyperemia (PORH) was impaired in hyperglycemic obese compared to normoglycemic and normal weigh subjects. After hypocaloric diet, in hyperglycemic obese patients there was an improvement in SBF accompanied by recovery in myogenic-related oscillations and arteriolar responses during PORH. In conclusion, hyperglycemia markedly affected peripheral microvascular function; hypocaloric diet ameliorated tissue blood flow.

  18. Microvascular disease in children and adolescents with type 1 diabetes and obesity.

    Science.gov (United States)

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2011-03-01

    The incidence of type 1 diabetes (T1D) is increasing worldwide and is associated with a significant burden, mainly related to the development of vascular complications. Over the last decades, concomitant with the epidemic of childhood obesity, there has been an increasing number of cases of type 2 diabetes (T2D) among children and adolescents. Microvascular complications of diabetes, which include nephropathy, retinopathy and neuropathy, are characterized by damage to the microvasculature of the kidney, retina and neurons. Although clinically evident microvascular complications are rarely seen among children and adolescents with diabetes, there is clear evidence that their pathogenesis and early signs develop during childhood and accelerate during puberty. Diabetic vascular complications are often asymptomatic during their early stages, and once symptoms develop, there is little to be done to cure them. Therefore, screening needs to be started early during adolescence and, in the case of T2D, already at diagnosis. Identification of risk factors and subclinical signs of complications is essential for the early implementation of preventive and therapeutic strategies, which could change the course of vascular complications and improve the prognosis of children, adolescents and young adults with diabetes.

  19. Association of Retinopathy and Retinal Microvascular Abnormalities With Stroke and Cerebrovascular Disease.

    Science.gov (United States)

    Hughes, Alun D; Falaschetti, Emanuela; Witt, Nicholas; Wijetunge, Sumangali; Thom, Simon A McG; Tillin, Therese; Aldington, Steve J; Chaturvedi, Nish

    2016-11-01

    Abnormalities of the retinal circulation may be associated with cerebrovascular disease. We investigated associations between retinal microvascular abnormalities and (1) strokes and subclinical cerebral infarcts and (2) cerebral white matter lesions in a UK-based triethnic population-based cohort. A total of 1185 participants (age, 68.8±6.1 years; 77% men) underwent retinal imaging and cerebral magnetic resonance imaging. Cerebral infarcts and white matter hyperintensities were identified on magnetic resonance imaging, retinopathy was graded, and retinal vessels were measured. Higher retinopathy grade (odds ratio [OR], 1.40 [95% confidence interval (95% CI), 1.16-1.70]), narrower arteriolar diameter (OR, 0.98 [95% CI, 0.97-0.99]), fewer symmetrical arteriolar bifurcations (OR, 0.84 [95% CI, 0.75-0.95]), higher arteriolar optimality deviation (OR, 1.16 [95% CI, 1.00-1.34]), and more tortuous venules (OR, 1.20 [95% CI, 1.09-1.32]) were associated with strokes/infarcts and white matter hyperintensities. Associations with quantitative retinal microvascular measures were independent of retinopathy. Abnormalities of the retinal microvasculature are independently associated with stroke, cerebral infarcts, and white matter lesions. © 2016 American Heart Association, Inc.

  20. Skeletal muscle microvascular and interstitial PO2 from rest to contractions.

    Science.gov (United States)

    Hirai, Daniel M; Craig, Jesse C; Colburn, Trenton D; Eshima, Hiroaki; Kano, Yutaka; Sexton, William L; Musch, Timothy I; Poole, David C

    2018-03-01

    Oxygen pressure gradients across the microvascular walls are essential for oxygen diffusion from blood to tissue cells. At any given flux, the magnitude of these transmural gradients is proportional to the local resistance. The greatest resistance to oxygen transport into skeletal muscle is considered to reside in the short distance between red blood cells and myocytes. Although crucial to oxygen transport, little is known about transmural pressure gradients within skeletal muscle during contractions. We evaluated oxygen pressures within both the skeletal muscle microvascular and interstitial spaces to determine transmural gradients during the rest-contraction transient in anaesthetized rats. The significant transmural gradient observed at rest was sustained during submaximal muscle contractions. Our findings support that the blood-myocyte interface provides substantial resistance to oxygen diffusion at rest and during contractions and suggest that modulations in microvascular haemodynamics and red blood cell distribution constitute primary mechanisms driving increased transmural oxygen flux with contractions. Oxygen pressure (PO2) gradients across the blood-myocyte interface are required for diffusive O 2 transport, thereby supporting oxidative metabolism. The greatest resistance to O 2 flux into skeletal muscle is considered to reside between the erythrocyte surface and adjacent sarcolemma, although this has not been measured during contractions. We tested the hypothesis that O 2 gradients between skeletal muscle microvascular (PO2 mv ) and interstitial (PO2 is ) spaces would be present at rest and maintained or increased during contractions. PO2 mv and PO2 is   were determined via phosphorescence quenching (Oxyphor probes G2 and G4, respectively) in the exposed rat spinotrapezius during the rest-contraction transient (1 Hz, 6 V; n = 8). PO2 mv was higher than PO2 is in all instances from rest (34.9 ± 6.0 versus 15.7 ± 6.4) to contractions (28.4 ± 5

  1. Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence tomography.

    Science.gov (United States)

    Gagnon, Louis; Sakadžić, Sava; Lesage, Fréderic; Mandeville, Emiri T; Fang, Qianqian; Yaseen, Mohammad A; Boas, David A

    2015-01-01

    Computing microvascular cerebral blood flow ([Formula: see text]) in real cortical angiograms is challenging. Here, we investigated whether the use of Doppler optical coherence tomography (DOCT) flow measurements in individual vessel segments can help in reconstructing [Formula: see text] across the entire vasculature of a truncated cortical angiogram. A [Formula: see text] computational framework integrating DOCT measurements is presented. Simulations performed on a synthetic angiogram showed that the addition of DOCT measurements, especially close to large inflowing or outflowing vessels, reduces the impact of pressure boundary conditions and estimated vessel resistances resulting in a more accurate reconstruction of [Formula: see text]. Our technique was then applied to reconstruct microvascular flow distributions in the mouse cortex down to [Formula: see text] by combining two-photon laser scanning microscopy angiography with DOCT.

  2. Occupation, hobbies, and acute leukemia in adults.

    Science.gov (United States)

    Terry, Paul D; Shore, David L; Rauscher, Garth H; Sandler, Dale P

    2005-10-01

    Occupational and industrial exposures have been implicated in the etiology of leukemia, yet uncertainty remains regarding potential high risk occupations. We examined the associations between self-reported occupations and hobbies and acute leukemia risk using data from 811 cases and 637 controls participating in a case-control study in the U.S. and Canada. We found that several occupations may increase the risk of acute leukemia, particularly occupations related to petroleum products, rubber, nuclear energy, munitions, plastics, and electronics manufacturing. Differences were noted according to histological type. Other occupations and hobbies were not clearly associated with risk.

  3. Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations.

    Science.gov (United States)

    De Ciuceis, Carolina; Agabiti Rosei, Claudia; Caletti, Stefano; Trapletti, Valentina; Coschignano, Maria A; Tiberio, Guido A M; Duse, Sarah; Docchio, Franco; Pasinetti, Simone; Zambonardi, Federica; Semeraro, Francesco; Porteri, Enzo; Solaini, Leonardo; Sansoni, Giovanna; Pileri, Paola; Rossini, Claudia; Mittempergher, Francesco; Portolani, Nazario; Ministrini, Silvia; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2018-05-01

    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography. In the current study, we enrolled 41 controls and patients: 12 normotensive lean controls, 12 essential hypertensive lean patients, nine normotensive obese patients and eight hypertensive obese patients undergoing elective surgery. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance artery structure was assessed by wire micromyography and the media-to-lumen ratio was calculated. WLR of retinal arterioles was obtained by SLDF and adaptive optics. Functional (basal) and structural (total) microvascular density was evaluated by capillaroscopy before and after venous congestion. Our data suggest that adaptive optics has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, as WLR measured with adaptive optics is more closely correlated with the M/L of subcutaneous small arteries (r = 0.84, P < 0.001 vs. r = 0.52, P < 0.05, slopes of the relations: P < 0.01 adaptive optics vs. SLDF). In addition, the reproducibility of the evaluation of the WLR with adaptive optics is

  4. Associations between diabetes self-management and microvascular complications in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Fatemeh Mehravar

    2016-01-01

    Full Text Available OBJECTIVES: Diabetes is a major public health problem that is approaching epidemic proportions globally. Diabetes self-management can reduce complications and mortality in type 2 diabetic patients. The purpose of this study was to examine associations between diabetes self-management and microvascular complications in patients with type 2 diabetes. METHODS: In this cross-sectional study, 562 Iranian patients older than 30 years of age with type 2 diabetes who received treatment at the Diabetes Research Center of the Endocrinology and Metabolism Research Institute of the Tehran University of Medical Sciences were identified. The participants were enrolled and completed questionnaires between January and April 2014. Patients’ diabetes self-management was assessed as an independent variable by using the Diabetes Self-Management Questionnaire translated into Persian. The outcomes were the microvascular complications of diabetes (retinopathy, nephropathy, and neuropathy, identified from the clinical records of each patient. A multiple logistic regression model was used to estimate odds ratios (ORs and 95% confidence intervals (CIs between diabetes self-management and the microvascular complications of type 2 diabetes, adjusting for potential confounders. RESULTS: After adjusting for potential confounders, a significant association was found between the diabetes self-management sum scale and neuropathy (adjusted OR, 0.64; 95% CI, 0.45 to 0.92, p=0.01. Additionally, weak evidence was found of an association between the sum scale score of diabetes self-management and nephropathy (adjusted OR, 0.71; 95% CI, 0.47 to 1.05, p=0.09. CONCLUSIONS: Among patients with type 2 diabetes, a lower diabetes self-management score was associated with higher rates of nephropathy and neuropathy.

  5. The number of microvascular complications is associated with an increased risk for severity of periodontitis in type 2 diabetes patients: Results of a multicenter hospital-based cross-sectional study.

    Science.gov (United States)

    Nitta, Hiroshi; Katagiri, Sayaka; Nagasawa, Toshiyuki; Izumi, Yuichi; Ishikawa, Isao; Izumiyama, Hajime; Uchimura, Isao; Kanazawa, Masao; Chiba, Hiroshige; Matsuo, Akira; Utsunomiya, Kazunori; Tanabe, Haruyasu; Takei, Izumi; Asanami, Soichiro; Kajio, Hiroshi; Ono, Toaki; Hayashi, Yoichi; Ueki, Kiichi; Tsuji, Masatomi; Kurachi, Yoichi; Yamanouchi, Toshikazu; Ichinokawa, Yoshimi; Inokuchi, Toshiki; Fukui, Akiko; Miyazaki, Shigeru; Miyauchi, Takashi; Kawahara, Reiko; Ogiuchi, Hideki; Yoshioka, Narihito; Negishi, Jun; Mori, Masatomo; Mogi, Kenji; Saito, Yasushi; Tanzawa, Hideki; Nishikawa, Tetsuo; Takada, Norihiko; Nanjo, Kishio; Morita, Nobuo; Nakamura, Naoto; Kanamura, Narisato; Makino, Hirofumi; Nishimura, Fusanori; Kobayashi, Kunihisa; Higuchi, Yoshinori; Sakata, Toshiie; Yanagisawa, Shigetaka; Tei, Chuwa; Ando, Yuichi; Hanada, Nobuhiro; Inoue, Shuji

    2017-09-01

    To explore the relationships between periodontitis and microvascular complications as well as glycemic control in type 2 diabetes patients. This multicenter, hospital-based, cross-sectional study included 620 patients with type 2 diabetes. We compared the prevalence and severity of periodontitis between patients with ≥1 microvascular complication and those without microvascular complications. We also compared the prevalence and severity of periodontitis among patients with different degrees of glycemic control. After adjusting for confounding factors, multiple logistic regression analysis showed that the severity of periodontitis was significantly associated with the number of microvascular complications (odds ratio 1.3, 95% confidence interval 1.1-1.6), glycated hemoglobin ≥8.0% (64 mmol/mol; odds ratio 1.6; 95% confidence interval 1.1-2.3), and older age (≥50 years; odds ratio 1.7; 95% confidence interval 1.1-2.6). However, the prevalence of periodontitis was not significantly associated with the number of microvascular complications, but was associated with male sex, high glycated hemoglobin (≥8.0% [64 mmol/mol]), older age (≥40 years), longer duration of diabetes (≥15 years) and fewer teeth (≤25). Furthermore, propensity score matching for age, sex, diabetes duration and glycated hemoglobin showed that the incidence of severe periodontitis was significantly higher among patients with microvascular complications than among those without microvascular complications (P periodontitis in patients with type 2 diabetes, whereas poor glycemic control is a risk factor for increased prevalence and severity of periodontitis. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  6. [Successful microvascular decompression of the medulla oblongata for a case with respiratory failure: case report].

    Science.gov (United States)

    Koguchi, Motofumi; Nakahara, Yukiko; Kawashima, Masatou; Takase, Yukinori; Matsushima, Toshio

    2011-11-01

    We report a case of the medulla oblongata syndrome successfully treated by microvascular decompression surgery. The patient was a 75-year-old woman and had been suffering from gradual progressive dyspnea since July, 2009. Two month later, intubation and medial ventilator treatments were began because of severe respiratory problems. The central respiratory problems were considered in extensive testing by the physician. The head MR imaging showed that the left vertebral artery had markedly compressed the medulla oblongata. We thought that her respiratory problems were associated with this vertebral artery compression of the medulla oblongata. We performed the microvascular decompression surgery by left trans-condylar fossa approach. Her hypoventilation graduately improved after the surgery and she needed neither ventilator nor oxygen in several months. She is able to perform daily activities by herself. We report the case, and discuss the cause of respiratory problems especially by compression of the medulla oblongata.

  7. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  8. Pediatric thermal injury: acute care and reconstruction update.

    Science.gov (United States)

    Armour, Alexis D; Billmire, David A

    2009-07-01

    The acute and reconstructive care of each pediatric burn patient presents unique challenges to the plastic surgeon and the burn care team. : The purpose of this review article is to highlight the interdependence between the acute and reconstructive needs of pediatric burn patients as it pertains to each anatomical site. Relevant principles of acute pediatric burn care and burn reconstruction are outlined, based on the authors' experience and review of the literature. The need for late reconstruction in pediatric burn survivors is significantly influenced by the acute surgical and rehabilitative treatments. With their vulnerability to airway swelling, hypothermia, pulmonary edema, and ischemia-reperfusion injury, pediatric patients with large burns require precise, life-saving treatment in the acute phase. Decision-making in pediatric burn reconstruction must take into account the patient's future growth, maturity, and often lack of suitable donor sites. Appropriately selected reconstructive techniques are essential to optimize function, appearance, and quality of life in pediatric burn survivors.

  9. Peripheral Microvascular Responses to Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure Stresses in Humans

    Science.gov (United States)

    Breit, G. A.; Watenpaugh, D. E.; Buckley, T. M.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    The response of the cutaneous microcirculation to orthostatic stress varies along the length of the body due to the interaction of central controls with regional responses to local blood pressure. We hypothesize that artificial orthostatic stresses such as Gz centrifugation and LBNP differ from whole-body tilting in terms of the distribution of microvascular blood flow. Cutaneous microvascular flows were measured by laser Doppler flowmetry at the neck, thigh, and leg of 15 normal subjects. Volunteers underwent stepwise head-up tilt (HUT) and short- and long-arm centrifugation protocols from supine control (0 Gz) to 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2, and 0 Gz at the feet, for 30-s periods with 10-s transitions between levels. The same subjects underwent a corresponding supine LBNP protocol, up to 100 mmHg (in 20 mmHg increments) and back to zero pressure, which produced transmural pressure across blood vessels in the foot approximately equal to the HUT protocol. In general, application of all orthostatic stresses produced significant flow reductions in the lower body (p less than 0.05) and inconsistent changes in the neck. At low levels of each stress (0.4 Gz, 40 mmHg), LBNP generated the greatest relative reduction in flow in the lower body (-66.9+/-5.7%, thigh; -60.6 +/-5.7%, leg, mean +/- SE). HUT caused a less severe flow reduction than LBNP at the thigh and leg (-39.9 +/- 8.1% and -55.9+/-4.8%), while the effects induced by both forms of centrifugation were the least profound. Higher levels of each stress generally resulted in similar responses. These responses exhibit a consistent relationship to hypothesized changes in local microvascular transmural pressure, suggesting that myogenic and veno-arteriolar reflexes play a significant role in determining microvascular perfusion during orthostatic stress.

  10. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function

    International Nuclear Information System (INIS)

    Bakkum, M.J.; Danad, I.; Romijn, M.A.J.; Stuijfzand, W.J.A.; Leonora, R.M.; Rossum, A.C. van; Knaapen, P.; Tulevski, I.I.; Somsen, G.A.; Lammertsma, A.A.; Kuijk, C. van; Raijmakers, P.G.

