WorldWideScience

Sample records for acute lung dysfunction

  1. Acute lung injury induces cardiovascular dysfunction

    DEFF Research Database (Denmark)

    Suda, Koichi; Tsuruta, Masashi; Eom, Jihyoun;

    2011-01-01

    Acute lung injury (ALI) is associated with systemic inflammation and cardiovascular dysfunction. IL-6 is a biomarker of this systemic response and a predictor of cardiovascular events, but its possible causal role is uncertain. Inhaled corticosteroids and long-acting β2 agonists (ICS/LABA) down......-regulate the systemic expression of IL-6, but whether they can ameliorate the cardiovascular dysfunction related to ALI is uncertain. We sought to determine whether IL-6 contributes to the cardiovascular dysfunction related to ALI, and whether budesonide/formoterol ameliorates this process. Wild-type mice were...... these impairments (vasodilatory responses to acetylcholine, P = 0.005; cardiac output, P = 0.025). Pretreatment with the combination of budesonide and formoterol, but not either alone, ameliorated the vasodilatory responses to acetylcholine (P = 0.018) and cardiac output (P drugs also attenuated...

  2. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin.

    Science.gov (United States)

    Kao, Shang-Jyh; Liu, Demeral David; Su, Chain-Fa; Chen, Hsing I

    2007-09-01

    Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.

  3. Acute fibrinous and organising pneumonia following lung transplantation is associated with severe allograft dysfunction and poor outcome: a case series

    Directory of Open Access Journals (Sweden)

    Keith Meyer

    2015-01-01

    Full Text Available   Acute fibrinous and organising pneumonia (AFOP is a histopathologic variant of acute lung injury that has been associated with infection and inflammatory disorders and has been reported as a complication of lung transplantation. A retrospective chart review was performed for all patients transplanted at the University of Wisconsin Hospital and Clinics from January 1995 to December 2013 (n = 561. We identified 6 recipients whose clinical course was complicated by AFOP. All recipients were found to have AFOP on lung biopsy or at post-mortem examination, and 5 of the 6 patients suffered progressive allograft dysfunction that led to fatal outcome. Only 1 of the 6 patients stabilised with augmented immunosuppression and had subsequent improvement and stabilisation of allograft function. We could not clearly identify any specific cause of AFOP, such as drug toxicity or infection. Lung transplantation can be complicated by lung injury with an AFOP pattern on histopathologic examination of lung biopsy specimens. The presence of an AFOP pattern was associated with irreversible decline in lung function that was refractory to therapeutic interventions in 5 of our 6 cases and was associated with severe allograft dysfunction and death in these 5 individuals. AFOP should be considered as a potential diagnosis when lung transplant recipients develop progressive decline in lung function that is consistent with a clinical diagnosis of chronic lung allograft dysfunction.  

  4. Obesity Is Associated with Neutrophil Dysfunction and Attenuation of Murine Acute Lung Injury

    OpenAIRE

    Kordonowy, Lauren L.; Burg, Elianne; Lenox, Christopher C.; Gauthier, Lauren M.; Petty, Joseph M.; Antkowiak, Maryellen; Palvinskaya, Tatsiana; Ubags, Niki; Rincón, Mercedes; Dixon, Anne E.; Vernooy, Juanita H. J.; Fessler, Michael B.; Poynter, Matthew E.; Suratt, Benjamin T.

    2012-01-01

    Although obesity is implicated in numerous health complications leading to increased mortality, the relationship between obesity and outcomes for critically ill patients appears paradoxical. Recent studies have reported better outcomes and lower levels of inflammatory cytokines in obese patients with acute lung injury (ALI)/acute respiratory distress syndrome, suggesting that obesity may ameliorate the effects of this disease. We investigated the effects of obesity in leptin-resistant db/db o...

  5. Paraquat poisoning: an experimental model of dose-dependent acute lung injury due to surfactant dysfunction

    Directory of Open Access Journals (Sweden)

    M.F.R. Silva

    1998-03-01

    Full Text Available Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight 24 h before the experiment. Static pressure-volume (PV curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA, sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation

  6. Biomarkers in acute lung injury.

    Science.gov (United States)

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  7. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  8. ICAM-1 and Acute Pancreatitis Complicated by Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    XiPing Zhang

    2009-01-01

    Full Text Available One of the most common complications of acute pancreatitis is acute lung injury, during which intercellular adhesion molecule-1 (ICAM-1 plays an important role by participating in leukocyte adhesion and activation as well as by inducing the “cascade effect” of inflammatory mediators, pulmonary microcirculation dysfunction and even acute respiratory distress syndrome, multiple organ failure or death. Although it is generally believed that the modulatory mechanism of ICAM-1 during this process is associated with the activation of nuclear transcription factor kappa B which is mediated by IL-1, IL-6, IL-18 and oxygen free radical, etc., further studies are still required to clarify it. Since the upregulation of ICAM-1 expression in the lung during acute lung injury is one of main pathogeneses, the early detection of the ICAM-1 expression level may contribute to the prevention and treatment of acute lung injury. Moreover, reducing pulmonary ICAM-1 expression levels through treatment with anti-ICAM-1 monoclonal antibody (aICAM-1 and antagonists of the neurokinin 1 receptor, etc., should have a positive effect on protecting the lungs during acute pancreatitis. This review aims to further clarify the relationship between ICAM-1 and acute pancreatitis complicated by acute lung injury, and therefore provides a theoretical basis for the formulation of corresponding therapeutic measures in clinical practice for acute pancreatitis.

  9. Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2 trial: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    McAuley Daniel F

    2012-09-01

    Full Text Available Abstract Background Acute lung injury (ALI is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2 trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI. Methods/Design Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1:1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms

  10. Surfactant for pediatric acute lung injury.

    Science.gov (United States)

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  11. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    Lung injury is the most pertinent manifestation of extra-abdominal organ dysfunction in pancreatitis. The propensity of this retroperitoneal inflammatory condition to engender a diffuse and life-threatening lung injury is significant. Approximately one third of patients will develop acute lung injury and acute respiratory distress syndrome, which account for 60% of all deaths within the first week. The variability in the clinical course of pancreatitis renders it a vexing entity and makes demonstration of the efficacy of any specific intervention difficult. The distinct pathologic entity of pancreatitis-associated lung injury is reviewed with a focus on etiology and potential therapeutic maneuvers.

  12. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2013-07-01

    Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·−} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA

  13. Human models of acute lung injury

    Directory of Open Access Journals (Sweden)

    Alastair G. Proudfoot

    2011-03-01

    Full Text Available Acute lung injury (ALI is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.

  14. Acute lung injury | EU Clinical Trials Register [EU Clinical Trials Register

    Lifescience Database Archive (English)

    Full Text Available reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction(HARP 2) A.3.1Tit...ical condition(s) being investigated Acute lung injury E.1.1.1Medical condition in easily understood languag...eclined to onset is defined as follows: th

  15. Acute onset paraneoplastic cerebellar degeneration in a patient with small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bhatia R

    2003-04-01

    Full Text Available A patient with small cell lung cancer presented with a rare presentation of an acute onset pancerebellar dysfunction. His clinical condition markedly improved following the surgical removal of the tumor and chemo- and radiotherapy.

  16. Renal dysfunction in African patients with acute heart failure

    NARCIS (Netherlands)

    Sani, Mahmoud U.; Davison, Beth A.; Cotter, Gad; Sliwa, Karen; Edwards, Christopher; Liu, Licette; Damasceno, Albertino; Mayosi, Bongani M.; Ogah, Okechukwu S.; Mondo, Charles; Dzudie, Anastase; Ojji, Dike B.; Voors, Adrian A.

    2014-01-01

    Aims In Western countries with typically elderly ischaemic acute heart failure patients, predictors and clinical outcome of renal dysfunction and worsening renal function are well described. However, the prevalence, predictors and clinical outcome of renal dysfunction in younger, mainly hypertensive

  17. Acute renal dysfunction in liver diseases

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (MRS) is a unique form of renal failure associated with advanced liver disease or cirrhosis, and is characterized by functional renal impairment without significant changes in renal histology. Irrespective of the type of renal failure, renal hypoperfusion is the central pathogenetic mechanism, due either to reduced perfusion pressure or increased renal vascular resistance. Volume expansion, avoidance of precipitating factors and treatment of underlying liver disease constitute the mainstay of therapy to prevent and reverse renal impairment. Splanchnic vasoconstrictor agents, such as terlipressin, along with volume expansion, and early placement of transjugular intrahepatic portosystemic shunt (TIPS) may be effective in improving renal function in HRS. Continuous renal replacement therapy (CRRT) and molecular absorbent recirculating system (MARS) in selected patients may be life saving while awaiting liver transplantation.

  18. Pathogenesis of acute lung injury in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; YUE Yuan; ZHANG Mei; PAN Cheng-en

    2005-01-01

    Objective:To study the pathogenesis of acute lung injury in severe acute pancreatitis (SAP). Methods:Rats were sacrificed at 1, 3, 5, 6, 9 and 12 h after establishment of inducing model. Pancreas and lung tissues were obtained for pathological study, microvascular permeability and MPO examination. Gene expressions of TNF-α and ICAM-1 in pancreas and lung tissues were detected by RT-PCR. Results:After inducing SAP model, the injury degree of the pancreas and the lung increased gradually, accompanied with gradually increased MPO activity and microvascular permeability. Gene expressions of TNF-α and ICAM-1 in pancreas rose at 1 h and reached peak at 7 h. Relatively, their gene expressions in the lungs only rose slightly at 1 h and reached peak at 9-12 h gradually. Conclusion:There is an obvious time window between SAP and lung injury, when earlier protection is beneficial to prevent development of acute lung injury.

  19. Chronic lung allograft dysfunction after lung transplantation: novel insights into immunological mechanisms

    NARCIS (Netherlands)

    Budding, K.

    2016-01-01

    Lung transplantation (LTx) is the final treatment option for patients suffering from end-stage lung diseases. Survival after LTx is hampered by the development of chronic lung allograft dysfunction which presents itself in an obstructive form as the bronchiolitis obliterans syndrome (BOS). BOS is ha

  20. Acute cognitive dysfunction after hip fracture

    DEFF Research Database (Denmark)

    Bitsch, M S; Foss, N B; Kristensen, B B;

    2006-01-01

    BACKGROUND: Patients undergoing hip fracture surgery often experience acute post-operative cognitive dysfunction (APOCD). The pathogenesis of APOCD is probably multifactorial, and no single intervention has been successful in its prevention. No studies have investigated the incidence of APOCD after......, fourth and seventh post-operative days with the Mini Mental State Examination (MMSE) score. RESULTS: Thirty-two per cent of patients developed a significant post-operative cognitive decline, which was associated with several pre-fracture patient characteristics, including age and cognitive function......, but also the number of peri-operative transfusions. The development of APOCD was also associated with impaired post-operative rehabilitation and an increased length of stay. APOCD was associated with the development of a major medical complication in 35% of all patients. In 65% of patients developing APOCD...

  1. Hashimoto's Encephalopathy Presenting with Acute Cognitive Dysfunction and Convulsion.

    Science.gov (United States)

    Kang, Woo-Hyuk; Na, Ju-Young; Kim, Meyung-Kug; Yoo, Bong-Goo

    2013-12-01

    Hashimoto's encephalopathy is an immune-mediated disorder characterized by acute or subacute encephalopathy related to increased anti-thyroid antibodies. Clinical manifestations of Hashimoto's encephalopathy may include stroke-like episodes, altered consciousness, psychosis, myoclonus, abnormal movements, seizures, and cognitive dysfunction. Acute cognitive dysfunction with convulsion as initial clinical manifestations of Hashimoto's encephalopathy is very rare. We report a 65-year-old man who developed acute onset of cognitive decline and convulsion due to Hashimoto's encephalopathy.

  2. Acute exacerbations of fibrotic interstitial lung disease.

    Science.gov (United States)

    Churg, Andrew; Wright, Joanne L; Tazelaar, Henry D

    2011-03-01

    An acute exacerbation is the development of acute lung injury, usually resulting in acute respiratory distress syndrome, in a patient with a pre-existing fibrosing interstitial pneumonia. By definition, acute exacerbations are not caused by infection, heart failure, aspiration or drug reaction. Most patients with acute exacerbations have underlying usual interstitial pneumonia, either idiopathic or in association with a connective tissue disease, but the same process has been reported in patients with fibrotic non-specific interstitial pneumonia, fibrotic hypersensitivity pneumonitis, desquamative interstitial pneumonia and asbestosis. Occasionally an acute exacerbation is the initial manifestation of underlying interstitial lung disease. On biopsy, acute exacerbations appear as diffuse alveolar damage or bronchiolitis obliterans organizing pneumonia (BOOP) superimposed upon the fibrosing interstitial pneumonia. Biopsies may be extremely confusing, because the acute injury pattern can completely obscure the underlying disease; a useful clue is that diffuse alveolar damage and organizing pneumonia should not be associated with old dense fibrosis and peripheral honeycomb change. Consultation with radiology can also be extremely helpful, because the fibrosing disease may be evident on old or concurrent computed tomography scans. The aetiology of acute exacerbations is unknown, and the prognosis is poor; however, some patients survive with high-dose steroid therapy.

  3. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance.

    Science.gov (United States)

    Gracon, Adam S A; Wilkes, David S

    2014-08-01

    Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.

  4. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part II

    Directory of Open Access Journals (Sweden)

    O. A. Rozenberg

    2014-01-01

    Full Text Available Part 2 of the review considers the problem of surfactant therapy for acute respiratory distress syndrome (ARDS in adults and young and old children. It gives information on the results of surfactant therapy and prevention of ARDS in patients with severe concurrent trauma, inhalation injuries, complications due to complex expanded chest surgery, or severe pneumonias, including bilateral pneumonia in the presence of A/H1N1 influenza. There are data on the use of a surfactant in obstetric care and prevention of primary graft dysfunction during lung transplantation. The results of longterm use of surfactant therapy in Russia, suggesting that death rates from ARDS may be substantially reduced (to 20% are discussed. Examples of surfactant therapy for other noncritical lung diseases, such as permanent athelectasis, chronic obstructive pulmonary diseases, and asthma, as well tuberculosis, are also considered.

  5. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  6. Nebulized Pentamidine-Induced Acute Renal Allograft Dysfunction

    Directory of Open Access Journals (Sweden)

    Siddhesh Prabhavalkar

    2013-01-01

    Full Text Available Acute kidney injury (AKI is a recognised complication of intravenous pentamidine therapy. A direct nephrotoxic effect leading to acute tubular necrosis has been postulated. We report a case of severe renal allograft dysfunction due to nebulised pentamidine. The patient presented with repeated episodes of AKI without obvious cause and acute tubular necrosis only on renal histology. Nebulised pentamidine was used monthly as prophylaxis for Pneumocystis jirovecii pneumonia, and administration preceded the creatinine rise on each occasion. Graft function stabilised following discontinuation of the drug. This is the first report of nebulized pentamidine-induced reversible nephrotoxicity in a kidney allograft. This diagnosis should be considered in a case of unexplained acute renal allograft dysfunction.

  7. Desferrioxamine attenuates minor lung injury following surgical acute liver failure.

    Science.gov (United States)

    Kostopanagiotou, G G; Kalimeris, K A; Arkadopoulos, N P; Pafiti, A; Panagopoulos, D; Smyrniotis, V; Vlahakos, D; Routsi, C; Lekka, M E; Nakos, G

    2009-06-01

    Acute liver failure (ALF) can be complicated by lung dysfunction. The aim of this study was to test the hypothesis that inhibition of oxidative stress through iron chelation with desferrioxamine (DFX) attenuates pulmonary injury caused by ALF. 14 adult female domestic pigs were subjected to surgical devascularisation of the liver and were randomised to a study group (DFX group, n = 7), which received post-operative intravenous infusion of DFX (14.5 mg x kg(-1) x h(-1) for the first 6 h post-operatively and 2.4 mg x kg(-1) x h(-1) until completion of 24 h), and a control group (n = 7). Post-operative lung damage was evaluated by histological and bronchoalveolar lavage fluid (BALF) analysis. DFX resulted in reduced BALF protein levels and tissue phospholipase (PL)A(2) activity. Plasma malondialdehyde and BALF nitrate and nitrite concentrations were lower, while catalase activity in the lung was higher after DFX treatment. PLA(2), platelet-activating factor acetylhydrolase and total cell counts in BALF did not differ between groups. Histological examination revealed reduced alveolar collapse, pneumonocyte necrosis and total lung injury in the DFX-treated animals. DFX reduced systemic and pulmonary oxidative stress during ALF. The limited activity of PLA(2) and the attenuation of pneumonocyte necrosis could represent beneficial mechanisms by which DFX improves alveolar-capillary membrane permeability and prevents alveolar space collapse.

  8. Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation

    Directory of Open Access Journals (Sweden)

    Cuzzocrea Salvatore

    2007-10-01

    Full Text Available Abstract In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1 TNF-α production in pleural exudates and in the lung tissues, (2 the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity, (3 the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry and (4 apoptosis (TUNEL staining, Bax, Bcl-2 expression. Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction.

  9. Prostaglandin E₂ protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction.

    Science.gov (United States)

    Dackor, Ryan T; Cheng, Jennifer; Voltz, James W; Card, Jeffrey W; Ferguson, Catherine D; Garrett, Ryan C; Bradbury, J Alyce; DeGraff, Laura M; Lih, Fred B; Tomer, Kenneth B; Flake, Gordon P; Travlos, Gregory S; Ramsey, Randle W; Edin, Matthew L; Morgan, Daniel L; Zeldin, Darryl C

    2011-11-01

    Prostaglandin E(2) (PGE(2)) is a lipid mediator that is produced via the metabolism of arachidonic acid by cyclooxygenase enzymes. In the lung, PGE(2) acts as an anti-inflammatory factor and plays an important role in tissue repair processes. Although several studies have examined the role of PGE(2) in the pathogenesis of pulmonary fibrosis in rodents, results have generally been conflicting, and few studies have examined the therapeutic effects of PGE(2) on the accompanying lung dysfunction. In this study, an established model of pulmonary fibrosis was used in which 10-12-wk-old male C57BL/6 mice were administered a single dose (1.0 mg/kg) of bleomycin via oropharyngeal aspiration. To test the role of prostaglandins in this model, mice were dosed, via surgically implanted minipumps, with either vehicle, PGE(2) (1.32 μg/h), or the prostacyclin analog iloprost (0.33 μg/h) beginning 7 days before or 14 days after bleomycin administration. Endpoints assessed at 7 days after bleomycin administration included proinflammatory cytokine levels and measurement of cellular infiltration into the lung. Endpoints assessed at 21 days after bleomycin administration included lung function assessment via invasive (FlexiVent) analysis, cellular infiltration, lung collagen content, and semiquantitative histological analysis of the degree of lung fibrosis (Ashcroft method). Seven days after bleomycin administration, lymphocyte numbers and chemokine C-C motif ligand 2 expression were significantly lower in PGE(2)- and iloprost-treated animals compared with vehicle-treated controls (P fibrosis, and collagen production that is associated with 3 wk of bleomycin exposure. However, PGE(2) had no therapeutic effect on these parameters when administered 14 days after bleomycin challenge. In summary, PGE(2) prevented the decline in lung static compliance and protected against lung fibrosis when it was administered before bleomycin challenge but had no therapeutic effect when administered

  10. A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia

    NARCIS (Netherlands)

    Nieuwenhuizen, Laurens; de Groot, Philip G.; Grutters, Jan C.; Biesma, Douwe H.

    2009-01-01

    Enhanced bronchoalveolar coagulation is a hallmark of many acute inflammatory lung diseases such as acute lung injury, acute respiratory distress syndrome and pneumonia. Intervention with natural anticoagulants in these diseases has therefore become a topic of interest. Recently, new data on the rol

  11. Preoperative Cardiac Variables of Diastolic Dysfunction and Clinical Outcomes in Lung Transplant Recipients

    OpenAIRE

    2013-01-01

    Background. Orthotopic lung transplantation is now widely performed in patients with advanced lung disease. Patients with moderate or severe ventricular systolic dysfunction are typically excluded from lung transplantation; however, there is a paucity of data regarding the prognostic significance of abnormal left ventricular diastolic function and elevated pretransplant pulmonary pressures. Methods. We reviewed the characteristics of 111 patients who underwent bilateral and unilateral lung tr...

  12. Transfusion-related acute lung injury:A case report

    Institute of Scientific and Technical Information of China (English)

    Emmanouil Petrou; Vasiliki Karali; Vasiliki Vartela

    2015-01-01

    Transfusion-related acute lung injury is the most common cause of serious morbidity and mortality associated with the transfusion of plasma-containing blood components. The syndrome can be confused with other causes of acute respiratory failure. Herein, we describe a 71-year-old man who was transfused with fresh frozen plasma due to prolonged INR, and died of what was considered as transfusion-related acute lung injury, despite treatment.

  13. Transfusion-related acute lung injury.

    Science.gov (United States)

    Federico, Anne

    2009-02-01

    Approximately one person in 5,000 will experience an episode of transfusion-related acute lung injury (TRALI) in conjunction with the transfusion of whole blood or blood components. Its hallmarks include hypoxemia, dyspnea, fever, hypotension, and bilateral pulmonary edema (noncardiogenic). The mortality for reported cases is 16.3%. The incidence and mortality may be even higher than estimated because of under-recognition and under-reporting. Although TRALI was identified as a clinical entity in the 1980s, a lack of consensus regarding a definition was present until 2004. An exact cause has yet to be identified; however, there are two theories regarding the etiology: the "antibody" and the "two-hit" theories. These theories involve both donor and recipient factors. Further education and research are needed to assist in the development of strategies for the prevention and treatment of TRALI.

  14. Soluble CD59 is a Novel Biomarker for the Prediction of Obstructive Chronic Lung Allograft Dysfunction After Lung Transplantation.

    Science.gov (United States)

    Budding, Kevin; van de Graaf, Eduard A; Kardol-Hoefnagel, Tineke; Kwakkel-van Erp, Johanna M; Luijk, Bart D; Oudijk, Erik-Jan D; van Kessel, Diana A; Grutters, Jan C; Hack, C Erik; Otten, Henderikus G

    2016-05-24

    CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung diseases, however overall survival is hampered by chronic lung allograft dysfunction development, which presents itself obstructively as the bronchiolitis obliterans syndrome (BOS). We hypothesized that, due to cellular damage and activation during chronic inflammation, sCD59 serum levels can be used as biomarker preceding BOS development. We analyzed sCD59 serum concentrations in 90 LTx patients, of whom 20 developed BOS. We observed that BOS patients exhibited higher sCD59 serum concentrations at the time of diagnosis compared to clinically matched non-BOS patients (p = 0.018). Furthermore, sCD59 titers were elevated at 6 months post-LTx (p = 0.0020), when patients had no BOS-related symptoms. Survival-analysis showed that LTx patients with sCD59 titers ≥400 pg/ml 6 months post-LTx have a significant (p < 0.0001) lower chance of BOS-free survival than patients with titers ≤400 pg/ml, 32% vs. 80% respectively, which was confirmed by multivariate analysis (hazard ratio 6.2, p < 0.0001). We propose that circulating sCD59 levels constitute a novel biomarker to identify patients at risk for BOS following LTx.

  15. Lipasuria in acute pancreatitis: result of tubular dysfunction?

    Science.gov (United States)

    Muench, R; Buehler, H; Kehl, O; Ammann, R

    1987-01-01

    Lipase, in contrast to amylase, is completely reabsorbed by the proximal tubules after glomerular filtration. Therefore, no lipase is detectable in the unconcentrated urine according to the current opinion. The handling of lipase (detected with an enzyme-immunoassay) by the kidney was investigated in comparison with creatinine, amylase, and beta-2-microglobulin by clearance studies in acute pancreatitis (n = 10), burn injury (n = 4), glomerular proteinuria (n = 8), and controls without evidence of pancreatic or renal diseases (n = 5). In initial stages of acute pancreatitis a measurable clearance of lipase (mean: 49.6 microliters/min, range: 0.5-234) was found in association with corresponding increased clearances of beta-2-microglobulin (mean: 10.5 ml/min, range: 0.02-58.9) and of amylase (mean: 8.9 ml/min, range: 2.4-22.6) in nine of ten patients. This finding is consistent with a defect of tubular function. However, regression analysis failed to show a significant correlation between lipase and beta-2-microglobulin clearance. Repeated measurements during the course of pancreatitis in seven patients showed reversibility of tubular dysfunction. In patients with burn injury a similar elevation of clearances of beta-2-microglobulin and of amylase was found, but tubular dysfunction in this condition was not associated with lipasuria. In glomerular proteinuria a lipase clearance was found in two of five cases with moderate, and in the other three cases with severe impairment of creatinine clearance. beta-2-microglobulin clearance was normal in the former and only slightly elevated in the latter group. In conclusion lipase is measurable in the urine of most patients with acute pancreatitis as a result of a reversible tubular dysfunction.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Therapeutic Strategies for Severe Acute Lung Injury

    Science.gov (United States)

    Diaz, Janet. V.; Brower, Roy; Calfee, Carolyn S.; Matthay, Michael A.

    2015-01-01

    Objective In the management of patients with severe Acute Lung Injury and the Acute Respiratory Distress Syndrome (ALI/ARDS), clinicians are sometimes challenged to maintain acceptable gas exchange while avoiding harmful mechanical ventilation practices. In some of these patients, physicians may consider the use of “rescue therapies” to sustain life. Our goal is to provide a practical, evidence-based review to assist critical care physicians’ care for patients with severe ALI/ARDS. Data Sources and Study Selection We searched the Pub Med database for clinical trials examining the use of the following therapies in ALI/ARDS: recruitment maneuvers, high positive end expiratory pressure, prone position, high frequency oscillatory ventilation, glucocorticoids, inhaled nitric oxide, buffer therapy and extracorporeal life support. Study selection All clinical trials that included patients with severe ALI/ARDS were included in the review. Data Synthesis The primary author reviewed the aforementioned trials in depth and then disputed findings and conclusions with other authors until consensus was achieved. Conclusions This article is designed to: a) provide clinicians with a simple, bedside definition for the diagnosis of severe ARDS; b) describe several therapies that can be used in severe ARDS with an emphasis on the potential risks as well as the indications and benefits; and c) to offer practical guidelines for implementation of these therapies. PMID:20562704

  17. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)

    DEFF Research Database (Denmark)

    Afshari, Arash; Brok, Jesper; Møller, Ann

    2010-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions that are associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far.......Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions that are associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far....

  18. Acute lung injury probably associated with infusion of propofol emulsion.

    Science.gov (United States)

    Chondrogiannis, K D; Siontis, G C M; Koulouras, V P; Lekka, M E; Nakos, G

    2007-08-01

    We present a case of acute lung injury associated with propofol infusion in a mechanically ventilated patient with intracerebral haemorrhage. Diagnosis was based on the exclusion of other risk factors inducing acute lung injury and on the clinical improvement after discontinuation of the propofol emulsion. Laboratory data such as the increase in total phospholipids, neutral lipids and free fatty acids in the broncho-alveolar lavage fluid, the remarkably high percentage of alveolar macrophages including fat droplets and the similar lipid composition of propofol and broncho-alveolar lavage fluid support the relationship between propofol and acute lung injury.