    2015-01-01

    Epicardial adipose tissue (EAT) has been linked to coronary artery disease (CAD) and coronary microvascular dysfunction. However, its injurious effect may also impact the underlying myocardium. This study aimed to determine the impact of obesity on the quantitative relationship between left ventricular mass (LVM), EAT and coronary microvascular function. A total of 208 (94 men, 45 %) patients evaluated for CAD but free of coronary obstructions underwent quantitative [ 15 O]H 2 O hybrid positron emission tomography (PET)/CT imaging. Coronary microvascular resistance (CMVR) was calculated as the ratio of mean arterial pressure to hyperaemic myocardial blood flow. Obese patients [body mass index (BMI) > 25, n = 133, 64 % of total] had more EAT (125.3 ± 47.6 vs 93.5 ± 42.1 cc, p < 0.001), a higher LVM (130.1 ± 30.4 vs 114.2 ± 29.3 g, p < 0.001) and an increased CMVR (26.6 ± 9.1 vs 22.3 ± 8.6 mmHg x ml -1 x min -1 x g -1 , p < 0.01) as compared to nonobese patients. Male gender (β = 40.7, p < 0.001), BMI (β = 1.61, p < 0.001), smoking (β = 6.29, p = 0.03) and EAT volume (β = 0.10, p < 0.01) were identified as independent predictors of LVM. When grouped according to BMI status, EAT was only independently associated with LVM in nonobese patients. LVM, hypercholesterolaemia and coronary artery calcium score were independent predictors of CMVR. EAT volume is associated with LVM independently of BMI and might therefore be a better predictor of cardiovascular risk than BMI. However, EAT volume was not related to coronary microvascular function after adjustments for LVM and traditional risk factors. (orig.)

  11. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function

    Energy Technology Data Exchange (ETDEWEB)

    Bakkum, M.J.; Danad, I.; Romijn, M.A.J.; Stuijfzand, W.J.A.; Leonora, R.M.; Rossum, A.C. van; Knaapen, P. [VU University Medical Center, Department of Cardiology, Amsterdam (Netherlands); Tulevski, I.I.; Somsen, G.A. [Cardiology Centers of the Netherlands, Amsterdam (Netherlands); Lammertsma, A.A.; Kuijk, C. van; Raijmakers, P.G. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands)

    2015-09-15

    Epicardial adipose tissue (EAT) has been linked to coronary artery disease (CAD) and coronary microvascular dysfunction. However, its injurious effect may also impact the underlying myocardium. This study aimed to determine the impact of obesity on the quantitative relationship between left ventricular mass (LVM), EAT and coronary microvascular function. A total of 208 (94 men, 45 %) patients evaluated for CAD but free of coronary obstructions underwent quantitative [{sup 15}O]H{sub 2}O hybrid positron emission tomography (PET)/CT imaging. Coronary microvascular resistance (CMVR) was calculated as the ratio of mean arterial pressure to hyperaemic myocardial blood flow. Obese patients [body mass index (BMI) > 25, n = 133, 64 % of total] had more EAT (125.3 ± 47.6 vs 93.5 ± 42.1 cc, p < 0.001), a higher LVM (130.1 ± 30.4 vs 114.2 ± 29.3 g, p < 0.001) and an increased CMVR (26.6 ± 9.1 vs 22.3 ± 8.6 mmHg x ml{sup -1} x min{sup -1} x g{sup -1}, p < 0.01) as compared to nonobese patients. Male gender (β = 40.7, p < 0.001), BMI (β = 1.61, p < 0.001), smoking (β = 6.29, p = 0.03) and EAT volume (β = 0.10, p < 0.01) were identified as independent predictors of LVM. When grouped according to BMI status, EAT was only independently associated with LVM in nonobese patients. LVM, hypercholesterolaemia and coronary artery calcium score were independent predictors of CMVR. EAT volume is associated with LVM independently of BMI and might therefore be a better predictor of cardiovascular risk than BMI. However, EAT volume was not related to coronary microvascular function after adjustments for LVM and traditional risk factors. (orig.)

  12. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women

    Science.gov (United States)

    Prasad, Megha; Matteson, Eric L.; Herrmann, Joerg; Gulati, Rajiv; Rihal, Charanjit S.; Lerman, Lilach O.; Lerman, Amir

    2016-01-01

    Uric acid is a risk factor for coronary artery disease (CAD) in postmenopausal women but the association with inflammation and coronary microvascular endothelial dysfunction (CED) is not well-defined. The aim of this study was to determine the relationship of serum uric acid (SUA), inflammatory markers and CED. In this prospective cohort study, serum uric acid, hsCRP levels, and neutrophil count were measured in 229 postmenopausal women who underwent diagnostic catheterization, were found to have no obstructive CAD and underwent coronary microvascular function testing, to measure coronary blood flow (CBF) response to intracoronary acetylcholine. The average age was 58 years (IQR 52, 66) years. Hypertension was present in 48%, type 2 diabetes mellitus in 5.6%, and hyperlipidemia in 61.8%. CED was diagnosed in 59% of postmenopausal women. Mean uric acid level was 4.7 ± 1.3 mg/dL. Postmenopausal women with CED had significantly higher SUA compared to patients without CED (4.9 ± 1.3 vs. 4.4 ± 1.3 mg/dL; p=0.02). There was a significant correlation between SUA and % change in CBF to acetylcholine (p=0.009), and this correlation persisted in multivariable analysis. SUA levels were significantly associated with increased neutrophil count (p=0.02) and hsCRP levels (p=0.006) among patients with CED, but not those without CED. Serum uric acid is associated with coronary microvascular endothelial dysfunction in postmenopausal women and may be related to inflammation. These findings link serum uric acid levels to early coronary atherosclerosis in postmenopausal women. PMID:27993955

  13. Stationary Treatment Compared with Individualized Chinese Medicine for Type 2 Diabetes Patients with Microvascular Complications: Study Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Huo, Jian; Liu, Li-Sha; Jian, Wen-Yuan; Zeng, Jie-Ping; Duan, Jun-Guo; Lu, Xue-Jing; Yin, Shuo

    2018-06-18

    Microvascular complications in type 2 diabetes (T2DM), including diabatic retinopathy (DR), diabetic kidney disease (DKD), diabetic peripheral neuropathy (DPN) are the leading causes of visual loss, end-stage renal disease or amputation, while the current therapies are still unsatisfactory. Chinese medicine (CM) has been widely used for treating diabetic mellitus. However, most of the previous studies focused on the single complication. The role of CM treatment in T2DM patients with 2 or multiple microvascular complications is not clear. To appraise the curative effect of CM in T2DM patients with 2 or multiple microvascular complications, and to compare the effects of stationary treatment and individualized treatment in T2DM patients with microvascular complications. This trial will be an 8-center, randomized, controlled study with 8 parallel groups. A total of 432 patients will be randomized to 8 groups: DR study group (32 cases) and a corresponding control group (32 cases), DR+DKD study group (64 cases) and a corresponding control group (64 cases), DR+DPN study group (64 cases) and a corresponding control group (64 cases), DR+DKD+DPN study group (56 cases) and a corresponding control group (56 cases). The control group will receive stationary treatment, and the study group will receive individualized treatment based on CM syndrome differentiation in addition to stationary treatment. The study duration will be 50 weeks, comprising a 2-week run-in period, 24 weeks of intervention, and 24 weeks of follow-up. The outcomes will assess efficacy of treatment, improvement in CM symptoms, safety assessments, adherence to the treatment, and adverse events. This study will provide evidence of evidence-based medicine for CM treatment in two or multiple microvascular complications caused by T2DM. (Registration No. ChiCTR-IPR-15007072).

  14. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  15. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.P. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Lopes, G.O. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Tibirica, E. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  16. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men

  17. Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities : the Hoorn Study

    NARCIS (Netherlands)

    van Hecke, Manon V.; Dekker, Jacqueline M.; Nijpels, Giel; Teeerlink, Tom; Jakobs, Cornelis; Stolk, Ronald P.; Heine, Rob J.; Bouter, Lex M.; Polak, Bettine C. P.; Stehouwer, Coen D. A.

    The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total

  18. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  19. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia

    Science.gov (United States)

    Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.

    2015-01-01

    During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232

  20. Which side of the balance determines the frequency of vaso-occlusive crises in children with sickle cell anemia: Blood viscosity or microvascular dysfunction?

    Science.gov (United States)

    Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe

    2016-01-01

    Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.

    Science.gov (United States)

    Burke, Caitlin W; Price, Richard J

    2010-12-15

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

  2. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium.

    Science.gov (United States)

    Jackson, C J; Garbett, P K; Nissen, B; Schrieber, L

    1990-06-01

    A major problem encountered when isolating human microvascular endothelium is the presence of contaminating cells such as fibroblasts that rapidly over-grow the endothelial cells. We describe here a simple, rapid technique for purifying endothelial cells derived from the microvasculature of neonatal foreskin and osteoarthritic and rheumatoid arthritic synovium. This technique is based on the selective binding of the lectin Ulex europaeus I (UEA I) to the endothelial cell surface via fucose residues. Initially UEA I was covalently bound to tosyl-activated super-paramagnetic polystyrene beads (Dynabeads) by incubation for 24 h at room temperature. Cells were isolated by extracting microvascular segments from enzyme-treated (trypsin and Pronase) cubes of tissue. The mixed population of cells obtained were purified by incubating them at 4 degrees C for 10 min with the UEA I-coated Dynabeads. Endothelium bound to the beads whilst contaminating cells were removed by five washes with HBSS using a magnetic particle concentrator. The endothelial cells thus obtained grew to confluence as a cobblestone-like monolayer and expressed von Willebrand factor antigen. The cells were released from the Dynabeads by the competitive binding of fucose (10 min at 4 degrees C). This new method is simple and reproducible and allows pure human microvascular endothelial cells to be cultured within 2 h of obtaining a specimen.

  3. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications12

    Science.gov (United States)

    Murillo, Ana Gabriela

    2016-01-01

    Diabetes is a chronic metabolic disease that affects a substantial part of the population around the world. Whether type I or type II, this disease has serious macro- and microvascular complications that constitute the primary cause of death in diabetic patients. Microvascular complications include diabetic retinopathy, nephropathy, and neuropathy. Although these complications are clinically and etiologically diverse, they share a common factor: glucose-induced damage. In the progression of diabetic complications, oxidative stress, inflammation, and the formation of glycation end products play an important role. Previous studies have shown that a healthy diet is vital in preventing these complications; in particular, the intake of antioxidants has been studied for their potential effect in ameliorating hyperglycemic injuries. Carotenoids are lipid-soluble pigments synthesized by plants, bacteria, and some kinds of algae that are responsible for the yellow, red, and orange colors in food. These compounds are part of the antioxidant machinery in plants and have also shown their efficacy in quenching free radicals, scavenging reactive oxygen species, modulating gene expression, and reducing inflammation in vitro and in vivo, showing that they can potentially be used as part of a preventive strategy for metabolic disorders, including diabetes and its related complications. This review highlights the potential protective effects of 4 non-provitamin A carotenoids—lutein, zeaxanthin, lycopene, and astaxanthin—in the development and progression of diabetic microvascular complications. PMID:26773012

  4. Keyhole craniotomy through retrosigmoid approach followed by microvascular decompression for primary trigeminal neuralgia:a report of 23 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2011-03-01

    Full Text Available Objective To explore the surgical technique,effects,and complications of keyhole craniotomy through retrosigmoid approach followed by microvascular decompression for primary trigeminal neuralgia.Methods The craniotomy with a keyhole incision above postauricular hairline followed by microvascular decompression was performed in 23 patients with primary trigeminal neuralgia.Dissection of intracranial part of trigeminal nerve under microscope was done to search for the offending vessels,which were thereby freed and between which and the root entry zone(REZ of trigeminal nerve the Teflon grafts were placed.Effects and complications were observed in follow-up,ranging from 1 month to 2 years.Results Out of 23 patients who were all found compression in REZ of trigeminal nerves by the offending vessels in operation,disappearance of symptoms post-surgery was found in 22 cases,face numbness on the surgical side in 3 cases and no effects in 1 case.Recurrence of pain was not observed in patients who had initially benefited from the surgery at the follow-up.Conclusion The keyhole craniotomy through retrosigmoid approach followed by microvascular decompression is safe and effective for primary trigeminal neuralgia,in which accurate technique during operation plays a vital role in the decrease of complications and the outcome post-surgery.

  5. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    Science.gov (United States)

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  6. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  7. Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow-diving odontocetes.

    Science.gov (United States)

    Gabler, Molly K; Gay, D Mark; Westgate, Andrew J; Koopman, Heather N

    2018-04-01

    Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N 2 ) gas embolism and empirical evidence has shown that the N 2 solubility of these fat bodies is higher than that of blubber. Since N 2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep-diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow-diving Delphinids, which might suggest that there are differences in the N 2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes

  8. Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Karl Heckler

    2017-09-01

    Full Text Available Diabetes mellitus (DM is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today’s medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.

  9. Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study.

    Science.gov (United States)

    Korchounov, Alexei; Ziemann, Ulf

    2011-08-01

    Long-term potentiation (LTP) of synaptic efficacy is considered a fundamental mechanism of learning and memory. At the cellular level a large body of evidence demonstrated that the major neuromodulatory neurotransmitters dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) influence LTP magnitude. Noninvasive brain stimulation protocols provide the opportunity to study LTP-like plasticity at the systems level of human cortex. Here we applied paired associative stimulation (PAS) to induce LTP-like plasticity in the primary motor cortex of eight healthy subjects. In a double-blind, randomized, placebo-controlled, crossover design, the acute effects of a single oral dose of the neuromodulatory drugs cabergoline (DA agonist), haloperidol (DA antagonist), methylphenidate (indirect NE agonist), prazosine (NE antagonist), tacrine (ACh agonist), and biperiden (ACh antagonist) on PAS-induced LTP-like plasticity were examined. The antagonists haloperidol, prazosine, and biperiden depressed significantly the PAS-induced LTP-like plasticity observed under placebo, whereas the agonists cabergoline, methylphenidate, and tacrine had no effect. Findings demonstrate that antagonists in major neuromodulatory neurotransmitter systems suppress LTP-like plasticity at the systems level of human cortex, in accord with evidence of their modulating action of LTP at the cellular level. This provides further supportive evidence for the known detrimental effects of these drugs on LTP-dependent mechanisms such as learning and memory.

  10. Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?

    Science.gov (United States)

    Cutolo, M; Sulli, A; Secchi, M E; Paolino, S; Pizzorni, C

    2006-10-01

    Raynaud's phenomenon (RP) represents the most frequent clinical aspect of cardio/microvascular involvement and is a key feature of several autoimmune rheumatic diseases. Moreover, RP is associated in a statistically significant manner with many coronary diseases. In normal conditions or in primary RP (excluding during the cold-exposure test), the normal nailfold capillaroscopic pattern shows a regular disposition of the capillary loops along with the nailbed. On the contrary, in subjects suffering from secondary RP, one or more alterations of the capillaroscopic findings should alert the physician of the possibility of a connective tissue disease not yet detected. Nailfold capillaroscopy (NV) represents the best method to analyse microvascular abnormalities in autoimmune rheumatic diseases. Architectural disorganization, giant capillaries, haemorrhages, loss of capillaries, angiogenesis and avascular areas characterize >95% of patients with overt scleroderma (SSc). The term 'SSc pattern' includes, all together, these sequential capillaroscopic changes typical to the microvascular involvement in SSc. The capillaroscopic aspects observed in dermatomyositis and in the undifferentiated connective tissue disease are generally reported as 'SSc-like pattern'. Effectively, and early in the disease, the peripheral microangiopathy may be well recognized and studied by nailfold capillaroscopy, or better with nailfold video capillaroscopy (NVC). The early differential diagnosis between primary and secondary RP is the best advantage NVC may offer. In addition, interesting capillaroscopic changes have been observed in systemic lupus erythematosus, anti-phospholipid syndrome and Sjogren's syndrome. Further epidemiological and clinical studies are needed to better standardize the NCV patterns. In future, the evaluation of nailfold capillaroscopy in autoimmune rheumatic diseases might represent a tool for the prediction of microvascular heart involvement by considering the systemic

  11. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  12. Complicações microvasculares e disfunção autonômica cardíaca em pacientes com diabete melito tipo 1 Complicaciones microvasculares y disfunción autonómica cardíaca en pacientes con diabetes mellittus tipo 1 Microvascular complications and cardiac autonomic dysfunction in patients with diabetes mellitus type 1

    Directory of Open Access Journals (Sweden)

    Fernando K Almeida

    2011-06-01

    Full Text Available FUNDAMENTO: A presença de neuropatia autonômica cardíaca (NAC em pacientes com diabete melito (DM está associada a aumento da mortalidade e a complicações crônicas microvasculares do diabete. OBJETIVO: Investigar uma possível associação entre achados sugestivos de NAC durante a realização do teste ergométrico (TE e nefropatia e retinopatia em pacientes com DM tipo 1. MÉTODOS: Realizamos um estudo transversal com 84 pacientes com DM tipo 1. Todos os pacientes foram submetidos à avaliação clínica e laboratorial e realizaram TE, sendo que aqueles que apresentaram achados sugestivos de isquemia miocárdica foram excluídos da análise dos dados (n = 3. A avaliação de complicações microvasculares (retinopatia e nefropatia foi realizada na amostra. RESULTADOS: Os pacientes com nefropatia e aqueles com retinopatia atingiram uma frequência cardíaca (FC durante o pico de exercício (FC máxima menor e apresentaram aumento menor da FC em relação ao repouso (ΔFC pico quando comparados com aqueles sem estas complicações. Esses pacientes também apresentaram menor redução da FC no segundo e 4º minutos após o final do teste (ΔFC recuperação dois e 4 minutos. Após realização de análise multivariada com controle para os possíveis fatores de confusão, os ΔFC recuperação em dois e 4 minutos, FC máxima e o ΔFC pico permaneceram significativamente associados à retinopatia; e os ΔFC recuperação no segundo e 4º minutos permaneceram associados à presença de nefropatia. CONCLUSÃO: O TE pode ser considerado um instrumento adicional para a detecção precoce de NAC e para identificar pacientes em maior risco para complicações microvasculares do diabete.BACKGROUND: LA presencia de neuropatía autonómica cardíaca (NAC en pacientes con diabetes mellittus (DM está asociada a aumento de la mortalidad y a complicaciones crónicas microvasculares de diabetes. OBJECTIVE: Investigar una posible asociación entre

  13. Acute macular neuroretinopathy associated with systemic lupus erythematosus.

    Science.gov (United States)

    Lee, D H; Lee, S C; Kim, M

    2016-04-01

    Acute macular neuroretinopathy (AMN) is a rare disorder that presents with abrupt visual change with wedge-shaped or flower-like lesions pointing towards the fovea. Ischemic insults to the retinal capillary plexus may be important for development of this disease. While many case reports have been published on AMN, none have described AMN in association with systemic lupus erythematosus (SLE). Here, we report a case of AMN associated with newly-diagnosed SLE. We speculate that in patients with lupus flares, immune complex-mediated vascular injury and microvascular thrombosis may disrupt the deep retinal capillary network, causing ischemic damages to the outer retina and leading to the development of AMN. AMN can develop in patients with lupus flares, and must be considered as an SLE-associated ophthalmologic complication. To the best of our knowledge, this is the first case report of AMN associated with SLE. © The Author(s) 2015.