  19. Scintigraphy at 3 months after single lung transplantation and observations of primary graft dysfunction and lung function

    DEFF Research Database (Denmark)

    Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F;

    2012-01-01

    procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found......, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy...... no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12...

  20. Monitorization of Acute Brain Dysfunction in Critical Illness

    Directory of Open Access Journals (Sweden)

    Günseli Orhun

    2016-08-01

    Full Text Available Acute brain dysfunction is a clinical condition which is commonly observed in intensive care units and exhibits neurological changes ranging from delirium to coma. Typically observed during sepsis in critical patients, this syndrome is also named as “sepsis-associated encephalopathy” and this situation is of significance since it is related to mortality, increase of morbidity and long-term cognitive impairment. Monitorization of brain functions in critically ill patients should be commenced with detailed neurological examination and effects of sedative drugs, which can alter neurological responses during evaluation, should be taken into consideration. On the other hand, brain imaging methods and electrophysiological examinations are diagnostic procedures which complement neurological examination. While computed tomography enables diagnosis of structural intracerebral lesions, magnetic resonance imaging provides important information on primary pathological mechanisms of sepsis-associated encephalopathy and structural alterations developing in the brain. Evidence of diagnosis and prognosis of acute brain dysfunction can be acquired through use of electroencephalography for. Although it was believed that neurological biomarkers can be useful in determination of diagnosis and prognosis, further studies are needed in this subject.

  1. [Positive end-expiratory pressure : adjustment in acute lung injury].

    Science.gov (United States)

    Bruells, C S; Dembinski, R

    2012-04-01

    Treatment of patients suffering from acute lung injury is a challenge for the treating physician. In recent years ventilation of patients with acute hypoxic lung injury has changed fundamentally. Besides the use of low tidal volumes, the most beneficial setting of positive end-expiratory pressure (PEEP) has been in the focus of researchers. The findings allow adaption of treatment to milder forms of acute lung injury and severe forms. Additionally computed tomography techniques to assess the pulmonary situation and recruitment potential as well as bed-side techniques to adjust PEEP on the ward have been modified and improved. This review gives an outline of recent developments in PEEP adjustment for patients suffering from acute hypoxic and hypercapnic lung injury and explains the fundamental pathophysiology necessary as a basis for correct treatment.

  2. Soluble CD59 is a Novel Biomarker for the Prediction of Obstructive Chronic Lung Allograft Dysfunction after Lung Transplantation

    NARCIS (Netherlands)

    Budding, Kevin; Van De Graaf, Eduard A.; Kardol-Hoefnagel, Tineke; Kwakkel-van Erp, Johanna M.; Luijk, Bart D.; Oudijk, Erik Jan D; Van Kessel, Diana A.; Grutters, Jan C.; Hack, C. Erik; Otten, Henderikus G.

    2016-01-01

    CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung dis

  3. Transfusion related acute lung injury presenting with acute dyspnoea: a case report

    Directory of Open Access Journals (Sweden)

    Haji Altaf

    2008-10-01

    Full Text Available Abstract Introduction Transfusion-related acute lung injury is emerging as a common cause of transfusion-related adverse events. However, awareness about this entity in the medical fraternity is low and it, consequently, remains a very under-reported and often an under-diagnosed complication of transfusion therapy. Case presentation We report a case of a 46-year old woman who developed acute respiratory and hemodynamic instability following a single unit blood transfusion in the postoperative period. Investigation results were non-specific and a diagnosis of transfusion-related acute lung injury was made after excluding other possible causes of acute lung injury. She responded to symptomatic management with ventilatory and vasopressor support and recovered completely over the next 72 hours. Conclusion The diagnosis of transfusion-related acute lung injury relies on excluding other causes of acute pulmonary edema following transfusion, such as sepsis, volume overload, and cardiogenic pulmonary edema. All plasma containing blood products have been implicated in transfusion-related acute lung injury, with the majority being linked to whole blood, packed red blood cells, platelets, and fresh-frozen plasma. The pathogenesis of transfusion-related acute lung injury may be explained by a "two-hit" hypothesis, involving priming of the inflammatory machinery and then activation of this primed mechanism. Treatment is supportive, with prognosis being substantially better than for most other causes of acute lung injury.

  4. B-lines quantify the lung water content: a lung ultrasound versus lung gravimetry study in acute lung injury.

    Science.gov (United States)

    Jambrik, Zoltán; Gargani, Luna; Adamicza, Agnes; Kaszaki, József; Varga, Albert; Forster, Tamás; Boros, Mihály; Picano, Eugenio

    2010-12-01

    B-lines (also termed ultrasound lung comets) obtained with lung ultrasound detect experimental acute lung injury (ALI) very early and before hemogasanalytic changes, with a simple, noninvasive, nonionizing and real-time method. Our aim was to estimate the correlation between B-lines number and the wet/dry ratio of the lung tissue, measured by gravimetry, in an experimental model of ALI. Seventeen Na-pentobarbital anesthetized, cannulated (central vein and carotid artery) minipigs were studied: five sham-operated animals served as controls and, in 12 animals, ALI was induced by injection of oleic acid (0.1 mL/kg) via the central venous catheter. B-lines were measured by echographic scanner in four predetermined chest scanning sites in each animal. At the end of each experiment, both lungs were dissected, weighed and dried to determine wet/dry weight ratio by gravimetry. After the injection of oleic acid, B-lines number increased over time. A significant correlation was found between the wet/dry ratio and B-lines number (r = 0.91, p < 0.001). These data suggest that in an experimental pig model of ALI/ARDS, B-lines assessed by lung ultrasound provide a simple, semiquantitative, noninvasive index of lung water accumulation, strongly correlated to invasive gravimetric assessment.

  5. DISTINCT PHENOTYPES OF INFILTRATING CELLS DURING ACUTE AND CHRONIC LUNG REJECTION IN HUMAN HEART-LUNG TRANSPLANTS

    NARCIS (Netherlands)

    WINTER, JB; CLELLAND, C; GOUW, ASH; PROP, J

    1995-01-01

    To differentiate between acute and chronic lung rejection in an early stage, phenotypes of infiltrating inflammatory cells were analyzed in 34 transbronchial biopsies (TBBs) of 24 patients after heart-lung transplantation. TBBs were taken during during acute lung rejection and chronic lung rejection

  6. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  7. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Science.gov (United States)

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer. PMID:23118782

  8. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    Science.gov (United States)

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  9. Organ dysfunction as a risk factor for early severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Jan De Waele; S.Blot; Francis Colardyn

    2004-01-01

    @@ To the Editor: We read with interest the review paper by Tao et al.[1] on the topic of early severe acute pancreatitis (EASP, defined as severe acute pancreatitis according to the Altanta criteria[2], with organ dysfunction within 72 h after the start of symptoms) in a recent issue of the World Journal of Gastroenterology. It addresses an important problem in patients with severe acute pancreatitis,namely early organ dysfunction and its effect on outcomes.

  10. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lai

    2014-08-01

    Full Text Available Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI in patients with acute respiratory distress syndrome (ARDS. Here, we examined potential benefits of glutamine (GLN on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV of 15 mL/kg and zero positive end-expiratory pressure (PEEP or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology, neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.

  11. Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Directory of Open Access Journals (Sweden)

    Hadi Najah R

    2011-06-01

    Full Text Available Abstract Background Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity. Objectives The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways. Materials and methods Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS for 1 hr then resuscitated with Ringer's lactate (1 hr (induced untreated group, HS; group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period. At the end of experiment (2 hr after completion of resuscitation, blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. The trachea was then isolated and bronchoalveolar lavage fluid (BALF was carried out for measurement of leukotriene B4 (LTB4, leukotriene C4 (LTC4 and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA and reduced glutathione (GSH and the right lung was fixed in 10% formalin for histological examination. Results MK-886 treatment significantly reduced the total lung injury score compared with the HS group (P 4, LTC4 & total protein compared with the HS group (P P Conclusions The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of

  12. Effects of low potassium dextran glucose solution on oleic acid-induced acute lung injury in juvenile piglets

    Institute of Scientific and Technical Information of China (English)

    LING Feng; LIU Ying-long; LIU Ai-jun; WANG Dong; WANG Qiang

    2011-01-01

    Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.

  13. Acute lung injury and the acute respiratory distress syndrome in the injured patient

    Directory of Open Access Journals (Sweden)

    Bakowitz Magdalena

    2012-08-01

    Full Text Available Abstract Acute lung injury and acute respiratory distress syndrome are clinical entities of multi-factorial origin frequently seen in traumatically injured patients requiring intensive care. We performed an unsystematic search using PubMed and the Cochrane Database of Systematic Reviews up to January 2012. The purpose of this article is to review recent evidence for the pathophysiology and the management of acute lung injury/acute respiratory distress syndrome in the critically injured patient. Lung protective ventilation remains the most beneficial therapy. Future trials should compare intervention groups to controls receiving lung protective ventilation, and focus on relevant outcome measures such as duration of mechanical ventilation, length of intensive care unit stay, and mortality.

  14. Acute Lung Injury during Antithymocyte Globulin Therapy for Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Ewan Christopher Goligher

    2009-01-01

    Full Text Available The case of a 33-year-old man with aplastic anemia who experienced recurrent episodes of hypoxemia and pulmonary infiltrates during infusions of antithymocyte globulin (ATG is described. With the use of high-dose corticosteroids, the patient’s original episodes resolved, and were subsequently prevented before additional administrations of ATG. Rare reports of an association between ATG and acute lung injury are found in the literature, but this is the first report of successful steroid-supported re-exposure. Although the mechanism of ATG-related acute lung injury remains uncertain, it may be parallel to the mechanism of transfusion-related acute lung injury because the pathogenesis of the latter relies, in part, on antileukocyte antibodies. ATG-related toxicity should be included in the differential diagnosis of new, infusion-associated pulmonary infiltrates, and corticosteroids may be a useful therapeutic consideration in the management.

  15. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Faller Simone

    2012-10-01

    Full Text Available Abstract Background Local pulmonary and systemic infections can lead to acute lung injury (ALI. The resulting lung damage can evoke lung failure and multiple organ dysfunction associated with increased mortality. Hydrogen sulfide (H2S appears to represent a new therapeutic approach to ALI. The gas has been shown to mediate potent anti-inflammatory and organ protective effects in vivo. This study was designed to define its potentially protective role in sepsis-induced lung injury. Methods C57BL/6 N mice received lipopolysaccharide (LPS intranasally in the absence or presence of 80 parts per million H2S. After 6 h, acute lung injury was determined by comparative histology. Bronchoalveolar lavage (BAL fluid was analyzed for total protein content and differential cell counting. BAL and serum were further analyzed for interleukin-1β, macrophage inflammatory protein-2, and/or myeloperoxidase glycoprotein levels by enzyme-linked immunosorbent assays. Differences between groups were analyzed by one way analysis of variance. Results Histological analysis revealed that LPS instillation led to increased alveolar wall thickening, cellular infiltration, and to an elevated ALI score. In the presence of H2S these changes were not observed despite LPS treatment. Moreover, neutrophil influx, and pro-inflammatory cytokine release were enhanced in BAL fluid of LPS-treated mice, but comparable to control levels in H2S treated mice. In addition, myeloperoxidase levels were increased in serum after LPS challenge and this was prevented by H2S inhalation. Conclusion Inhalation of hydrogen sulfide protects against LPS-induced acute lung injury by attenuating pro-inflammatory responses.

  16. Erectile Dysfunction ia a common problem in Interstitial Lung Disease

    DEFF Research Database (Denmark)

    Fløe, Andreas; Hilberg, Ole; Wijsenbeek, Marlies;

    Rationale : The relationship between erectile dysfunction (ED) and chronic diseases, most notably diabetes and atherosclerosis, is well established. Previous studies have shown a relationship between COPD and ED. The pathogenesis is not clearly established, but studies have shown a correlation be...

  17. Clinical evaluation of sivelestat for acute lung injury/acute respiratory distress syndrome following surgery for abdominal sepsis

    Directory of Open Access Journals (Sweden)

    Tsuboko Y

    2012-10-01

    Full Text Available Yoshiaki Tsuboko,1 Shinhiro Takeda,1,2 Seiji Mii,1 Keiko Nakazato,1 Keiji Tanaka,2 Eiji Uchida,3 Atsuhiro Sakamoto11Department of Anesthesiology, Nippon Medical School, 2Intensive Care Unit and Cardiac Care Unit, Nippon Medical School Hospital, 3Department of Surgery, Nippon Medical School, Tokyo, JapanBackground: The efficacy of sivelestat in the treatment of acute lung injury/acute respiratory distress syndrome (ALI/ARDS has not been established. In part, this is due to the wide variety of factors involved in the etiology of ALI/ARDS. In this study, we examined the efficacy of sivelestat in patients with ALI/ARDS associated with abdominal sepsis.Methods: The subjects were 49 patients with ALI/ARDS after surgery for abdominal sepsis. The efficacy of sivelestat was retrospectively assessed in two treatment groups, ie, a sivelestat group (n = 34 and a non-sivelestat group (n = 15.Results: The sivelestat group showed significant improvements in oxygenation, thrombocytopenia, and multiple organ dysfunction score. The number of ventilator days (6.6 ± 6.1 versus 11.1 ± 8.4 days; P = 0.034 and length of stay in the intensive care unit (8.5 ± 6.2 versus 13.3 ± 9.5 days; P = 0.036 were significantly lower in the sivelestat group. The hospital mortality rate decreased by half in the sivelestat group, but was not significantly different between the two groups.Conclusion: Administration of sivelestat to patients with ALI/ARDS following surgery for abdominal sepsis resulted in early improvements of oxygenation and multiple organ dysfunction score, early ventilator weaning, and early discharge from the intensive care unit.Keywords: sivelestat, acute lung injury, acute respiratory distress syndrome, abdominal sepsis

  18. Transfusion-related acute lung injury: report of two cases.

    Science.gov (United States)

    Čermáková, Z; Kořískta, M; Blahutová, Š; Dvořáčková, J; Brát, R; Valkovský, I; Hrdličková, R

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a severe life-threatening complication of blood transfusion, characterized by acute lung injury developing within 2-6 h of transfusion. However, TRALI is difficult to diagnose, and the initial report or suspicion of TRALI depends on close collaboration between clinical departments and transfusion centres. A total of 17 adverse post-transfusion reactions were reported to the Blood Centre of the University Hospital Ostrava as suspected TRALI between 2005 and 2010. We report two cases of serious TRALI with different pathogenetic mechanisms.

  19. Neutrophils contain cholesterol crystals in transfusion-related acute lung injury (TRALI)

    DEFF Research Database (Denmark)

    Van Ness, Michael; Jensen, Hanne; Adamson, Grete N

    2013-01-01

    Intracellular components of transfusion-related acute lung injury (TRALI) were investigated by transmission electron microscopy.......Intracellular components of transfusion-related acute lung injury (TRALI) were investigated by transmission electron microscopy....

  20. Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury.

    Science.gov (United States)

    Nardelli, L M; Rzezinski, A; Silva, J D; Maron-Gutierrez, T; Ornellas, D S; Henriques, I; Capelozzi, V L; Teodoro, W; Morales, M M; Silva, P L; Pelosi, P; Garcia, C S N B; Rocco, P R M

    2015-01-01

    We investigated the effects of acute hypercapnic acidosis and buffered hypercapnia on lung inflammation and apoptosis in experimental acute lung injury (ALI). Twenty-four hours after paraquat injection, 28 Wistar rats were randomized into four groups (n=7/group): (1) normocapnia (NC, PaCO2=35-45 mmHg), ventilated with 0.03%CO2+21%O2+balancedN2; (2) hypercapnic acidosis (HC, PaCO2=60-70 mmHg), ventilated with 5%CO2+21%O2+balancedN2; and (3) buffered hypercapnic acidosis (BHC), ventilated with 5%CO2+21%O2+balancedN2 and treated with sodium bicarbonate (8.4%). The remaining seven animals were not mechanically ventilated (NV). The mRNA expression of interleukin (IL)-6 (p=0.003), IL-1β (pacidosis, reduced lung inflammation and lung and kidney cell apoptosis.

  1. Reversible anuric acute kidney injury secondary to acute renal autoregulatory dysfunction.

    Science.gov (United States)

    Imbriano, Louis J; Maesaka, John K; Drakakis, James; Mattana, Joseph

    2014-02-01

    Autoregulation of glomerular capillary pressure via regulation of the resistances at the afferent and efferent arterioles plays a critical role in maintaining the glomerular filtration rate over a wide range of mean arterial pressure. Angiotensin II and prostaglandins are among the agents which contribute to autoregulation and drugs which interfere with these agents may have a substantial impact on afferent and efferent arteriolar resistance. We describe a patient who suffered an episode of anuric acute kidney injury following exposure to a nonsteroidal anti-inflammatory agent while on two diuretics, an angiotensin-converting enzyme inhibitor, and an angiotensin receptor blocker. The episode completely resolved and we review some of the mechanisms by which these events may have taken place and suggest the term "acute renal autoregulatory dysfunction" to describe this syndrome.

  2. Activated protein C in the treatment of acute lung injury and acute respiratory distress syndrome

    NARCIS (Netherlands)

    A.D. Cornet; G.P. van Nieuw Amerongen; A. Beishuizen; M.J. Schultz; A.R.J. Girbes; A.B.J. Groeneveld

    2009-01-01

    Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) frequently necessitate mechanical ventilation in the intensive care unit. The syndromes have a high mortality rate and there is at present no treatment specifically directed at the underlying pathogenesis. Central in

  3. Epidemiology of acute lung injury and acute respiratory distress syndrome in The Netherlands : A survey

    NARCIS (Netherlands)

    Wind, Jan; Versteegt, Jens; Twisk, Jos; van der Werf, Tjip S.; Bindels, Alexander J. G. H.; Spijkstra, Jan-Jaap; Girbes, Armand R. J.; Groeneveld, A. B. Johan

    2007-01-01

    Background: The characteristics, incidence and risk factors for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) may depend on definitions and geography. Methods: A prospective, 3-day point-prevalence study was performed by a survey of all intensive care units (ICU) in the Neth

  4. Lung T lymphocyte trafficking and activation during ischemic acute kidney injury.

    Science.gov (United States)

    Lie, Mihaela L; White, Laura E; Santora, Rachel J; Park, Jong M; Rabb, Hamid; Hassoun, Heitham T

    2012-09-15

    Despite advances in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely owing to extrarenal organ dysfunction. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that facilitate organ crosstalk and induce caspase-dependent lung apoptosis and injury through a TNFR1-dependent pathway. Given that T lymphocytes mediate local IRI in the kidney and are known to drive TNFR1-mediated apoptosis, we hypothesized that T lymphocytes activated during kidney IRI would traffic to the lung and mediate pulmonary apoptosis during AKI. In an established murine model of kidney IRI, we identified trafficking of CD3+ T lymphocytes to the lung during kidney IRI by flow cytometry and immunohistochemistry. T lymphocytes were primarily of the CD3+CD8+ phenotype; however, both CD3+CD4+ and CD3+CD8+ T lymphocytes expressed CD69 and CD25 activation markers during ischemic AKI. The activated lung T lymphocytes did not demonstrate an increased expression of intracellular TNF-α or surface TNFR1. Kidney IRI induced pulmonary apoptosis measured by caspase-3 activation in wild-type controls, but not in T cell-deficient (T(nu/nu)) mice. Adoptive transfer of murine wild-type T lymphocytes into T(nu/nu) mice restored the injury phenotype with increased cellular apoptosis and lung microvascular barrier dysfunction, suggesting that ischemic AKI-induced pulmonary apoptosis is T cell dependent. Kidney-lung crosstalk during AKI represents a complex biological process, and although T lymphocytes appear to serve a prominent role in the interorgan effects of AKI, further experiments are necessary to elucidate the specific role of activated T cells in modulating pulmonary apoptosis.

  5. Hashimoto’s Encephalopathy Presenting with Acute Cognitive Dysfunction and Convulsion

    OpenAIRE

    Kang, Woo-Hyuk; Na, Ju-Young; Kim, Meyung-Kug; Yoo, Bong-Goo

    2013-01-01

    Hashimoto’s encephalopathy is an immune-mediated disorder characterized by acute or subacute encephalopathy related to increased anti-thyroid antibodies. Clinical manifestations of Hashimoto’s encephalopathy may include stroke-like episodes, altered consciousness, psychosis, myoclonus, abnormal movements, seizures, and cognitive dysfunction. Acute cognitive dysfunction with convulsion as initial clinical manifestations of Hashimoto’s encephalopathy is very rare. We report a 65-year-old man wh...

  6. Pulmonary Hypertension and Right Heart Dysfunction in Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Amirmasoud Zangiabadi

    2014-01-01

    Full Text Available Group 3 pulmonary hypertension (PH is a common complication of chronic lung disease (CLD, including chronic obstructive pulmonary disease (COPD, interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.

  7. Acute lung injury and ARDS in acute pancreatitis: Mechanisms and potential intervention

    Institute of Scientific and Technical Information of China (English)

    Roland; Andersson

    2010-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem,with a mortality rate in the range of 30%-40%.The present review evaluates underlying pathophysiological mechanisms in both ALI and ARDS and potential clinical implications.Several mediators and pathophysiological pathways are involved during the different phases of ALI and ARDS.The initial exudative phase is characterized by diffuse alveolar damage,microvascular injury and inf...

  8. Strategies to improve oxygenation in experimental acute lung injury

    NARCIS (Netherlands)

    A. Hartog (Arthur)

    2000-01-01

    textabstractOne of the most important clinical syndromes, in which failure of oxygen uptake in the lung leads to severe hypoxia, is the so-called acute respiratory distress syndrome (ARDS). ARDS is a complex of clinical signs and symptoms which occur following diverse pulmonary or systemic insults,

  9. Life-threatening acute lung injury after gamma butyrolactone ingestion

    NARCIS (Netherlands)

    van Gerwen, M.; Scheper, H.; Touw, D. J.; van Nieuwkoop, C.

    2015-01-01

    We describe a case of a 44-year-old woman with a borderline personality disorder and chronic gamma-butyrolactone (GBL) use who presented with progressive dyspnoea and an altered mental status. A high anion gap metabolic acidosis and acute lung injury was diagnosed. We hypothesise this was caused by

  10. Comparison between primary angioplasty and thrombolytic therapy on erectile dysfunction after acute ST elevation myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Ramazan Akdemir; Ekrem Yeter; (O)zlem Karakurt; Salih Orcan; Nihat Karakoyunlu; Mustafa Mucahit Balci; Levent Sa(g)nak; Hamit Ersoy; Mehmet Bulent Vatan; Harun Kilic

    2012-01-01

    Acute ST elevation myocarclial infarction has high mortality and morbidity rates.The majority of patients with this condition face erectile dysfunction in addition to other health problems,In this study,we aimed to investigate the effects of two different reperfusion strategies,primary angioplasty and thrombolytic therapy,on the prevalence of erectile dysfunction after acute myocardial infarction.Of the 71 patients matching the selection criteria,45 were treated with primary coronary angioplasty with stenting,and 26 were treated with thrombolytic agents.Erectile function was evaluated using the International Index of Erectile Function in the hospital to characterize each patient's sexual function before the acute myocardial infarction and 6 months after the event.The time required to restore blood flow to the artery affected by the infarct was found to be associated with the occurrence of erectile dysfunction after acute myocardial infarction.The increase in the prevalence of erectile dysfunction after acute myocardial infarction was 44.4% in the angioplasty group and 76.9% in the thrombolytic therapy group (P=0.008).In conclusion,this study has shown that reducing the time of reperfusion decreases the erectile dysfunction prevalence,and primary angioplasty is superior to thrombolytic therapy for decreasing the prevalence of erectile dysfunction after acute myocardial infarction.

  11. The Role of Neutrophil Collagenase in Endotoxic Acute Lung Injury

    Institute of Scientific and Technical Information of China (English)

    徐涛; 曾邦雄; 李兴旺

    2004-01-01

    The aim of this study was to determine the role of neutrophil collagenase in the pathogenesis of acute lung injury induced by endotoxin. 28 Sprague-Dawley were randomized into control group and LPS-enduced groups. Samples of left lung were obtained in 2 h (group L1 ), 6 h (group L2), 12 h (group L3 ) after intravenous LPS. Immunohistochemsitry was employed for detection of expression of neutrophil collagenase. Pathological scores, lung wet/dry weight ratio and the number of neutrophils were measured. The results showed that the concentration of neutrophil collagenase in LPS-enduced groups (group L1, L2, L3 ) were significantly higher than that of control group (P<0.01). Pathological scores, lung wet/dry weight ratio and the number of neutrophils in LPS-enduced groups (group L1, L2, L3 ) were also significantly higher than that of control group (P<0.01).Moreover, among group L1, L2 and L3, there were significant correlations in concentration of neutrophil collagenase and pathological scores, lung wet/dry weight ratio, the number of neutrophils (P<0.05). The present study showed that neutrophil collagenase play an important role in the pathogenesis and progress of endotoxic acute lung injury.

  12. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Huang, Qingxian [Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000 (China); Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Bai, Xianyong, E-mail: xybai2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  13. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    Science.gov (United States)

    Wang, Jian; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; Li, Xiaofei; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematoxylineosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitric oxide (NO), and myeloperoxidase (MPO) activity were measured by enzymelinked immunosorbent assay. Expression of inducible nitric oxide synthase (iNOS) in lung tissues was determined by Western blot analysis. Crocin pretreatment significantly alleviated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by crocin pretreatment. Crocin pretreatment also reduced the concentrations of NO in lung tissues. Furthermore, the expression of iNOS was significantly suppressed by crocin pretreatment. Croncin potently protected against LPS-induced ALI and the protective effects of crocin may attribute partly to the suppression of iNOS expression. PMID:26191176

  14. Doppler Ultrasound in Chronic Renal Allograft Dysfunction : Can Acute Rejection be Predicted

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung; Kim, Myeong Jin; Lee, Jong Tae; Yoo, Hyung Sik; Kim, Ki Whang; Park, Ki Ill; Chung, Hyun Joo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1995-12-15

    To investigate Doppler sonographic findings valuable for detecting acute rejection in transplanted kidney with chronic allograft dysfunction. Forty-three renal allografts who underwent renal Doppler sonography and renal biopsy due to chronic allograft dysfunction were included. According to histopathologic findings, patients were classified into 2 groups: chronic component only(group 1, n=30) and acute rejection with or without chronic component 2 groups were performed. No definite difference in radio of renal size, cortical echogenecity, corticomedullary differentiation was noted between group 1 and group 2.Resistive index was 0.61{+-}0.18 in group 1 and 0.64{+-}0.22 in group 2, which showed no statistically significant difference. Characteristic Doppler sonographic findings suggesting acute rejection in cases of chronic allograft dysfunction were not found inauther's study. Therefore, minimal invasive renal biopsy to determine histopathologic status of transplanted kidney is essential in evaluation of the chronic allograft dysfunction

  15. Preoperative cardiac variables of diastolic dysfunction and clinical outcomes in lung transplant recipients.

    Science.gov (United States)

    Yadlapati, Ajay; Lynch, Joseph P; Saggar, Rajan; Ross, David; Belperio, John A; Weigt, Stephen; Ardehali, Abbas; Grogan, Tristan; Yang, Eric H; Aboulhosn, Jamil

    2013-01-01

    Background. Orthotopic lung transplantation is now widely performed in patients with advanced lung disease. Patients with moderate or severe ventricular systolic dysfunction are typically excluded from lung transplantation; however, there is a paucity of data regarding the prognostic significance of abnormal left ventricular diastolic function and elevated pretransplant pulmonary pressures. Methods. We reviewed the characteristics of 111 patients who underwent bilateral and unilateral lung transplants from 200 to 2009 in order to evaluate the prognostic significance of preoperative markers of diastolic function, including invasively measured pulmonary capillary wedge pressure (PCWP) and echocardiographic variables of diastolic dysfunction including mitral A > E and A' > E'. Results. Out of 111 patients, 62 were male (56%) and average age was 54.0 ± 10.5 years. Traditional echocardiographic Doppler variables of abnormal diastolic function, including A' > E' and A > E, did not predict adverse events (P = 0.49). Mildly elevated pretransplant PCWP (16-20 mmHg) and moderately/severely elevated PCWP (>20 mmHg) were not associated with adverse clinical events after transplant (P = 0.30). Additionally, all clinical endpoints did not show any statistical significance between the two groups. Conclusions. Pre-lung transplant invasive and echocardiographic findings of elevated pulmonary pressures and abnormal left ventricular diastolic function are not predictive of adverse posttransplant clinical events.