  14. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2018-05-01

    Full Text Available The reactive oxygen species (ROS are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD and subsequent cerebral blood flow recovery (CBFR. In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed; Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2′-7′-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

  15. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  16. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  17. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study.

    Science.gov (United States)

    2015-11-01

    Effective prevention is needed to combat the worldwide epidemic of type 2 diabetes. We investigated the long-term extent of beneficial effects of lifestyle intervention and metformin on diabetes prevention, originally shown during the 3-year Diabetes Prevention Program (DPP), and assessed whether these interventions reduced diabetes-associated microvascular complications. The DPP (1996-2001) was a randomised trial comparing an intensive lifestyle intervention or masked metformin with placebo in a cohort selected to be at very high risk of developing diabetes. All participants were offered lifestyle training at the end of the DPP. 2776 (88%) of the surviving DPP cohort were followed up in the DPP Outcomes Study (DPPOS, Sept 1, 2002, to Jan 2, 2014) and analysed by intention to treat on the basis of their original DPP assignment. During DPPOS, the original lifestyle intervention group was offered lifestyle reinforcement semi-annually and the metformin group received unmasked metformin. The primary outcomes were the development of diabetes and the prevalence of microvascular disease. For the assessment of microvascular disease, we used an aggregate microvascular outcome, composed of nephropathy, retinopathy, and neuropathy. During a mean follow-up of 15 years, diabetes incidence was reduced by 27% in the lifestyle intervention group (hazard ratio 0·73, 95% CI 0·65-0·83; pdiabetes were 55% in the lifestyle group, 56% in the metformin group, and 62% in the placebo group. The prevalences at the end of the study of the aggregate microvascular outcome were not significantly different between the treatment groups in the total cohort (placebo 12·4%, 95% CI 11·1-13·8; metformin 13·0%, 11·7-14·5; lifestyle intervention 11·3%, 10·1-12·7). However, in women (n=1887) the lifestyle intervention was associated with a lower prevalence (8·7%, 95% CI 7·4-10·2) than in the placebo (11·0%, 9·6-12·6) and metformin (11·2%, 9·7-12·9) groups, with reductions in the

  18. Use of Contrast-Enhanced Ultrasound to Study Relationship between Serum Uric Acid and Renal Microvascular Perfusion in Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    Full Text Available Purpose. To investigate the relationship between uric acid and renal microvascular perfusion in diabetic kidney disease (DKD using contrast-enhanced ultrasound (CEUS method. Materials and Methods. 79 DKD patients and 26 healthy volunteers were enrolled. Renal function and urine protein markers were tested. DKD patients were subdivided into two groups including a normal serum uric acid (SUA group and a high SUA group. Contrast-enhanced ultrasound (CEUS was performed, and low acoustic power contrast-specific imaging was used for quantitative analysis. Results. Normal controls (NCs had the highest levels of AUC, AUC1, and AUC2. Compared to the normal SUA DKD group, high SUA DKD patients had significantly higher IMAX, AUC, and AUC1 (P<0.05. DKD patients with low urinary uric acid (UUA excretion had significantly higher AUC2 compared to DKD patients with normal UUA (P<0.05. Conclusion. Hyperuricemia in DKD patients was associated with a renal ultrasound image suggestive of microvascular hyperperfusion. The CEUS parameter AUC1 holds promise as an indicator for renal microvascular hyperperfusion, while AUC2 might be a useful indicator of declining glomerular filtration rate in DKD patients with decreased excretion of uric acid.

  19. Acute nonlymphocytic leukemia in a glue sniffer.

    Science.gov (United States)

    Caligiuri, M A; Early, A P; Marinello, M J; Preisler, H D

    1985-09-01

    A 17-year-old white male with a past history of chronic inhalational abuse of plastic glue was referred to our institution for sore throat, cervical adenopathy, and an abnormal peripheral blood smear. A diagnosis of acute myelomonocytic leukemia was made and abnormalities in cytogenetic studies were demonstrated. Specific inquiry regarding this form of drug exposure should be pursued when searching for possible etiologies of malignant disease.

  20. Evaluation of applicability and efficacy of the reconstructive microvascular surgery of advanced cancer of the lower face with mandible infiltration

    International Nuclear Information System (INIS)

    Maciejewski, A.

    2008-01-01

    The aim of this study is to evaluate applicability and efficacy of reconstructive and microvascular surgery for patients with locally advanced cancer of the lower face with mandible infiltration, regarding to various technique of mandible and tongue reconstruction using flaps and to own modifications. Complex quality of life including functional, aesthetic, social and effect has also been evaluated. For patients with advanced cancer of the region infiltrating mandible reconstructive and microvascular surgery as a sole modality or combined with postoperative radiotherapy, is effective method of radical treatment, providing 80% of chance of 3-year disease-free survival and reduces the risk of recurrence by 60%. (author)

  1. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia

    NARCIS (Netherlands)

    Johannes, Tanja; Mik, Egbert G.; Nohé, Boris; Raat, Nicolaas J. H.; Unertl, Klaus E.; Ince, Can

    2006-01-01

    INTRODUCTION: Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (microPO2) and oxygen consumption

  2. PATENCY AND HEALING OF MICROVASCULAR PROSTHESES - A REVIEW OF 10 YEARS OF EXPERIMENTAL WORK IN GRONINGEN

    NARCIS (Netherlands)

    VANDERLEI, B; ROBINSON, PH

    1993-01-01

    From 1982 onwards, in Groningen, The Netherlands, we have worked on the experimental evaluation and development of microvascular prostheses in rats and rabbits. In this review article a systematic overview of this experimental work is presented and the results are discussed with regard to the

  3. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  4. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  5. Alcohol consumption and risk of microvascular complications in type 1 diabetes patients; the EURODIAB Prospective Complications study

    NARCIS (Netherlands)

    Beulens, J.W.J.; Kruidhof, J.S.; Grobbee, D.E.; Chaturvedi, N.; Fuller, J.H.; Soedamah-Muthu, S.S.

    2008-01-01

    AIMS/HYPOTHESIS: The aim of this study was to investigate the association between alcohol consumption and risk of microvascular complications (retinopathy, neuropathy, nephropathy) in type 1 diabetes mellitus patients in the EURODIAB Prospective Complications Study. METHODS: The EURODIAB Prospective

  6. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  7. [Low-dose aspirin in patients with diabete melitus: risks and benefits regarding macro and microvascular complications].

    Science.gov (United States)

    Camargo, Eduardo G; Gross, Jorge Luiz; Weinert, Letícia S; Lavinsky, Joel; Silveiro, Sandra P

    2007-04-01

    Aspirin is recommended as cardiovascular disease prevention in patients with diabetes mellitus. Due to the increased risk of bleeding and because of the hypothesis that there could be a worsening of microvascular complications related to aspirin, there has been observed an important underutilization of the drug. However, it is now known that aspirin is not associated with a deleterious effect on diabetic retinopathy and there is evidence indicating that it also does not affect renal function with usual doses (150 mg/d). On the other hand, higher doses may prove necessary, since recent data suggest that diabetic patients present the so called "aspirin resistance". The mechanisms of this resistance are not yet fully understood, being probably related to an abnormal intrinsic platelet activity. The employment of alternative antiplatelet strategies or the administration of higher aspirin doses (150-300 mg/d) should be better evaluated regarding effective cardiovascular disease prevention in diabetes as well as the possible effects on microvascular complications.

  8. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  9. The reliability of a single protocol to determine endothelial, microvascular and autonomic functions in adolescents.

    Science.gov (United States)

    Bond, Bert; Williams, Craig A; Barker, Alan R

    2017-11-01

    Impairments in macrovascular, microvascular and autonomic function are present in asymptomatic youths with clustered cardiovascular disease risk factors. This study determines the within-day reliability and between-day reliability of a single protocol to non-invasively assess these outcomes in adolescents. Forty 12- to 15-year-old adolescents (20 boys) visited the laboratory in a fasted state on two occasions, approximately 1 week apart. One hour after a standardized cereal breakfast, macrovascular function was determined via flow-mediated dilation (FMD). Heart rate variability (root mean square of successive R-R intervals; RMSSD) was determined from the ECG-gated ultrasound images acquired during the FMD protocol prior to cuff occlusion. Microvascular function was simultaneously quantified as the peak (PRH) and total (TRH) hyperaemic response to occlusion in the cutaneous circulation of the forearm via laser Doppler imaging. To address within-day reliability, a subset of twenty adolescents (10 boys) repeated these measures 90 min afterwards on one occasion. The within-day typical error and between-day typical error expressed as a coefficient of variation of these outcomes are as follows: ratio-scaled FMD, 5·1% and 10·6%; allometrically scaled FMD, 4·4% and 9·4%; PRH, 11% and 13·3%; TRH, 29·9% and 23·1%; and RMSSD, 17·6% and 17·6%. The within- and between-day test-retest correlation coefficients for these outcomes were all significant (r > 0·54 for all). Macrovascular, microvascular and autonomic functions can be simultaneously and non-invasively determined in adolescents using a single protocol with an appropriate degree of reproducibility. Determining these outcomes may provide greater understanding of the progression of cardiovascular disease and aid early intervention. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    Science.gov (United States)

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  11. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    Science.gov (United States)

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  12. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    Science.gov (United States)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  13. Expansion of microvascular networks in vivo by phthalimide neovascular factor 1 (PNF1).

    Science.gov (United States)

    Wieghaus, Kristen A; Nickerson, Meghan M; Petrie Aronin, Caren E; Sefcik, Lauren S; Price, Richard J; Paige, Mikell A; Brown, Milton L; Botchwey, Edward A

    2008-12-01

    Phthalimide neovascular factor (PNF1, formerly SC-3-149) is a potent stimulator of proangiogenic signaling pathways in endothelial cells. In this study, we evaluated the in vivo effects of sustained PNF1 release to promote ingrowth and expansion of microvascular networks surrounding biomaterial implants. The dorsal skinfold window chamber was used to evaluate the structural remodeling response of the local microvasculature. PNF1 was released from poly(lactic-co-glycolic acid) (PLAGA) films, and a transport model was utilized to predict PNF1 penetration into the surrounding tissue. PNF1 significantly expanded microvascular networks within a 2mm radius from implants after 3 and 7 days by increasing microvessel length density and lumenal diameter of local arterioles and venules. Staining of histological sections with CD11b showed enhanced recruitment of circulating white blood cells, including monocytes, which are critical for the process of vessel enlargement through arteriogenesis. As PNF1 has been shown to modulate MT1-MMP, a facilitator of CCL2 dependent leukocyte transmigration, aspects of window chamber experiments were repeated in CCR2(-/-) (CCL2 receptor) mouse chimeras to more fully explore the critical nature of monocyte recruitment on the therapeutic benefits of PNF1 function in vivo.

  14. Novel effects of edaravone on human brain microvascular endothelial cells revealed by a proteomic approach.

    Science.gov (United States)

    Onodera, Hidetaka; Arito, Mitsumi; Sato, Toshiyuki; Ito, Hidemichi; Hashimoto, Takuo; Tanaka, Yuichiro; Kurokawa, Manae S; Okamoto, Kazuki; Suematsu, Naoya; Kato, Tomohiro

    2013-10-09

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a free radical scavenger used for acute ischemic stroke. However, it is not known whether edaravone works only as a free radical scavenger or possess other pharmacological actions. Therefore, we elucidated the effects of edaravone on human brain microvascular endothelial cells (HBMECs) by 2 dimensional fluorescence difference gel electrophoresis (2D-DIGE). We found 38 protein spots the intensity of which was significantly altered 1.3 fold on average (pedaravone treatment and successfully identified 17 proteins of those. Four of those 17 proteins were cytoskeleton proteins or cytoskeleton-regulating proteins. Therefore, we subsequently investigated the change of size and shape of the cells, the actin network, and the tight junction of HBMEC by immunocytochemistry. As a result, most edaravone-treated HBMECs became larger and rounder compared with those that were not treated. Furthermore, edaravone-treated HBMECs formed gathering zona occludens (ZO)-1, a tight junction protein, along the junction of the cells. In addition, we found that edaravone suppressed interleukin (IL)-1β-induced secretion of monocyte chemoattractant protein-1 (MCP-1), which was reported to increase cell permeability. We found a novel function of edaravone is the promotion of tight junction formations of vascular endothelial cells partly via the down-regulation of MCP-1 secretion. These data provide fundamental and useful information in the clinical use of edaravone in patients with cerebral vascular diseases. © 2013 Elsevier B.V. All rights reserved.

  15. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method

    Science.gov (United States)

    Yang, Runze; Dunn, Jeff F.

    2015-11-01

    Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (StO2). In this study, we aimed to determine if reduced StO2 can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control StO2 was 63.5 ± 3% (mean ± SD). In MS patients, 42% of StO2 values were more than 2 × SD lower than the control mean. There was a significant relationship between StO2 and clinical disability. A reduced microvascular StO2 is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced StO2 in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions.

  16. Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro

    Directory of Open Access Journals (Sweden)

    Wang XX

    2016-09-01

    Full Text Available Xin-Xing Wang,1,2,* Ying-Ying Zha,3,* Bo Yang,1 Lin Chen,1,2 Ming Wang1,2 1CAS Key Laboratory of Brain Function and Diseases, 2Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, People’s Republic of China *These authors contributed equally to this work Abstract: Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 µM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol. Keywords: fullerenol, hippocampal slice, nitric oxide synthase, synaptic plasticity, oxidative stress

  17. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  18. Modeling the drift of plastics in the Adriatic Basin

    Science.gov (United States)

    Liubartseva, Svitlana; Coppini, Giovanni; Lecci, Rita; Creti, Sergio

    2016-04-01

    Recently, plastic pollution at sea has become widely recognized as an acute environmental problem. Distribution of plastics in the marine environment is controlled by (1) locations and time-varying intensity of inputs; (2) the dynamics of the upper mixed layer of the ocean, where the majority of plastics float; and (3) the sinks of plastics. In the present work, we calculate the plastic concentrations at the sea surface and fluxes onto the coastline (2009-2015) that originated from terrestrial and maritime inputs. We construct a Markov chain model based on coupling the MEDSLIK-II model (De Dominicis et al., 2013) with the daily Adriatic Forecasting System (AFS) ocean currents simulations (1/45° horizontal resolution) (Guarneri et al., 2010) and ECMWF surface wind analyses (0.25° horizontal and 6-h temporal resolutions). We assume that the coastline is the main sink of plastics in the Adriatic Sea (Liubartseva et al., 2015). Our calculations have shown that the mean particle half-life in the basin approximately equals 43.7 days, which allows us to define the Adriatic Sea as a highly dissipative system with respect to floating plastics. On long-term time-mean scales, the most polluted sea surface area (more than 10 g/km2 floating plastics) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. That corresponds to the spatial distributions of plastic inputs, and indicates a tight connection with patterns of the general Adriatic circulation, including the Western Adriatic Coastal Current and the South Adriatic gyre. On seasonal time-mean scales, we indicate the winter plastics' expansion into the basin's interior, spring trapping in the northern Adriatic, summer cleansing the middle and southern Adriatic and autumn spreading into the southeastern Adriatic. Distinctive coastal "hot spot" is found on the Po Delta coastline that receives a plastic flux of 70 kg/(kmṡday). Complex source-receptor relationships

  19. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  20. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Science.gov (United States)

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  1. Cardiovascular Magnetic Resonance T2-STIR Imaging is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2015-01-01

    Recent studies have used cardiovascular magnetic resonance (CMR) and T2-weighted short tau inversion recovery (T2-STIR) imaging to detect intramyocardial haemorrhage (IMH) as a measure of ischemic/reperfusion injury. We investigated the ability of T2-STIR to differentiate between microvascular...

  2. Determination of regional flow by use of intravascular PET tracers: microvascular theory and experimental validation for pig livers

    DEFF Research Database (Denmark)

    Munk, O L; Bass, L; Feng, H

    2003-01-01

    Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more...... physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared...... with the standard model in a pig liver study. METHODS: Eight pigs underwent a 5-min dynamic PET study after (15)O-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual...

  3. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  4. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  5. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  6. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    Science.gov (United States)

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  7. Studies of pathological dynamics after microvascular injury using nonlinear optical methods

    Science.gov (United States)

    Rosidi, Nathanael L.

    Microvascular lesions are a common feature in the aging brain and clinical evidence has correlated microvascular pathology with the development of neurodegenerative diseases such as Alzheimer's disease and dementia. Traditional animal models that replicate hemorrhagic and ischemic lesions in the brain typically affect large regions in the cortex and do not reproduce the small-scale lesions linked to neurodegeneration that likely stem from injuries to single microvessels. Due in part to this lack of small-scale injury animal models, there remains an incomplete understanding of the cellular and pathophysiological dynamics following small-scale vascular lesions, making progress on therapeutic strategies difficult. We used tightly focused femtosecond laser pulses to injure single penetrating arterioles (PA) (i.e., arterioles that plunge into the brain) in the cortex of live anesthetized rodents and used two-photon excited fluorescence (2PEF) imaging to quantify blood flow changes and to determine the time course of pathological consequences in the brain after injury. We find that after ischemic occlusion of a PA, nearby pial and penetrating arterioles do not actively compensate for the reduction of blood flow observed near the occluded blood vessel. We find that capillaries connected downstream to the clotted vessel dilate but other capillaries in the vicinity do not, suggesting that any compensatory signal that results in a physiological response travels vascularly. We ruptured individual PAs to induce microhemorrhages that resulted in extravasation of blood into the parenchyma. We find that tissue compression due to the hematoma does not collapse capillaries and cause acute ischemia. 2PEF imaging of mice expressing yellow fluorescent protein (YFP) in a subset of cortical neurons revealed no dendrite degeneration out to seven days after microhemorrhage. However, we did observe an inflammatory response by microglia/macrophages as quickly as 1.5-hrs after

  8. Impact of Bio-Based Plastics on Current Recycling of Plastics

    Directory of Open Access Journals (Sweden)

    Luc Alaerts

    2018-05-01

    Full Text Available Bio-based plastics are increasingly appearing in a range of consumption products, and after use they often end up in technical recycling chains. Bio-based plastics are different from fossil-based ones and could disturb the current recycling of plastics and hence inhibit the closure of plastic cycles, which is undesirable given the current focus on a transition towards a circular economy. In this paper, this risk has been assessed via three elaborated case studies using data and information retrieved through an extended literature search. No overall risks were revealed for bio-based plastics as a group; rather, every bio-based plastic is to be considered as a potential separate source of contamination in current recycling practices. For PLA (polylactic acid, a severe incompatibility with PET (polyethylene terephthalate recycling is known; hence, future risks are assessed by measuring amounts of PLA ending up in PET waste streams. For PHA (polyhydroxy alkanoate there is no risk currently, but it will be crucial to monitor future application development. For PEF (polyethylene furanoate, a particular approach for contamination-related issues has been included in the upcoming market introduction. With respect to developing policy, it is important that any introduction of novel plastics is well guided from a system perspective and with a particular eye on incompatibilities with current and upcoming practices in the recycling of plastics.

  9. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  10. The DD genotype of the angiotensin converting enzyme gene independently associates with CMR-derived abnormal microvascular perfusion in patients with a first anterior ST-segment elevation myocardial infarction treated with thrombolytic agents.

    Science.gov (United States)

    Bodi, Vicente; Sanchis, Juan; Nunez, Julio; Aliño, Salvador F; Herrero, Maria J; Chorro, Francisco J; Mainar, Luis; Lopez-Lereu, Maria P; Monmeneu, Jose V; Oltra, Ricardo; Chaustre, Fabian; Forteza, Maria J; Husser, Oliver; Riegger, Günter A; Llacer, Angel

    2009-12-01

    The role of the angiotensin converting enzyme (ACE) gene on the result of thrombolysis at the microvascular level has not been addressed so far. We analyzed the implications of the insertion/deletion (I/D) polymorphism of the ACE gene on the presence of abnormal cardiovascular magnetic resonance (CMR)-derived microvascular perfusion after ST-segment elevation myocardial infarction (STEMI). We studied 105 patients with a first anterior STEMI treated with thrombolytic agents and an open left anterior descending artery. Microvascular perfusion was assessed using first-pass perfusion CMR at 7+/-1 days. CMR studies were repeated 184+/-11 days after STEMI. The ACE gene insertion/deletion (I/D) polymorphism was determined using polymerase chain reaction amplification. Overall genotype frequencies were II-ID 58% and DD 42%. Abnormal perfusion (> or = 1 segment) was detected in 56% of patients. The DD genotype associated to a higher risk of abnormal microvascular perfusion (68% vs. 47%, p=0.03) and to a larger extent of perfusion deficit (median [percentile 25 - percentile 75]: 4 [0-6] vs. 0 [0-4] segments, p=0.003). Once adjusted for baseline characteristics, the DD genotype independently increased the risk of abnormal microvascular perfusion (odds ratio [95% confidence intervals]: 2.5 [1.02-5.9], p=0.04). Moreover, DD patients displayed a larger infarct size (35+/-17 vs. 27+/-15 g, p=0.01) and a lower ejection fraction at 6 months (48+/-14 vs. 54+/-14%, p=0.03). The DD genotype associates to a higher risk of abnormal microvascular perfusion after STEMI.

  11. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    Science.gov (United States)

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  12. Immediate pain relief by microvascular decompression for idiopathic trigeminal neuralagia

    International Nuclear Information System (INIS)

    Haq, N.U.; Ali, M.; Khan, H.M.; Ishaq, M.; Khattak, M.I.

    2016-01-01

    Background: Trigeminal neuralgia is a common entity which is managed by neurosurgeons in day to day practice. Up-till now many treatment options have been adopted for it but micro-vascular decompression is much impressive in terms of pain control and recurrence rate in all of them. The objective of study was known the efficacy of micro vascular decompression for idiopathic trigeminal neuralgia by using muscle patch in terms of immediate pain relief. Methods: This descriptive study was carried out in Neurosurgery Department lady reading hospital, Peshawar from January 2010 to December 2012. All patients who underwent micro vascular decompression for idiopathic trigeminal neuralgia were included in the study. Patients were assessed 72 hours after the surgery by borrow neurological institute pain scale (BNIP scale) for pain relief and findings were documented on predesigned proforma. Data was analysed by SPSS-17. Results: Total 52 patients were included in this study. Among these 32 (61.53 percentage) were female and 20 (38.46 percentage) were males having age from 22-76 years (mean 49 years). Right side was involved in 36 (69.23 percentage) and left side in 16 (30.76 percentage) patients. Duration of symptoms ranged from 6 months to 16 years (mean 8 years). History of dental extraction and peripheral neurectomy was present in 20 (38 percentage) and 3(5.76 percentage) patients while V3 was most commonly involved branch with 28(57.69 percentage) frequency and combined V2,V3 involvement was 1 (11.53 percentage). Superior cerebellar artery was most common offending vessel in 46(88.46 percentage) while arachnoid adhesions were in 2(3.84 percentage) patients. We assessed patient immediate postoperatively using BNIP pain scale. Conclusion: Micro-vascular decompression is most effective mode of treatment for trigeminal neuralgia in terms of immediate pain relief. (author)

  13. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  14. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment. PMID:17875991

  15. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  16. Cross-sectional analysis of adult diabetes type 1 and type 2 patients with diabetic microvascular complications from a German retrospective observational study.

    Science.gov (United States)

    Happich, M; Breitscheidel, L; Meisinger, C; Ulbig, M; Falkenstein, P; Benter, U; Watkins, J

    2007-06-01

    To obtain epidemiological data on the prevalence of predefined stages of diabetic microvascular complications from a representative cross-section of patients with existing microvascular complications of type 1 or type 2 diabetes in Germany. A cross-sectional, retrospective study of medical records of 705 type 1 and 1910 type 2 adult diabetic patients with a diagnosis of retinopathy and/or peripheral neuropathy and/or nephropathy before 2002 and treated in 2002 in Germany. Of 376 patients with type 1 diabetes having retinopathy, 59.3% had mild or moderate non-proliferative retinopathy without macular oedema, 27.1% had macular oedema, and 13.6% had severe retinopathy without macular oedema. In 862 patients with type 2 diabetes, the distribution of retinopathy/maculopathy classes was 56.8%, 35.5%, and 7.7%, respectively. Of 381 type 1 diabetes patients with observed peripheral neuropathy, 81.4% had sensorimotor neuropathy, 8.9% had diabetic foot conditions, and 9.7% had lower extremity amputations because of diabetes. In 1005 patients with type 2 diabetes, the distribution of neuropathy classes was 78.2%, 12.1%, and 9.7%, respectively. The proportions of patients with renal insufficiency in type 1 and type 2 diabetes groups were 15.3% versus 13.5%, respectively. The study suggests that there are considerable proportions of patients with progressive stages of microvascular complications related to type 1 and type 2 diabetes in Germany. This underlines the importance of improvement of optimal quality of care and frequent screening for preventing late diabetic microvascular complications and the necessity of effective intervention strategies to tackle this major public health problem.

  17. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Palomo, Marta; Diaz-Ricart, Maribel; Rovira, Montserrat; Escolar, Ginés; Carreras, Enric

    2011-04-01

    Endothelial activation and damage occur in association with autologous hematopoietic stem cell transplantation (HSCT). Several of the early complications associated with HSCT seem to have a microvascular location. Through the present study, we have characterized the activation and damage of endothelial cells of both macro (HUVEC) and microvascular (HMEC) origin, occurring early after autologous HSCT, and the potential protective effect of defibrotide (DF). Sera samples from patients were collected before conditioning (Pre), at the time of transplantation (day 0), and at days 7, 14, and 21 after autologous HSCT. Changes in the expression of endothelial cell receptors at the surface, presence and reactivity of extracellular adhesive proteins, and the signaling pathways involved were analyzed. The expression of ICAM-1 at the cell surface increased progressively in both HUVEC and HMEC. However, a more prothrombotic profile was denoted for HMEC, in particular at the time of transplantation (day 0), reflecting the deleterious effect of the conditioning treatment on the endothelium, especially at a microvascular location. Interestingly, this observation correlated with a higher increase in the expression of both tissue factor and von Willebrand factor on the extracellular matrix, together with activation of intracellular p38 MAPK and Akt. Previous exposure and continuous incubation of cells with DF prevented the signs of activation and damage induced by the autologous sera. These observations corroborate that conditioning treatment in autologous HSCT induces a proinflammatory and a prothrombotic phenotype, especially at a microvascular location, and indicate that DF has protective antiinflammatory and antithrombotic effects in this setting. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. In vitro analysis of human periodontal microvascular endothelial cells.

    Science.gov (United States)

    Tsubokawa, Mizuki; Sato, Soh

    2014-08-01

    Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites

  19. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  20. Deleterious Effects of Intra-arterial Administration of Particulate Steroids on Microvascular Perfusion in a Mouse Model.

    Science.gov (United States)

    Laemmel, Elisabeth; Segal, Nicolas; Mirshahi, Massoud; Azzazene, Dalel; Le Marchand, Sylvie; Wybier, Marc; Vicaut, Eric; Laredo, Jean-Denis

    2016-06-01

    Purpose To determine the in vivo effects of several particulate steroids on microvascular perfusion by using intravital microscopy in a mice model and to investigate the in vitro interactions between these particulate steroids and red blood cells (RBCs). Materials and Methods The study was conducted in agreement with the guidelines of the National Committee of Ethic Reflection on Animal Experimentation. By using intravital microscopy of mouse cremaster muscle, the in vivo effects of several particulate steroids on microvascular perfusion were assessed. Four to five mice were allocated to each of the following treatment groups: saline solution, dexamethasone sodium phosphate, a nonparticulate steroid, and the particulate steroids cortivazol, methylprednisolone, triamcinolone, and prednisolone. By using in vitro blood microcinematography and electron microscopy, the interactions between these steroids and human RBCs were studied. All results were analyzed by using nonparametric tests. Results With prednisolone, methylprednisolone, or triamcinolone, blood flow was rapidly and completely stopped in all the arterioles and venules (median RBC velocity in first-order arterioles, 5 minutes after administration was zero for these three groups) compared with a limited effect in mice treated with saline, dexamethasone, and cortivazol (20.3, 21.3, and 27.5 mm/sec, respectively; P effect was associated with a large decrease in the functional capillary density (4.21, 0, and 0 capillaries per millimeter for methylprednisolone, triamcinolone, or prednisolone, respectively, vs 21.0, 21.4, and 19.1 capillaries per millimeter in mice treated with saline, dexamethasone, and cortivazol, respectively; P steroids. Conclusion Several particulate steroids have an immediate and massive effect on microvascular perfusion because of formation of RBC aggregates associated with the transformation of RBCs into spiculated RBCs. (©) RSNA, 2016 Online supplemental material is available for this

  1. Autologous Latissimus Dorsi Breast Reconstruction Flap Salvage: Microvascular Anastomosis with Serratus Branch

    Directory of Open Access Journals (Sweden)

    Victoria Kuta, BScH

    2017-07-01

    Full Text Available Summary:. Autologous breast reconstruction has become a standard option during the recovery of breast cancer survivors. Although pedicle damage is a rare complication of this procedure, extensive torsion or tension can lead to partial or total flap failure. We report a case of partial flap salvage after accidental transection of the pedicled blood supply within the intramuscular course of a latissimus dorsi musculocutaneous flap. This salvage technique involved microvascular anastomosis between the remaining vasculature of the latissimus dorsi pedicle and the serratus branch of the thoracodorsal artery and vein.

  2. The Prevalence of Cosmetic Facial Plastic Procedures among Facial Plastic Surgeons.

    Science.gov (United States)

    Moayer, Roxana; Sand, Jordan P; Han, Albert; Nabili, Vishad; Keller, Gregory S

    2018-04-01

    This is the first study to report on the prevalence of cosmetic facial plastic surgery use among facial plastic surgeons. The aim of this study is to determine the frequency with which facial plastic surgeons have cosmetic procedures themselves. A secondary aim is to determine whether trends in usage of cosmetic facial procedures among facial plastic surgeons are similar to that of nonsurgeons. The study design was an anonymous, five-question, Internet survey distributed via email set in a single academic institution. Board-certified members of the American Academy of Facial Plastic and Reconstructive Surgery (AAFPRS) were included in this study. Self-reported history of cosmetic facial plastic surgery or minimally invasive procedures were recorded. The survey also queried participants for demographic data. A total of 216 members of the AAFPRS responded to the questionnaire. Ninety percent of respondents were male ( n  = 192) and 10.3% were female ( n  = 22). Thirty-three percent of respondents were aged 31 to 40 years ( n  = 70), 25% were aged 41 to 50 years ( n  = 53), 21.4% were aged 51 to 60 years ( n  = 46), and 20.5% were older than 60 years ( n  = 44). Thirty-six percent of respondents had a surgical cosmetic facial procedure and 75% has at least one minimally invasive cosmetic facial procedure. Facial plastic surgeons are frequent users of cosmetic facial plastic surgery. This finding may be due to access, knowledge base, values, or attitudes. By better understanding surgeon attitudes toward facial plastic surgery, we can improve communication with patients and delivery of care. This study is a first step in understanding use of facial plastic procedures among facial plastic surgeons. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. No difference in acute effects of supplemental v. dietary calcium on blood pressure and microvascular function in obese women challenged with a high-fat meal: a cross-over randomised study.

    Science.gov (United States)

    Ferreira, Thaís da Silva; Leal, Priscila Mansur; Antunes, Vanessa Parada; Sanjuliani, Antonio Felipe; Klein, Márcia Regina Simas Torres

    2016-11-01

    Recent studies suggest that supplemental Ca (SC) increases the risk of cardiovascular events, whereas dietary Ca (DC) decreases the risk of cardiovascular events. Although frequently consumed with meals, it remains unclear whether Ca can mitigate or aggravate the deleterious effects of a high-fat meal on cardiovascular risk factors. This study aimed to evaluate the effects of SC or DC on blood pressure (BP) and microvascular function (MVF) in the postprandial period in obese women challenged with a high-fat meal. In this cross-over controlled trial, sixteen obese women aged 20-50 years were randomly assigned to receive three test meals (2908 kJ (695 kcal); 48 % fat): high DC (HDCM; 547 mg DC), high SC (HSCM; 500 mg SC-calcium carbonate) and low Ca (LCM; 42 mg DC). BP was continuously evaluated from 15 min before to 120 min after meals by digital photoplethysmography. Before and 120 min after meals, participants underwent evaluation of serum Ca and microvascular flow after postocclusive reactive hyperaemia (PORH) by laser speckle contrast imaging. Ionised serum Ca rose significantly only after HSCM. Systolic BP increased after the three meals, whereas diastolic BP increased after LCM and HDCM. Hyperaemia peak, hyperaemia amplitude and AUC evaluated after PORH decreased with LCM. After HDCM, there was a reduction in hyperaemia peak and hyperaemia amplitude, whereas HSCM decreased only hyperaemia peak. However, comparative analyses of the effects of three test meals on serum Ca, BP and MVF revealed no significant meal×time interaction. This study suggests that in obese women SC and DC do not interfere with the effects of a high-fat meal on BP and MVF.