  16. Preoperative Cardiac Variables of Diastolic Dysfunction and Clinical Outcomes in Lung Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Ajay Yadlapati

    2013-01-01

    Full Text Available Background. Orthotopic lung transplantation is now widely performed in patients with advanced lung disease. Patients with moderate or severe ventricular systolic dysfunction are typically excluded from lung transplantation; however, there is a paucity of data regarding the prognostic significance of abnormal left ventricular diastolic function and elevated pretransplant pulmonary pressures. Methods. We reviewed the characteristics of 111 patients who underwent bilateral and unilateral lung transplants from 200 to 2009 in order to evaluate the prognostic significance of preoperative markers of diastolic function, including invasively measured pulmonary capillary wedge pressure (PCWP and echocardiographic variables of diastolic dysfunction including mitral A>E and A′>E′. Results. Out of 111 patients, 62 were male (56% and average age was 54.0 ± 10.5 years. Traditional echocardiographic Doppler variables of abnormal diastolic function, including A′>E′ and A>E, did not predict adverse events (P=0.49. Mildly elevated pretransplant PCWP (16–20 mmHg and moderately/severely elevated PCWP (>20 mmHg were not associated with adverse clinical events after transplant (P=0.30. Additionally, all clinical endpoints did not show any statistical significance between the two groups. Conclusions. Pre-lung transplant invasive and echocardiographic findings of elevated pulmonary pressures and abnormal left ventricular diastolic function are not predictive of adverse posttransplant clinical events.

  17. Independent lung ventilation in a newborn with asymmetric acute lung injury due to respiratory syncytial virus: a case report

    Directory of Open Access Journals (Sweden)

    Di Nardo Matteo

    2008-06-01

    Full Text Available Abstract Introduction Independent lung ventilation is a form of protective ventilation strategy used in adult asymmetric acute lung injury, where the application of conventional mechanical ventilation can produce ventilator-induced lung injury and ventilation-perfusion mismatch. Only a few experiences have been published on the use of independent lung ventilation in newborn patients. Case presentation We present a case of independent lung ventilation in a 16-day-old infant of 3.5 kg body weight who had an asymmetric lung injury due to respiratory syncytial virus bronchiolitis. We used independent lung ventilation applying conventional protective pressure controlled ventilation to the less-compromised lung, with a respiratory frequency proportional to the age of the patient, and a pressure controlled high-frequency ventilation to the atelectatic lung. This was done because a single tube conventional ventilation protective strategy would have exposed the less-compromised lung to a high mean airways pressure. The target of independent lung ventilation is to provide adequate gas exchange at a safe mean airways pressure level and to expand the atelectatic lung. Independent lung ventilation was accomplished for 24 hours. Daily chest radiograph and gas exchange were used to evaluate the efficacy of independent lung ventilation. Extubation was performed after 48 hours of conventional single-tube mechanical ventilation following independent lung ventilation. Conclusion This case report demonstrates the feasibility of independent lung ventilation with two separate tubes in neonates as a treatment of an asymmetric acute lung injury.

  18. Dysfunctional lung anatomy and small airways degeneration in COPD

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2013-01-01

    Full Text Available Clémence Martin, Justine Frija, Pierre-Régis BurgelDepartment of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, FranceAbstract: Chronic obstructive pulmonary disease (COPD is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.Keywords: emphysema, small airways disease, airway mucus, innate immunity, adaptive immunity

  19. Effect of inhalation of nebulized NO donor substance on acute hypoxic lung injury in newborn piglets

    Institute of Scientific and Technical Information of China (English)

    XIA Hong-ping; HUANG Guo-ying; ZHU Jian-xing; SUN Bo

    2008-01-01

    Background Birth asphyxia may result in multiple organ dysfunction such as lung injury.Inhalation of nebulized nitric oxide precursor can selectively reduce pulmonary hypertension.However,it is unknown whether such precursors can alleviate lung injury induced by hypoxia.We evaluated the effect of inhalation of nebulized nitroglycerine and sodium nitroprusside on acute hypoxic lung injury in newborn piglets.Methods Acute hypoxic lung injury was induced by inspiring 10% O2 for 1 hour.Twenty-four anaesthetized and mechanically ventilated piglets (5-7 days old) were randomly divided into four groups:(1) group S,not hypoxic;(2) group C,nebulized saline after hypoxia;(3) group NTG,nebulized nitroglycerine after hypoxia;(4) group SNP,nebulized sodium nitroprusside after hypoxia.Respiratory dynamic compliance and resistance of respiratory system were recorded at baseline,0.5 hour and 1 hour of hypoxia;then 0.5 hour,1 hour,3 hours and 5 hours following hypoxia.After nebulization,arterial blood was collected for measuring methaemoglobin and nitrate/nitrite levels.Right lung tissue,wet-dry ratio and myeloperoxidase level were determined.White blood cell count (WBC),total surfactant phospholipids (TPL) and disaturated phosphatidyl choline (DSPC) of the bronchoalveolar lavage fluid (BALF) were calculated,Left lungs were used for examining pathological changes.Results No significant difference was observed in respiratory dynamic compliance,resistance of respiratory system,wet-dry ratio,levels of methaemoglobin and nitrate/nitrite after nebulization,TPL or DSPC/TPL among four groups.WBC in BALF in groups NTG and SNP significantly decreased as compared with group C:similarly for myeloperoxidase level in lung tissue.Lung histological findings showed infiltration of neutrophils in groups NTG and SNP decreased significantly as compared with group C.Conclusion Inhalation of nebulized nitroglycerine or sodium nitroprusside can alleviate the infiltration of neutrophils,while it affects

  20. Surfactant dysfunction in lung contusion with and without superimposed gastric aspiration in a rat model.

    Science.gov (United States)

    Raghavendran, Krishnan; Davidson, Bruce A; Knight, Paul R; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R; Notter, Robert H

    2008-11-01

    This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant

  1. Establishment of the critical period of severe acute pancreatitis-associated lung injury

    Institute of Scientific and Technical Information of China (English)

    Yi-Peng Chen; Jian-Wen Ning; Feng Ji

    2009-01-01

    BACKGROUND: Since respiratory dysfunction is the main cause of death in patients with severe acute pancreatitis (SAP), elucidating the critical period of acute pancreatitis-associated lung injury (APALI) is of important clinical value. This study aimed to define the risk period of APALI by a series of studies including a dynamic analysis of total water content, ultrastructure and number of type Ⅱ alveolar epithelial cells, and reactive oxygen metabolites (ROMs) of lung tissue in a mouse model of SAP, and a clinical analysis of APALI patients. METHODS: ICR mice were selected to establish a SAP model. They were given 7 intraperitoneal injections of cerulein (50 μg/kg body weight) at hourly intervals, followed by an intraperitoneal injection of lipopolysaccharide (15 mg/kg body weight). The total water content, ultrastructure, and number of type Ⅱ alveolar epithelial cells, and ROMs of lung tissue were assessed before (0 hour) and after the establishment of SAP model (6 hours, 12 hours, 1 day, 4 days, and 7 days). In addition, we analyzed the data from 215 patients with APALI (PaO2 RESULTS: The total water content and ultrastructure of type Ⅱ alveolar epithelial cells (mitochondria and lamellar bodies) of the lung in the SAP mice were significantly altered at 12 hours after the establishment of SAP model, and reached a maximum at 1 to 4 days. The number of type Ⅱ alveolar epithelial cells and ROMs increased maximally at 1 day after the establishment of the model. Furthermore, clinical results showed that lung injury occurred at a mean of 3.1435±1.0199 days in patients with SAP. These clinical data were almost consistent with the results of the SAP model. CONCLUSION: The risk period for APALI is between the first and fourth day during the course of SAP.

  2. Prone positioning ventilation for treatment of acute lung injury and acute respiratory distress syndrome

    Institute of Scientific and Technical Information of China (English)

    LAN Mei-juan; HE Xiao-di

    2009-01-01

    Patients who are diagnosed with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) usually have ventilation-perfusion mismatch, severe decrease in lung capacity, and gas exchange abnormalities. Health care work-ers have implemented various strategies in an attempt to compensate for these pathological alterations. By rotating patients with ALI/ARDS between the supine and prone position, it is possible to achieve a significant improvement in PaO2/FiO2, decrease shunting and therefore improve oxy-genation without use of expensive, invasive and experimen-tal procedures.

  3. Sildenafil and diastolic dysfunction after acute myocardial infarction trial

    DEFF Research Database (Denmark)

    Andersen, Mads J; Gustafsson, Finn; Hassager, Christian

    2013-01-01

    Diastolic dysfunction following myocardial infarction is an important predictor of outcome, irrespective of left ventricular systolic function. Previous studies suggest that phosphordiesterase-5 inhibition has a favorable effect on the myocardium as well as on the pulmonary and systemic vasculature....

  4. Intensive insulin treatment attenuates burn-initiated acute lung injury in rats: role of the protective endothelium.

    Science.gov (United States)

    Zhang, Wan-Fu; Zhu, Xiong-Xiang; Hu, Da-Hai; Xu, Cheng-Feng; Wang, Yun-Chuan; Lv, Gen-Fa

    2011-01-01

    Nonmetabolic effects of intensive insulin therapy in critically ill patients have been reported, but the underlying mechanisms are unclear. This study was designed to test the hypothesis that intensive insulin treatment would attenuate burn-induced acute lung injury by protecting the pulmonary microvascular endothelium. The rat model of burn injury was achieved by exposure to 92°C water for 18 seconds. The rats were randomly allocated into the sham, burn/normal saline (NS), and burn/intensive insulin treatment groups. Blood glucose level was maintained between 5 and 7 mmol/L in rats in the burn/intensive insulin treatment group. Pulmonary injury was assessed by hematoxylin and eosin staining, scanning electron microscopy, bronchoalveolar lavage fluid protein concentrations, the lung wet:dry weight ratio, and lung myeloperoxidase activity. Pulmonary microvascular endothelial cells were examined by transmission electron microscopy. Western blotting was used to determine the protein expression of caspase-3. Intensive insulin treatment markedly attenuated the acute lung injury, revealed by improvements in histological features and significant decreases in bronchoalveolar lavage fluid protein concentrations, pulmonary wet:dry weight ratio, and myeloperoxidase activity at 12 hours after injury (P insulin treatment group when compared with the burn/NS group. Overall, intensive insulin treatment efficiently attenuated pulmonary microvascular endothelial cell dysfunction, decreased cell apoptosis, and inhibited acute lung injury after a burn. These findings may be useful in preventing organ failure after burn injury.

  5. Galangin dampens mice lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Shu, Yu-Sheng; Tao, Wei; Miao, Qian-Bing; Lu, Shi-Chun; Zhu, Ya-Bing

    2014-10-01

    Galangin, an active ingredient of Alpinia galangal, has been shown to possess anti-inflammatory and antioxidant activities. Inflammation and oxidative stress are known to play vital effect in the pathogenesis of acute lung injury (ALI). In this study, we determined whether galangin exerts lung protection in lipopolysaccharide (LPS)-induced ALI. Male BALB/c mice were randomized to receive galangin or vehicle intraperitoneal injection 3 h after LPS challenge. Samples were harvested 24 h post LPS administration. Galangin administration decreased biochemical parameters of oxidative stress and inflammation, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of galangin were associated with inhibition of nuclear factor (NF)-κB and upregulation of heme oxygenase (HO)-1. Galangin reduces LPS-induced ALI by inhibition of inflammation and oxidative stress.

  6. Postpartum Acute Liver Dysfunction: A Case of Acute Fatty Liver of Pregnancy Developing Massive Intrahepatic Calcification

    Science.gov (United States)

    Bhat, Khalid Javid; Shovkat, Rabia; Samoon, Hamad Jeelani

    2015-01-01

    The function of the liver is particularly affected by the unique physiologic milieu of the pregnancy. Pregnancy-related liver diseases encompass a spectrum of different etiologies that are related to gestation or one of its complications. Hepatic calcification, a rare entity, is usually associated with infectious, vascular, or neoplastic lesions in the liver. To the best of our knowledge, only one case of rapidly occurring pregnancy-related intrahepatic calcification has been documented in a patient with severe eclampsia or hemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome. Here we present a case of immediate “postpartum” acute fatty liver of pregnancy (AFLP) in a 23-year-old hypertensive primigravida, complicated by acute renal dysfunction who developed dense intrahepatic calcification in less than a month after the initial diagnosis. A multidisciplinary approach for the management was used, to which the patient responded aptly. This case illustrates the first description of intrahepatic calcification in AFLP syndrome and highlights some of the challenges met in making the final diagnosis. PMID:27785315

  7. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    Science.gov (United States)

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  8. Subclavian steal syndrome presenting as recurrent pulmonary oedema associated with acute left ventricular diastolic dysfunction.

    Science.gov (United States)

    Mangialavori, Giuseppe; Ballo, Piercarlo; Michelagnoli, Stefano; Ercolini, Leonardo; Barbanti, Enrico; Passuello, Franco; Abbondanti, Alessandro; Consoli, Lorenzo; Chechi, Tania; Fibbi, Veronica; Nannini, Marco; Chiodi, Leandro; Zuppiroli, Alfredo

    2013-01-01

    Subclavian steal syndrome typically presents as angina in patients with internal mammary artery grafts. Atypical clinical presentations have been rarely described. We report an unusual case of subclavian steal syndrome presenting as pulmonary oedema with acute left ventricular diastolic dysfunction and preserved ejection fraction in a patient with internal mammary artery graft and severe stenosis of the proximal left subclavian artery. After successful angioplasty and stenting of subclavian artery, the patient remained asymptomatic for six months, but then experienced acute diastolic dysfunction and recurrent pulmonary oedema associated with critical subclavian in-stent restenosis with stent deformation. This report points out that, in patients with internal mammary-to-LAD grafts, subclavian steal syndrome may present as acute left ventricular diastolic dysfunction and pulmonary oedema even in the presence of normal ejection fraction.

  9. Acute right ventricular dysfunction: real-time management with echocardiography.

    Science.gov (United States)

    Krishnan, Sundar; Schmidt, Gregory A

    2015-03-01

    In critically ill patients, the right ventricle is susceptible to dysfunction due to increased afterload, decreased contractility, or alterations in preload. With the increased use of point-of-care ultrasonography and a decline in the use of pulmonary artery catheters, echocardiography can be the ideal tool for evaluation and to guide hemodynamic and respiratory therapy. We review the epidemiology of right ventricular failure in critically ill patients; echocardiographic parameters for evaluating the right ventricle; and the impact of mechanical ventilation, fluid therapy, and vasoactive infusions on the right ventricle. Finally, we summarize the principles of management in the context of right ventricular dysfunction and provide recommendations for echocardiography-guided management.

  10. The clinical effect of traditional Chinese medicine dialectical therapy for treatment of gastrointestinal dysfunction in patients with acute lung injury/acute respiratory distress syndrome undergoing mechanical ventilation%中医辨证治疗急性肺损伤/急性呼吸窘迫综合征机械通气患者胃肠功能障碍的临床研究

    Institute of Scientific and Technical Information of China (English)

    王宏飞; 王勇强; 李寅; 高红梅; 陈洁; 伊学军; 常文秀

    2014-01-01

    Objective To explore the clinical effect of traditional Chinese medicine (TCM) dialectical therapy for treatment of gastrointestinal dysfunction in patients with acute lung injury / acute respiratory distress syndrome(ALI/ARDS)undergoing mechanical ventilation. Methods A prospective,randomized controlled trial was conducted. Ninety-six ALI/ARDS patients admitted in intensive care unit(ICU)and treated with mechanical ventilation in Tianjin First Central Hospital were chosen and randomly divided into traditional Chinese medicine(TCM) group and conventional therapy group using a random number table,48 patients in each group. Conventional therapy alone was used in conventional therapy group,and TCM therapy of primarily using Dachengqi decoction combined with conventional therapy was applied in TCM group〔Dachengqi decoction was composed of mongolian milkvetch root 15 g, pilose asiabell toot 15 g,Chinese angelica 10 g,officinal magnolia bark 10 g,tangerine peel 10 g,immature tangerine fruit 10 g,peach seed 10 g,white peony root 12 g,red peony root 12 g,immature bitter orange 6 g,mongolian dandelion herb 30 g,radish seed(stir-fried)30 g,foxtail millet sprout 20 g,barley sprout 20 g,glauber salt 9 g (with water),rhubarb 10 g(added in water at last)〕,one dose orally taken daily for 28 days. The intra-abdominal pressure(IAP),gastrointestinal diseases in TCM symptom score and the incidence of gastrointestinal dysfunction were compared between the two groups before treatment and on the 3rd,6th and 8th day after treatment. Results There were no statistical significant differences in IAP and TCM symptom scores between the two groups before treatment (both P>0.05),but after treatment with the prolongation of therapeutic time the IAP and TCM symptom scores were decreased gradually compared with those before treatment,having reached the valley value on the 18th day and the changes in TCM group were more remarkable〔IAP(mmHg,1 mmHg=0.133 kPa):0.91±0.69 vs. 2.08±0.92, TCM

  11. The impact of acute brain dysfunction in the outcomes of mechanically ventilated cancer patients.

    Directory of Open Access Journals (Sweden)

    Isabel C T Almeida

    Full Text Available INTRODUCTION: Delirium and coma are a frequent source of morbidity for ICU patients. Several factors are associated with the prognosis of mechanically ventilated (MV cancer patients, but no studies evaluated delirium and coma (acute brain dysfunction. The present study evaluated the frequency and impact of acute brain dysfunction on mortality. METHODS: The study was performed at National Cancer Institute, Rio de Janeiro, Brazil. We prospectively enrolled patients ventilated >48 h with a diagnosis of cancer. Acute brain dysfunction was assessed during the first 14 days of ICU using RASS/CAM-ICU. Patients were followed until hospital discharge. Univariate and multivariable analysis were performed to evaluate factors associated with hospital mortality. RESULTS: 170 patients were included. 73% had solid tumors, age 65 [53-72 (median, IQR 25%-75%] years. SAPS II score was 54[46-63] points and SOFA score was (7 [6-9] points. Median duration of MV was 13 (6-21 days and ICU stay was 14 (7.5-22 days. ICU mortality was 54% and hospital mortality was 66%. Acute brain dysfunction was diagnosed in 161 patients (95%. Survivors had more delirium/coma-free days [4(1,5-6 vs 1(0-2, p<0.001]. In multivariable analysis the number of days of delirium/coma-free days were associated with better outcomes as they were independent predictors of lower hospital mortality [0.771 (0.681 to 0.873, p<0.001]. CONCLUSIONS: Acute brain dysfunction in MV cancer patients is frequent and independently associated with increased hospital mortality. Future studies should investigate means of preventing or mitigating acute brain dysfunction as they may have a significant impact on clinical outcomes.

  12. Sinus Node Dysfunction Presenting as Syncope in Acute Rheumatic Fever - A Case Report

    Directory of Open Access Journals (Sweden)

    Navdeep Singh Sidhu

    2015-01-01

    Full Text Available Rheumatic fever may be associated with a variety of cardiac conduction and rhythm disturbances. First-degree heart block is a common occurrence in acute rheumatic fever and is included in Jones’ criteria. Other electrocardiographic changes such as sinus tachycardia, bundle branch blocks, nonspeci c ST-T wave changes, atrial and ventricular premature complexes have been reported with variable frequency. Rarely, complete heart block may be a manifestation of acute rheumatic fever. Sinus node dysfunction has been reported as an exceptionally rare manifestation of acute rheumatic fever. We report a case of 33 year old female who developed syncope due to sinus node dysfunction during an episode of acute rheumatic carditis.

  13. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin).

    Science.gov (United States)

    Pini, Alessandro; Boccalini, Giulia; Lucarini, Laura; Catarinicchia, Stefano; Guasti, Daniele; Masini, Emanuela; Bani, Daniele; Nistri, Silvia

    2016-06-01

    Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases.

  14. The clinical significance of lung hypoexpansion in acute childhood asthma

    Energy Technology Data Exchange (ETDEWEB)

    Spottswood, Stephanie E. [Department of Radiology, Medical College of Virginia, Virginia Commonwealth University Health System, Box 980615, 23298-0615, Richmond, VA (United States); Department of Radiology, The Children' s Hospital of the King' s Daughters, 601 Children' s Lane, Norfolk, VA 23507 (United States); Allison, Kelley Z.; Narla, Lakshmana D.; Lowry, Patricia A. [Department of Radiology, Medical College of Virginia, Virginia Commonwealth University Health System, Box 980615, 23298-0615, Richmond, VA (United States); Lopatina, Olga A.; Sethi, Narinder N. [School of Medicine, Medical College of Virginia, Virginia Commonwealth University Health System, Richmond, VA (United States); Nettleman, Mary D. [Department of Internal Medicine, B-427 Clinical Center, Michigan State University, East Lansing, MI 48824 (United States)

    2004-04-01

    Many children experiencing acute asthmatic episodes have chest radiographs, which may show lung hyperinflation, hypoinflation, or normal inflation. Lung hypoinflation may be a sign of respiratory fatigue and poor prognosis. To compare the clinical course in children with asthma according to the degree of lung inflation on chest radiographs. We conducted a retrospective study during a 24-month period (from July 1999 to July 2001) of children aged 0-17 years, who presented to a pediatric emergency department or outpatient clinic with an asthma exacerbation. Chest radiographs obtained at presentation were reviewed independently by three pediatric radiologists who were blinded to the admission status of the patient. The correlation between hypoinflation and hospital admission was assessed in three age groups: 0-2 years, 3-5 years, and 6-17 years. Hypoinflation on chest radiographs was significantly correlated with hospital admission for children aged 6-17 years (odds ratio 16.00, 95% confidence interval 1.89-135.43). The inter-reader agreement for interpretation of these radiographs was strong, with a kappa score of 0.76. Hypoinflation was not correlated with admission in younger children. Lung hypoinflation is associated with a greater likelihood of hospital admission in children aged 6 years or older. Therefore, hypoinflation was a poor prognostic sign and may warrant more aggressive therapy. (orig.)

  15. Role of the lung in the progression of multiple organ dysfunction syndrome in ageing rat model

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-ping; ZHU Qing-lei; XUE Qiao; LI Yang; QIAN Xiao-shun; WANG Zhong-liang; WANG Shi-wen

    2012-01-01

    Background Multiple organ dysfunction syndrome in the elderly (MODSE) is a problem with high mortality in the critical care of elderly patients.The pathogenesis of MODSE remains elusive.This study aimed to establish rat models of MODSE and to investigate the pathogenetic mechanism responsible for the development of MODSE in the rat models.Methods Twenty-four-month old rats (elderly) received intravenous injection of lipopolysaccharide (LPS) to induce rat model of MODSE.In the model,we observed the physical responses,biochemical indices changes,histopathological features of vital organs,including lung,liver,heart,and kidney.We also investigated the sequence of individual organ dysfunction and changes of proinflammatory factors.Three-month-old rats.serving as young rat controls,received parallel procedures.Besides,normal saline injection was also performed on elderly and young control rats.Results All rats displayed different degree of physical response after LPS injection,preceded by deterioration of respiratory status.At 6 hours,lung injury was observed,which started eariier than other organ injury that was observed in about 24 hours.Furthermore,all vital organ injury was more severe in elderiy rats than in young rats at the same time points.After LPS injection,pulmonary alveolar macrophages apoptosis rate increased obviously,and was more significant in elderly rats ((43.4±8.4)%) than in young rats ((24.2±3.0)%).LPS injection also enhanced tumor necrosis factor α (TNF-α) concentration significantly in these organs.Its peak concentration appeared at 6 hours in lung tissue and at 24 hours in other organs after LPS injection.TNF-α level was higher in elderly rats than in young rats at the same time points.The increase was most significant in lung tissue.After intravenous administration of LPS.toll-like receptor 4(TLR4) expression in lung tissue was upregulated markedly,and peaked at 6 hours.In contrast,upregulation of TLR4expression in liver peaked at 24

  16. Managing bronchiolitis obliterans syndrome (BOS) and chronic lung allograft dysfunction (CLAD) in children: what does the future hold?

    Science.gov (United States)

    Snell, Gregory I; Paraskeva, Miranda; Westall, Glen P

    2013-08-01

    The success of pediatric lung transplantation continues to be limited by long-term graft dysfunction. Historically this has been characterized as an obstructive spirometric defect in the form of the bronchiolitis obliterans syndrome (BOS). It is recognized, however, that this does not reflect many of the other acknowledged etiologies of chronic lung dysfunction-noting it is the sum of the parts that contribute to respiratory morbidity and mortality after transplant. The term chronic lung allograft dysfunction (CLAD) has been coined to reflect these other entities and, in particular, a group of relatively recently described lung disorders called the restrictive allograft syndrome (RAS). RAS is characterized by a restrictive spirometric defect. Although these entities have not yet been studied in a pediatric setting their association with poor compliance, antibody-mediated rejection (AMR), and post-infectious lung damage (particularly viral) warrants attention by pediatric lung transplant teams. Current therapy for the BOS subset of CLAD is otherwise limited to changing immunosuppressants and avoiding excessive infectious risk by avoiding over-immunosuppression. Long-term macrolide therapy in lung transplantation is not of proven efficacy. Reviewing previous BOS studies to explore restrictive spirometric cases and joint projects via groups like the International Pediatric Lung Transplant Collaborative will be the way forward to solve this pressing problem.

  17. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  18. [Ventilation in acute respiratory distress. Lung-protective strategies].

    Science.gov (United States)

    Bruells, C S; Rossaint, R; Dembinski, R

    2012-11-01

    Ventilation of patients suffering from acute respiratory distress syndrome (ARDS) with protective ventilator settings is the standard in patient care. Besides the reduction of tidal volumes, the adjustment of a case-related positive end-expiratory pressure and preservation of spontaneous breathing activity at least 48 h after onset is part of this strategy. Bedside techniques have been developed to adapt ventilatory settings to the individual patient and the different stages of ARDS. This article reviews the pathophysiology of ARDS and ventilator-induced lung injury and presents current evidence-based strategies for ventilator settings in ARDS.