  5. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  6. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience

    International Nuclear Information System (INIS)

    Federau, C.; Becce, F.; Maeder, P.; Meuli, R.; Sumer, S.; Wintermark, M.; O'Brien, K.

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions 2 . Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 . 10 -6 ) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 . 10 -4 vs. 7.5 ± 0.86 . 10 -4 mm 2 /s, p = 1.3 . 10 -20 ). IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response. (orig.)

  7. Substâncias vasoativas e a modulação do sistema microvascular hepático

    Directory of Open Access Journals (Sweden)

    Loureiro-Silva M.R.

    1999-01-01

    Full Text Available OBJETIVO. Revisão da filogênese e ontogênese hepáticas, do sistema microvascular hepático e da modulação do tônus deste sistema vascular por diferentes substâncias vasoativas. MÉTODO. Levantamento de artigos por meio do sistema MEDLINE e consulta a livros-texto. RESULTADO. Foram selecionados 52 trabalhos publicados entre 1949 e 1997, dos quais retiramos as informações a respeito de filogênese e ontogênese hepáticas, sistema microvascular hepático e mecanismos de controle do tônus vascular hepático. CONCLUSÃO. O fígado possui sistema vascular altamente especializado na promoção de mecanismos de troca entre hepatócitos e sangue. Diferentes fatores atuam continuamente sobre estruturas contrácteis deste sistema vascular adequando a perfusão do tecido hepático às necessidades homeostáticas de cada momento. O fígado é órgão eminentemente mantenedor do meio interno.

  8. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...

  9. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  10. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  11. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  12. Intractable lung abscess successfully treated with cavernostomy and free omental plombage using microvascular surgery.

    Science.gov (United States)

    Shimizu, Junzo; Arano, Yoshihiko; Adachi, Iwao; Ikeda, Chikako; Ishikawa, Norihiko; Ohtake, Hiroshi

    2009-11-01

    A 68-year-old man, complaining of fever and puriform sputum, was referred to our hospital. A giant abscess was detected in the upper lobe of the right lung. Percutaneous drainage of a lung abscess was carried out. When the pus collected was cultured, Candida was 1+ and Escherichia coli was 2+. Later, it became difficult to control the abscess by drainage, and cavernostomy was selected. The contents of the abscess cavity were removed, and the cavity was opened, followed by exchange of gauze every day. For 14 months after cavernostomy, once-weekly gauze exchange was continued at the outpatient clinic to clean the abscess cavity. Finally, the abscess was filled with a free greater omentum flap, accompanied by microvascular anastomosis. In this way, the intractable lung abscess was successfully cured. Conventionally, surgical treatment, particularly cavernostomy, has been applied only to limited cases when dealing with a lung abscess. Our experience with the present case suggests that surgical treatment, including cavernostomy as one option, should also be considered when dealing with lung abscesses resisting medical treatment and causing compromised respiratory function. To enable maximum utilization of the greater omental flap, which is available in only a limited amount, it seems useful to prepare and graft a free omental flap making use of microvascular surgery.

  13. COMPARISON OF REAL-TIME MICROVASCULAR ABNORMALITIES IN PEDIATRIC AND ADULT SICKLE CELL ANEMIA PATIENTS

    Science.gov (United States)

    Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph

    2010-01-01

    The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552

  14. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Lovinger, David M.; Kash, Thomas L.

    2015-01-01

    Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction. Two brain regions subject to alcohol’s effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol’s actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder. PMID:26259092

  15. Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

    Science.gov (United States)

    Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen

    2017-12-01

    The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.

  16. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  17. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  18. MicroRNA Signature of Human Microvascular Endothelium Infected with Rickettsia rickettsii

    Directory of Open Access Journals (Sweden)

    Abha Sahni

    2017-07-01

    Full Text Available MicroRNAs (miRNAs mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R. rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01 and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01. Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs. Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.

  19. Rat muscle microvascular PO2 kinetics during the exercise off-transient.

    Science.gov (United States)

    McDonough, P; Behnke, B J; Kindig, C A; Poole, D C

    2001-05-01

    Dependent upon the relative speed of pulmonary oxygen consumption (VO2) and blood flow (Q) kinetics, the exercise off-transient may represent a condition of sub- or supra-optimal perfusion. To date, there are no direct measurements of the dynamics of the VO2/Q relationship within the muscle at the onset of the work/recovery transition. To address this issue, microvascular PO2 (PO2,m) dynamics were studied in the spinotrapezius muscles of 11 female Sprague-Dawley rats (weight approximately 220 g) during and following electrical stimulation (1 Hz) to assess the adequacy of Q. relative to VO2 post exercise. The exercise blood flow response (radioactive microspheres: muscle Q increased approximately 240 %), and post-exercise arterial blood pH (7.40 +/- 0.02) and blood lactate (1.3 +/- 0.4 mM x l(-1)) values were consistent with moderate-intensity exercise. Recovery PO2,m (i.e. off-transient) rose progressively until baseline values were achieved ((Delta)end-recovery exercise PO2,m, 14.0 +/- 1.9 Torr) and at no time fell below exercising PO2,m. The off-transient PO2,m was well fitted by a dual exponential model with both fast (tau = 25.4 +/- 5.1 s) and slow (tau = 71.2 +/- 34.2 s) components. Furthermore, there was a pronounced delay (54.9 +/- 10.7 s) before the onset of the slow component. These data, obtained at the muscle microvascular level, support the notion that muscle VO2 falls with faster kinetics than muscle Q during the off-transient, such that PO2,m increases systematically, though biphasically, during recovery.

  20. Coronary microvascular function, insulin sensitivity and body composition in predicting exercise capacity in overweight patients with coronary artery disease

    DEFF Research Database (Denmark)

    Jürs, Anders; Pedersen, Lene Rørholm; Olsen, Rasmus Huan

    2015-01-01

    BACKGROUND: Coronary artery disease (CAD) has a negative impact on exercise capacity. The aim of this study was to determine how coronary microvascular function, glucose metabolism and body composition contribute to exercise capacity in overweight patients with CAD and without diabetes. METHODS...... by a cardiopulmonary exercise test. Body composition was determined by whole body dual-energy X-ray absorptiometry scan and magnetic resonance imaging. Coronary flow reserve (CFR) assessed by transthoracic Doppler echocardiography was used as a measure of microvascular function. RESULTS: Median BMI was 31.3 and 72...... metabolism and body composition. CFR, EDV and LVEF remained independent predictors of VO2peak in multivariable regression analysis. CONCLUSION: The study established CFR, EDV and LVEF as independent predictors of VO2peak in overweight CAD patients with no or only mild functional symptoms and a LVEF > 35...

  1. Vascular Endothelial Growth Factor Receptor 1 Contributes to Escherichia coli K1 Invasion of Human Brain Microvascular Endothelial Cells through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway▿ †

    OpenAIRE

    Zhao, Wei-Dong; Liu, Wei; Fang, Wen-Gang; Kim, Kwang Sik; Chen, Yu-Hua

    2010-01-01

    Escherichia coli is the most common Gram-negative organism causing neonatal meningitis. Previous studies demonstrated that E. coli K1 invasion of brain microvascular endothelial cells (BMEC) is required for penetration into the central nervous system, but the microbe-host interactions that are involved in this process remain incompletely understood. Here we report the involvement of vascular endothelial growth factor receptor 1 (VEGFR1) expressed on human brain microvascular endothelial cells...

  2. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  3. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  4. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  5. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience. PMID:18301720

  6. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A case of thrombotic thrombocytopenic purpura induced by acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Arimoto M

    2012-03-01

    Full Text Available Miyoko Arimoto1, Yutaka Komiyama2, Fumiko Okamae1, Akemi Ichibe1, Setsuko Teranishi1, Hirohiko Tokunaga1, Keiko Nakaya3, Michie Fujiwara3, Manabu Yamaoka4, Shuji Onishi4, Rie Miyamoto5, Naoto Nakamichi5, Shosaku Nomura51Blood Transfusion Unit, Kansai Medical University Takii Hospital, 2Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, 3Clinical Medical Technology Unit, Kansai Medical University Takii Hospital, 4Blood Transfusion Unit, Kansai Medical University Hirakata Hospital, 5First Department of Internal Medicine, Kansai Medical University, Moriguchi, JapanAbstract: Thrombotic thrombocytopenic purpura (TTP is a multisystemic microvascular disorder that may be caused by an imbalance between unusually large von Willebrand factor multimers and the cleaving protease ADAMTS13. In acquired TTP, especially in secondary TTP with various underlying diseases, the diagnosis is difficult because there are many cases that do not exhibit severe deficiency of ADAMTS13 or raised levels of ADAMST13 inhibitors. It is well known that collagen disease, malignancy, and hematopoietic stem cell transplantation can be underlying conditions that induce TTP. However, TTP induced by acute pancreatitis, as experienced by our patient, has rarely been reported. Our patient completely recovered with treatments using steroids and plasma exchange (PE only. In cases where patients develop acute pancreatitis with no apparent causes for hemolytic anemia and thrombocytopenia, the possibility of TTP should be considered. Treatments for TTP including PE should be evaluated as soon as a diagnosis is made.Keywords: thrombotic thrombocytopenic purpura, ADAMTS13, acute pancreatitis, plasma exchange

  8. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Diedrich, O; Burian, B; Schmitt, O; Wimmer, M A

    2003-01-01

    Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.

  9. Management of acute open tendo-achilles injuries in Indian lavatory pans

    Directory of Open Access Journals (Sweden)

    Chatterjee Sasanka

    2006-01-01

    Full Text Available Injuries to the Tendo-achilles are common but rarely do they present directly to plastic surgeons. Eighteen patients with acute tendo-achilles injury due to fall in the lndian type of lavatory pan came directly to the emergency department of Institute of Post Graduate Medical Education and Research, Kolkata and subsequently were treated in the Department of Plastic Surgery. Direct repair with prolene or stainless steel (SS wires with or without flap cover were performed for management. Exercises were started 1 month later with gradual increase in activity. Complications were minor and temporary in nature. Long term results in the form of performing previous activities were excellent.

  10. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  11. Flash Cracking Reactor for Waste Plastic Processing

    Science.gov (United States)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  12. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  13. Clustering of microvascular complications in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Bjerg, Lasse; Hulman, Adam; Charles, Morten

    2018-01-01

    AIMS: To describe to what extent microvascular complications exhibit clustering in persons with Type 1 diabetes, and to assess whether the presence of one complication modified the strength of the association between the other two. METHODS: We conducted a cross-sectional analysis of the electronic...... medical records of 2276 persons with Type 1 diabetes treated in a specialized care hospital in Denmark in 2013. We used log-linear analysis to describe associations between diabetic kidney disease, neuropathy and retinopathy and logistic regression models to quantify the magnitude of associations...... adjusting for potential confounders. RESULTS: The median duration of diabetes was 24 years and median HbA1c was 63 mmol/mol (7.9%). We found strong indication of clustering and found no evidence that presence of one complication modified the association between the other two. In models adjusted for diabetes...

  14. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  15. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  16. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  17. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  18. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  19. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    Science.gov (United States)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  20. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  1. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  2. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  3. Erythropoietin promotes network formation of transplanted adipose tissue-derived microvascular fragments

    Directory of Open Access Journals (Sweden)

    P Karschnia

    2018-05-01

    Full Text Available The seeding of tissue constructs with adipose tissue-derived microvascular fragments (ad-MVF is an emerging pre-vascularisation strategy. Ad-MVF rapidly reassemble into new microvascular networks after in vivo implantation. Herein it was analysed whether this process was improved by erythropoietin (EPO. Ad-MVF were isolated from green fluorescent protein (GFP+ as well as wild-type C57BL/6 mice and cultivated for 24 h in medium supplemented with EPO (20 IU/mL or vehicle. Freshly isolated, non-cultivated ad-MVF served as controls. Protein expression, cell viability and proliferation of ad-MVF were assessed by proteome profiler array and fluorescence microscopy. GFP+ ad-MVF were seeded on collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of C57BL/6 mice, to analyse their vascularisation over 14 d by intravital fluorescence microscopy, histology and immunohistochemistry. Cultivation up-regulated the expression of pro- and anti-angiogenic factors within both vehicle- and EPO-treated ad-MVF when compared with non-cultivated controls. Moreover, EPO treatment suppressed cultivation-associated apoptosis and significantly increased the number of proliferating endothelial cells in ad-MVF when compared with vehicle-treated and non-cultivated ad-MVF. Accordingly, implanted matrices seeded with EPO-treated ad-MVF exhibited an improved vascularisation, as indicated by a significantly higher functional microvessel density. The matrices of the three groups contained a comparably large fraction of GFP+ microvessels originating from the ad-MVF, whereas the tissue surrounding the matrices seeded with EPO-treated ad-MVF exhibited a significantly increased microvessel density when compared with the other two groups. These findings indicated that EPO represents a promising cytokine to further boost the excellent vascularisation properties of ad-MVF in tissue-engineering applications.

  4. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  5. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

    Directory of Open Access Journals (Sweden)

    Bedreag Ovidiu Horea

    2016-03-01

    Full Text Available The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient.

  6. Post-mortem computed tomography angiography utilizing barium sulfate to identify microvascular structures : a preliminary phantom model and case study

    NARCIS (Netherlands)

    Haakma, Wieke; Rohde, Marianne; Kuster, Lidy; Uhrenholt, Lars; Pedersen, Michael; Boel, Lene Warner Thorup

    2016-01-01

    We investigated the use of computer tomography angiography (CTA) to visualize microvascular structures in a vessel-mimicking phantom and post-mortem (PM) bodies. A contrast agent was used based on 22% barium sulfate, 20% polyethylene glycol and 58% distilled water. A vessel-mimicking phantom

  7. The relationship of body fatness and body fat distribution with microvascular recruitment : The Amsterdam Growth and Health Longitudinal Study

    NARCIS (Netherlands)

    Wijnstok, N.J.; Hoekstra, T.; Eringa, E.C.; Smulders, Y.M.; Twisk, J.W.; Serne, E.H.

    INTRODUCTION: Microvascular function has been proposed to link body fatness to CVD and DM2. Current knowledge of these relationships is mainly based on studies in selected populations of extreme phenotypes. Whether these findings can be translated to the general population remains to be

  8. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  9. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  10. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Science.gov (United States)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  11. [Mesh structure of two-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell lung cancer].

    Science.gov (United States)

    Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua

    2009-11-01

    To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.

  12. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  13. Sidestream smoke inhalation decreases respiratory clearance of 99mTc-DTPA acutely

    International Nuclear Information System (INIS)

    Yates, D.H.; Havill, K.; Thompson, M.M.; Rittano, A.B.; Chu, J.; Glanville, A.R.

    1996-01-01

    The permeability of the alveolar-capillary barrier to an inhaled aerosol of technetium 99m labelled diethylenetriamine penta-acetate ( 99m Tc-DTPA is used as an index of alveolar epithelial injury. Permeability is greatly increased in active smokers. The aim of this study was to determine the effect of sidestream smoke inhalation on permeability as this has not been described previously. Lung clearance of inhaled 99m Tc-DTPA aerosol was measured in 20 normal non-smoking subjects before and after exposure to one hours sidestream smoke inhalation. Measured carbon monoxide (CO) levels rose to a maximum of 23.5 ±6.2 ppm from baseline values of 0.6±1.3 (p 99m Tc-DTPA clearance rose from baseline 69.1± 15.6 (mean ± to 77.4 ±17.8) after smoke exposure. No effect of 99m Tc-DTPA scanning of sidestream smoke was demonstrated on lung function. It was concluded that low level sidestream smoke inhalation decreases 99m Tc-DTPA clearance acutely in humans. The mechanism of this unexpected result is not established but may include differences in constituents between sidestream and mainstream smoke, alterations in pulmonary microvascular blood flow, or changes in surfactant due to an acute phase irritant response. 34 refs., 2 figs

  14. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  15. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  16. Selection of polychlorinated plastics in plastic waste by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Kumasaki, H.; Shinozaki, Y.

    1979-01-01

    The X-ray fluorescence method using a small source of 55 Fe was examined and found to be applicable for the selection of polychlorinated plastics from plastic waste in model areas in Tokyo designated for investigating their content in the waste. The weight ratios of soft and hard polychlorinated plastics to the total plastic waste estimated by this method were found to be 15.6% and 0.29% respectively. These values agree well with the results obtained with the Beilstein method. (author)

  17. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    International Nuclear Information System (INIS)

    Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2014-01-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf) 3 ) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69–108%) to successfully mitigate against crack propagation within the composite microstructure. (paper)

  18. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  19. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  20. [Vascular microsurgery during esophagoplasty in children].

    Science.gov (United States)

    Bairov, G A; Ivanov, A P; Kupatadze, D D; Nabokov, V V

    1989-06-01

    Clinico-experimental data on using the microvascular technique in plastic operations on the esophagus are described. Experiments in puppies have revealed specific features of the surgical technique, the morphology of intestinal grafts and their taking under conditions of growing organism. The microvascular technique was used in 3 patients. In 2 patients additional nutrition of the grafts was performed, in 1 patient free transplantation of small intestine grafts to the cervical and thoracic parts of the esophagus was fulfilled. Results were good.

  1. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  2. Risk Factors for Macro- and Microvascular Complications among Older Adults with Diagnosed Type 2 Diabetes: Findings from The Irish Longitudinal Study on Ageing.