  19. Acute expanded perlite exposure with persistent reactive airway dysfunction syndrome.

    Science.gov (United States)

    Du, Chung-Li; Wang, Jung-Der; Chu, Po-Chin; Guo, Yue-Liang Leon

    2010-01-01

    Expanded perlite has been assumed as simple nuisance, however during an accidental spill out in Taiwan, among 24 exposed workers followed for more than 6 months, three developed persisted respiratory symptoms and positive provocation tests were compatible with reactive airway dysfunction syndrome. During simulation experiment expanded perlite is shown to be very dusty and greatly exceed current exposure permission level. Review of literature and evidence, though exposure of expanded perlite below permission level may be generally safe, precautionary protection of short term heavy exposure is warranted.

  20. TCM Therapeutic Strategy on Acute Lung Injury Caused by Infectious Atypical Pneumonia and Acute Respiratory Distress Syndrome

    Institute of Scientific and Technical Information of China (English)

    唐光华

    2003-01-01

    @@ Infectious atypical pneumonia (IAP) is also called severe acute respiratory syndrome (SARS) by WHO. In its development, around 20% of SARS can develop into the stage of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), active and effective treatment of it constitutes the important basis for lowering mortality and reducing secondary pulmonary function impairment and pulmonary fibrosis.

  1. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults

    DEFF Research Database (Denmark)

    Afshari, Arash; Brok, Jesper; Møller, Ann

    2010-01-01

    Acute hypoxaemic respiratory failure (AHRF), defined as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are critical conditions. AHRF results from a number of systemic conditions and is associated with high mortality and morbidity in all ages. Inhaled nitric oxide (INO) has...

  2. Acute lung injury and acute respiratory distress syndrome: experimental and clinical investigations

    Institute of Scientific and Technical Information of China (English)

    Hsing I Chen

    2011-01-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can be associated with various disorders.Recent investigation has involved clinical studies in collaboration with clinical investigators and pathologists on the pathogenetic mechanisms of ALl or ARDS caused by various disorders.This literature review includes a brief historical retrospective of ALI/ARDS, the neurogenic pulmonary edema due to head injury, the long-term experimental studies and clinical investigations from our laboratory, the detrimental role of NO, the risk factors, and the possible pathogenetic mechanisms as well as therapeutic regimen for ALI/ARDS.

  3. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis.

    Science.gov (United States)

    Gordon, Anthony C; Perkins, Gavin D; Singer, Mervyn; McAuley, Daniel F; Orme, Robert M L; Santhakumaran, Shalini; Mason, Alexina J; Cross, Mary; Al-Beidh, Farah; Best-Lane, Janis; Brealey, David; Nutt, Christopher L; McNamee, James J; Reschreiter, Henrik; Breen, Andrew; Liu, Kathleen D; Ashby, Deborah

    2016-10-27

    Background Levosimendan is a calcium-sensitizing drug with inotropic and other properties that may improve outcomes in patients with sepsis. Methods We conducted a double-blind, randomized clinical trial to investigate whether levosimendan reduces the severity of organ dysfunction in adults with sepsis. Patients were randomly assigned to receive a blinded infusion of levosimendan (at a dose of 0.05 to 0.2 μg per kilogram of body weight per minute) for 24 hours or placebo in addition to standard care. The primary outcome was the mean daily Sequential Organ Failure Assessment (SOFA) score in the intensive care unit up to day 28 (scores for each of five systems range from 0 to 4, with higher scores indicating more severe dysfunction; maximum score, 20). Secondary outcomes included 28-day mortality, time to weaning from mechanical ventilation, and adverse events. Results The trial recruited 516 patients; 259 were assigned to receive levosimendan and 257 to receive placebo. There was no significant difference in the mean (±SD) SOFA score between the levosimendan group and the placebo group (6.68±3.96 vs. 6.06±3.89; mean difference, 0.61; 95% confidence interval [CI], -0.07 to 1.29; P=0.053). Mortality at 28 days was 34.5% in the levosimendan group and 30.9% in the placebo group (absolute difference, 3.6 percentage points; 95% CI, -4.5 to 11.7; P=0.43). Among patients requiring ventilation at baseline, those in the levosimendan group were less likely than those in the placebo group to be successfully weaned from mechanical ventilation over the period of 28 days (hazard ratio, 0.77; 95% CI, 0.60 to 0.97; P=0.03). More patients in the levosimendan group than in the placebo group had supraventricular tachyarrhythmia (3.1% vs. 0.4%; absolute difference, 2.7 percentage points; 95% CI, 0.1 to 5.3; P=0.04). Conclusions The addition of levosimendan to standard treatment in adults with sepsis was not associated with less severe organ dysfunction or lower mortality

  4. Acute macular edema following intracorporeal prostaglandin injection for erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Asahi MG

    2015-07-01

    Full Text Available Masumi G Asahi, Calvin Chou, Ron P Gallemore Retina Macula Institute, Torrance, CA, USA Purpose: We aimed to describe the first case of macular edema following intracorporeal injection of alprostadil, a prostaglandin E1. Methods: This was a retrospective case report followed with optical coherence tomography, fundus photos, and fluorescein angiography images. Results: A patient developed bilateral cystoid macular edema following intracorporeal injection of alprostadil, a prostaglandin E1 for treatment of erectile dysfunction. The edema resolved following treatment with nonsteroidal anti-inflammatory drugs (NSAIDs and corticosteroids, with subsequent recovery in visual acuity. Discussion: Systemic prostaglandin administration can cause macular edema and vision loss, indicating that elevated systemic prostaglandin levels may affect visual function. This has potential implications for other systemic disorders and treatments that could affect macular function. Keywords: alprostadil, inflammation

  5. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  6. Prospective investigation of pituitary functions in patients with acute infectious meningitis: is acute meningitis induced pituitary dysfunction associated with autoimmunity?

    Science.gov (United States)

    Tanriverdi, F; De Bellis, A; Teksahin, H; Alp, E; Bizzarro, A; Sinisi, A A; Bellastella, G; Paglionico, V A; Bellastella, A; Unluhizarci, K; Doganay, M; Kelestimur, F

    2012-12-01

    Previous case reports and retrospective studies suggest that pituitary dysfunction may occur after acute bacterial or viral meningitis. In this prospective study we assessed the pituitary functions, lipid profile and anthropometric measures in adults with acute bacterial or viral meningitis. Moreover, in order to investigate whether autoimmune mechanisms could play a role in the pathogenesis of acute meningitis-induced hypopituitarism we also investigated the anti-pituitary antibodies (APA) and anti-hypothalamus antibodies (AHA) prospectively. Sixteen patients (10 males, 6 females; mean ± SD age 40.9 ± 15.9) with acute infectious meningitis were included and the patients were evaluated in the acute phase, and at 6 and 12 months after the acute meningitis. In the acute phase 18.7% of the patients had GH deficiency, 12.5% had ACTH and FSH/LH deficiencies. At 12 months after acute meningitis 6 of 14 patients (42.8%) had GH deficiency, 1 of 14 patients (7.1%) had ACTH and FSH/LH deficiencies. Two of 14 patients (14.3%) had combined hormone deficiencies and four patients (28.6%) had isolated hormone deficiencies at 12 months. Four of 9 (44.4%) hormone deficiencies at 6 months were recovered at 12 months, and 3 of 8 (37.5%) hormone deficiencies at 12 months were new-onset hormone deficiencies. At 12 months there were significant negative correlations between IGF-I level vs. LDL-C, and IGF-I level vs. total cholesterol. The frequency of AHA and APA positivity was substantially high, ranging from 35 to 50% of the patients throughout the 12 months period. However there were no significant correlations between AHA or APA positivity and hypopituitarism. The risk of hypopituitarism, GH deficiency in particular, is substantially high in the acute phase, after 6 and 12 months of the acute infectious meningitis. Moreover we found that 6th month after meningitis is too early to make a decision for pituitary dysfunction and these patients should be screened for at least 12 months

  7. Arginine methylation dysfunction increased risk of acute coronary syndrome in coronary artery disease population

    Science.gov (United States)

    Zhang, Shengyu; Zhang, Shuyang; Wang, Hongyun; Wu, Wei; Ye, Yicong

    2017-01-01

    Abstract The plasma levels of asymmetric dimethylarginine (ADMA) had been proved to be an independent cardiovascular risk factor. Few studies involved the entire arginine methylation dysfunction. This study was designed to investigate whether arginine methylation dysfunction is associated with acute coronary syndrome risk in coronary artery disease population. In total 298 patients undergoing coronary angiography because of chest pain with the diagnosis of stable angina pectoris or acute coronary syndrome from February 2013 to June 2014 were included. Plasma levels of free arginine, citrulline, ornithine, and the methylated form of arginine, ADMA, and symmetric dimethylarginine (SDMA) were measured with high-performance liquid chromatography coupled with tandem mass spectrometry. We examined the relationship between arginine metabolism-related amino acids or arginine methylation index (AMI, defined as ratio of [arginine + citrulline + ornithine]/[ADMA + SDMA]) and acute coronary events. We found that plasma ADMA levels were similar in the stable angina pectoris group and the acute coronary syndrome group (P = 0.88); the AMI differed significantly between 2 groups (P angina and acute coronary syndrome patients; AMI might be an independent risk factor of acute coronary events in coronary artery disease population. PMID:28207514

  8. Therapeutic experience of the application of anisodamine on acute lung injury

    Institute of Scientific and Technical Information of China (English)

    Nan-Bin Yu

    2016-01-01

    Objective: To investigate the effect of anisodamine combining with conventional ther-apy on the degree of lung injury and inflammatory reaction of patients with acute pul-monary contusion. Methods: A total of 48 patients with acute pulmonary contusion treated in our hospital emergency department from April 2011 to October 2015 were enrolled as the research object and were divided into experimental group and control group by using a method of random number table. Experimental group received anisodamine combining with con-ventional therapy and control group received conventional therapy. In the process of the treatment, the mechanical ventilation time, hospital stays in intensive care unit and the number of cases developed into acute respiratory distress syndrome and multiple organ dysfunction syndromes of patients in two groups were observed. Oxygenation indexes of patients were respectively calculated on Days 1, 2 and 3 after treatment. The contents of inflammatory mediators in serum were detected on Day 3 after treatment. Results: The mechanical ventilation time and hospital stays in intensive care unit [(9.52 ± 1.41) vs. (14.57 ± 2.51) days] of patients in experimental group were signifi-cantly shorter than those in control group, and the number of cases developed into acute respiratory distress syndrome [1 (4.17%) vs. 9 (37.50%)] and multiple organ dysfunction syndrome [1 (4.17%) vs. 7 (29.17%)] was significantly less than those in control group. Oxygenation indexes (294.52 ± 41.26 vs. 257.63 ± 38.52; 357.74 ± 47.74 vs. 279.87 ± 31.46; 396.71 ± 55.12 vs. 279.87 ± 31.46) of patients were respectively calculated on Days 1, 2 and 3 after treatment, which were significantly higher than those in the control group. On Day 3 after treatment, the contents of serum C-reactive protein [(7.94 ± 1.05) vs. (14.49 ± 2.97) mg/L], tumor necrosis factor a [(264.69 ± 41.58) vs. (417.87 ± 64.51) ng/L], interleukin-6 (IL-6) [(147.72 ± 21.36) vs. (257.68 ± 41.54) ng

  9. Therapeutic exper ience of the application of anisodamine on acute lung injur y

    Directory of Open Access Journals (Sweden)

    Nan-Bin Yu

    2016-09-01

    Full Text Available Objective: To investigate the effect of anisodamine combining with conventional therapy on the degree of lung injury and inflammatory reaction of patients with acute pulmonary contusion. Methods: A total of 48 patients with acute pulmonary contusion treated in our hospital emergency department from April 2011 to October 2015 were enrolled as the research object and were divided into experimental group and control group by using a method of random number table. Experimental group received anisodamine combining with conventional therapy and control group received conventional therapy. In the process of the treatment, the mechanical ventilation time, hospital stays in intensive care unit and the number of cases developed into acute respiratory distress syndrome and multiple organ dysfunction syndromes of patients in two groups were observed. Oxygenation indexes of patients were respectively calculated on Days 1, 2 and 3 after treatment. The contents of inflammatory mediators in serum were detected on Day 3 after treatment. Results: The mechanical ventilation time and hospital stays in intensive care unit [(9.52 ± 1.41 vs. (14.57 ± 2.51 days] of patients in experimental group were signifi- cantly shorter than those in control group, and the number of cases developed into acute respiratory distress syndrome [1 (4.17% vs. 9 (37.50%] and multiple organ dysfunction syndrome [1 (4.17% vs. 7 (29.17%] was significantly less than those in control group. Oxygenation indexes (294.52 ± 41.26 vs. 257.63 ± 38.52; 357.74 ± 47.74 vs. 279.87 ± 31.46; 396.71 ± 55.12 vs. 279.87 ± 31.46 of patients were respectively calculated on Days 1, 2 and 3 after treatment, which were significantly higher than those in the control group. On Day 3 after treatment, the contents of serum C-reactive protein [(7.94 ± 1.05 vs. (14.49 ± 2.97 mg/L], tumor necrosis factor a [(264.69 ± 41.58 vs. (417.87 ± 64.51 ng/L], interleukin-6 (IL-6 [(147.72 ± 21.36 vs. (257.68 ± 41

  10. Intestinal epithelium is more susceptible to cytopathic injury and altered permeability than the lung epithelium in the context of acute sepsis.

    Science.gov (United States)

    Julian, Mark W; Bao, Shengying; Knoell, Daren L; Fahy, Ruairi J; Shao, Guohong; Crouser, Elliott D

    2011-10-01

    Mitochondrial morphology and function are altered in intestinal epithelia during endotoxemia. However, it is unclear whether mitochondrial abnormalities occur in lung epithelial cells during acute sepsis or whether mitochondrial dysfunction corresponds with altered epithelial barrier function. Thus, we hypothesized that the intestinal epithelium is more susceptible to mitochondrial injury than the lung epithelium during acute sepsis and that mitochondrial dysfunction precedes impaired barrier function. Using a resuscitated feline model of Escherichia coli-induced sepsis, lung and ileal tissues were harvested after 6 h for histological and mitochondrial ultrastructural analyses in septic (n = 6) and time-matched controls (n = 6). Human lung epithelial cells (HLEC) and Caco-2 monolayers (n = 5) were exposed to 'cytomix' (TNFα: 40 ng/ml, IL-1β: 20 ng/ml, IFNγ: 10 ng/ml) for 24-72 h, and measurements of transepithelial electrical resistance (TER), epithelial permeability and mitochondrial membrane potential (ΔΨ) were taken. Lung epithelial morphology, mitochondrial ultrastructure and pulmonary gas exchange were unaltered in septic animals compared to matching controls. While histologically intact, ileal epithelia demonstrated marked mitochondrial ultrastructural damage during sepsis. Caco-2 monolayers treated with cytomix showed a significant decrease in mitochondrial ΔΨ within 24 h, which was associated with a progressive reduction in TER and increased epithelial permeability over the subsequent 48 h. In contrast, mitochondrial ΔΨ and epithelial barrier functions were preserved in HLEC following cytomix. These findings indicate that intestinal epithelium is more susceptible to mitochondrial damage and dysfunction than the lung epithelium in the context of sepsis. Early alterations in mitochondrial function portend subsequent epithelial barrier dysfunction.

  11. Melatonin reduces acute lung injury in endotoxemic rats

    Institute of Scientific and Technical Information of China (English)

    SHANG You; XU San-peng; WU Yan; JIANG Yuan-xu; WU Zhou-yang; YUAN Shi-ying; YAO Shang-long

    2009-01-01

    Background Treatment with melatonin significantly reduces lung injury induced by bleomycin, paraquat and ischemia reperfusion. In the present study, we investigated the possible protective roles of melatonin in pulmonary inflammation and lung injury during acute endotoxemia.Methods Thirty-two male Sprague-Dawley rats were randomly assigned to four groups: vehicle + saline group, melatonin + saline group, vehicle + lipopolysaccharide group, melatonin + lipopolysaccharide group. The rats were treated with melatonin (10 mg/kg, intraperitoneal injection (I.p.)) or vehicle (1% ethanol saline), 30 minutes prior to lipopolysaccharide administration (6 mg/kg, intravenous injection). Four hours after lipopolysaccharide injection, samples of pulmonary tissue were collected. Blood gas analysis was carried out. Optical microscopy was performed to examine pathological changes in lungs and lung injury score was assessed. Wet/dry ratios (W/D), myeloperoxidase activity, malondialdehyde concentrations and tumor necrosis factor-alpha (TNF-a) and interleukin-10 (IL-10) levels in lungs were measured. The pulmonary expression of nuclear factor-kappa B (NF-KB) p65 was evaluated by Western blotting. Results PaO2 in the vehicle + lipopolysaccharide group decreased compared with that in the vehicle + saline group. This decrease was significantly reduced in the melatonin + lipopolysaccharide group. The lung tissues from the saline + lipopolysaccharide group were significantly damaged, which were less pronounced in the melatonin + lipopolysaccharide group. The W/D ratio increased significantly in the vehicle + lipopolysaccharide group (6.1±0.18) as compared with that in the vehicle + saline group (3.611±0.3) (P <0.01), which was significantly reduced in the melatonin + lipopolysaccharide group (4.8±0.25) (P <0.01). Myeloperoxidase activity and malondialdehyde levels increased significantly in the vehicle + lipopolysaccharide group compared with that in the vehicle + saline group, which

  12. Biomarkers of acute lung injury: worth their salt?

    Directory of Open Access Journals (Sweden)

    Proudfoot Alastair G

    2011-12-01

    Full Text Available Abstract The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy.

  13. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effect of exogenous erythropoietin (EPO) administration on acute lung injury (ALI) in an experimental model of sodium taurodeoxycholateinduced acute necrotizing pancreatitis (ANP).METHODS: Forty-seven male Wistar albino rats were randomly divided into 7 groups: sham group (n = 5),3 ANP groups (n = 7 each) and 3 EPO groups (n = 7each). ANP was induced by retrograde infusion of 5% sodium taurodeoxycholate into the common bile duct.Rats in EPO groups received 1000 U/kg intramuscular EPO immediately after induction of ANP. Rats in ANP groups were given 1 mL normal saline instead. All animals were sacrificed at postoperative 24 h, 48 h and 72 h. Serum amilase, IL-2, IL-6 and lung tissue malondialdehyde (MDA) were measured. Pleural effusion volume and lung/body weight (LW/BW) ratios were calculated. Tissue levels of TNF-α, IL-2 and IL-6 were screened immunohistochemically. Additionally, ox-LDL accumulation was assessed with immune-fluorescent staining. Histopathological alterations in the lungs were also scored.RESULTS: The mean pleural effusion volume, calculated LW/BW ratio, serum IL-6 and lung tissue MDA levels were significantly lower in EPO groups than in ANP groups. No statistically significant difference was observed in either serum or tissue values of IL-2 among the groups. The level of tumor necrosis factor-α (TNF-α)and IL-6 and accumulation of ox-LDL were evident in the lung tissues of ANP groups when compared to EPO groups, particularly at 72 h. Histopathological evaluation confirmed the improvement in lung injury parameters after exogenous EPO administration, particularly at 48 h and 72 h.CONCLUSION: EPO administration leads to a significant decrease in ALI parameters by inhibiting polymorphonuclear leukocyte (PMNL) accumulation,decreasing the levels of proinflammatory cytokines in circulation, preserving microvascular endothelial cell integrity and reducing oxidative stress-associated lipid peroxidation and therefore, can be

  14. Ligustrazine alleviates acute lung injury in a rat model of acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin Zhang; Sheng-Chun Dang

    2006-01-01

    BACKGROUND:Acute necrotizing pancreatitis leads to a systemic inlfammatory response characterized by widespread leukocyte activation and, as a consequence, distant lung injury. The aim of this study was to evaluate the effect of ligustrazine, extracted from Ligusticum wallichii a traditional Chinese medicine, on lung injury in a rat model of acute necrotizing pancreatitis (ANP). METHODS:A total of 192 rats were randomly divided into three groups: control (C group); ANP without treatment (P group); and ANP treated with ligustrazine (T group). Each group was further divided into 0.5, 2, 6 and 12 hours subgroups. All rats were anesthetized with an intraperitoneal injection of sodium pentobarbital. Sodium taurocholate was infused through the pancreatic membrane to induce ANP. For the T group, sodium taurocholate was infused as above, then 0.6%ligustrazine was administered via the femoral vein. The effects of ligustrazine on the severity of lung injury were assessed by lung wet/dry weight ratio, myeloperoxidase (MPO) activity and histopathological changes. Pulmonary blood lfow was determined by the radioactive microsphere technique (RMT). RESULTS:The blood lfow in the P group was signiifcantly lower than that of the C group, while the blood lfow in the T group was signiifcantly higher than that of the P group but showed no signiifcant difference from the C group. Compared with C group, the lung wet/dry ratios in both the P and T groups were signiifcantly increased, but there was no signiifcant difference between them. The MPO activity in the P group was greatly increased over that of the C group. In the T group, although the MPO activity was also higher than in the C group, it much less increased than in the P group. Moreover, the difference between P and T groups was signiifcant after 0.5 to 12 hours. After induction of the ANP model, the pancreas showed mild edema and congestion;the longer the time, the more severe this became. The pulmonary pathological changes were

  15. Acute Lung Injury | EU Clinical Trials Register [EU Clinical Trials Register

    Lifescience Database Archive (English)

    Full Text Available rnedUK - MHRA A.2EudraCT number2010-021186-70 A.3Full title of the trial Keratinocyte growth factor in Acute...reviated title of the trial where available Keratinocyte Growth Factor in Acute L...nder investigation E.1.1Medical condition(s) being investigated Acute Lung Injury

  16. Protective effects of imipramine in murine endotoxin-induced acute lung injury.

    Science.gov (United States)

    Yang, Jin; Qu, Jie-ming; Summah, Hanssa; Zhang, Jin; Zhu, Ying-gang; Jiang, Hong-ni

    2010-07-25

    The tricyclic antidepressant imipramine has recently emerged as a cytoprotective agent, exerting beneficial effects in inflammatory tissue injury. The present study aimed to investigate therapeutic effects of imipramine in murine model of endotoxin-induced acute lung injury. Mice were administrated intraperitoneally with LPS (lipopolysaccharide) from Escherichia coli or vehicle. Imipramine was administrated intraperitoneally 30 min before LPS challenge. Pretreatment of mice with imipramine reduced lethality. Impramine also significantly attenuated lung inflammation, lung edema, MPO (myeloperoxidase) activity, lung tissue pathological changes and nuclear factor-kappaB DNA binding activity. The results of this study suggest that imipramine can exert protective effects in endotoxin-induced acute lung injury by suppressing nuclear factor-kappaB-mediated expression of inflammatory genes. Thus, imipramine could be a potential novel therapeutic agent for the treatment for acute lung injury.

  17. Anaemia is an independent predictor of mortality in patients with left ventricular systolic dysfunction following acute myocardial infarction

    DEFF Research Database (Denmark)

    Valeur, Nana; Nielsen, Olav Wendelboe; McMurray, John J V;

    2006-01-01

    BACKGROUND: In patients with chronic heart failure (HF), mortality is inversely related to haemoglobin (hgb) concentration. We investigated the prognostic importance of anaemia in patients with acute myocardial infarction (AMI) and left ventricular systolic dysfunction (LVSD) with and without HF...

  18. Percutaneous coronary intervention for acute myocardial infarction in elderly patients with renal dysfunction: results from the Korea Acute Myocardial Infarction Registry.

    Science.gov (United States)

    Lim, Sang Yup; Bae, Eun Hui; Choi, Joon Seok; Kim, Chang Seong; Ma, Seong Kwon; Ahn, Youngkeun; Jeong, Myung Ho; Kim, Weon; Woo, Jong Shin; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Kim, Soo Wan

    2013-07-01

    This study aimed to evaluate the effects of percutaneous coronary intervention (PCI) on short- and long-term major adverse cardiac events (MACE) in elderly (>75 yr old) acute myocardial infarction (AMI) patients with renal dysfunction. As part of Korea AMI Registry (KAMIR), elderly patients with AMI and renal dysfunction (GFRrenal dysfunction, PCI therapy yields favorable in-hospital and short-term and long-term MACE-free survival.

  19. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients

    NARCIS (Netherlands)

    Morandi, A; Pandharipande, P; Trabucchi, M; Rozzini, R; Mistraletti, G; Trompeo, A C; Gregoretti, C; Gattinoni, L; Ranieri, M V; Brochard, L; Annane, D; Putensen, C; Guenther, U; Fuentes, P; Tobar, E; Anzueto, A R; Esteban, A; Skrobik, Y; Salluh, J I F; Soares, M; Granja, C; Stubhaug, A; de Rooij, S E; Ely, E Wesley

    2008-01-01

    BACKGROUND: Delirium (acute brain dysfunction) is a potentially life threatening disturbance in brain function that frequently occurs in critically ill patients. While this area of brain dysfunction in critical care is rapidly advancing, striking limitations in use of terminology related to delirium

  20. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Julie eMcLean

    2014-12-01

    Full Text Available Aims: Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM would impair the mitochondrial electron transport chain (ETC and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 minutes, 2hrs, 4hrs, 24hrs or 48hrs. We measured protein content by western blot; oxidant production by 2′,7′-dichlorofluorescin diacetate (DCF, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF, and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR of intact myotubes by Seahorse XF Analyzer. Results: LCM treatment for 2hrs or 24hrs decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS. In particular, mitochondrial superoxide (MitoSOX was elevated at 2hrs. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. Conclusion: These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.

  1. Elevated plasma angiopoietin-2 levels and primary graft dysfunction after lung transplantation.

    Directory of Open Access Journals (Sweden)

    Joshua M Diamond

    Full Text Available INTRODUCTION: Primary graft dysfunction (PGD is a significant contributor to early morbidity and mortality after lung transplantation. Increased vascular permeability in the allograft has been identified as a possible mechanism leading to PGD. Angiopoietin-2 serves as a partial antagonist to the Tie-2 receptor and induces increased endothelial permeability. We hypothesized that elevated Ang2 levels would be associated with development of PGD. METHODS: We performed a case-control study, nested within the multi-center Lung Transplant Outcomes Group cohort. Plasma angiopoietin-2 levels were measured pre-transplant and 6 and 24 hours post-reperfusion. The primary outcome was development of grade 3 PGD in the first 72 hours. The association of angiopoietin-2 plasma levels and PGD was evaluated using generalized estimating equations (GEE. RESULTS: There were 40 PGD subjects and 79 non-PGD subjects included for analysis. Twenty-four PGD subjects (40% and 47 non-PGD subjects (59% received a transplant for the diagnosis of idiopathic pulmonary fibrosis (IPF. Among all subjects, GEE modeling identified a significant change in angiopoietin-2 level over time in cases compared to controls (p = 0.03. The association between change in angiopoietin-2 level over the perioperative time period was most significant in patients with a pre-operative diagnosis of IPF (p = 0.02; there was no statistically significant correlation between angiopoietin-2 plasma levels and the development of PGD in the subset of patients transplanted for chronic obstructive pulmonary disease (COPD (p = 0.9. CONCLUSIONS: Angiopoietin-2 levels were significantly associated with the development of PGD after lung transplantation. Further studies examining the regulation of endothelial cell permeability in the pathogenesis of PGD are indicated.