    LENUS (Irish Health Repository)

    Tracey, Marsha L

    2016-01-01

    Objective. To explore risk factors for macro- and microvascular complications in a nationally representative sample of adults aged 50 years and over with type 2 diabetes in Ireland. Methods. Data from the first wave of The Irish Longitudinal Study on Ageing (TILDA) (2009-2011) was used in cross-sectional analysis. The presence of doctor diagnosis of diabetes, risk factors, and macro- and microvascular complications were determined by self-report. Gender-specific differences in risk factor prevalence were assessed with the chi-squared test. Binomial regression analysis was conducted to explore independent associations between established risk factors and diabetes-related complications. Results. Among 8175 respondents, 655 were classified as having type 2 diabetes. Older age, being male, a history of smoking, a lower level of physical activity, and a diagnosis of high cholesterol were independent predictors of macrovascular complications. Diabetes diagnosis of 10 or more years, a history of smoking, and a diagnosis of hypertension were associated with an increased risk of microvascular complications. Older age, third-level education, and a high level of physical activity were protective factors (p < 0.05). Conclusions. Early intervention to target modifiable risk factors is urgently needed to reduce diabetes-related morbidity in the older population in Ireland.

  3. Vegetative and reproductive evaluation of hot peppers under different plastic mulches in poly/plastic tunnel

    International Nuclear Information System (INIS)

    Iqbal, Q.; Amjad, M.; Ahmad, R.

    2009-01-01

    Since the beginning of civilization, the man has developed technologies to increase the efficiency of food production. The use of plastic mulch in commercial vegetable production is one of these traditional techniques that have been used for centuries. Studies were conducted to assess the efficacy of plastic mulch on growth and yield of two hot pepper hybrids, viz. Sky Red and Maha in poly/plastic tunnel. The treatments were black plastic mulch, clear plastic mulch and bare soil as control. Both hot pepper hybrids mulched with black plastic showed significantly better vegetative growth (plant height, leaf area etc) and fruit yield. Clear plastic mulch significantly increased soil temperature and reduced the number of days to first flower than black plastic mulch and bare soil. However, fruit yield was higher by 39.56 and 36.49% respectively in both hybrids when they were grown on black and clear plastic mulch as compared to bare soil. Overall results indicated that the use of plastic mulch is an ideal option to maximize hot pepper productivity as well as to extend their production season in poly/plastic tunnels. (author)

  4. Surgical Anatomy and Microvascular Surgical Technique Relevant to Experimental Renal Transplant in Rat Employing Aortic and Inferior Venacaval Conduits.

    Science.gov (United States)

    Shrestha, Badri Man; Haylor, John

    2017-11-15

    Rat models of renal transplant are used to investigate immunologic processes and responses to therapeutic agents before their translation into routine clinical practice. In this study, we have described details of rat surgical anatomy and our experiences with the microvascular surgical technique relevant to renal transplant by employing donor inferior vena cava and aortic conduits. For this study, 175 rats (151 Lewis and 24 Fisher) were used to establish the Fisher-Lewis rat model of chronic allograft injury at our institution. Anatomic and technical details were recorded during the period of training and establishment of the model. A final group of 12 transplanted rats were studied for an average duration of 51 weeks for the Lewis-to-Lewis isografts (5 rats) and 42 weeks for the Fisher-to-Lewis allografts (7 rats). Functional measurements and histology confirmed the diagnosis of chronic allograft injury. Mastering the anatomic details and microvascular surgical techniques can lead to the successful establishment of an experimental renal transplant model.

  5. [Evaluation and Optimization of Microvascular Arterial Anastomoses by Transit Time Flow Measurement].

    Science.gov (United States)

    Herberhold, S; Röttker, J; Bartmann, D; Solbach, A; Keiner, S; Welz, A; Bootz, F; Laffers, W

    2016-03-01

    INDRODUCTION: The regular application of transit time flow measurement in microvascular anastomoses during heart surgery has lead to improvements of the outcome of coronary artery bypass grafts. Our study was meant to discover whether this measurement method was also applicable for evaluation and optimization of microvascular arterial anastomoses of radial forearm flaps. In this prospective examination a combining ultrasound imaging and transit time flow measurement device (VeriQ, MediStim) was used during surgery to assess anastomotic quality of 15 radial forearm flaps. Pulsatility index (PI) and mean blood flow were measured immediately after opening the arterial anastomosis as well as 15 min afterwards. Furthermore, application time and description of handling were recorded seperately for every assessment. Mean blood flow immediately after opening the anastomosis and 15 min later were 3.9 and 3.4 ml/min resepectively showing no statistically significant difference (p=0.96). There was no significance in the increase of pulsatility index from 22.1 to 27.2 (p=0.09) during the same time range, either. Due to measurement results showing atypical pulse curves in 2 cases decision for surgical revision of the anastomoses was made. All forearm flaps showed good vascularisation during follow-up. Time for device set up, probe placement and measurements was about 20 min. Handling was described to be uncomplicated without exception. There were no noteworthy problems. Transit time flow measurement contributes to the improvement of anastomotic quality and therefore to the overall outcome of radial forearm flaps. The examined measurement method provides objective results and is useful for documentation purposes. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  7. Short-term poor glycemic control and retinal microvascular changes in pediatric Type 1 Diabetes patients in Singapore: a pilot study.

    Science.gov (United States)

    Li, Ling-Jun; Lamoureux, Ecosse; Wong, Tien Yin; Lek, Ngee

    2017-06-15

    Poor glycemic control in Type 1 Diabetes (T1D) patients is strongly associated with an increased risk of diabetes-related microvascular complications later in life, but it is unclear whether short period of poor glycemic control in children with T1D can cause evident microvascular morphological changes long before any pathological manifestation. Our study aimed to investigate the longitudinal association between poor glycemic control and subsequent changes in retinal microvasculature, in a pilot study of 55 pediatric T1D patients from Singapore after a one-year follow-up. This is a hospital-based, exposure-matched and retrospective longitudinal study. A total of 55 T1D patients were included from Singapore KK Women's and Children Hospital, 28 of whom had poor glycemic control (average glycated hemoglobin [HbA1c] ≥8% during the year) while the other 27 age- and gender-matched subjects had good glycemic control (HbA1c Singapore I Vessel Assessment [SIVA], version 4.0, Singapore Eye Research Institute, Singapore) and a spectrum of retinal vascular parameters (e.g. caliber, tortuosity, branching angle and fractal dimension) were measured quantitatively from 0.5 to 2.0 disc diameters. There was no significant difference in ethnicity, duration of T1D, blood pressure, body mass index (BMI) and low-density cholesterol lipoprotein (LDL) between the two groups. Retinal imaging was obtained at the end of 1 year of glycemic control assessment. In multiple linear regression adjusting for ethnicity, BMI, LDL and duration of T1D, patients with poor glycemic control tended to have marginally wider retinal arteriolar caliber (6.0 μm, 95% CI: -0.9, 12.8) and had significantly larger retinal arteriolar branching angle (10.1 degrees, 95% CI: 1.4, 18.9) compared with their age- and gender- matched counterparts with good glycemic control. Our findings showed that abnormal retinal microvascular morphology was evident in pediatric patients with T1D after one-year's poor glycemic

  8. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  9. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  10. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  11. Microvascular decompression for trigeminal neuralgia: comments on a series of 250 cases, including 10 patients with multiple sclerosis.

    Science.gov (United States)

    Broggi, G; Ferroli, P; Franzini, A; Servello, D; Dones, I

    2000-01-01

    To examine surgical findings and results of microvascular decompression (MVD) for trigeminal neuralgia (TN), including patients with multiple sclerosis, to bring new insight about the role of microvascular compression in the pathogenesis of the disorder and the role of MVD in its treatment. Between 1990 and 1998, 250 patients affected by trigeminal neuralgia underwent MVD in the Department of Neurosurgery of the "Istituto Nazionale Neurologico C Besta" in Milan. Limiting the review to the period 1991-6, to exclude the "learning period" (the first 50 cases) and patients with less than 1 year follow up, surgical findings and results were critically analysed in 148 consecutive cases, including 10 patients with multiple sclerosis. Vascular compression of the trigeminal nerve was found in all cases. The recurrence rate was 15.3% (follow up 1-7 years, mean 38 months). In five of 10 patients with multiple sclerosis an excellent result was achieved (follow up 12-39 months, mean 24 months). Patients with TN for more than 84 months did significantly worse than those with a shorter history (p<0.05). There was no mortality and most complications occurred in the learning period. Surgical complications were not related to age of the patients. Aetiopathogenesis of trigeminal neuralgia remains a mystery. These findings suggest a common neuromodulatory role of microvascular compression in both patients with or without multiple sclerosis rather than a direct causal role. MVD was found to be a safe and effective procedure to relieve typical TN in patients of all ages. It should be proposed as first choice surgery to all patients affected by TN, even in selected cases with multiple sclerosis, to give them the opportunity of pain relief without sensory deficits.

  12. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Koury Josely C

    2011-05-01

    Full Text Available Abstract Background Obesity is a chronic disease associated to an inflammatory process resulting in oxidative stress that leads to morpho-functional microvascular damage that could be improved by some dietary interventions. In this study, the intake of Brazil nuts (Bertholletia excelsa, composed of bioactive substances like selenium, α- e γ- tocopherol, folate and polyunsaturated fatty acids, have been investigated on antioxidant capacity, lipid and metabolic profiles and nutritive skin microcirculation in obese adolescents. Methods Obese female adolescents (n = 17, 15.4 ± 2.0 years and BMI of 35.6 ± 3.3 kg/m2, were randomized 1:1 in two groups with the diet supplemented either with Brazil nuts [BNG, n = 08, 15-25 g/day (equivalent to 3 to 5 units/day] or placebo [PG (lactose, n = 09, one capsule/day] and followed for 16 weeks. Anthropometry, metabolic-lipid profiles, oxidative stress and morphological (capillary diameters and functional [functional capillary density, red blood cell velocity (RBCV at baseline and peak (RBCVmax and time (TRBCVmax to reach it during post-occlusive reactive hyperemia, after 1 min arterial occlusion] microvascular variables were assessed by nailfold videocapillaroscopy at baseline (T0 and after intervention (T1. Results T0 characteristics were similar between groups. At T1, BNG (intra-group variation had increased selenium levels (p = 0.02, RBCV (p = 0.03 and RBCVmax (p = 0.03 and reduced total (TC (p = 0.02 and LDL-cholesterol (p = 0.02. Compared to PG, Brazil nuts intake reduced TC (p = 0.003, triglycerides (p = 0.05 and LDL-ox (p = 0.02 and increased RBCV (p = 0.03. Conclusion Brazil nuts intake improved the lipid profile and microvascular function in obese adolescents, possibly due to its high level of unsaturated fatty acids and bioactive substances. Trial Registration Clinical Trials.gov NCT00937599

  13. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    Science.gov (United States)

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are decreased, independent

  14. Suicide by plastic bag suffocation combined with the mixture of citric acid and baking soda in an adolescent.

    Science.gov (United States)

    Murakami, Keishu; Kawaguchi, Takashi; Hashizume, Yumiko; Kitamura, Kengo; Okada, Misato; Okumoto, Kohei; Sakamoto, Shoich; Ishida, Yuko; Nosaka, Mizuho; Kimura, Akihiko; Takatsu, Akihiro; Kondo, Toshikazu

    2018-05-22

    We describe a case of suicidal asphyxiation using a plastic bag combined with carbon dioxide (CO 2 ) gas. A 20-year-old male, whose head was covered with a plastic bag, was found dead in his room. In the plastic bag, there were two glass-made cups containing liquid-like substance. Through crime scene investigation by police staffs, a bottle of citric acid and a box of baking soda were also discovered in his room. The forensic autopsy revealed that there were neither lesions nor injuries in all of the organs. Moreover, any drugs and poisons could not be detected in blood samples. Based on autopsy findings and crime scene investigation, the cause of death was diagnosed as acute asphyxia due to CO 2 intoxication by the mixture of citric acid with baking soda in the plastic bag. To the best of our knowledge, there are no medical literatures describing plastic bag suffocation combined with CO 2 gas generated from citric acid and baking soda, which has been widely distributed as suicidal means through websites. This case report promotes forensic pathologists and medical coroners to emphasize that the Internet has a crucial role on a source of suicidal information or a promoter of suicide all over the world.

  15. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  16. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  17. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  18. Microvascular abnormalities in capillaroscopy correlate with higher serum IL-18 and sE-selectin levels in patients with type 1 diabetes complicated by microangiopathy

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2011-04-01

    Full Text Available Microvascular abnormalities are one of the most important causes of persistent diabetic complications. The aim of this study was to compare microvascular changes examined by nailfold capillaroscopy with serum concentrations of soluble E-selectin (sE-selectin and IL-18 in type 1 diabetic patients with and without microangiopathy. Serum levels of sE-selectin and IL-18 were determined by an enzyme-linked immunosorbent assay in 106 patients with type 1 diabetes and in 40 healthy controls. All diabetic patients were evaluated by extensive clinical, laboratory and capillaroscopic studies. Morphological changes were observed by nailfold capillaroscopy in 86 out of 106 (81% diabetic patients. Severe capillaroscopic changes were seen in 32 out of 54 (59% patients with microangiopathy, but in only seven out of 52 (13% patients without microangiopathy. Higher serum levels of sE-selectin (p < 0.001 and IL-18 (p < 0.05 were demonstrated in diabetic patients compared to controls. Significant differences of sE-selectin (p < 0.001 and IL-18 (p < 0.01 serum concentrations were observed between diabetic patients with microangiopathy and controls. Moreover, comparison between patients with and without microangiopathic complications showed a significantly higher capillaroscopic score and sE-selectin serum concentration in the group with microangiopathy (p < 0.001. Furthermore, diabetic patients with severe microvascular changes in capillaroscopy showed significantly higher IL-18 (p < 0.001 and sE-selectin (p < 0.05 serum levels than subgroups without changes or with mild abnormalities. Our findings suggest that abnormalities in nailfold capillaroscopy may reflect the extent of microvascular involvement and are associated with higher sE-selectin and IL-18 serum levels, as well as with microangiopathic complications in diabetic patients. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 104–110

  19. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  20. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  1. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  2. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  3. PET measurements of myocardial blood flow post myocardial infarction: Relationship to invasive and cardiac magnetic resonance studies and potential clinical applications.

    Science.gov (United States)

    Gewirtz, Henry

    2017-12-01

    This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.

  4. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  5. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  6. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  7. Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics

    Directory of Open Access Journals (Sweden)

    Susanna Sforzini

    2016-10-01

    Full Text Available Biodegradable plastics are mostly applied in packaging materials (e.g. shopping bags, waste collection bags, catering products, and agricultural applications. In this last case, degradation takes place directly in soil where biodegradable plastic products are intentionally left after use (e.g. mulch films for weeds control. Due to the growing volumes of biodegradable polymers and plastics, interest in their environmental safety is increasing and more research is carried out. Some attempt has been made to apply biotests, used in other sectors of environmental sciences, in the assessment of biodegradable plastics safety. In this work, the quality of soils after biodegradation of the bioplastics Mater-Bi has been assessed with a large array of biotests based on model organisms representative of the different trophic levels in the food chains of the edaphic and aquatic ecosystems. Mater-Bi was degraded under controlled conditions for 6 months at a 1% concentration. The selected organisms included bacteria and protozoa (V. fischeri and D. discoideum, respectively, the green alga P. subcapitata, plants (the monocotyledon S. saccharatum and the dicotyledon L. sativum, and invertebrates animals (D. magna, a freshwater crustacean, and the Oligochaeta earthworm E. andrei, using both acute and chronic endpoints. The results of the applied ecotoxicological tests showed that the Mater-Bi materials tested at very high doses did not affect the soil quality. Soil exposed to Mater-Bi has no noxious effects on edaphic organisms; in particular, mono and dicotyledon plants results, indicate that Mater-Bi plastic products are innocuous for agricultural uses. The use of more sensitive chronic endpoints allows to exclude possible effects at population level. This is the first time that such a comprehensive approach is applied to the assessment of possible ecotoxicity effects induced by biodegradable plastics in soil and represents a possible starting point for

  8. The concept of a model of plastic bodily image in architecture

    Directory of Open Access Journals (Sweden)

    Malakhov Sergey

    2017-01-01

    Full Text Available One of the key problems of architectural mastery is lack of acute feeling of the plastic image and bodily self-determination of an architectural object at the initial (and the subsequent stage when the design model author is trying to see and understand the context where the future object should appear, literally be born out of thin air. This sensuous amnesia is caused, among other reasons, by the lack of experience in “sculptural modeling”, “hand molding” and today’s common practice of facilitated transfer to analytical computer design. The loss of intense bodily experience, mental connection of one’s own body with an imaginary object, has an effect as well. In its turn, it deprives the object of sensuous corporeal nature, transforms it into a mechanistic conglomerate. The article deals with the body concept, bodily and plastic categories in relation to the architectural shaping and suggests the concept of mediator models linking reality and the designer’s imagination integrated into a new typology of “models of plastic bodily images” (MPBI. The principal medium of these models and the procedures for their creation are based on synthesis of form, interpretation of the “bodily experience”, tactile contact with model material, sculptural forming techniques and sensory evaluations of subject-environment interaction. The proposed typology of models has been piloted by the author in numerous educational and conceptual projects. The results of experiments and developed theoretical principles related to models of plastic bodily images will help achieve better results in the course of basic design and special composition training of architects.