  2. Critical care in the ED: potentially fatal asthma and acute lung injury syndrome

    Directory of Open Access Journals (Sweden)

    Hodder R

    2012-08-01

    Full Text Available Rick Hodder*Divisions of Pulmonary and Critical Care, University of Ottawa and The Ottawa Hospital, Ottawa, Canada, *Dr Rick Hodder passed away on Tuesday April 17,2012. Please see the Dedication for more information on Dr Hodder.Abstract: Emergency department clinicians are frequently called upon to assess, diagnose, and stabilize patients who present with acute respiratory failure. This review describes a rapid initial approach to acute respiratory failure in adults, illustrated by two common examples: (1 an airway disease – acute potentially fatal asthma, and (2 a pulmonary parenchymal disease – acute lung injury/acute respiratory distress syndrome. As such patients are usually admitted to hospital, discussion will be focused on those initial management aspects most relevant to the emergency department clinician.Keywords: acute asthma, acute lung injury, ARDS, acute respiratory failure

  3. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  4. Inhaled aerosolized insulin ameliorates hyperglycemia-induced inflammatory responses in the lungs in an experimental model of acute lung injury

    OpenAIRE

    Fan, Wei; Nakazawa, Koichi; Abe, Shinya; Inoue, Miori; Kitagawa, Masanobu; Nagahara, Noriyuki; Makita, Koshi

    2013-01-01

    Introduction Previous studies have shown that patients with diabetes mellitus appear to have a lower prevalence of acute lung injury. We assumed that insulin prescribed to patients with diabetes has an anti-inflammatory property and pulmonary administration of insulin might exert beneficial effects much more than intravenous administration. Methods Twenty-eight mechanically ventilated rabbits underwent lung injury by saline lavage, and then the animals were allocated into a normoglycemia grou...

  5. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    Science.gov (United States)

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (Phydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (Phydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  6. Monoacylglycerol lipase (MAGL inhibition attenuates acute lung injury in mice.

    Directory of Open Access Journals (Sweden)

    Carolina Costola-de-Souza

    Full Text Available Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG, is mediated by monoacylglycerol lipase (MAGL. The piperidine carbamate, 4-nitrophenyl- 4-(dibenzo[d] [1,3]dioxol-5-yl (hydroxy methyl piperidine- 1-carboxylate (JZL184, is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p. of JZL184, in a murine model of lipopolysaccharide (LPS -induced acute lung injury (ALI 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl-5-(4-iodophenyl-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide and the AM630 selective CB2 receptor antagonist ([6-iodo-2-methyl-1-[2-(4-morpholinylethyl]-1H-indol-3-yl](4-methoxyphenyl-methanone blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors.

  7. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  8. β2 adrenergic agonists in acute lung injury? The heart of the matter

    OpenAIRE

    Lee, Jae W

    2009-01-01

    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of β2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to in...

  9. Increased T cell glucose uptake reflects acute rejection in lung grafts

    OpenAIRE

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the graft...

  10. Blood transfusion : Transfusion-related acute lung injury: back to basics

    NARCIS (Netherlands)

    Peters, A.L.

    2017-01-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening disease affecting the lungs. TRALI can develop within 6 hours after transfusion and almost all patients with TRALI require mechanical ventilation at the intensive care department. Nevertheless up to 40% of patients do not recover fr

  11. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  12. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Shih-Tao Wen

    Full Text Available High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI, for which efficient treatments are currently unavailable.

  13. Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model.

    Directory of Open Access Journals (Sweden)

    Fiona E Lovegrove

    2008-05-01

    Full Text Available Although acute lung injury (ALI is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM; however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL, histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA. BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar-capillary membrane barrier-the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36(-/- mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality.

  14. Diastolic dysfunction predicts new-onset atrial fibrillation and cardiovascular events in patients with acute myocardial infarction and depressed left ventricular systolic function: a CARISMA substudy

    DEFF Research Database (Denmark)

    Jons, Christian; Joergensen, Rikke Moerch; Hassager, Christian;

    2010-01-01

    The aim of this study was to investigate the association between diastolic dysfunction and long-term occurrence of new-onset atrial fibrillation (AF) and cardiac events in patients with acute myocardial infarction (AMI) and left ventricular (LV) systolic dysfunction.......The aim of this study was to investigate the association between diastolic dysfunction and long-term occurrence of new-onset atrial fibrillation (AF) and cardiac events in patients with acute myocardial infarction (AMI) and left ventricular (LV) systolic dysfunction....

  15. EARLY ALLOGRAFT DYSFUNCTION AND ACUTE KIDNEY INJURY AFTER LIVER TRANSPLANTATION: DEFINITIONS, RISK FACTORS AND CLINICAL SIGNIFICANCE

    Directory of Open Access Journals (Sweden)

    L. Y. Moysyuk

    2012-01-01

    Full Text Available This review discusses issues related to intensive care in recipients of transplanted liver in the early postoperative period, with an emphasis on contemporary conditions and attitudes that are specific for this group of patients. Early allograft dysfunction (EAD requires immediate diagnosis and appropriate treatment in case. The causes of the EAD and therapeutic tactics are discussed. Acute kidney injury (AKI and renal failure are common in patients after transplantation. We consider etiology, risk factors, diagnosis and treatment guidelines for AKI. The negative impact of EAD and AKI on the grafts survival and recipients is demonstrated. 

  16. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats.

    Science.gov (United States)

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2005-08-01

    Leukocyte activation and production of inflammatory mediators and reactive oxygen species are important in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. The present study investigated acute lung hyperinflation, edema, and lung inflammation 4 h after an intratracheal instillation of LPS (0.5, 2.5, 5, 10, 50, 100, 500, 1000, and 5000 microg/ml/kg). Effects of budesonide, an inhaled anti-inflammatory corticosteroids, and N-acetylcysteine (NAC), an antioxidant, were evaluated in Wistar rats receiving either low (2.5 microg/ml/kg) or high (50 microg/ml/kg) concentrations of LPS. This study demonstrates that LPS in a concentration-dependent pattern induces acute lung hyperinflation measured by excised lung gas volume (25-45% above control), lung injury indicated by increased lung weight (10-60%), and lung inflammation characterized by the infiltration of leukocytes (40-14000%) and neutrophils (80-17000%) and the production of cytokines (up to 2700%) and chemokines (up to 350%) in bronchoalveolar lavage fluid (BALF). Pretreatment with NAC partially prevented tumor necrosis factor alpha (TNFalpha) production induced by the low concentration of LPS, while pretreatment with budesonide totally prevented the increased production of TNFalpha, interleukin (IL)-1beta, IL-6, and monocyte chemoattractive protein (MCP)-1 after LPS challenge at both low and high concentrations. Budesonide failed to prevent BALF levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant 1 (GRO/CINC-1) as well as lung hyperinflation induced by both low and high concentrations of LPS. Pretreatment with budesonide totally prevented the formation of lung edema at the low concentration of LPS and had partial effects on acute lung injury and leukocyte influx at the high concentrations. Thus, our data indicate that therapeutic effects of budesonide and NAC are dependent upon the severity of the disease.

  17. Acute lung injury in children : from viral infection and mechanical ventilation to inflammation and apoptosis

    NARCIS (Netherlands)

    Bern, R.A.

    2010-01-01

    Acute lung injury (ALI), ook bekend als acute respiratory distress syndrome (ARDS), is een uitgebreide ontstekingsreactie in beide longen door een longziekte of een aandoening elders in het lichaam. Kinderen lijken minder gevoelig voor de ziekte dan volwassenen, wellicht door de manier waarop de lon

  18. Early preventive treatment for severe acute pancreatitis combined with lung injury

    Institute of Scientific and Technical Information of China (English)

    刘学民; 刘青光; 潘承恩

    2002-01-01

    @@ Severe acute pancreatitis (SAP) can cause systematic inflammatory response syndrome (SIRS),which leads to injury or failure of the internal organs and systems.1 Among them,acute respiratory distress syndrome(ARDS)is a severe or fatal complication.In this article,the early preventive treatment for SAP combined with lung injure is studied.

  19. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    Institute of Scientific and Technical Information of China (English)

    李春盛; 桂培春; 何新华

    2000-01-01

    Objeaive. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury. Methods. Lipopolysaeeharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasoue group.Macroscopic and histopathological e~aminatiom were performed and biological markers were measured for the lung specimem. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA. Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P < 0.01),demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasoue and rhubarb emfld decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P< 0.01, P < 0.05) ; the correslxmding pathologic changes of lung tissues and the biological markers of the lung injury were simifieantlv decreased or ameliorated. Conclusions. The increase of the expression d ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI.The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM-1 m

  20. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury.Methods. Lipopolysaccharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasone group. Macroscopic and histopathological examinations were performed and biological markers were measured for the lung specimens. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA.Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P<0.01), demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasone and rhubarb could decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P<0.01, P<0.05); the corresponding pathologic changes of lung tissues and the biological markers of the lung injury were significantly decreased or ameliorated.Conclusions. The increase of the expression of ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI. The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM

  1. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs.

    Directory of Open Access Journals (Sweden)

    Marc A Sze

    Full Text Available Previous reports have shown that the gastrointestinal (GI bacterial microbiota can have profound effects on the lungs, which has been described as the "gut-lung axis". However, whether a "lung-gut" axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown.Adult C57/Bl6 mice were exposed to one dose of LPS or PBS instillation (n=3 for each group directly into lungs. Bacterial microbiota of the bronchoalveolar lavage fluid, blood, and cecum were determined using 454 pyrotag sequencing and quantitative polymerase chain reaction (qPCR at 4 through 168 hours post-instillation. We then investigated the effects of oral neomycin and streptomycin (n=8 on the microbiota at 4 and 24 hours post LPS instillation versus control treatment (n=5 at baseline and 4 hours, n=7 at 24 hours.At 24 hours post LPS instillation, the total bacterial count was significantly increased in the cecum (P<0.05; whereas the total bacterial count in blood was increased at 4, 48, and 72 hours (P<0.05. Antibiotic treatment reduced the total bacteria in blood but not in the cecum. The increase in total bacteria in the blood correlated with Phyllobacteriaceae OTU 40 and was significantly reduced in the blood for both antibiotic groups (P<0.05.LPS instillation in lungs leads to acute changes in the bacterial microbiota in the blood and cecum, which can be modulated with antibiotics.

  2. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  3. Increased T cell glucose uptake reflects acute rejection in lung grafts

    Science.gov (United States)

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [18F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [18F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow-cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8+ T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients PMID:23927673

  4. The value of nitrogen washout/washin method in assessing alveolar recruitment volume in acute lung injury patients

    Institute of Scientific and Technical Information of China (English)

    李洋

    2013-01-01

    Objective To evaluate the precision and feasibility of nitrogen washout/washin method in assessing lung recruitment of acute lung injury(ALI)patients.Methods Fifteen ALI patients underwent mechanical ventilation

  5. [Sacroiliac joint dysfunction presented with acute low back pain: three case reports].

    Science.gov (United States)

    Hamauchi, Shuji; Morimoto, Daijiro; Isu, Toyohiko; Sugawara, Atsushi; Kim, Kyongsong; Shimoda, Yusuke; Motegi, Hiroaki; Matsumoto, Ryoji; Isobe, Masanori

    2010-07-01

    Sacroiliac joint (SIJ) can cause low back pain when its joint capsule and ligamentous tissue are damaged. We report our experience in treating three SIJ dysfunction patients presenting with acute low back pain (a 38 year-old male, a 24 year-old male, and a 32 year-old female). SIJ dysfunction was diagnosed using the one-finger test, the modified Newton test, and SIJ injection. In all three patients, lumbar MRI demonstrated slightly degenerated lumbar lesions (lumbar canal stenosis, lumbar disc hernia). Two patients had paresthesia or pain in the leg and all three patients showed iliac muscle tenderness in the groin, which was thought to be a referred symptom because of improvement after SIJ injection. The two male patients returned to work and the problems have not recurred. Although our female patient resumed daily life as a housewife, her condition recurred at intervals of 2-3 months and she required regular SIJ injections. The prevalence of SIJ dysfunction of low back pain is about 10%, so it should be considered as a differential diagnosis when treating low back pain and designing treatment for lumbar spinal disorders.

  6. [Lung ultrasound in acute and critical care medicine].

    Science.gov (United States)

    Zechner, P M; Seibel, A; Aichinger, G; Steigerwald, M; Dorr, K; Scheiermann, P; Schellhaas, S; Cuca, C; Breitkreutz, R

    2012-07-01

    The development of modern critical care lung ultrasound is based on the classical representation of anatomical structures and the need for the assessment of specific sonography artefacts and phenomena. The air and fluid content of the lungs is interpreted using few typical artefacts and phenomena, with which the most important differential diagnoses can be made. According to a recent international consensus conference these include lung sliding, lung pulse, B-lines, lung point, reverberation artefacts, subpleural consolidations and intrapleural fluid collections. An increased number of B-lines is an unspecific sign for an increased quantity of fluid in the lungs resembling interstitial syndromes, for example in the case of cardiogenic pulmonary edema or lung contusion. In the diagnosis of interstitial syndromes lung ultrasound provides higher diagnostic accuracy (95%) than auscultation (55%) and chest radiography (72%). Diagnosis of pneumonia and pulmonary embolism can be achieved at the bedside by evaluating subpleural lung consolidations. Detection of lung sliding can help to detect asymmetrical ventilation and allows the exclusion of a pneumothorax. Ultrasound-based diagnosis of pneumothorax is superior to supine anterior chest radiography: for ultrasound the sensitivity is 92-100% and the specificity 91-100%. For the diagnosis of pneumothorax a simple algorithm was therefore designed: in the presence of lung sliding, lung pulse or B-lines, pneumothorax can be ruled out, in contrast a positive lung point is a highly specific sign of the presence of pneumothorax. Furthermore, lung ultrasound allows not only diagnosis of pleural effusion with significantly higher sensitivity than chest x-ray but also visual control in ultrasound-guided thoracocentesis.

  7. Protective effect of ulinastatin on acute lung injury after radiotherapy in patients with lung cancer and the related molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Guang-Ping Fan

    2016-01-01

    Objective:To analyze the protective effect of ulinastatin on acute lung injury after radiotherapy in patients with lung cancer and the related molecular mechanism.Methods:A total of 78 patients who received radiotherapy and developed acute lung injury in our hospital between December 2013 and December 2015 were randomly divided into observation group and control group, control group received symptomatic treatment, observation group received symptomatic + ulinastatin treatment, and the content of growth factors, inflammatory factors, disease-related proteins in serum as well as the expression of P38MAPK signaling pathway molecules in alveolar lavage fluid were compared between two groups of patients after treatment.Results:Ten days after treatment, HGF, KGF, VEGF, IL-1β, IL-8, IL-10, IL-18, IL-13, PCT, S100A8, S100A9 and SP-D content in serum of observation group were significantly lower than those of control group while Clara cell protein content was significantly higher than that of control group; phosphorylated p38MAPK, MAPK, MKK3/6 and ATF-2 protein expression levels in alveolar lavage fluid were significantly lower than those of control group.Conclusions:Ulinastatin can alleviate the overall condition in patients with acute lung injury after radiotherapy, and the specific mechanism is associated with P38MAPK signaling pathway.

  8. Influence of renal dysfunction on clinical outcomes in patients with congestive heart failure complicating acute myocardial infarction.

    Science.gov (United States)

    Kim, Chang Seong; Kim, Min Jee; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Ahn, Young-Keun; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Kim, Soo Wan

    2013-01-01

    The clinical course and medical treatment of patients with congestive heart failure (CHF) complicating acute myocardial infarction (AMI) are not well established, especially in patients with concomitant renal dysfunction. We performed a retrospective analysis of the prospective Korean Acute Myocardial Infarction Registry to assess the medical treatments and clinical outcomes of patients with CHF (Killip classes II or III) complicated by AMI, in the presence or absence of renal dysfunction. Of 13,498 patients with AMI, 2769 (20.5%) had CHF on admission. Compared to CHF patients with preserved renal function, in-hospital mortality and major adverse cardiac events were increased both at 1 month and at 1 year after discharge in patients with renal dysfunction (1154; 41.7%). Postdischarge use of aspirin, betablockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, or angiotensin II receptor blockers and statins significantly reduced the 1-year mortality rate for CHF patients with renal dysfunction; such reduction was not observed for those without renal dysfunction, except in the case of aspirin. Patients with CHF complicating AMI, which is accompanied by renal dysfunction, are at higher risk for adverse cardiovascular outcomes than patients without renal dysfunction. However, they receive fewer medications proven to reduce mortality rates.

  9. Diagnostic and Therapeutic Aspects of Acute Lung Injury: empirical studies

    NARCIS (Netherlands)

    R.A. Lachmann

    2006-01-01

    textabstractThe thesis emphases research on prognostic markers as well as on different approaches for treating lung injury. Thereby, the prevention and treatment of pneumonia and possible ventilation induced bacterial translocation from the lung into the blood represents the main focus of th

  10. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury.

    Science.gov (United States)

    Abraham, E; Carmody, A; Shenkar, R; Arcaroli, J

    2000-12-01

    Acute lung injury is characterized by accumulation of neutrophils in the lungs, accompanied by the development of interstitial edema and an intense inflammatory response. To assess the role of neutrophils as early immune effectors in hemorrhage- or endotoxemia-induced lung injury, mice were made neutropenic with cyclophosphamide or anti-neutrophil antibodies. Endotoxemia- or hemorrhage-induced lung edema was significantly reduced in neutropenic animals. Activation of the transcriptional regulatory factor nuclear factor-kappaB after hemorrhage or endotoxemia was diminished in the lungs of neutropenic mice compared with nonneutropenic controls. Hemorrhage or endotoxemia was followed by increases in pulmonary mRNA and protein levels for interleukin-1beta (IL-1beta), macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor-alpha (TNF-alpha). Endotoxin-induced increases in proinflammatory cytokine expression were greater than those found after hemorrhage. The amounts of mRNA or protein for IL-1beta, MIP-2, and TNF-alpha were significantly lower after hemorrhage in the lungs of neutropenic versus nonneutropenic mice. Neutropenia was associated with significant reductions in IL-1beta and MIP-2 but not in TNF-alpha expression in the lungs after endotoxemia. These experiments show that neutrophils play a central role in initiating acute inflammatory responses and causing injury in the lungs after hemorrhage or endotoxemia.

  11. beta2 adrenergic agonists in acute lung injury? The heart of the matter.

    Science.gov (United States)

    Lee, Jae W

    2009-01-01

    Despite extensive research into its pathophysiology, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remains a devastating syndrome with mortality approaching 40%. Pharmacologic therapies that reduce the severity of lung injury in vivo and in vitro have not yet been translated to effective clinical treatment options, and innovative therapies are needed. Recently, the use of beta2 adrenergic agonists as potential therapy has gained considerable interest due to their ability to increase the resolution of pulmonary edema. However, the results of clinical trials of beta agonist therapy for ALI/ARDS have been conflicting in terms of benefit. In the previous issue of Critical Care, Briot and colleagues present evidence that may help clarify the inconsistent results. The authors demonstrate that, in oleic acid lung injury in dogs, the inotropic effect of beta agonists may recruit damaged pulmonary capillaries, leading to increased lung endothelial permeability.

  12. First-pass studies of acute lung injury.

    Science.gov (United States)

    Chu, R Y; Sidhu, N; Basmadjian, G; Burow, R; Allen, E W

    1993-10-01

    Mild hydrochloric acid was introduced to a caudal lung section in each of eight dogs to induce injury. Transits of 99mTc-labeled red blood cells (RBC) and [123I]iodoantipyrine (IAP) injected intravenously were recorded by a scintillation camera. Lungs and blood samples were analyzed post-mortem. Peak-to-equilibrium ratios (P/E) of RBC time-activity curves were computed to be 3.83 +/- 0.54 for the control lung, 2.58 +/- 0.55 for the injured lung and 2.23 +/- 0.58 for the injured caudal section. For IAP, the respective results were 3.78 +/- 0.29, 2.02 +/- 0.18 and 1.77 +/- 0.17. The decrease of P/E in injured areas was attributed to reduced blood flow. Using mean transit times of the tracers, we computed extravascular lung water per unit blood volume to be 0.35 +/- 0.18 for the control lungs and an increased value of 0.68 +/- 0.24 for the injured lungs. These results displayed sensitivity to injury, but were gross underestimates relative to the corresponding values of 2.04 +/- 0.54 and 4.56 +/- 1.85 in post-mortem analyses.

  13. First-pass studies of acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R.Y.L.; Sidhu, N.; Basmadjian, G.; Burow, R.; Allen, E.W. (Oklahoma Univ. and Dept. of Veterans Affairs Medical Centre, Oklahoma City, OK (United States))

    1993-10-01

    Mild hydrochloric acid was introduced to a caudal lung section in each of eight dogs to induce injury. Transits of [sup 99m]Tc-labeled red blood cells (RBC) and [[sup 123]I]iodoantipyrine (IAP) injected intravenously were recorded by a scintillation camera. Lungs and blood samples were analyzed post-mortem. Peak-to-equilibrium ratios (P/E) of RBC time-activity curves were computed to be 3.83 [+-] 0.54 for the control lung, 2.58 [+-] 0.55 for the injured lung and 2.23 [+-] 0.58 for the injured caudal section. For IAP, the respective results were 3.78 [+-] 0.29, 2.02 [+-] 0.18 and 1.77 [+-] 0.17. The decrease of P/E in injured areas was attributed to reduced blood flow. Using mean transit times of the tracers, we computed extravascular lung water per unit blood volume to be 0.35 [+-] 0.18 for the control lungs and an increased value of 0.68 [+-] 0.24 for the injured lungs. These results displayed sensitivity to injury, but were gross underestimates relative to the corresponding values of 2.04 [+-] 0.54 and 4.56 [+-] 1.85 in post-mortem analyses. (Author).

  14. Acute cognitive dysfunction after hip fracture: frequency and risk factors in an optimized, multimodal, rehabilitation program

    DEFF Research Database (Denmark)

    Bitsch, Martin; Foss, Nicolai Bang; Kristensen, Billy Bjarne;

    2006-01-01

    BACKGROUND: Patients undergoing hip fracture surgery often experience acute post-operative cognitive dysfunction (APOCD). The pathogenesis of APOCD is probably multifactorial, and no single intervention has been successful in its prevention. No studies have investigated the incidence of APOCD after......, fourth and seventh post-operative days with the Mini Mental State Examination (MMSE) score. RESULTS: Thirty-two per cent of patients developed a significant post-operative cognitive decline, which was associated with several pre-fracture patient characteristics, including age and cognitive function......, but also the number of peri-operative transfusions. The development of APOCD was also associated with impaired post-operative rehabilitation and an increased length of stay. APOCD was associated with the development of a major medical complication in 35% of all patients. In 65% of patients developing APOCD...

  15. Acute Thrombocytopenia, Leucopenia, and Multiorgan Dysfunction: The First Case of SFTS Bunyavirus outside China?

    Directory of Open Access Journals (Sweden)

    Srdjan Denic

    2011-01-01

    Full Text Available We report a 57-year-old man with acute thrombocytopenia, leucopenia, and multiorgan dysfunction. Patient was from North Korea and was temporarily working in Dubai, United Arab Emirates, when he fell ill in March 2009. At the same time and unknown to us, many patients with similar clinical manifestations were admitted to hospitals in China. The Chinese cases—identified between March and July 2009—were recently reported to have been infected with a tick-born strain of bunyavirus, a new disease. The virus infection was documented in patients from central China and the region that shares the border with North Korea. The clinical manifestations, the time of disease onset, and geographical link of the patient with the region in which the disease is endemic suggest that the patient had SFTS bunyavirus infection.

  16. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis.

    Science.gov (United States)

    Lin, Ze-Si; Ku, Chuen Fai; Guan, Yi-Fu; Xiao, Hai-Tao; Shi, Xiao-Ke; Wang, Hong-Qi; Bian, Zhao-Xiang; Tsang, Siu Wai; Zhang, Hong-Jie

    2016-04-01

    Acute pancreatitis is an inflammatory process originated in the pancreas; however, it often leads to systemic complications that affect distant organs. Acute respiratory distress syndrome is indeed the predominant cause of death in patients with severe acute pancreatitis. In this study, we aimed to delineate the ameliorative effect of dihydro-resveratrol, a prominent analog of trans-resveratrol, against acute pancreatitis-associated lung injury and the underlying molecular actions. Acute pancreatitis was induced in rats with repetitive injections of cerulein (50 µg/kg/h) and a shot of lipopolysaccharide (7.5 mg/kg). By means of histological examination and biochemical assays, the severity of lung injury was assessed in the aspects of tissue damages, myeloperoxidase activity, and levels of pro-inflammatory cytokines. When treated with dihydro-resveratrol, pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening were significantly reduced in rats with acute pancreatitis. In addition, the production of pro-inflammatory cytokines and the activity of myeloperoxidase in pulmonary tissues were notably repressed. Importantly, nuclear factor-kappaB (NF-κB) activation was attenuated. This study is the first to report the oral administration of dihydro-resveratrol ameliorated acute pancreatitis-associated lung injury via an inhibitory modulation of pro-inflammatory response, which was associated with a suppression of the NF-κB signaling pathway.

  17. Protective effect of ghrelin against paraquatinduced acute lung injury in mice

    Institute of Scientific and Technical Information of China (English)

    刘瑶

    2014-01-01

    Objective To measure the levels of ghrelin-induced expression or activation of nuclear factor erythroid 2-re-lated factor 2(Nrf2),heme oxygenase-1(HO-1),and NAD(P)H:quinone oxidoreductase 1(NQO1)in the PQ-injured lungs of mice and to evaluate the protective effect of ghrelin against paraquat(PQ)-induced acute lung injury in mice.Methods According to the random number table method,50 ICR mice of clean grade were

  18. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    Directory of Open Access Journals (Sweden)

    Nélson R Carvalho

    Full Text Available The acute liver failure (ALF induced by acetaminophen (APAP is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe2 to the N-acetylcysteine (NAC during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg, (PhSe2 (15.6 mg/kg, NAC (1200 mg/kg, APAP+(PhSe2 or APAP+NAC, where the (PhSe2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe2. The effectiveness of (PhSe2 was similar at a lower dose than NAC. In summary, (PhSe2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.

  19. [Assessment of renal function, iatrogenic hyperkalemia and acute renal dysfunction in cardiology. Contrast-induced nephropathy].

    Science.gov (United States)

    Górriz Teruel, José Luis; Beltrán Catalán, Sandra

    2011-12-01

    Renal impairment influences the prognosis of patients with cardiovascular disease and increases cardiovascular risk. Renal dysfunction is a marker of lesions in other parts of the vascular tree and detection facilitates early identification of individuals at high risk of cardiovascular events. In patients with cardiovascular disease, renal function is assessed by measuring albuminuria in a spot urine sample and by estimating the glomerular filtration rate using creatinine-derived predictive formulas or equations. We recommend the Chronic Kidney Disease Epidemiology Collaboration or the Modification of Diet in Renal Disease formulas. The Cockcroft-Gault formula is a possible alternative. The administration of drugs that block the angiotensin-renin system can, on occasion, be associated with acute renal dysfunction or hyperkalemia. We need to know when risk of these complications exists so as to provide the best possible treatment: prevention. Given the growing number of diagnostic and therapeutic procedures in the field of cardiology that use intravenous contrast media, contrast-induced nephrotoxicity represents a significant problem. We should identify the risk factors and patients at greatest risk, and prevent it from appearing.

  20. Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Joelle Rolli

    Full Text Available BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1, and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

  1. Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Acute Lung Injury and Other Inflammatory Lung Diseases

    Science.gov (United States)

    Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.

    2017-01-01

    Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289

  2. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    Science.gov (United States)

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  3. Hypothalamic pituitary dysfunction in acute nonmycobacterial infections of central nervous system

    Directory of Open Access Journals (Sweden)

    Dinesh K Dhanwal

    2011-01-01

    Full Text Available Background and Objective: Acute and chronic central nervous system (CNS infections are not uncommon in tropical countries and are associated with high morbidity and mortality if specific targeted therapy is not instituted in time. Effects of tubercular meningitis, a form of chronic meningitis on hypothalamic pituitary axis, are well known both at the time of diagnosis and after few months to years of illness. However, there are few reports of pituitary dysfunction in subjects with acute CNS infections. Therefore, this study was aimed at evaluating the pituitary hormonal profile in patients with nonmycobacterial acute meningitis at the time of presentation. Materials and Methods: This prospective case series study included 30 untreated adult patients with acute meningitis, meningoencephalitis, or encephalitis, due to various nonmycobacterial agents, admitted and registered with Lok Nayak Hospital, Maulana Aazd Medical College, New Delhi, between September 2007 and March 2009. Patients with preexisting endocrine diseases, tubercular meningitis and patients on steroids were carefully excluded from the study. The basal pituitary hormonal profile was measured by the electrochemilumniscence technique for serum cortisol, luetinizing hormone (LH, follicular stimulating hormone (FSH, prolactin (PRL, thyrotropin (TSH, free tri-iodothyronine (fT3, and free thyroxine (fT4. Results: The cases (n = 30 comprised of patients with acute pyogenic meningitis (n = 23, viral meningoencephalitis (n = 4, brain abscess (n = 2, and cryptococcal meningitis (n = 1. The mean age of patients was 28.97 ± 11.306 years. Out of 30 patients, 14 (46.7% were males and 16 (58.1% were females. Adrenal insufficiency both absolute and relative was seen in seven (23.3% and hyperprolactinemia was seen in nine (30.0% of the patients. One study subject had central hypothyroidism and seven (23.3 showed low levels of LH and/or FSH. None of patients showed clinical features suggestive of

  4. Nitrogen dioxide-induced acute lung injury in sheep.

    Science.gov (United States)

    Januszkiewicz, A J; Mayorga, M A

    1994-05-20

    Lung mechanics, hemodynamics and blood chemistries were assessed in sheep (Ovis aries) before, and up to 24 h following, a 15-20 min exposure to either air (control) or approximately 500 ppm nitrogen dioxide (NO2). Histopathologic examinations of lung tissues were performed 24 h after exposure. Nose-only and lung-only routes of exposure were compared for effects on NO2 pathogenesis. Bronchoalveolar lavage fluids from air- and NO2-exposed sheep were analyzed for biochemical and cellular signs of NO2 insult. The influence of breathing pattern on NO2 dose was also assessed. Five hundred ppm NO2 exposure of intubated sheep (lung-only exposure) was marked by a statistically significant, albeit small, blood methemoglobin increase. The exposure induced an immediate tidal volume decrease, and an increase in both breathing rate and inspired minute ventilation. Pulmonary function, indexed by lung resistance and dynamic lung compliance, progressively deteriorated after exposure. Maximal lung resistance and dynamic lung compliance changes occurred at 24 h post exposure, concomitant with arterial hypoxemia. Bronchoalveolar lavage fluid epithelial cell number and total protein were significantly increased while macrophage number was significantly decreased within the 24 h post-exposure period. Histopathologic examination of lung tissue 24 h after NO2 revealed patchy edema, mild hemorrhage and polymorphonuclear and mononuclear leukocyte infiltration. The NO2 toxicologic profile was significantly attenuated when sheep were exposed to the gas through a face mask (nose-only exposure). Respiratory pattern was not significantly altered, lung mechanics changes were minimal, hypoxemia did not occur, and pathologic evidence of exudation was not apparent in nose-only, NO2-exposed sheep. The qualitative responses of this large animal species to high-level NO2 supports the concept of size dependent species sensitivity to NO2. In addition, when inspired minute ventilation was used as a dose

  5. Nitrogen Dioxide-Induced Acute Lung Injury in Sheep

    Science.gov (United States)

    1994-01-01

    subsequent to inhalation expo- sure. Non- cardiogenic pulmonary edema is produced by brief exposure and unlike hyperoxia (Newman et al., 1983; Fukushima...macrophage number significantly decreased within the 24-h post-exposure period. Examination of lung tissue 24 after NO2 revealed patchy edema , mild hemorrhage...examination of lung tissue 24 h after NO, revealed patchy edema , mild hemorrhage and polymorphonuclear c, and mononuclear leukocyte infiltration. The NO

  6. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

    Science.gov (United States)

    Togbe, Dieudonnée; Schnyder-Candrian, Silvia; Schnyder, Bruno; Doz, Emilie; Noulin, Nicolas; Janot, Laure; Secher, Thomas; Gasse, Pamela; Lima, Carla; Coelho, Fernando Rodrigues; Vasseur, Virginie; Erard, François; Ryffel, Bernhard; Couillin, Isabelle; Moser, Rene

    2007-01-01

    Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. PMID:18039275

  7. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Science.gov (United States)

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury.

  8. Research progress on obesity and acute lung injury%肥胖与急性肺损伤研究进展

    Institute of Scientific and Technical Information of China (English)

    钱永兵; 王瑞兰

    2011-01-01

    In 2009, H1N1 outbreaks worldwidely,epidemiological studies have found that obesity becomes an independent risk factor of high mortality in patients infected with H 1 N1 virus. Because obesity can cause physiological and biochemical changes, patients may be more complicated with acute lung injury.Obesity can cause inflammation, endothelial dysfunction and oxidative stress in patients with acute lung injury. This article reviews obesity and pathogenesis of acute lung injury.%2009年的H1N1爆发,流行病学研究发现肥胖为H1N1病毒感染高死亡率的独立危险因素.由于肥胖可引起生理生化改变,可能更易并发急性肺损伤;肥胖能引起急性肺损伤患者炎症、内皮功能损害和氧应激等变化.现就肥胖与急性肺损伤的发病机制作一综述.

  9. Acute effects of inhaled urban particles and ozone: lung morphology, macrophage activity, and plasma endothelin-1.

    Science.gov (United States)

    Bouthillier, L; Vincent, R; Goegan, P; Adamson, I Y; Bjarnason, S; Stewart, M; Guénette, J; Potvin, M; Kumarathasan, P

    1998-12-01

    We studied acute responses of rat lungs to inhalation of urban particulate matter and ozone. Exposure to particles (40 mg/m3 for 4 hours; mass median aerodynamic diameter, 4 to 5 microm; Ottawa urban dust, EHC-93), followed by 20 hours in clean air, did not result in acute lung injury. Nevertheless, inhalation of particles resulted in decreased production of nitric oxide (nitrite) and elevated secretion of macrophage inflammatory protein-2 from lung lavage cells. Inhalation of ozone (0.8 parts per million for 4 hours) resulted in increased neutrophils and protein in lung lavage fluid. Ozone alone also decreased phagocytosis and nitric oxide production and stimulated endothelin-1 secretion by lung lavage cells but did not modify secretion of macrophage inflammatory protein-2. Co-exposure to particles potentiated the ozone-induced septal cellularity in the central acinus but without measurable exacerbation of the ozone-related alveolar neutrophilia and permeability to protein detected by lung lavage. The enhanced septal thickening was associated with elevated production of both macrophage inflammatory protein-2 and endothelin-1 by lung lavage cells. Interestingly, inhalation of urban particulate matter increased the plasma levels of endothelin-1, but this response was not influenced by the synergistic effects of ozone and particles on centriacinar septal tissue changes. This suggests an impact of the distally distributed particulate dose on capillary endothelial production or filtration of the vasoconstrictor. Overall, equivalent patterns of effects were observed after a single exposure or three consecutive daily exposures to the pollutants. The experimental data are consistent with epidemiological evidence for acute pulmonary effects of ozone and respirable particulate matter and suggest a possible mechanism whereby cardiovascular effects may be induced by particle exposure. In a broad sense, acute biological effects of respirable particulate matter from ambient air

  10. Thin-section computed tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Pim A. de [Department of Radiology, Katholieke Universiteit Leuven, Leuven (Belgium); Lung Transplantation Unit, Katholieke Universiteit Leuven, Leuven (Belgium); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vos, Robin; Verleden, Geert M.; Vanaudenaerde, Bart M. [Lung Transplantation Unit, Katholieke Universiteit Leuven, Leuven (Belgium); Verschakelen, Johny A. [Department of Radiology, Katholieke Universiteit Leuven, Leuven (Belgium)

    2011-12-15

    Recently a novel subgroup of bronchiolitis obliterans syndrome (BOS) has been described in patients after lung transplantation with high neutrophil counts in broncho-alveolar lavage and recovery of lung functional decline with azithromycin treatment. We aimed to describe the thin-section computed tomography (CT) findings of these neutrophilic reversible allograft dysfunction (NRAD) patients before and after azithromycin. A cohort of 100 lung transplant recipients with BOS were treated with azithromycin and underwent lung function testing, broncho-alveolar lavage and CT before azithromycin treatment and during follow-up. The 200 CT data sets were scored for bronchial dilatation, mucus plugging, centrilobular abnormalities, airway wall thickening, consolidation, ground glass and end-expiratory air trapping. NRAD was characterized by more centrilobular abnormalities on CT (p = 0.03 for prevalence and p = 0.06 for severity) compared to non-responders. At follow-up NRAD patients showed improvement in all CT abnormalities including air trapping, but the degree of improvement in all CT abnormalities was significantly different between responders and non-responders (who showed progression of bronchus dilatation, consolidation and air trapping). Within BOS patients those with NRAD differ from azithromycin non-responders by more centrilobular abnormalities on CT before azithromycin and improvement in bronchus dilatation, consolidation and air trapping during treatment. (orig.)

  11. Isoforskolin pretreatment attenuates lipopolysaccharide-induced acute lung injury in animal models.

    Science.gov (United States)

    Yang, Weimin; Qiang, Dongjin; Zhang, Min; Ma, Limei; Zhang, Yonghui; Qing, Chen; Xu, Yunlong; Zhen, Chunlan; Liu, Jikai; Chen, Yan-Hua

    2011-06-01

    Isoforskolin was isolated from Coleus forskohlii native to Yunnan in China. We hypothesize that isoforskolin pretreatment attenuates acute lung injury induced by lipopolysaccharide (endotoxin). Three acute lung injury models were used: situ perfused rat lung, rat and mouse models of endotoxic shock. Additionally, lipopolysaccharide stimulated proinflammatory cytokine production was evaluated in human mononuclear leukocyte. In situ perfused rat lungs, pre-perfusion with isoforskolin (100, and 200 μM) and dexamethasone (65 μM, positive control) inhibited lipopolysaccharide (10 mg/L) induced increases in lung neutrophil adhesion rate, myeloperoxidase activity, lung weight Wet/Dry ratio, permeability-surface area product value, and tumor necrosis factor (TNF)-α levels. In rats, pretreatments with isoforskolin (5, 10, and 20 mg/kg, i.p.) and dexamethasone (5mg/kg, i.p.) markedly reduced lipopolysaccharide (6 mg/kg i.v.) induced increases of karyocyte, neutrophil counts and protein content in bronchoalveolar lavage fluid, and plasma myeloperoxidase activity. Lung histopathology showed that morphologic changes induced by lipopolysaccharide were less pronounced in the isoforskolin and dexamethasone pretreated rats. In mice, 5 mg/kg isoforskolin and dexamethasone caused 100% and 80% survival, respectively, after administration of lipopolysaccharide (62.5mg/kg, i.v., 40% survival if untreated). In human mononuclear leukocyte, isoforskolin (50, 100, and 200 μM) and dexamethasone (10 μM) pre-incubation lowered lipopolysaccharide (2 μg/mL) induced secretion of the cytokine TNF-α, and interleukins (IL)-1β, IL-6, and IL-8. In conclusion, pretreatment with isoforskolin attenuates lipopolysaccharide-induced acute lung injury in several models, and it is involved in down-regulation of inflammatory responses and proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8.

  12. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  13. Respiratory inductive plethysmography accuracy at varying PEEP levels and degrees of acute lung injury

    NARCIS (Netherlands)

    D.G. Markhorst (Dick); M.A. van Van Gestel (Miriam); H.R. van Genderingen (Huibert); J.J. Haitsma (Jack); B.F. Lachmann (Burkhard); A.J. van Vught (Adrianus)

    2006-01-01

    textabstractBackground and objective: This study was performed to assess the accuracy of respiratory inductive plethysmographic (RIP) estimated lung volume changes at varying positive end-expiratory pressures (PEEP) during different degrees of acute respiratory failure. Methods: Measurements of insp

  14. Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury

    OpenAIRE

    Bertorelli,Giuseppina; Pesci, Alberto; Peveri, Silvia; Mergoni, Mario; Corradi, Attilio; Cantoni, Anna Maria; Tincani, Giovanni; Bobbio, Antonio; Rusca, Michele; Carbognani, Paolo

    2008-01-01

    Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury correspondence: Corresponding author. Tel.: +390521703883; fax: +390521703493. (Carbognani, Paolo) (Carbognani, Paolo) Dipartimento di Clinica Medica - Nefrologia e Scienze della Prevenzione--> , University of Parma--> - ITALY (Bertorelli, Giuseppina) Dipartimento di Clinica Medica - Nefrologia e Scienze della...

  15. Hemodynamic effects of partial liquid ventilation with perfluorocarbon in acute lung injury

    NARCIS (Netherlands)

    R.J.M. Houmes (Robert Jan); S.J.C. Verbrugge (Serge); E. Hendrik (Edwin); B.F. Lachmann (Burkhard)

    1995-01-01

    textabstractObjective: To assess the effect of partial liquid ventilation with perfluorocarbons on hemodynamics and gas exchange in large pigs with induced acute lung injury (ALI). Design: Randomized, prospective, double-control, experimental study. Setting: Experimental intensive care unit of a uni

  16. Acute lung injury in 2003%2003年度急性肺损伤

    Institute of Scientific and Technical Information of China (English)

    Roger G SPRAGG

    2003-01-01

    During the past several decades, clinical investigators world-wide have continued to study the causes,pathophysiology, and treatment strategies for acute lung injury (ALl). This syndrome, which is characterized by nonhydrostatic pulmonary edema and hypoxemia associated with a variety of etiologies, is slowly becoming better understood as a result of these efforts.

  17. Non-invasive diagnosis of acute heart- or lung-transplant rejection using radiolabeled annexin V

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.G. [Stanford Univ., CA (United States). Dept. of Radiology; Strauss, H.W. [Stanford Univ., CA (United States). Nuclear Medicine Div.

    1999-05-01

    Background. Apoptosis is a ubiquitous set of cellular processes by which superfluous or unwanted cells are eliminated in the body without harming adjacent healthy tissues. When apoptosis is inappropriate (too little or too much), a variety of human diseases can occur, including acute heart or lung transplant rejection. Objective. Our group has developed a new radiopharmaceutical, radiolabeled annexin V, which can image apoptosis. Results and conclusion. Here we briefly review the biomolecular basis of apoptosis and its role in acute rejection. We also describe the possible use of radiolabeled annexin V to screen children noninvasively for acute rejection following organ transplantation. (orig.) With 6 figs., 53 refs.

  18. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    Science.gov (United States)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  19. CARDIOPULMONARY BYPASS WITH AUTOLOGOUS LUNG AS SUBSTITUTE FOR ARTIFICIAL OXYGENATOR ATTENUATES INFLAMMATORY RESPONSIVE INSPIRATORY DYSFUNCTION

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-min; KONG Xiang; WANG Wei; ZHU De-ming; ZHANG Hai-bo

    2007-01-01

    Objective To study if using autologous lung as a substitute of oxygenator in cardiopulmonary bypass is better than the conventional cardiopulmonary bypass with artificial oxygenator in pulmonary preservation.Methods Twelve piglets were randomly divided into two groups ( n = 6). The isolated lung perfusion model was established. The experimental animals underwent continuous lung perfusion for about 120 min. While the control animals underwent 90 min lung ischemia followed by 30 min reperfusion. Another 12 piglets were randomly divided into two groups ( n =6). The experimental animals underwent bi-ventricular bypass with autologous lung perfusion.While control animals underwent conventional cardiopulmonary bypass with artificial oxygenator. The bypass time and aortic cross clamping time were 135 min and 60 min respectively for each animal. The lung static compliance ( Cstat), alveolus-artery oxygen difference ( PA-aO2 ), TNF-α, IL-6 and wet to dry lung weight ratio (W/D) were measured. Histological and ultra-structural changes of the lung were also observed after bypass. Results After either isolated lung perfusion or cardiopulmonary bypass, the Cstat decreased, the PA-aO2 increased and the content of TNF-α increased for both groups, but the changes of experimental group were much less than those of control group. The lower W/D ratio and mild pathological changes in experimental group than those in control group were also demonstrated. Conclusion Autologous lung is able to tolerate the nonpalsatile perfusion. It can be used as a substitute to artificial ogygenator in cardiopulmonary bypass to minimize the inflammatory pulmonary injury caused mainly by ischemic reperfusion and interaction of the blood to the non-physiological surface of artificial oxygenator.

  20. Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Ersboll, M; Axelsson, Anders

    2013-01-01

    BACKGROUND: Diastolic dysfunction is frequently seen after myocardial infarction and is characterized by a disproportionate increase in filling pressure during exercise to maintain stroke volume. We hypothesized that sildenafil would reduce filling pressure during exercise in patients...... with diastolic dysfunction after myocardial infarction. METHODS AND RESULTS: Seventy patients with diastolic dysfunction and near normal left ventricular ejection fraction on echocardiography were randomly assigned sildenafil 40 mg thrice daily or matching placebo for 9 weeks. Before randomization and after 9...... but was unchanged in the placebo group. CONCLUSIONS: Sildenafil did not decrease filling pressure at rest or during exercise in post-myocardial infarction patients with diastolic dysfunction. However, there were effects on secondary end points, which require further studies....

  1. Protective Effect of Genistein on Lipopolysaccharide-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    LI Xingwang; XU Tao; LIAN Qingquan; ZENG Bangxiong; ZHANG Bing; XIE Yubo

    2005-01-01

    To investigate the protective effect of genistein on endotoxin-induced acute lung injury in rats, and explore the underlying mechanisms, 32 male Sprague-Dawley rats were randomly divided into 4 experimental groups: saline control, genistein alone, lipopolysaccaride alone, and genistein pretreatment. Each treatment group consisted of eight animals. Animals were observed for 6 h after LPS challenge, and the wet/dry (W/D) weight ratio of the lung and bronchoalveolar lavage fluid(BALF) protein content were used as a measure of lung injury. Neutrophil recruitment and activation were evaluated by BALF cellularity and myeloperoxidase (MPO) activity. RT-PCR analysis was performed in lung tissue to assess gene expression of ICAM-1. The histopathological changes were also observed using the HE staining of lung tissue. Our results showed that lung injury parameters, including the wet/dry weight ratio and protein content in BALF, were significantly higher in the LPS alone group than in the saline control group (P<0.01). In the LPS alone group, a larger number of neutrophils and greater MPO activity in cell-free BAL and lung homogenates were observed when compared with the saline control group (P<0.01). There was a significant increase in lung ICAM-1 mRNA in response to LPS challenge (P< 0. 01, group L versus group S).Genistein pretreatment significantly attenuated LPS-induced changes in these indices. LPS caused extensive lung damage, which was also lessened after genistein pretreatment. All above-mentioned parameters in the genistein alone group were not significantly different from those of the saline control group. It is concluded that genistein pretreatment attenuated LPS-induced lung injury in rats.This beneficial effect of genistein may involves, in part, an inhibition of neutrophilic recruitment and activity, possibly through an inhibition of lung ICAM-1 expression.

  2. Upregulation of Shh and Ptc1 in hyperoxia‑induced acute lung injury in neonatal rats.

    Science.gov (United States)

    Dang, Hongxing; Wang, Shaohua; Yang, Lin; Fang, Fang; Xu, Feng

    2012-08-01

    The aim of the present study was to observe the expression of sonic hedgehog (Shh) and Ptc signaling molecules in the lungs of newborn rats exposed to prolonged hyperoxia, and to explore the role of the SHH signaling pathway in hyperoxia‑induced lung injury. Newborn Sprague-Dawley rat pups were placed in chambers containing room air or oxygen above 95% for 14 days following birth. The rats were sacrificed after 3, 7 or 14 days and their lungs were removed. Sections were fixed and subjected to hematoxylin and eosin (H&E) staining. Shh and Ptc1 were quantitated by immunohistochemistry. The total RNA and protein were also extracted from lung tissue; real-time PCR (RT-PCR) and western blot analysis were utilized to assess the mRNA and protein expression of Shh and Ptc1. H&E staining demonstrated significant histomorphological changes in the hyperoxia‑exposed lungs at 3, 7 and 14 days of age. The results of the immunohistochemistry, RT-PCR and western blot analysis demonstrated that the expression of Shh was significantly higher in the hyperoxia-exposed lungs at 3, 7 and 14 days, while Ptc1 was significantly elevated at 7 and 14 days. Exposure of the neonatal rat lung to prolonged hyperoxia resulted in acute lung injury and histomorphological changes. Shh and Ptc1 were upregulated in a time-dependent manner in the course of hyperoxia-induced lung injury. The SHH signal pathway may be involved in the pathogenesis of hyperoxia-induced lung injury. This is the first evidence that in vivo hyperoxia induces activation of the SHH signal transduction pathway in newborn lung.

  3. Gallbladder Metastasis of Non-small Cell Lung Cancer Presenting as Acute Cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Yu-Sook Jeong; Seung-Taik Kim; Hye-Suk Han; Sung-Nam Lim; Mi-Jin Kim; Joung-Ho Han; Min-Ho Kang; Dong-Hee Ryu; Ok-Jun Lee; Ki-Hyeong Lee

    2012-01-01

    Although non-small cell lung cancer (NSCLC) can metastasize to almost any organ,metastasis to the gallbladder with significant clinical manifestation is relatively rare.Here,we report a case of gallbladder metastasis of NSCLC presenting as acute cholecystitis.A 79-year-old man presented with pain in the right upper quadrant and fever.A computed tomography (CT) scan of the chest and abdomen showed a cavitary mass in the right lower lobe of the lung and irregular wall thickening of the gallbladder.Open cholecystectomy and needle biopsy of the lung mass were performed.Histological examination of the gallbladder revealed a moderately-differentiated squamous cell carcinoma displaying the same morphology as the lung mass assessed by needle biopsy.Subsequent immunohistochemical examination of the gallbladder and lung tissue showed that the tumor cells were positive for P63 but negative for cytokeratin 7,cytokeratin 20 and thyroid transcription factor-1.A second primary tumor of the gallbladder was excluded by immunohistochemical methods,and the final pathological diagnosis was gallbladder metastasis of NSCLC.Although the incidence is extremely rare,acute cholecystitis can occur in association with lung cancer metastasis to the gallbladder.

  4. Inhaled Nitric Oxide for Acute Respiratory Distress Syndrome and Acute Lung Injury in Adults and Children: A Systematic Review with Meta-Analysis and Trial Sequential Analysis

    DEFF Research Database (Denmark)

    Afshari, Arash; Brok, Jesper; Møller, Ann

    2011-01-01

    BACKGROUND: Acute hypoxemic respiratory failure, defined as acute lung injury and acute respiratory distress syndrome, are critical conditions associated with frequent mortality and morbidity in all ages. Inhaled nitric oxide (iNO) has been used to improve oxygenation, but its role remains...... be recommended for patients with acute hypoxemic respiratory failure. iNO results in a transient improvement in oxygenation but does not reduce mortality and may be harmful....

  5. Protective Effect of Rhubarb on Endotoxin-Induced Acute Lung Injury

    Institute of Scientific and Technical Information of China (English)

    李春盛; 周景; 桂培春; 何新华

    2001-01-01

    To approach the mechanism of lipopolysaccharide (LPS) in causing acute lung injury (ALI) and the protective effect of rhubarb and dexamethasone, lung specimens were examined with macroscopy, microscopy, electron microscopy and the biological markers of ALI including lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary capillary permeability and pulmonary alveolar permeability index were observed. The mechanism of the ALI is mainly due to direct injury of alveolar epithelium and pulmonary vascular endothelium. Rhubarb and dexamethasone could significantly reduce the edema of the lung tissue, decrease the red blood cell exudation, neutrophil infiltration and plasma protein exudation in the alveoli and all the biological markers in comparison with the ALI model rats, indicating they have protective action on vascular endothelium and alveolar epithelium.

  6. Lung Transplantation in Acute Respiratory Distress Syndrome Caused by Influenza Pneumonia

    Directory of Open Access Journals (Sweden)

    Youjin Chang

    2015-08-01

    Full Text Available Severe acute respiratory distress syndrome (ARDS is a life-threatening disease with a high mortality rate. Although many therapeutic trials have been performed for improving the mortality of severe ARDS, limited strategies have demonstrated better outcomes. Recently, advanced rescue therapies such as extracorporeal membrane oxygenation (ECMO made it possible to consider lung transplantation (LTPL in patients with ARDS, but data is insufficient. We report a 62-year-old man who underwent LTPL due to ARDS with no underlying lung disease. He was admitted to the hospital due to influenza A pneumonia-induced ARDS. Although he was supported by ECMO, he progressively deteriorated. We judged that his lungs were irreversibly damaged and decided he needed to undergo LTPL. Finally, bilateral sequential double-lung transplantation was successfully performed. He has since been alive for three years. Conclusively, we demonstrate that LTPL can be a therapeutic option in patients with severe ARDS refractory to conventional therapies.

  7. Piperine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Modulating NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Ying; Liu, Jingyao; Li, Hongyan; Gu, Lina

    2016-02-01

    Piperine, one of the active components of black pepper, has been reported to have antioxidant and anti-inflammatory activities. However, the effects of piperine on lipolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. Thus, the protective effects of piperine against LPS-induced ALI were investigated in this study. LPS-induced lung injury was assessed by histological study, myeloperoxidase (MPO) activity, and inflammatory cytokine production. Our results demonstrated that piperine attenuated LPS-induced MPO activity, lung edema, and inflammatory cytokines TNF-α, IL-6, and IL-1β production. Histological studies showed that piperine obviously attenuated LPS-induced lung injury. In addition, piperine significantly inhibited LPS-induced NF-κB activation. In conclusion, our results demonstrated that piperine had a protective effect on LPS-induced ALI. The anti-inflammatory mechanism of piperine is through inhibition of NF-κB activation. Piperine may be a potential therapeutic agent for ALI.