  9. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  10. Statin use before diabetes diagnosis and risk of microvascular disease

    DEFF Research Database (Denmark)

    Nielsen, Sune F; Nordestgaard, Børge G

    2014-01-01

    BACKGROUND: The role of statins in the development of microvascular disease in patients with diabetes is unknown. We tested the hypothesis that statin use increases the risk of diabetic retinopathy, diabetic neuropathy, diabetic nephropathy, and gangrene of the foot in individuals with diabetes...... the cumulative incidence of diabetic retinopathy, diabetic neuropathy, diabetic nephropathy, or gangrene of the foot in statin users versus non-statin users. We analysed data with Cox regression models, adjusted for covariates including sex, age at diabetes diagnosis, and method of diabetes diagnosis. To address...... diabetic neuropathy, 1248 developed diabetic nephropathy, and 2392 developed gangrene of the foot. Compared with non-statin users, statin users had a lower cumulative incidence of diabetic retinopathy (hazard ratio 0·60, 95% CI 0·54-0·66; pdiabetic neuropathy (0·66, 0·57-0·75; p

  11. MODERN INSIGHTS INTO THE ROLE OF HEMORHEOLOGICAL DEVIATIONS AND FUNCTIONAL STATUS OF THE ENDOTHELIAL TISSUE IN THE PATHOGENESIS OF ACUTE INFLAMMATORY LUNG AND BRONCHIAL DISEASES AMONG CHILDREN

    Directory of Open Access Journals (Sweden)

    A.V. Mozhaev

    2007-01-01

    Full Text Available Disorders of the endothelial tissue and hemorheology function build up one of the pathogenic bases to form the acute inflammatory abnormality of the respiratory tract among children. The overview highlights the information on the role and disorders of the erythrocyte clumping and plasticity, blood viscosity and function of the endothelial tissue as a response to the acute respiratory infections among children.Key words: endothelial dysfunction, hemorheology, hemorheological deviations, acute respiratory infections, acute bronchopulmonary diseases, children.

  12. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  13. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications?

    DEFF Research Database (Denmark)

    Bonnefond, Amélie; Saulnier, Pierre-Jean; Stathopoulou, Maria G

    2013-01-01

    Vascular endothelial growth factor (VEGF) is a key chemokine involved in tissue growth and organ repair processes, particularly angiogenesis. Elevated circulating VEGF levels are believed to play a role in type 2 diabetes (T2D) microvascular complications, especially diabetic retinopathy. Recently...... for diabetic nephropathy (N(cases)¿=¿1,242-N(controls)¿=¿860) and the other for diabetic retinopathy (N(cases)¿=¿1,336-N(controls)¿=¿1,231). The effects of each SNP on quantitative traits were analyzed in a French general population-based cohort (N¿=¿4,760) and two French T2D studies (N¿=¿3,480). SNP...... on diabetic microvascular complications or the variation in related traits in T2D patients.In spite of their impact on the variance in circulating VEGF, we did not find any association between SNPs rs6921438 and rs10738760, and the risk of T2D, diabetic nephropathy or retinopathy. The link between VEGF and T2...

  14. TRANSFUSION RESTORES BLOOD VISCOSITY AND REINSTATES MICROVASCULAR CONDITIONS FROM HEMORRHAGIC SHOCK INDEPENDENT OF OXYGEN CARRYING CAPACITY

    OpenAIRE

    Cabrales, Pedro; Intaglietta, Marcos; Tsai, Amy G.

    2007-01-01

    Systemic and microvascular hemodynamic responses to transfusion of oxygen using functional and non-functional packed fresh red blood cells (RBCs) from hemorrhagic shock were studied in the hamster window chamber model to determine the significance of RBCs on rheological and oxygen transport properties. Moderate hemorrhagic shock was induced by arterial controlled bleeding of 50% of the blood volume, and a hypovolemic state was maintained for one hour. Volume restitution was performed by infus...

  15. Correlation Factor Analysis of Retinal Microvascular Changes in Patients With Essential Hypertension

    Institute of Scientific and Technical Information of China (English)

    Huang Duru; Huang Zhongning

    2006-01-01

    Objectives To investigate correlation between retinal microvascular signs and essential hypertension classification. Methods The retinal microvascular signs in patients with essential hypertension were assessed with the indirect biomicroscopy lens, the direct and the indirect ophthalmoscopes were used to determine the hypertensive retinopathy grades and retinal arteriosclerosis grades.The rank correlation analysis was used to analysis the correlation these grades with the risk factors concerned with hypertension. Results Of 72 cases with essential hypertension, 28 cases complicated with coronary disease, 20 cases diabetes, 41 cases stroke,17 cases renal malfunction. Varying extent retinal arterioscleroses were found in 71 cases, 1 case with retinal hemorrhage, 2 cases with retina edema, 4 cases with retinal hard exudation, 5 cases with retinal hemorrhage complicated by hard exudation, 2 cases with retinal hemorrhage complicated by hard exudation and cotton wool spot, 1 case with retinal hemorrhage complicated by hard exudation and microaneurysms,1 case with retinal edema and hard exudation, 1 case with retinal microaneurysms, 1 case with branch retinal vein occlusion. The rank correlation analysis showed that either hypertensive retinopathy grades or retinal arteriosclerosis grades were correlated with risk factor lamination of hypertension (r=0.25 or 0.31, P<0.05), other correlation factors included age and blood high density lipoprotein concerned about hypertensive retinopathy grades or retinal arteriosclerosis grades, but other parameters, namely systolic or diastolic pressure, total cholesterol, triglyceride, low density lipoprotein cholesterol, fasting blood glucose,blood urea nitrogen and blood creatinine were not confirmed in this correlation analysis (P > 0.05).Conclusions Either hypertensive retinopathy grade or retinal arteriosclerosis grade is close with the hypertension risk factor lamination, suggesting that the fundus examination of patients with

  16. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  17. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  18. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Science.gov (United States)

    Munier, B; Bendell, L I

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P Plastic debris will affect metals within coastal ecosystems by; 1) providing a sorption site (copper and lead), notably for PVC 2) desorption from the plastic i.e., the "inherent" load (cadmium and zinc) and 3) serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  19. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    Science.gov (United States)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  20. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage

    DEFF Research Database (Denmark)

    Lundblad, Cornelia; Haanes, Kristian A; Grände, Gustaf

    2015-01-01

    , following dural application of complete Freund's adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. METHODS: In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface...

  2. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  3. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    Science.gov (United States)

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  4. Health-related quality of life, surgical and aesthetic outcomes following microvascular free flap reconstructions: an 8-year institutional review

    Science.gov (United States)

    Dolan, RT; Butler, JS; Murphy, SM; Cronin, KJ

    2012-01-01

    INTRODUCTION Microvascular free flap reconstruction has revolutionised the reconstruction of complex defects of traumatic, oncological, congenital and infectious aetiologies. Complications of microvascular free flap procedures impact negatively on patient post-operative course and outcome. METHODS We performed a retrospective analysis of 102 consecutive patients undergoing 108 free flap procedures at a tertiary referral centre over an 8-year period. Logistic regression analysis was used to identify factors pRedictive of free flap complications. Health-related quality of life (HRQoL) and aesthetic outcomes were assessed using the Short Form 36 questionnaire and a satisfaction visual analogue scale respectively. RESULTS In total, 108 free tissue transfers were performed; 23% were fasciocutaneous free flaps, 69% musculocutaneous and 8% osteoseptocutaneous. The overall flap success rate was 92.6%. Over a third of patients (34.3%) had flap-related complications ranging from minor wound dehiscence to total flap loss. ASA (American Society of Anesthesiologists) grade ≥2 (OR: 16.9, 95% CI: 15.3–18.1, pprocedure to restore functionality and quality of life for patients. PMID:22524928

  5. Some Limitations in the Use of Plastic and Dyed Plastic Dosimeters

    DEFF Research Database (Denmark)

    Miller, Arne; Bjergbakke, Erling; McLaughlin, W. L.

    1975-01-01

    Several practical plastic and dyed plastic dosimeters were examined under irradiation conditions similar to those used for radiation processing of materials. Cellulose triacetate, polymethyl methacrylate, polyvinyl chloride, dyed polymethyl methacrylate, dyed Cellophane and dyed Nylon were given...

  6. Comparison of Immediate With Delayed Stenting Using the Minimalist Immediate Mechanical Intervention Approach in Acute ST-Segment-Elevation Myocardial Infarction: The MIMI Study.

    Science.gov (United States)

    Belle, Loic; Motreff, Pascal; Mangin, Lionel; Rangé, Grégoire; Marcaggi, Xavier; Marie, Antoine; Ferrier, Nadine; Dubreuil, Olivier; Zemour, Gilles; Souteyrand, Géraud; Caussin, Christophe; Amabile, Nicolas; Isaaz, Karl; Dauphin, Raphael; Koning, René; Robin, Christophe; Faurie, Benjamin; Bonello, Laurent; Champin, Stanislas; Delhaye, Cédric; Cuilleret, François; Mewton, Nathan; Genty, Céline; Viallon, Magalie; Bosson, Jean Luc; Croisille, Pierre

    2016-03-01

    Delayed stent implantation after restoration of normal epicardial flow by a minimalist immediate mechanical intervention aims to decrease the rate of distal embolization and impaired myocardial reperfusion after percutaneous coronary intervention. We sought to confirm whether a delayed stenting (DS) approach (24-48 hours) improves myocardial reperfusion, versus immediate stenting, in patients with acute ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. In the prospective, randomized, open-label minimalist immediate mechanical intervention (MIMI) trial, patients (n=140) with ST-segment-elevation myocardial infarction ≤12 hours were randomized to immediate stenting (n=73) or DS (n=67) after Thrombolysis In Myocardial Infarction 3 flow restoration by thrombus aspiration. Patients in the DS group underwent a second coronary arteriography for stent implantation a median of 36 hours (interquartile range 29-46) after randomization. The primary end point was microvascular obstruction (% left ventricular mass) on cardiac magnetic resonance imaging performed 5 days (interquartile range 4-6) after the first procedure. There was a nonsignificant trend toward lower microvascular obstruction in the immediate stenting group compared with DS group (1.88% versus 3.96%; P=0.051), which became significant after adjustment for the area at risk (P=0.049). Median infarct weight, left ventricular ejection fraction, and infarct size did not differ between groups. No difference in 6-month outcomes was apparent for the rate of major cardiovascular and cerebral events. The present findings do not support a strategy of DS versus immediate stenting in patients with ST-segment-elevation infarction undergoing primary percutaneous coronary intervention and even suggested a deleterious effect of DS on microvascular obstruction size. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01360242. © 2016 American Heart Association, Inc.

  7. Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension

    Directory of Open Access Journals (Sweden)

    Valentina Ticcinelli

    2017-10-01

    Full Text Available The complex interactions that give rise to heart rate variability (HRV involve coupled physiological oscillators operating over a wide range of different frequencies and length-scales. Based on the premise that interactions are key to the functioning of complex systems, the time-dependent deterministic coupling parameters underlying cardiac, respiratory and vascular regulation have been investigated at both the central and microvascular levels. Hypertension was considered as an example of a globally altered state of the complex dynamics of the cardiovascular system. Its effects were established through analysis of simultaneous recordings of the electrocardiogram (ECG, respiratory effort, and microvascular blood flow [by laser Doppler flowmetry (LDF]. The signals were analyzed by methods developed to capture time-dependent dynamics, including the wavelet transform, wavelet-based phase coherence, non-linear mode decomposition, and dynamical Bayesian inference, all of which can encompass the inherent frequency and coupling variability of living systems. Phases of oscillatory modes corresponding to the cardiac (around 1.0 Hz, respiratory (around 0.25 Hz, and vascular myogenic activities (around 0.1 Hz were extracted and combined into two coupled networks describing the central and peripheral systems, respectively. The corresponding spectral powers and coupling functions were computed. The same measurements and analyses were performed for three groups of subjects: healthy young (Y group, 24.4 ± 3.4 y, healthy aged (A group, 71.1 ± 6.6 y, and aged treated hypertensive patients (ATH group, 70.3 ± 6.7 y. It was established that the degree of coherence between low-frequency oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly between the groups, declining with age and nearly disappearing in treated hypertension. Comparing the two healthy groups it was found that the couplings to the cardiac rhythm from both respiration and

  8. MODERN INSIGHTS INTO THE ROLE OF HEMORHEOLOGICAL DEVIATIONS AND FUNCTIONAL STATUS OF THE ENDOTHELIAL TISSUE IN THE PATHOGENESIS OF ACUTE INFLAMMATORY LUNG AND BRONCHIAL DISEASES AMONG CHILDREN

    OpenAIRE

    A.V. Mozhaev; R.R. Shilyaev; M.R. Grineva; O.A. Pakhrova

    2007-01-01

    Disorders of the endothelial tissue and hemorheology function build up one of the pathogenic bases to form the acute inflammatory abnormality of the respiratory tract among children. The overview highlights the information on the role and disorders of the erythrocyte clumping and plasticity, blood viscosity and function of the endothelial tissue as a response to the acute respiratory infections among children.Key words: endothelial dysfunction, hemorheology, hemorheological deviations, acute ...

  9. Comparative Aspects of the Regulation of Cutaneous and Cerebral Microcirculation During Acute Blood Loss

    Directory of Open Access Journals (Sweden)

    I. A. Ryzhkov

    2017-01-01

    Full Text Available Objective. Using laser Doppler flowmetry (LDF and wavelet-analysis of microvascular blood flow oscillations to determine the features of regulation of cutaneous and cerebral microhemocirculation at early stages of acute fixed volume blood loss.Materials and methods.Experiments were carried out on 31 male outbred rats weighing 300 g to 400 g. The animals were anesthetized by intraperitoneal injection of pentobarbital (45 mg/kg. The tail artery was catheterized for invasive measurement of mean blood pressure (BP and blood withdrawal. The LDF method (ЛАКК-02 device, LAZMA, Russia was used to record microvascular blood flow simultaneously in the right ear and the pial vessels of the left parietal region. An acute fixed-volume hemorrhage model was used. The target blood loss volume was 30% of the total blood volume (TBV. Within 10 minutes after the end of hemorrhage (posthemorrhagic period, the blood pressure and the LDF-gram were recorded. The following LDF-gram parameters were analyzed: the mean value of IP; the maximum amplitude of blood flow oscillations (Amax and the corresponding frequency (Fmax in the frequency band 0.01—0.4 Hz. Statistical processing of the data was performed using Statistica 7.0.Results. At baseline, the values of IP, Аmax and Fmax in the brain were higher than in the skin. At posthemorrhagic period, BP decreased, on average, from 105 to 41 mm Hg. Against this background, IP in the skin decreased by 65%, while in the brain it reduced only by 17%, as compared with the baseline values (P0,0001. In the same time these organs were characterized by a unidirectional dynamics of patterns of fluxmotion. In both investigated organs, Amax increased sharply, and Fmax decreased. In posthemorrhagic period, fluxmotion not only «slowed down», but was also synchronized in a relatively narrow frequency band: for the skin Fmax was about 0.04 Hz (at the border of the endothelial and neurogenic band, for the brain about 0.09 Hz

  10. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7......Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET...

  11. Microvascular decompression of the cochleovestibular nerve for treatment of tinnitus and vertigo : a systematic review and meta-analysis of individual patient data

    NARCIS (Netherlands)

    van den Berge, Minke J C; van Dijk, J. Marc C.; Posthumus, Iris A; Smidt, Nynke; van Dijk, Pim; Free, Rolien H

    OBJECTIVE Microvascular decompression (MVD) is regarded as a valid treatment modality in neurovascular conflicts (NVCs) causing, for example, trigeminal neuralgia and hemifacial spasms. An NVC of the cochleovestibular nerve might cause tinnitus and/or vertigo; however, general acceptance of MVD for

  12. Outcomes of microvascular free tissue transfer in twice-irradiated patients.

    Science.gov (United States)

    Clancy, Kate; Melki, Sami; Awan, Musaddiq; Li, Shawn; Lavertu, Pierre; Fowler, Nicole; Yao, Min; Rezaee, Rod; Zender, Chad A

    2017-09-01

    Patients may require microvascular free tissue transfer (MFTT) following re-irradiation for recurrent cancer or radiation complications. The objective of this study was to describe the indications for and outcomes of free flaps performed in twice-radiated patients. A retrospective chart review identified the indications for and outcomes of 36 free flaps performed on 29 twice-irradiated patients. The free flap success rate was 92%. The most common indications requiring MFTT were cancer recurrence and osteoradionecrosis. Sixty-one percent experienced postoperative complications, most commonly wound infection (33%). Twenty-five percent of the procedures required return to the operating room due to postoperative complication. MFTT can be successfully performed in the twice-irradiated patient population with a success rate comparable to singly-radiated patients. Despite a high success rate, there is also a high rate of surgical site complications, especially infection. © 2017 Wiley Periodicals, Inc.

  13. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  14. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  15. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  16. Plastic and Non-plastic Debris Ingestion in Three Gull Species Feeding in an Urban Landfill Environment.