  8. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    Science.gov (United States)

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  9. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    Science.gov (United States)

    Dalwadi, Pradip P.; Bhagwat, Nikhil M.; Tayde, Parimal S.; Joshi, Ameya S.; Varthakavi, Premlata K.

    2017-01-01

    Introduction: Traumatic brain injury (TBI) is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women) were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3) and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening PMID:28217503

  10. Pituitary dysfunction in traumatic brain injury: Is evaluation in the acute phase worthwhile?

    Directory of Open Access Journals (Sweden)

    Pradip P Dalwadi

    2017-01-01

    Full Text Available Introduction: Traumatic brain injury (TBI is an under-recognized cause of hypopituitarism. According to recent data, it could be more frequent than previously known. However, there is a scarcity of data in Indian population. Aims: The main aim of the study was to determine the prevalence of pituitary hormone deficiencies in the acute phase of TBI. The secondary objectives were to correlate the severity of trauma with basal hormone levels and to determine whether initial hormone deficiencies predict mortality. Subjects and Methods: Forty-nine TBI patients (41 men and 8 women were included in this study. Pituitary functions were evaluated within 24 h of admission. Results: Gonadotropin deficiency was found in 65.3% patient while 46.9% had low insulin-like growth factor-1, 12.24% had cortisol level <7 mcg/dl. Cortisol and prolactin level were positively correlated with the severity of TBI suggestive of stress response. Free triiodothyronine (fT3 and free thyroxine were significantly lower in patients with increasing severity of tuberculosis. Logistic regression analysis revealed that mortality after TBI was unrelated to the basal pituitary hormone levels except low T3 level, which was found to be positively related to mortality. Conclusions: Pituitary dysfunction is common after TBI and the most commonly affected axes are growth hormone and gonadotropin axis. Low fT3 correlates best with mortality. During the acute phase of TBI, at least an assessment of cortisol is vital as undetected cortisol deficiency can be life-threatening

  11. Complication probability models for radiation-induced heart valvular dysfunction: do heart-lung interactions play a role?

    Directory of Open Access Journals (Sweden)

    Laura Cella

    Full Text Available The purpose of this study is to compare different normal tissue complication probability (NTCP models for predicting heart valve dysfunction (RVD following thoracic irradiation.All patients from our institutional Hodgkin lymphoma survivors database with analyzable datasets were included (n = 90. All patients were treated with three-dimensional conformal radiotherapy with a median total dose of 32 Gy. The cardiac toxicity profile was available for each patient. Heart and lung dose-volume histograms (DVHs were extracted and both organs were considered for Lyman-Kutcher-Burman (LKB and Relative Seriality (RS NTCP model fitting using maximum likelihood estimation. Bootstrap refitting was used to test the robustness of the model fit. Model performance was estimated using the area under the receiver operating characteristic curve (AUC.Using only heart-DVHs, parameter estimates were, for the LKB model: D50 = 32.8 Gy, n = 0.16 and m = 0.67; and for the RS model: D50 = 32.4 Gy, s = 0.99 and γ = 0.42. AUC values were 0.67 for LKB and 0.66 for RS, respectively. Similar performance was obtained for models using only lung-DVHs (LKB: D50 = 33.2 Gy, n = 0.01, m = 0.19, AUC = 0.68; RS: D50 = 24.4 Gy, s = 0.99, γ = 2.12, AUC = 0.66. Bootstrap result showed that the parameter fits for lung-LKB were extremely robust. A combined heart-lung LKB model was also tested and showed a minor improvement (AUC = 0.70. However, the best performance was obtained using the previously determined multivariate regression model including maximum heart dose with increasing risk for larger heart and smaller lung volumes (AUC = 0.82.The risk of radiation induced valvular disease cannot be modeled using NTCP models only based on heart dose-volume distribution. A predictive model with an improved performance can be obtained but requires the inclusion of heart and lung volume terms, indicating that heart-lung

  12. Amiodarone-induced acute lung toxicity in an ICU setting.

    Science.gov (United States)

    Skroubis, G; Skroubis, T; Galiatsou, E; Metafratzi, Z; Karahaliou, A; Kitsakos, A; Nakos, G

    2005-04-01

    Amiodarone is a highly effective antiarrhythmic drug, albeit notorious for its serious pulmonary toxicity. The incidence of amiodarone-induced pulmonary toxicity (APT) appears to be 1% per year (1). We report a case of very acute APT in a man suffering from postoperative atrial fibrillation.

  13. Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis.

    Science.gov (United States)

    Lin, Tsen-Hsuan; Spees, William M; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H; Song, Sheng-Kwei

    2014-07-01

    Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients.

  14. Improvement of vestibular compensation by Levo-sulpiride in acute unilateral labyrinthine dysfunction.

    Science.gov (United States)

    Zanetti, D; Civiero, N; Balzanelli, C; Tonini, M; Antonelli, A R

    2004-04-01

    L-sulpiride is the levorotatory enantiomer of sulpiride, a neuroleptic of the family of benzamide derivatives; it has a characteristic antagonist effect on central DA2 dopaminergic receptors and dopamine DA1 "autoreceptors". Its efficacy in the symptomatic control of acute vertigo spells has been recognized, apart from its well-known antiemetic, antidyspeptic and anti-depressant properties, at high dosages. To establish objective parameters of the results of its clinical application, a randomized prospective study was started comparing the effects of the drug in a group of 87 patients with vertigo of peripheral origin, with those in a control group treated with other vestibular suppressants. The drug was administered via the intravenous route, 25 mg t.i.d., for the first 3 days, then by oral administration, with the same schedule and dosage, for a further 7 days. After clinical evaluation of vestibular signs and symptoms, electronystagmographic recordings of rotatory tests were obtained, at admission and were then controlled after 6 months. A subjective Visual Analogue Scale was also delivered daily to the patients in order to monitor symptomatic improvements. When compared to conventional treatments, L-sulpiride appeared to induce a statistically significant faster recovery in unilateral vestibular lesions. An unexpected favourable outcome of treatment was the facilitation of spontaneous vestibular compensation, in terms of lesser residual labyrinthine dysfunction and reduction of recurrent vertigo attacks during the 6 months follow-up. The mechanisms of action of the drug and its interaction with the vestibular system are discussed.

  15. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  16. A model of hemorrhagic shock and acute lung injury in Landrace-Large White Swine.

    Science.gov (United States)

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-04-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace-Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases-stabilization, hemorrhage, maintenance, resuscitation, and observation-after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace-Large White swine may be useful for future study of hemorrhagic shock and acute lung injury.

  17. A Model of Hemorrhagic Shock and Acute Lung Injury in Landrace–Large White Swine

    Science.gov (United States)

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-01-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace–Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases—stabilization, hemorrhage, maintenance, resuscitation, and observation—after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace–Large White swine may be useful for future study of hemorrhagic shock and acute lung injury. PMID:21535927

  18. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans.

    Science.gov (United States)

    Donahue, Deborah L; Beck, Julia; Fritz, Braxton; Davis, Patrick; Sandoval-Cooper, Mayra J; Thomas, Scott G; Yount, Robert A; Walsh, Mark; Ploplis, Victoria A; Castellino, Francis J

    2014-02-15

    Acute coagulopathy is a serious complication of traumatic brain injury (TBI) and is of uncertain etiology because of the complex nature of TBI. However, recent work has shown a correlation between mortality and abnormal hemostasis resulting from early platelet dysfunction. The aim of the current study was to develop and characterize a rodent model of TBI that mimics the human coagulopathic condition so that mechanisms of the early acute coagulopathy in TBI can be more readily assessed. Studies utilizing a highly reproducible constrained blunt-force brain injury in rats demonstrate a strong correlation with important postinjury pathological changes that are observed in human TBI patients, namely, diminished platelet responses to agonists, especially adenosine diphosphate (ADP), and subarachnoid bleeding. Additionally, administration of a direct thrombin inhibitor, preinjury, recovers platelet functionality to ADP stimulation, indicating a direct role for excess thrombin production in TBI-induced early platelet dysfunction.

  19. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Pedersen, O D; Bagger, H; Køber, Lars Valeur;

    1999-01-01

    BACKGROUND: Studies have suggested that ACE inhibitors have an antiarrhythmic effect on ventricular arrhythmias. Whether they have an effect on atrial fibrillation is unknown. METHODS AND RESULTS: We investigated the effect of ACE inhibition with trandolapril on the incidence of atrial fibrillation...... of atrial fibrillation in patients with left ventricular dysfunction after acute myocardial infarction....... in patients with reduced left ventricular function secondary to acute myocardial infarction. The patients in this study were those who qualified for inclusion into the TRAndolapril Cardiac Evaluation (TRACE) study, a randomized double-blind placebo-controlled study and who had sinus rhythm on the ECG obtained...

  20. Apios americana Medik Extract Alleviates Lung Inflammation in Influenza Virus H1N1- and Endotoxin-Induced Acute Lung Injury.

    Science.gov (United States)

    Sohn, Sung-Hwa; Lee, Sang-Yeon; Cui, Jun; Jang, Ho Hee; Kang, Tae-Hoon; Kim, Jong-Keun; Kim, In-Kyoung; Lee, Deuk-Ki; Choi, Seulgi; Yoon, Il-Sub; Chung, Ji-Woo; Nam, Jae-Hwan

    2015-12-28

    Apios americana Medik (hereinafter Apios) has been reported to treat diseases, including cancer, hypertension, obesity, and diabetes. The therapeutic effect of Apios is likely to be associated with its anti-inflammatory activity. This study was conducted to evaluate the protective effects of Apios in animal models of acute lung injury induced by lipopolysaccharide (LPS) or pandemic H1N1 2009 influenza A virus (H1N1). Mice were exposed to LPS or H1N1 for 2-4 days to induce acute lung injury. The treatment groups were administered Apios extracts via oral injection for 8 weeks before LPS treatment or H1N1 infection. To investigate the effects of Apios, we assessed the mice for in vivo effects of Apios on immune cell infiltration and the level of pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid, and histopathological changes in the lung. After induction of acute lung injury, the numbers of neutrophils and total cells were lower in the Apios-treated groups than in the non-Apios-treated LPS and H1N1 groups. The Apios groups tended to have lower levels of tumor necrosis factor-a and interleukin-6 in BAL fluid. In addition, the histopathological changes in the lungs were markedly reduced in the Apios-treated groups. These data suggest that Apios treatment reduces LPS- and H1N1-induced lung inflammation. These protective effects of Apios suggest that it may have therapeutic potential in acute lung injury.

  1. Mechanical ventilation strategies for intensive care unit patients without acute lung injury or acute respiratory distress syndrome: a systematic review and network meta-analysis

    OpenAIRE

    Guo, Lei; Wang, Weiwei; Zhao, Nana; Guo, Libo; Chi, Chunjie; Hou, Wei; Wu, Anqi; Tong, Hongshuang; Wang, Yue; Wang, Changsong; Li, Enyou

    2016-01-01

    Background It has been shown that the application of a lung-protective mechanical ventilation strategy can improve the prognosis of patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). However, the optimal mechanical ventilation strategy for intensive care unit (ICU) patients without ALI or ARDS is uncertain. Therefore, we performed a network meta-analysis to identify the optimal mechanical ventilation strategy for these patients. Methods We searched the Cochra...

  2. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase

    Directory of Open Access Journals (Sweden)

    Poursaleh Zohreh

    2012-09-01

    Full Text Available Abstract Objective Sulfur mustard (SM is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980–1988. It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries. Method This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment. Results Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments.

  3. Treatment for Sulfur Mustard Lung Injuries; New Therapeutic Approaches from Acute to Chronic Phase

    Directory of Open Access Journals (Sweden)

    Zohreh Poursaleh

    2012-09-01

    Full Text Available Objective: Sulfur mustard (SM is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980-1988. It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries.Method:This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment.Results:Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion:Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments.

  4. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    Science.gov (United States)

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC.

  5. Bronchoalveolar lavage alterations during prolonged ventilation of patients without acute lung injury.

    Science.gov (United States)

    Tsangaris, I; Lekka, M E; Kitsiouli, E; Constantopoulos, S; Nakos, G

    2003-03-01

    Mechanical ventilation deteriorates previously injured lung, but little is known about its effect on healthy human lung. This work was designed to assess the effect of prolonged mechanical ventilation on bronchoalveolar lavage (BAL) fluid composition of patients without acute lung injury. Twenty-two ventilated patients (tidal volume 8-10 mL x kg(-1), positive end-expiratory pressure 3-5 cmH2O) without lung injury, who did not develop any complication from the respiratory system during the 2-week study period, were studied. They were subjected to three consecutive BALs, the first during 36 h from intubation, the second at the end of the first week of mechanical ventilation and the third at the end of the second week of mechanical ventilation. Total BAL protein increased during mechanical ventilation (148 +/- 62, 381 +/- 288, 353 +/- 215 microg x mL(-1) BAL for the first, second and third BAL, respectively). In contrast, BAL phospholipids decreased (2.7 +/- 1.1, 1.4 +/- 0.6, 1.2 +/- 0.7 microg x mL(-1) BAL, respectively). Large surfactant aggregates were reduced and inflammatory markers, such as platelet activating factor (PAF), PAF-acetylhydrolase and neutrophils, significantly increased after 1 week, but partially remitted after 2 weeks of mechanical ventilation. In summary, this study demonstrates that prolonged mechanical ventilation even of patients without acute lung injury is associated with the presence of inflammatory markers and surfactant alterations.

  6. Using bosentan to treat paraquat poisoning-induced acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Zhongchen Zhang

    Full Text Available BACKGROUND: Paraquat poisoning is well known for causing multiple organ function failure (MODS and high mortality. Acute lung injury and advanced pulmonary fibrosis are the most serious complications. Bosentan is a dual endothelin receptor antagonist. It plays an important role in treating PF. There is no related literature on the use of bosentan therapy for paraquat poisoning. OBJECTIVE: To study the use of bosentan to treat acute lung injury and pulmonary fibrosis as induced by paraquat. METHOD: A total of 120 adult Wister male rats were randomly assigned to three groups: the paraquat poisoning group (rats were intragastrically administered with paraquat at 50 mg/kg body weight once at the beginning; the bosentan therapy group (rats were administered bosentan at 100 mg/kg body weight by intragastric administration half an hour after paraquat was administered, then the same dose was administered once a day; and a control group (rats were administered intragastric physiological saline. On the 3rd, 7th, 14th, and 21st days following paraquat exposure, rats were sacrificed, and samples of lung tissue and venous blood were collected. The levels of transforming growth factor-β1 (TGF-β1, endothelin-1 (ET-1, and hydroxyproline (HYP in the plasma and lung homogenate were determined. Optical and electronic microscopes were used to examine pathological changes. RESULT: The TGF-β1, ET-1, and HYP of the paraquat poisoning group were significantly higher than in the control group, and they were significantly lower in the 21st day therapy group than in the paraquat poisoning group on the same day. Under the optical and electronic microscopes, lung tissue damage was observed to be more severe but was then reduced after bosentan was administered. CONCLUSION: Bosentan can reduce inflammation factor release. It has a therapeutic effect on acute lung injury as induced by paraquat.

  7. NLRP3 inflammasome activation is essential for paraquat-induced acute lung injury.

    Science.gov (United States)

    Liu, Zhenning; Zhao, Hongyu; Liu, Wei; Li, Tiegang; Wang, Yu; Zhao, Min

    2015-02-01

    The innate immune response is important in paraquat-induced acute lung injury, but the exact pathways involved are not elucidated. The objectives of this study were to determine the specific role of the NLRP3 inflammasome in the process. Acute lung injury was induced by administering paraquat (PQ) intraperitoneally. NLRP3 inflammasome including NLRP3, ASC, and caspase-1 mRNA and protein expression in lung tissue and IL-1β and IL-18 levels in BALF were detected at 4, 8, 24, and 72 h after PQ administration in rats. Moreover, rats were pretreated with 10, 30, and 50 mg/kg NLRP3 inflammasome blocker glybenclamide, respectively, 1 h before PQ exposure. At 72 h after PQ administration, lung histopathology changes, NLRP3, ASC, and caspase-1 protein expression, as well as secretion of cytokines including IL-1β and IL-18 in BALF were investigated. The NLRP3 inflammasome including NLRP3, ASC, caspase-1 expression, and cytokines IL-1β and IL-18 levels in PQ poisoning rats were significantly higher than that in the control group. NLRP3 inflammasome blocker glybenclamide pretreatment attenuated lung edema, inhibited the NLRP3, ASC, and caspase-1 activation, and reduced IL-1β and IL-18 levels in BALF. In the in vitro experiments, IL-1β and IL-18 secreted from RAW264.7 mouse macrophages treated with paraquat were attenuated by glybenclamide. In conclusion, paraquat can induce IL-1β/IL-18 secretion via NLRP3-ASC-caspase-1 pathway, and the NLRP3 inflammasome is essential for paraquat-induced acute lung injury.

  8. Atrial natriuretic peptide attenuates inflammatory responses on oleic acid-induced acute lung injury model in rats

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; ZHANG Yan-bo; LIU Dong-hai; LI Xiao-feng; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui

    2013-01-01

    Background An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis,severe burns,and trauma.It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities,including effects on endothelial function and inflammation.A recent study has revealed that ANP exerts anti-inflammatory effects.In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALl) in rats.Methods Rats were randomly assigned to three groups (n=6 in each group).Rats in the control group received a 0.9% solution of NaCl (1 ml.kg1.h-1) by continuous intravenous infusion,after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously,and then the 0.9% NaCl infusion was restarted.Rats in the ALl group received a 0.9% NaCl solution (1 ml·kg-1·h-1) intravenous infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the 0.9% NaCl infusion was restarted.Rats in the hANP-treated ALI group received a hANP (0.1μg·kg-1·min-1) infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the hANP infusion was restarted.The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.Results Serum intedeukin (IL)-1β,IL-6,IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours.The levels of all factors were significantly lower in the hANP treated rats (P <0.005).Similarly,levels of IL-1β,IL-6,IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours.hANP treatment significantly reduced the levels of these factors in the lungs (P <0.005).Histological examination revealed marked reduction in interstitial congestion,edema,and inflammation.Conclusion hANP can attenuate inflammation in an OA-induced lung injury in rat model.

  9. Cytokine levels in pleural fluid as markers of acute rejection after lung transplantation

    Directory of Open Access Journals (Sweden)

    Priscila Cilene León Bueno de Camargo

    2014-08-01

    Full Text Available Our objective was to determine the levels of lactate dehydrogenase, IL-6, IL-8, and VEGF, as well as the total and differential cell counts, in the pleural fluid of lung transplant recipients, correlating those levels with the occurrence and severity of rejection. We analyzed pleural fluid samples collected from 18 patients at various time points (up to postoperative day 4. The levels of IL-6, IL-8, and VEGF tended to elevate in parallel with increases in the severity of rejection. Our results suggest that these levels are markers of acute graft rejection in lung transplant recipients.

  10. [Determination of capillary plasma C-reactive protein during therapy for acute infectious lung diseases].

    Science.gov (United States)

    Makarenko, V V; Vavilikhina, N F; Kastrikina, T N; El'chaninova, S A

    2011-06-01

    Changes in the concentration of C-reactive protein (CRP), leukocytes, erythrocyte sedimentation rate, and differential blood count were comparatively estimated in the treatment of 66 infants (aged 1.12 +/- 0.95 years) with acute infectious lung diseases. There was a high correlation between capillary plasma and venous serum CRP concentrations. On the first day of effective antibiotic therapy, there was a significant decrease in CRP levels; the sensitivity and specificity were 96 and 94%, respectively. Thus, measurement of capillary blood CRP is an accessible and informative tool to monitor therapy for infectious lung diseases in infants.

  11. Cytokine levels in pleural fluid as markers of acute rejection after lung transplantation*

    Science.gov (United States)

    de Camargo, Priscila Cilene León Bueno; Afonso, José Eduardo; Samano, Marcos Naoyuki; Acencio, Milena Marques Pagliarelli; Antonangelo, Leila; Teixeira, Ricardo Henrique de Oliveira Braga

    2014-01-01

    Our objective was to determine the levels of lactate dehydrogenase, IL-6, IL-8, and VEGF, as well as the total and differential cell counts, in the pleural fluid of lung transplant recipients, correlating those levels with the occurrence and severity of rejection. We analyzed pleural fluid samples collected from 18 patients at various time points (up to postoperative day 4). The levels of IL-6, IL-8, and VEGF tended to elevate in parallel with increases in the severity of rejection. Our results suggest that these levels are markers of acute graft rejection in lung transplant recipients. PMID:25210966

  12. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice

    Science.gov (United States)

    Soeiro-Pereira, Paulo V.; Gomes, Eliane; Neto, Antonio Condino; D' Império Lima, Maria R.; Alvarez, José M.; Portugal, Silvia; Epiphanio, Sabrina

    2016-01-01

    Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria. PMID:27926944

  13. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  14. Effect of pentoxifylline on lung inflammation and gas exchange in a sepsis-induced acute lung injury model

    Directory of Open Access Journals (Sweden)

    I.S. Oliveira-Junior

    2006-11-01

    Full Text Available Experimental models of sepsis-induced pulmonary alterations are important for the study of pathogenesis and for potential intervention therapies. The objective of the present study was to characterize lung dysfunction (low PaO2 and high PaCO2, and increased cellular infiltration, protein extravasation, and malondialdehyde (MDA production assessed in bronchoalveolar lavage in a sepsis model consisting of intraperitoneal (ip injection of Escherichia coli and the protective effects of pentoxifylline (PTX. Male Wistar rats (weighing between 270 and 350 g were injected ip with 10(7 or 10(9 CFU/100 g body weight or saline and samples were collected 2, 6, 12, and 24 h later (N = 5 each group. PaO2, PaCO2 and pH were measured in blood, and cellular influx, protein extravasation and MDA concentration were measured in bronchoalveolar lavage. In a second set of experiments either PTX or saline was administered 1 h prior to E. coli ip injection (N = 5 each group and the animals were observed for 6 h. Injection of 10(7 or 10(9 CFU/100 g body weight of E. coli induced acidosis, hypoxemia, and hypercapnia. An increased (P < 0.05 cell influx was observed in bronchoalveolar lavage, with a predominance of neutrophils. Total protein and MDA concentrations were also higher (P < 0.05 in the septic groups compared to control. A higher tumor necrosis factor-alpha (P < 0.05 concentration was also found in these animals. Changes in all parameters were more pronounced with the higher bacterial inoculum. PTX administered prior to sepsis reduced (P < 0.05 most functional alterations. These data show that an E. coli ip inoculum is a good model for the induction of lung dysfunction in sepsis, and suitable for studies of therapeutic interventions.

  15. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions.Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS.Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB, a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight, the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS assays.Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary

  16. Intercellular Adhension Molecule-1 in the Pathogenesis of Heroin-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    周琼; 白明; 邹世清

    2004-01-01

    The expression of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of heroin-induced acute lung injury (ALI) in rats was investigated. The model of ALI was established by intravenous injection of heroin into tail vein in rats. Thirty-six rats were randomly divided into heroin-treated groups (1 h, 2 h, 4 h, 6 h and 24 h) and normal control group. Changes in histopathologic morphology and biological markers of ALI were measured. The expression of ICAM-1in lung tissue was detected by using immunohistochemistry and RT-PCR. The results showed that the W/D ratio and protein contents in BALF of the heroin-treated groups were significantly higher than that of the control group (P<0.01). The histopathological changes in the lung tissue were more obvious in heroin-treated groups. The ICAM-1 protein and mRNA expression in the lung tissue of heroin-treated groups were significantly increased as compared with that of the control group (P<0.01), and correlated with the ALI parameters in a time-dependent manner. Increasing of ICAM-1 expression was involved in the formation of heroin-induced lung injury. Furthermore, the level of expression was positively correlated with the severity of lung injury.

  17. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    Science.gov (United States)

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  18. Natural antioxidant betanin protects rats from paraquat-induced acute lung injury interstitial pneumonia.

    Science.gov (United States)

    Han, Junyan; Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further.

  19. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    Science.gov (United States)

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  20. Lung ultrasound and chest x-ray for detecting pneumonia in an acute geriatric ward

    OpenAIRE

    2016-01-01

    Abstract Background: Our aim was to compare the accuracy of lung ultrasound (LUS) and standard chest x-ray (CXR) for diagnosing pneumonia in older patients with acute respiratory symptoms (dyspnea, cough, hemoptysis, and atypical chest pain) admitted to an acute-care geriatric ward. Methods: We enrolled 169 (80 M, 89 F) multimorbid patients aged 83.0 ± 9.2 years from January 1 to October 31, 2015. Each participant underwent CXR and bedside LUS within 6 hours from ward admission. LUS was perfo...

  1. 17β-Estradiol administration attenuates seawater aspiration-induced acute lung injury in rats.

    Science.gov (United States)

    Fan, Qixin; Zhao, Pengtao; Li, Jiahuan; Xie, Xiaoyan; Xu, Min; Zhang, Yong; Mu, Deguang; Li, Wangping; Sun, Ruilin; Liu, Wei; Nan, Yandong; Zhang, Bo; Jin, Faguang; Li, Zhichao

    2011-12-01

    There is very little evidence on the value of administering estrogen in cases of seawater drowning which can induce acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate whether 17β-estradiol (E2) treatment can attenuate seawater aspiration-induced ALI in rats. In the experiment, ALI was induced by endotracheal instillation of seawater (4mL/kg) and the rats were then given intraperitoneal injection of E2 (5mg/kg) 20min after seawater instillation. Finally, the changes of arterial blood gases which contained hydrogen ion concentration (pH), arterial oxygen tension (PaO(2)) and arterial carbon dioxide tension (PaCO(2)) were measured and the measurement of extravascular lung water (EVLW) was observed. The pulmonary histological changes were evaluated by hematoxylin-eosin stain. The expression of aquaporins (AQPs) 1, AQP5, and estrogen receptor-β (ERβ) was measured by western blotting and immunohistochemical methods. The results showed that compared with normal saline water, seawater aspiration induced more serious ALI in rats which was markedly alleviated by E2 treatment. Meanwhile, the ERβ in lung tissues was activated after E2 administration. The seawater aspiration group also presented with severe pulmonary edema which was paralleled with over expressed AQP1 and AQP5. However, the up-regulation of AQP1 and AQP5 was suppressed by the administration of E2, resulting in an attenuation of lung edema. In conclusion, E2 treatment could effectively attenuate seawater aspiration-induced acute lung injury in rats by the down-regulation of AQP1 and AQP5.