    Science.gov (United States)

    Seif, S; Provencher, J F; Avery-Gomm, S; Daoust, P-Y; Mallory, M L; Smith, P A

    2018-04-01

    Plastic debris is recognized as a widespread, common and problematic environmental pollutant. An important consequence of this pollution is the ingestion of plastic debris by wildlife. Assessing the degree to which different species ingest plastics, and the potential effects of these plastics on their health are important research needs for understanding the impacts of plastic pollution. We examined debris (plastic and other types) ingestion in three sympatric overwintering gull species (Herring gulls Larus smithsonianus, Great Black-backed Gulls Larus marinus, and Iceland Gulls Larus glaucoides) to understand how debris ingestion differs among species, age classes and sexes in gulls. We also assessed how plastic burdens were associated with body condition to investigate how gulls may be affected by debris ingestion. There were no differences among the species, age classes or sexes in the incidence of debris ingestion (plastic or otherwise), the mass or number of debris pieces ingested. We found no correlation between ingested plastics burdens and individual condition. Gulls ingested plastic debris, but also showed high levels of other debris types as well, including metal, glass and building materials, including a metal piece of debris found within an abscess in the stomach. Thus, when the health effects of debris ingestion on gulls, and other species that ingest debris, is of interest, either from a physical or chemical perspective, it may be necessary to consider all debris types and not just plastic burdens as is often currently done for seabirds.

  17. Education on the Business of Plastic Surgery During Training: A Survey of Plastic Surgery Residents.

    Science.gov (United States)

    Ovadia, Steven A; Gishen, Kriya; Desai, Urmen; Garcia, Alejandro M; Thaller, Seth R

    2018-06-01

    Entrepreneurial skills are important for physicians, especially plastic surgeons. Nevertheless, these skills are not typically emphasized during residency training. Evaluate the extent of business training at plastic surgery residency programs as well as means of enhancing business training. A 6-question online survey was sent to plastic surgery program directors for distribution to plastic surgery residents. Responses from residents at the PGY2 level and above were included for analysis. Tables were prepared to present survey results. Hundred and sixty-six residents including 147 PGY2 and above residents responded to our survey. Only 43.5% reported inclusion of business training in their plastic surgery residency. A majority of residents reported they do not expect on graduation to be prepared for the business aspects of plastic surgery. Additionally, a majority of residents feel establishment of a formal lecture series on the business of plastic surgery would be beneficial. Results from our survey indicate limited training at plastic surgery programs in necessary business skills. Plastic surgery residency programs should consider incorporating or enhancing elements of business training in their curriculum. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

    Science.gov (United States)

    DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C

    2017-08-04

    The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation

  19. The effects of plastic waves on the numerical convergence of the viscous-plastic and elastic-viscous-plastic sea-ice models

    Science.gov (United States)

    Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François

    2017-07-01

    The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.

  20. Coliquefaction of coal, tar sand bitumen and plastic (interaction among coal, bitumen and plastic); Sekitan/tar sand bitumen/plastic no kyoekika ni okeru kyozon busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Okuyama, Y.; Matsubara, K. [NKK Corp., Tokyo (Japan); Kamo, T.; Sato, Y. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    For the improvement of economy, coliquefaction of coal, tar sand bitumen and plastic was performed under low hydrogen pressure, to investigate the influence of interaction among these on the liquefaction characteristics. For comparison, coliquefaction was also performed under the hydrogen pressure same as the NEDOL process. In addition, for clarifying its reaction mechanism, coliquefaction of dibenzyl and plastic was performed as a model experiment, to illustrate the distribution of products and composition of oil, and to discuss the interaction between dibenzyl and various plastics, and between various plastics. Under direct coal liquefaction conditions, coprocessing of Tanito Harum coal, Athabasca tar sand and plastic was carried out under low hydrogen pressure with an autoclave. The observed value of oil yield was higher than the calculated value based on the values from separate liquefaction of coal and plastic, which suggested the interaction between coal and the mixed plastic. The results of coliquefaction of coal, tar sand bitumen and plastic could be explained from the obtained oil yield and its composition by the coliquefaction of dibenzyl and plastic. 2 refs., 3 tabs.

  1. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    Science.gov (United States)

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  2. Analysis of correlations between selected endothelial cell activation markers, disease activity, and nailfold capillaroscopy microvascular changes in systemic lupus erythematosus patients.

    Science.gov (United States)

    Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian

    2010-02-01

    The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p nailfold capillaroscopy (r = 0.458, p nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.

  3. A review of plastic waste biodegradation.

    Science.gov (United States)

    Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S

    2005-01-01

    With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.

  4. Role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications

    Directory of Open Access Journals (Sweden)

    Nermine Hossam Zakaria

    2014-04-01

    Full Text Available The aldose reductase pathway proves that elevated blood glucose promotes cellular dysfunction. The polyol pathway converts excess intracellular glucose into alcohols via activity of the aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol which triggers variety of intracellular changes in the tissues. Among diabetes, activity is drastically increased in association with three main consequences inside the cells. The aim of this study was to detect the association of the C-106 T polymorphism of the aldose reductase gene and its frequency among a sample of 150 Egyptian adults with type 2 diabetic patients having diabetic microvascular. The detection of the aldose reductase C-106 T polymorphism gene was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The genotype distribution of the C-106 T polymorphism showed that CC genotype was statistically significantly higher among patients with retinopathy compared to nephropathy. Patients with nephropathy had significant association with the TT genotype when compared with diabetic retinopathy patients. Follow up study after the genotype detection among recently diagnosed diabetic patients in order to give a prophylactic aldose reductase inhibitors; studying the microvascular complications and its relation to the genotype polymorphisms. The study may include multiple gene polymorphisms to make the relation between the gene and the occurrence of these complications more evident.

  5. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  6. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  7. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  8. Serum ADEPONECTIN Level In Children And Adolescents With Type I Diabetes Mellitus And Its Association With Microvascular Complications

    International Nuclear Information System (INIS)

    MOAWAD, A.T.

    2010-01-01

    Adiponectin, an adipo cytokine, is secreted from the adipose tissue and plays an important role in obesity, type II diabetes and cardiovascular disease. This study aimed to determine the concentration of serum adiponectin in type I diabetic children and to establish its association with microvascular complications. For this reason, weight (kg), height (m), body mass index (BMI) (kg/m2), random blood sugar, HbAIc, kidney functions, urinary microalbuminuria, lipid profiles and serum adiponectin were assessed in 25 children (11 males, 14 females) with type I diabetes and twenty healthy control children. Careful history, clinical examination, acetomorphine and pirbuterol assessment were done for all patients and controls. The diabetic patients were stratified depending on the pubertal stage into pre-pubertal group and pubertal group, and according to gender into male group and female group. The results obtained displayed significant elevated values for random blood glucose (P<0.001), HbAIc (P<0.001), total cholesterol (P<0.05), low density lipoprotein (LDL) (P<0.05), BUN (P<0.001), creatinine (P<0.05), urinary microalbuminuria (P<0.001) and serum adiponectin (P<0.001) in diabetic children and control. In patients suffering from microvascular diabetic complications as retinopathy, nephropathy and neuropathy, serum adiponectin level showed high significant increase in patients with diabetic nephropathy and neuropathy than without. On the other hand, patients with retinopathy had no significant increase in serum adiponectin as compared with patients without retinopathy but this result may be due to small sample size. Positive significant correlation was detected between serum adiponectin and HbAIc, total cholesterol and urinary microalbuminuria in the same patients. Negative significant correlation was observed between serum adiponectin level and body mass index (BMI). It could be concluded that serum adiponectin which increased in diabetic children than healthy control

  9. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Directory of Open Access Journals (Sweden)

    Domenico Sagnelli

    2017-09-01

    Full Text Available Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO, an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  10. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Science.gov (United States)

    Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-01-01

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963

  11. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.

    Science.gov (United States)

    Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-09-30

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  12. Cost-effectiveness analysis of a postoperative clinical care pathway in head and neck surgery with microvascular reconstruction

    OpenAIRE

    Dautremont, Jonathan F; Rudmik, Luke R; Yeung, Justin; Asante, Tiffany; Nakoneshny, Steve C; Hoy, Monica; Lui, Amanda; Chandarana, Shamir P; Matthews, Thomas W; Schrag, Christiaan; Dort, Joseph C

    2013-01-01

    Background The objective of this study is to evaluate the cost-effectiveness of a postoperative clinical care pathway for patients undergoing major head and neck oncologic surgery with microvascular reconstruction. Methods This is a comparative trial of a prospective treatment group managed on a postoperative clinical care pathway and a historical group managed prior to pathway implementation. Effectiveness outcomes evaluated were total hospital days, return to OR, readmission to ICU and rate...

  13. Plastics and beaches: A degrading relationship

    International Nuclear Information System (INIS)

    Corcoran, Patricia L.; Biesinger, Mark C.; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth

  14. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  15. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  16. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  17. Biomarker for early renal microvascular and diabetic kidney diseases.

    Science.gov (United States)

    Futrakul, Narisa; Futrakul, Prasit

    2017-11-01

    Recognition of early stage of diabetic kidney disease, under common practice using biomarkers, namely microalbuminuria, serum creatinine level above 1 mg/dL and accepted definition of diabetic kidney disease associated with creatinine clearance value below 60 mL/min/1.73 m 2 , is unlikely. This would lead to delay treatment associated with therapeutic resistance to vasodilator due to a defective vascular homoeostasis. Other alternative biomarkers related to the state of microalbuminuria is not sensitive to screen for early diabetic kidney disease (stages I, II). In this regard, a better diagnostic markers to serve for this purpose are creatinine clearance, fractional excretion of magnesium (FE Mg), cystatin C. Recently, renal microvascular disease and renal ischemia have been demonstrated to correlate indirectly with the development of diabetic kidney disease and its function. Among these are angiogenic and anti-angiogenic factors, namely VEGF, VEGF receptors, angiopoietins and endostatin. With respect to therapeutic prevention, implementation of treatment at early stage of diabetic and nondiabetic kidney disease is able to restore renal perfusion and function.

  18. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  19. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  20. A work criterion for plastic collapse

    International Nuclear Information System (INIS)

    Muscat, Martin; Mackenzie, Donald; Hamilton, Robert

    2003-01-01

    A new criterion for evaluating limit and plastic loads in pressure vessel design by analysis is presented. The proposed criterion is based on the plastic work dissipated in the structure as loading progresses and may be used for structures subject to a single load or a combination of multiple loads. Example analyses show that limit and plastic loads given by the plastic work criterion are robust and consistent. The limit and plastic loads are determined purely by the inelastic response of the structure and are not influenced by the initial elastic response: a problem with some established plastic criteria

  1. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  2. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  3. Reconstruction of mandibular defects after radiation, using a free, living bone, graft transferred by microvascular anastomoses. An experimental study

    International Nuclear Information System (INIS)

    Ostrup, L.T.; Fredrickson, J.M.

    1975-01-01

    The replacement of a mandibular defect by a free, composite rib graft, transferred by microvascular anastomoses of the posterior intercostal vessels to donor vessels in the neck was described previously. We now present data which demonstrate that successful results can be achieved even after radical mandibular radiation. This technique, done in dogs, has obvious implications in the management of oral cancer in man

  4. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  5. The microvascular volume of the achilles tendon is increased in patients with tendinopathy at rest and after a 1-hour treadmill run

    DEFF Research Database (Denmark)

    Pingel, Jessica; Harrison, Adrian; Simonsen, Lene

    2013-01-01

    BACKGROUND:Achilles tendinopathy (AT) is initiated asymptomatically and is therefore often discovered at a very late stage. PURPOSE:To elucidate whether the microvascular volume (MV) of the Achilles tendon is elevated in patients with AT compared with healthy controls during pre-exercise rest, af...

  6. Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: Implications for capillary-like tube formation in a fibrin matrix

    NARCIS (Netherlands)

    Kroon, M.E.; Koolwijk, P.; Vecht, B. van der; Hinsbergh, V.W.M. van

    2000-01-01

    Hypoxia stimulates angiogenesis, the formation of new blood vessels. This study evaluates the direct effect of hypoxia (1% oxygen) on the angiogenic response of human microvascular endothelial cells (hMVECs) seeded on top of a 3-dimensional fibrin matrix, hMVECs stimulated with fibroblast growth

  7. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real time imaging in humans and rat

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Hiscock, Natalie J

    2011-01-01

    We employed and evaluated a new application of contrast enhanced ultrasound for real time imaging of changes in microvascular blood volume (MVB) in tissues in females, males and rat. Continuous real time imaging was performed using contrast enhanced ultrasound to quantify infused gas filled micro...

  8. Practical solution of plastic deformation problems in elastic-plastic range

    Science.gov (United States)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  9. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  10. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  11. A 3-year follow-up of a patient with acute renal failure caused by thrombotic microangiopathy related to antiphospholipid syndrome: case report.

    Science.gov (United States)

    Zhou, X-J; Chen, M; Wang, S-X; Zhou, F-D; Zhao, M-H

    2017-06-01

    Background Microvascular manifestations of antiphospholipid antibody syndrome in the kidneys include acute renal failure, thrombotic microangiopathy and hypertension. Therapy has been largely empiric. Case report A 49-year-old Chinese man presented with anuric acute renal failure without abundant proteinuria and heavy haematuria, but markedly low levels of urinary sodium, potassium and chlorine upon admission. On day 1 of hospitalization, his thrombocytopenia, anaemia and renal failure showed rapid progression. The presence of lupus anticoagulant and vascular ischaemia of the small vessels in renal arteriography were also observed. Anticoagulants, continuous renal replacement therapy, glucocorticoids and six sessions of plasma exchange were started. After the fourth plasma exchange (on day 20), his urine output increased and began to normalize. On day 25, haemodialysis was stopped and his general condition gradually improved. A renal biopsy was subsequently performed, and the histopathological diagnosis was thrombotic microangiopathy due to antiphospholipid antibody syndrome. A further 3-year follow-up showed that his haemoglobin level, platelet count and serum creatinine were within the normal range, with stable blood pressure. Conclusion Treatment modalities such as anticoagulation, immunosuppression and plasma exchange are likely to be necessary when severe acute renal failure combined with thrombotic microangiopathy present in nephropathy of antiphospholipid antibody syndrome.

  12. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  13. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  14. Track treeing mechanism and plastic zone in solid Part 1: Initial development of plastic zone

    International Nuclear Information System (INIS)

    Li Boyang

    2008-01-01

    After neutron exposure and chemical etching in advance, latent tracks of recoil nucleon develop into pits on CR39 surface. During electrochemical etching, plastic zone is formed at top of pits. Some pits develop into tree cracks in the initial stage of plastic zone development. Physical and mathematical model of crack and plastic zone is proposed; parameter of development free path of plastic zone is presented. Based on integration of elementary theories the stress analysis is build up; based on analyses of measured parameters, a set of common relations between parameters is obtained. Integrate parameter analysis and stress analysis, depth of plastic zone development, law and phenomenon in experimental data can be interpreted completely

  15. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics.

    Science.gov (United States)

    Tanaka, Kosuke; Takada, Hideshige; Yamashita, Rei; Mizukawa, Kaoruko; Fukuwaka, Masa-aki; Watanuki, Yutaka

    2013-04-15

    We analyzed polybrominated diphenyl ethers (PBDEs) in abdominal adipose of oceanic seabirds (short-tailed shearwaters, Puffinus tenuirostris) collected in northern North Pacific Ocean. In 3 of 12 birds, we detected higher-brominated congeners (viz., BDE209 and BDE183), which are not present in the natural prey (pelagic fish) of the birds. The same compounds were present in plastic found in the stomachs of the 3 birds. These data suggested the transfer of plastic-derived chemicals from ingested plastics to the tissues of marine-based organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Microvascular pressure responses of second-generation rats chronically exposed to 2 g centrifugation

    Science.gov (United States)

    Richardson, D. R.; Knapp, C. F.

    1977-01-01

    Preliminary results are presented for a study aimed at a quantitative comparison of microvascular dynamics in second-generation rats reared in a 2-g force field produced by centrifugation with similar data from animals reared in a centrifuge that produced only a 1-g force. It is shown that the pressure distribution in the mesenteric microvasculature of the second generation of rats reared in a 2-g environment, as well as the animals' blood pressure response to epinephrine, are significantly different compared to their 1-g counterparts. In particular, 1-g and 2-g chronic centrifugation enhances the arterial blood pressure, and the 2-g force field attenuates the pressor effects of norepinephrine.

  17. Extraction of Organochlorine Pesticides from Plastic Pellets and Plastic Type Analysis.

    Science.gov (United States)

    Pflieger, Marilyne; Makorič, Petra; Kovač Viršek, Manca; Koren, Špela

    2017-07-01

    Plastic resin pellets, categorized as microplastics (≤5 mm in diameter), are small granules that can be unintentionally released to the environment during manufacturing and transport. Because of their environmental persistence, they are widely distributed in the oceans and on beaches all over the world. They can act as a vector of potentially toxic organic compounds (e.g., polychlorinated biphenyls) and might consequently negatively affect marine organisms. Their possible impacts along the food chain are not yet well understood. In order to assess the hazards associated with the occurrence of plastic pellets in the marine environment, it is necessary to develop methodologies that allow for rapid determination of associated organic contaminant levels. The present protocol describes the different steps required for sampling resin pellets, analyzing adsorbed organochlorine pesticides (OCPs) and identifying the plastic type. The focus is on the extraction of OCPs from plastic pellets by means of a pressurized fluid extractor (PFE) and on the polymer chemical analysis applying Fourier Transform-InfraRed (FT-IR) spectroscopy. The developed methodology focuses on 11 OCPs and related compounds, including dichlorodiphenyltrichloroethane (DDT) and its two main metabolites, lindane and two production isomers, as well as the two biologically active isomers of technical endosulfan. This protocol constitutes a simple and rapid alternative to existing methodology for evaluating the concentration of organic contaminants adsorbed on plastic pieces.

  18. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  19. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  20. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    Science.gov (United States)

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.