  2. Protective effects of penehyclidine hydrochloride on acute lung injury caused by severe dichlorvos poisoning in swine

    Institute of Scientific and Technical Information of China (English)

    CUI Juan; LI Chun-sheng; HE Xin-hua; SONG Yu-guo

    2013-01-01

    Background Organophosphate poisoning is an important health problem in developing countries which causes death mainly by inducing acute lung injury.In this study,we examined the effects of penehyclidine hydrochloride (PHC),a selective M-receptor inhibitor,on dichlorvos-induced acute lung injury in swine.Methods Twenty-two female swines were randomly divided into control (n=5),dichlorvos (n=6),atropine (n=6),and PHC (n=5) groups.Hemodynamic data,extravascular lung water index (EVLWI),and pulmonary vascular permeability index (PVPI) were monitored; blood gas analysis and acetylcholinesterase (AchE) levels were measured.PaO2/FiO2,cardiac index (Cl),and pulmonary vascular resistance indices (PVRI) were calculated.At termination of the study,pulmonary tissue was collected for ATPase activity determination and wet to dry weight ratio (W/D) testing 6 hours post-poisoning.TUNEL assay,and Bax,Bcl-2,and caspase-3 expression were applied to pulmonary tissue,and histopathology was observed.Results After poisoning,PHC markedly decreased PVRI,increased CI more effectively than atropine.Anticholinergic treatment reduced W/D,apoptosis index (AI),and mitigated injury to the structure of lung; however,PHC reduced AI and caspase-3 expression and improved Bcl-2/Bax more effectively than atropine.Atropine and PHC improved ATPase activities; a significant difference between groups was observed in Ca2+-ATPase activity,but not Na+-K+-ATPase activity.Conclusions The PHC group showed mild impairment in pathology,less apoptotic cells,and little impact on cardiac function compared with the atropine group in dichlorvos-induced acute lung injury.

  3. VEGF‐D promotes pulmonary oedema in hyperoxic acute lung injury

    OpenAIRE

    Sato, Teruhiko; Paquet‐Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J.; Yuan, Yinan; Zhang, You‐Fang; Fox, Stephen B; Hibbs, Margaret L.; Wilkinson‐Berka, Jennifer L; Williams, Richard A.; Stacker, Steven A.; Peter D Sly; Achen, Marc G.

    2016-01-01

    Abstract Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF‐D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF‐D in pathological oedema was unknown. To add...

  4. Pathogenesis of Septic Acute Lung Injury and Strategies for Immuno-Pharmacological Therapy.

    Science.gov (United States)

    1996-10-01

    obtained from septic-NO animals revealed a qualitative reduction in alveolar and septal edema . Although qualitative in nature, parenchyma of septic-NO...pulmonary edema in a model of acute lung injury. Am. Rev. Respir. Dis. 142:1083- 1087. 18. McDonald, R. J. 1991. Pentoxifylline reduces injury to isolated...patients with uncomplicated sepsis and septic shock--comparison with cardiogenic shock. Thromb. Haemost. 58:709-713. 60. Carvalho, A. C., S. DeMarinis

  5. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure?

    Directory of Open Access Journals (Sweden)

    Kus T

    2015-06-01

    Full Text Available Tulay Kus, Gokmen Aktas, Alper Sevinc, Mehmet Emin Kalender, Celaletdin Camci Department of Internal Medicine, Division of Medical Oncology, Gaziantep University, Gaziantep, Turkey Abstract: Erlotinib, an epidermal growth factor receptor and tyrosine kinase inhibitor, is a targeted drug that was approved for the treatment of non-small-cell lung cancers and pancreatic cancers. Targeted tyrosine kinase inhibitors are known to have cardiotoxic effects. However, erlotinib does not have a statistically proven effect of increasing acute cardiovascular event (ACE risk. Preclinical studies showed that beta agonist stimulation among rats that were administered erlotinib led to cardiovascular damage. Thus, there would be an aggregate effect of erlotinib on ACE, although it is not thought to be a cardiotoxic drug itself. In this paper, we present two non-small-cell lung cancer cases that developed ACE under erlotinib treatment. Keywords: erlotinib, lung cancer, myocardial infarction, EGFR

  6. Analysis of regional compliance in a porcine model of acute lung injury.

    Science.gov (United States)

    Czaplik, Michael; Biener, Ingeborg; Dembinski, Rolf; Pelosi, Paolo; Soodt, Thomas; Schroeder, Wolfgang; Leonhardt, Steffen; Marx, Gernot; Rossaint, Rolf; Bickenbach, Johannes

    2012-10-15

    Lung protective ventilation in acute lung injury (ALI) focuses on using low tidal volumes and adequate levels of positive end-expiratory pressure (PEEP). Identifying optimal pressure is difficult because pressure-volume (PV) relations differ regionally. Precise analysis demands local measurements of pressures and related alveolar morphologies. In a porcine model of surfactant depletion (n=24), we combined measuring static pressures with endoscopic microscopy and electrical impedance tomography (EIT) to examine regional PV loops and morphologic heterogeneities between healthy (control group; CON) and ALI lungs ventilated with low (LVT) or high tidal volumes (HVT). Quantification included indices for microscopy (Volume Air Index (VAI), Heterogeneity and Circularity Index), EIT analysis and calculation of regional compliances due to generated PV loops. We found that: (1) VAI decreased in lower lobe after ALI, (2) electrical impedance decreased in dorsal regions and (3) PV loops differed regionally. Further studies should prove the potentials of these techniques on individual respiratory settings and clinical outcome.

  7. The level of telomere dysfunction determines the efficacy of telomerase-based therapeutics in a lung cancer cell line.

    Science.gov (United States)

    Pantic, Milena; Zimmermann, Stefan; Waller, Cornelius F; Martens, Uwe M

    2005-05-01

    Telomerase is the ribonucleoprotein enzyme that maintains telomeres of eukaryotic chromosomes. Activation of telomerase is a common feature of the majority of human cancers, and inhibition of this enzyme has been proposed as a novel target for cancer therapeutics. Here, we investigated the effects of telomerase inhibition in the non-small cell lung cancer cell line NCI-H460, using a genetic approach by ectopic expression of dominant-negative (DN)-hTERT. Five clones were selected in which telomerase activity was completely abolished. As a result, telomere erosion was observed leading to proliferation arrest after a lag period of 20-28 population doublings. Although overall telomere length was similar between the different clones as measured by quantitative fluorescence in situ hybridization (Q-FISH), striking differences were found in telomere length of individual chromosomes. In particular, lack of individual telomeres and formation of end-to-end fusions were variable. Interestingly, this level of individual telomere dysfunction was positively correlated with the remaining life span of the different clones in vitro. In addition, the amount of telomere dysfunction induced by DN-hTERT was twice as high compared to the small molecule telomerase inhibitor BIBR1532, which induced growth arrest after >100 population doublings. Thus, pharmacological strategies that aim at inhibition of telomerase in cancer cells should take into account that not only overall telomere shortening, but rapid induction of a high level telomere dysfunction appears to be the crucial surrogate parameter for the development of future telomerase-based therapeutics.

  8. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury

    Directory of Open Access Journals (Sweden)

    Maria Entezari

    2014-01-01

    Full Text Available Prolonged exposure to hyperoxia results in acute lung injury (ALI, accompanied by a significant elevation in the levels of proinflammatory cytokines and leukocyte infiltration in the lungs. However, the mechanisms underlying hyperoxia-induced proinflammatory ALI remain to be elucidated. In this study, we investigated the role of the proinflammatory cytokine high mobility group box protein 1 (HMGB1 in hyperoxic inflammatory lung injury, using an adult mouse model. The exposure of C57BL/6 mice to ≥99% O2 (hyperoxia significantly increased the accumulation of HMGB1 in the bronchoalveolar lavage fluids (BALF prior to the onset of severe inflammatory lung injury. In the airways of hyperoxic mice, HMGB1 was hyperacetylated and existed in various redox forms. Intratracheal administration of recombinant HMGB1 (rHMGB1 caused a significant increase in leukocyte infiltration into the lungs compared to animal treated with a non-specific peptide. Neutralizing anti-HMGB1 antibodies, administrated before hyperoxia significantly attenuated pulmonary edema and inflammatory responses, as indicated by decreased total protein content, wet/dry weight ratio, and numbers of leukocytes in the airways. This protection was also observed when HMGB1 inhibitors were administered after the onset of the hyperoxic exposure. The aliphatic antioxidant, ethyl pyruvate (EP, inhibited HMGB1 secretion from hyperoxic macrophages and attenuated hyperoxic lung injury. Overall, our data suggest that HMGB1 plays a critical role in mediating hyperoxic ALI through the recruitment of leukocytes into the lungs. If these results can be translated to humans, they suggest that HMGB1 inhibitors provide treatment regimens for oxidative inflammatory lung injury in patients receiving hyperoxia through mechanical ventilation.

  9. Effects of biliverdin administration on acute lung injury induced by hemorrhagic shock and resuscitation in rats.

    Directory of Open Access Journals (Sweden)

    Junko Kosaka

    Full Text Available Hemorrhagic shock and resuscitation induces pulmonary inflammation that leads to acute lung injury. Biliverdin, a metabolite of heme catabolism, has been shown to have potent cytoprotective, anti-inflammatory, and anti-oxidant effects. This study aimed to examine the effects of intravenous biliverdin administration on lung injury induced by hemorrhagic shock and resuscitation in rats. Biliverdin or vehicle was administered to the rats 1 h before sham or hemorrhagic shock-inducing surgery. The sham-operated rats underwent all surgical procedures except bleeding. To induce hemorrhagic shock, rats were bled to achieve a mean arterial pressure of 30 mmHg that was maintained for 60 min, followed by resuscitation with shed blood. Histopathological changes in the lungs were evaluated by histopathological scoring analysis. Inflammatory gene expression was determined by Northern blot analysis, and oxidative DNA damage was assessed by measuring 8-hydroxy-2' deoxyguanosine levels in the lungs. Hemorrhagic shock and resuscitation resulted in prominent histopathological damage, including congestion, edema, cellular infiltration, and hemorrhage. Biliverdin administration prior to hemorrhagic shock and resuscitation significantly ameliorated these lung injuries as judged by histopathological improvement. After hemorrhagic shock and resuscitation, inflammatory gene expression of tumor necrosis factor-α and inducible nitric oxide synthase were increased by 18- and 8-fold, respectively. Inflammatory gene expression significantly decreased when biliverdin was administered prior to hemorrhagic shock and resuscitation. Moreover, after hemorrhagic shock and resuscitation, lung 8-hydroxy-2' deoxyguanosine levels in mitochondrial DNA expressed in the pulmonary interstitium increased by 1.5-fold. Biliverdin administration prior to hemorrhagic shock and resuscitation decreased mitochondrial 8-hydroxy-2' deoxyguanosine levels to almost the same level as that in the

  10. Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury.

    Science.gov (United States)

    Shenkar, R; Coulson, W F; Abraham, E

    1994-03-01

    Acute pulmonary injury occurs frequently following hemorrhage and injury. In order to better examine the sequence of events leading to lung injury in this setting, we investigated lung histology as well as in vivo mRNA levels for cytokines with proinflammatory and immunoregulatory properties (IL-1 beta, IL-6, IL-10, TNF-alpha, TGF-beta, IFN-gamma) over the 3 days following hemorrhage and resuscitation. Significant increases in mRNA levels for IL-1 beta, IL-6, IL-10, and IFN-gamma, but not TNF-alpha, were present among intraparenchymal pulmonary mononuclear cells obtained 1 and 3 days after hemorrhage. Among alveolar macrophages, TNF-alpha and IL-1 beta mRNA levels were increased 3 days after hemorrhage. Few changes in cytokine mRNA levels, with the exception of TNF-alpha at 3 days after hemorrhage, were present among peripheral blood mononuclear cells. Histologic examination of lungs from hemorrhaged animals showed no alterations 1 day after hemorrhage, but neutrophil and mononuclear cell infiltrates, edema, intra-alveolar hemorrhage, and fibrin generation were present 3 days after hemorrhage. These results suggest that hemorrhage-induced enhancement of proinflammatory cytokine gene transcription may be an important mechanism contributing to the frequent development of acute lung injury following blood loss and injury.

  11. Microcirculation disturbance affects rats with acute severe pancreatitis following lung injury

    Institute of Scientific and Technical Information of China (English)

    Xue-Min Liu; Qing-Guang Liu; Jun Xu; Cheng-En Pan

    2005-01-01

    AIM: To study the effects of microcirculation disturbance(MD) on rats with acute severe pancreatitis (ASP).METHODS: We developed ASP rat models, and anatomized separately after 1, 3, 5, 7, and 9 h. We took out blood and did hemorrheologic examination and erythrocyte osmotic fragility test, checked up the water content, capillary permeability, and genetic expression of intercellular adhesion molecule-1 (ICAM-1) in lung tissues, examined the apoptosis degree of blood vessel endothelium while we tested related gene expression of Bax and Bcl-2in lung tissues. We did the same examination in control group.RESULTS: The viscosity of total blood and plasma, the hematocrit, and the erythrocyte osmotic fragility were all increased. Fibrinogen was decreased. The water content in lung tissues and capillary permeability were increased.Apoptosis degree of blood vessel endothelium was increased too. ICAM-1 genetic expression moved up after1 h and reached its peak value after 9 h.CONCLUSION: MD plays an important role in ASP following acute lung injury (ALI). The functional damage of blood vessel endothelium, the apoptosis of capillary vessel endothelium, WBC edging-concentration and the increasing of erythrocyte fragility are the main reasons of ALI.

  12. A novel, stable and reproducible acute lung injury model induced by oleic acid in immature piglet

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; LING Feng; ZHANG Yan-bo; LIU Ai-jun; LIU Dong-hai; QIAO Chen-hui; WANG Qiang; LIU Ying-long

    2011-01-01

    Background Young children are susceptible to pulmonary injury,and acute lung injury (ALl) often results in a high mortality and financial costs in pediatric patients.A good ALl model will help us to gain a better understanding of the real pathophysiological picture and to evaluate novel treatment approaches to acute respiratory distress syndrome (ARDS) more accurately and liberally.This study aimed to establish a hemodynamically stable and reproducible model with ALl in piglet induced by oleic acid.Methods Six Chinese mini-piglets were used to establish ALl models by oleic acid.Hemodynamic and pulmonary function data were measured.Histopathological assessment was performed.Results Mean blood pressure,heart rate (HR),cardiac output (CO),central venous pressure (CVP) and left atrial pressure (LAP) were sharply decreased after oleic acid given,while the mean pulmonary arterial pressure (MPAP) was increased in comparison with baseline (P <0.05).pH,arterial partial pressure of O2 (PaO2),PaO2/inspired O2 fraction (FiO2) and lung compliance decreased,while PaCO2 and airway pressure increased in comparison with baseline (P <0.05).The lung histology showed severe inflammation,hyaline membranes,intra-alveolar and interstitial hemorrhage.Conclusion This experiment established a stable model which allows for a diversity of studies on early lung injury.

  13. Role of Kupffer cells in acute hemorrhagic necrotizing pancreatitis-associated lung injury of rats

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin Liu; Nai-Qiang Cui; Dong-Hua Li; Chang Chen

    2006-01-01

    AIM: To investigate the role of Kupffer cells (KCs) in acute hemorrhagic necrotizing pancreatitis-associated lung injury (AHNP-LI).METHODS: Forty-two rats were allocated to four groups [sham operation, AHNP model, gadolinium chloride (GdCl3) pretreatment, GdCl3 control]. In GdCl3pretreatment group, GdCl3 was administered by caudal vein injection 24 h before the AHNP model induction.Blood from the iliac artery, alveolar macrophages and tissues from the pancreas and lung, were collected in six animals per group 3 and 6 h after acute pancreatitis induction. TNF-α, IL-1 of serum, myeloperoxidase (MPO)of lung tissue, NF-κB activation of alveolar macrophages were detected. Serum AST and ALT in sham operation group and GdCl3 control group were tested. In addition,histopathological changes of the pancreas and lung were observed under light microscope.RESULTS: MPO of lung tissue and TNF-α, IL-1 levels of serum were all reduced significantly in GdCl3pretreatment group compared to those in AHNP group(P<0.01). NF-κB activation of alveolar macrophages was also attenuated significantly in GdCl3 pretreatment group compared to that in AHNP group (P<0.01). The pathological injury of the lung was ameliorated obviously in GdCl3 pretreatment group compared to that in AHNP group. Nevertheless, the serum amylase level did not reduce and injury of the pancreas was not prevented in GdCl3 pretreatment group.CONCLUSION: Pulmonary injury induced by AHNP is mediated by KC activation and AHNP-LI can be significantly ameliorated by pretreatment with GdCl3 and KCs play a vital role in AHNP-LI.

  14. Mesenchymal Stromal Cell Therapy for Chronic Lung Allograft Dysfunction: Results of a First-in-Man Study.

    Science.gov (United States)

    Chambers, Daniel C; Enever, Debra; Lawrence, Sharon; Sturm, Marian J; Herrmann, Richard; Yerkovich, Stephanie; Musk, Michael; Hopkins, Peter M A

    2017-04-01

    Chronic lung transplant rejection (termed chronic lung allograft dysfunction [CLAD]) is the main impediment to long-term survival after lung transplantation. Bone marrow-derived mesenchymal stromal cells (MSCs) represent an attractive cell therapy in inflammatory diseases, including organ rejection, given their relative immune privilege and immunosuppressive and tolerogenic properties. Preclinical studies in models of obliterative bronchiolitis and human trials in graft versus host disease and renal transplantation suggest potential efficacy in CLAD. The purpose of this phase 1, single-arm study was to explore the feasibility and safety of intravenous delivery of allogeneic MSCs to patients with advanced CLAD. MSCs from unrelated donors were isolated from bone marrow, expanded and cryopreserved in a GMP-compliant facility. Patients had deteriorating CLAD and were bronchiolitis obliterans (BOS) grade ≥ 2 or grade 1 with risk factors for rapid progression. MSCs (2 x 10(6) cells per kilogram patient weight) were infused via a peripheral vein twice weekly for 2 weeks, with 52 weeks follow-up. Ten Patients (5 male, 8 bilateral, median [interquartile range] age 40 [30-59] years, 3 BOS2, 7 BOS3) participated. MSC treatment was well tolerated with all patients receiving the full dosing schedule without any procedure-related serious adverse events. The rate of decline in forced expiratory volume in one second slowed after the MSC infusions (120 ml/month preinfusion vs. 30 ml/month postinfusion, p = .08). Two patients died at 152 and 270 days post-MSC treatment, both from progressive CLAD. In conclusion, infusion of allogeneic bone marrow-derived MSCs is feasible and safe even in patients with advanced CLAD. Stem Cells Translational Medicine 2017;6:1152-1157.

  15. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.

    Science.gov (United States)

    Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa

    2017-02-15

    Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells.

  16. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  17. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    Science.gov (United States)

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  18. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury.

    Science.gov (United States)

    Yum, H K; Arcaroli, J; Kupfner, J; Shenkar, R; Penninger, J M; Sasaki, T; Yang, K Y; Park, J S; Abraham, E

    2001-12-01

    Activated neutrophils contribute to the development and severity of acute lung injury (ALI). Phosphoinositide 3-kinases (PI3-K) and the downstream serine/threonine kinase Akt/protein kinase B have a central role in modulating neutrophil function, including respiratory burst, chemotaxis, and apoptosis. In the present study, we found that exposure of neutrophils to endotoxin resulted in phosphorylation of Akt, activation of NF-kappaB, and expression of the proinflammatory cytokines IL-1beta and TNF-alpha through PI3-K-dependent pathways. In vivo, endotoxin administration to mice resulted in activation of PI3-K and Akt in neutrophils that accumulated in the lungs. The severity of endotoxemia-induced ALI was significantly diminished in mice lacking the p110gamma catalytic subunit of PI3-K. In PI3-Kgamma(-/-) mice, lung edema, neutrophil recruitment, nuclear translocation of NF-kappaB, and pulmonary levels of IL-1beta and TNF-alpha were significantly lower after endotoxemia as compared with PI3-Kgamma(+/+) controls. Among neutrophils that did accumulate in the lungs of the PI3-Kgamma(-/-) mice after endotoxin administration, activation of NF-kappaB and expression of proinflammatory cytokines was diminished compared with levels present in lung neutrophils from PI3-Kgamma(+/+) mice. These results show that PI3-K, and particularly PI3-Kgamma, occupies a central position in regulating endotoxin-induced neutrophil activation, including that involved in ALI.

  19. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    Science.gov (United States)

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  20. Effects of continuous tracheal gas insufflation during pressure limited ventilation on pulmonary surfactant in rabbits with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-fa; ZHANG Wei; ZONG Hua; LIANG Ying

    2006-01-01

    Background Pulmonary surfactant dysfunction may contribute to the development of ventilator induced lung injury (VILI). Tracheal gas insufflation (TGI) is a technique in which fresh gas is introduced into the trachea and augment ventilation by reducing the dead space of ventilatory system, reducing ventilatory pressures and tidal volume (VT) while maintaining constant partial arterial CO2 pressure (PaCO2). We hypothesised that TGI limited peak inspiratory pressure (PIP) and VT and would minimize conventional mechanical ventilation (CMV) induced pulmonary surfactant dysfunction and thereby attenuate VILI in rabbits with acute lung injury (ALI).Methods ALI was induced by intratracheal administration of lipopolysaccharide in anaesthetized, ventilated healthy adult rabbits randomly assigned to continuous TGI at 0.5 L/min (TGI group) or CMV group (n=8 for each group), and subsequently ventilated with limited PIP and VT to maintain PaCO2 within 35 to 45 mmHg for 4 hours. Physiological dead space to VT ratio (VD/VT), dynamic respiratory compliance (Cdyn) and partial arterial O2 pressure (PaO2) were monitored. After ventilation, lungs were analysed for total phospholipids (TPL), total proteins (TP), pulmonary surfactant small to large aggregates ratio (SA/LA) in bronchoalveolar lavage fluid (BALF) and for determination of alveolar volume density (Vv), myeloperoxidase and interleukin (IL)-8.Results TGI resulted in significant (P<0.05 or P<0.01) decrease in PIP [(22.4±1.8) cmH2O vs (29.5±1.1) cmH2O], VT [(6.9±1.3) ml/kg vs (9.8±1.11) ml/kg], VD/VT [(32±5)% vs (46±2)%], TP [(109±22) mg/kg vs (187±25) mg/kg], SA/LA (2.5±0.4 vs 5.4±0.7), myeloperoxidase [(6.2±0.5) U/g tissue vs (12.3±0.8) U/g tissue] and IL-8 [(987±106) ng/g tissue vs (24±3) mN/m] of BALF, and significant (P<0.05) increase in Cdyn [(0.47±0.02) ml ·cmH2O-1 ·kg-1 vs (0.31±0.02) ml ·cmH2O-1 ·kg-1], PaO2 [(175±24) mmHg vs (135±26) mmHg],TPL/TP (52±8 vs 33±11) and Vv (0.65±0.05 vs 0

  1. Quantitative Evaluation of Acute Renal Transplant Dysfunction with Low-Dose Three-dimensional MR Renography

    OpenAIRE

    Yamamoto, Akira; Zhang, Jeff L.; Rusinek, Henry; Chandarana, Hersh; Vivier, Pierre-Hugues; Babb, James S.; Diflo, Thomas; John, Devon G.; Benstein, Judith A.; Barisoni, Laura; Stoffel, David R.; Lee, Vivian S.

    2011-01-01

    Our new quantitative analysis method of MR renography, which includes our multicompartmental tracer kinetic renal model, may help to diagnose noninvasively acute rejection or acute tubular necrosis after kidney transplantation.

  2. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Xiaomei Feng

    Full Text Available Rats with Metabolic Syndrome (MetaS have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S. aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS and high capacity runner (HCR rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF, and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  3. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    Science.gov (United States)

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  4. Intravenous transplantation of mesenchymal stem cells attenuates oleic acid induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    XU Yu-lin; LIU Ying-long; WANG Qiang; LI Gang; L(U) Xiao-dong; KONG Bo

    2012-01-01

    Background Acute lung injury (ALI) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units.The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS.Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury.Here,our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS.Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified.ALl was induced in rats byoleic acid (OA),and MSCs were transplanted intravenously.The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours,24 hours and 48 hours after OA-injection.Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs.The concentration of tumor necrosis factor-α and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs,whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours,24 hours and 48 hours after OA-challenge.Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS.Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.

  5. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-li; LIU Zhi-wei; LI Tian-shui; WANG Cong; ZHAO Bin

    2013-01-01

    Background Acute lung injury (ALl) is a common syndrome associated with high morbidity and mortality in emergency medicine.Cell apoptosis plays a key role in the pathogenesis of ALl.Hydrogen sulfide (H2S) plays a protective role during acute lung injury.We designed this study to examine the role of H2S in the lung alveolar epithelial cell apoptosis in rats with ALl.Methods Sixty-nine male Sprague Dawley rats were used.ALl was induced by intra-tail vein injection of oleic acid (OA).NaHS solution was injected intraperitonally 30 minutes before OA injection as the NaHS pretreatment group.Single sodium hydrosulfide pretreatment group and control group were designed.Index of quantitative assessment (IQA),wet/dry weight (W/D) ratio and the percentage of polymorphonuclear leukocyte (PMN) cells in the bronchoalveolar lavage fluid (BALF) were determined.H2S level in lung tissue was measured by a sensitive sulphur electrode.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Fas protein was measured by immunohistochemical staining.Results The level of endogenous H2S in lung tissue decreased with the development of ALl induced by OA injection.Apoptosis and Fas protein in alveolar epithelial cells increased in the ALl of rats but NaHS lessened apoptosis and Fas protein expression in alveolar epithelial cells of rats with ALl.Conclusion Endogenous H2S protects rats from oleic acid-induced ALl,probably by inhibiting cell apoptosis.

  6. Predictors for development of multiple organ dysfunction syndrome in elderly patients with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Xiaoying Li; Yusheng Zhao; Qiao Xue; Deshui Wang; Wei Gap

    2008-01-01

    Multiple organ dysfunction syndrome (MODS) is one of the leading causes of death in ICU patients.However,there have been few studies on the role of MODS as a cause of death in patients with acute myocardial infarction (AMI),particularly in those at advanced age.Our study aimed to investigate the incidence and to identify the predicting factors of MODS in elderly patients with AMI.Methods We identified consecutive patients with AMI who were discharged from the Chinese PLA General Hospital between January 1993 to June 2006.Medical records of 800 consecutive patients aged 60 years or over were analyzed retrospectively.Multivariate logistic regression was used to determine factors predicting in-hospital development of MODS.Results Twenty-seven (3.4%) patients developed MODS within 30 days after AMI.Compared with patients without MODS,patients with MODS had higher in-hospital mortality rates (55.6% vs 11.6%,P<0.001 ) and more frequent complications of cardiogenic shock (25.9% vs 6.2%,P<0.001),heart failure (HF) (59.3% vs 18.2%,P<0.001 ),cardiac arrhythmia (44.4% vs 26.4%,P<0.05) and pneumonia (55.6% vs 16.3%,P<0.001).Multivariate logistic regression analysis showed the major predictors for the occurrence of MODS secondary to AMI were advanced age (≥ 75 years,odds ratio 2.64,95% confidence interval [CI] 1.13 to 6.61),heart rate/> 100 bpm on admission (odds ratio 1.74,[CI] 1.14 to 2.64),in-hospital complication of HF (odds ratio 3.03,[CI] 1.26 to 7.26) and pneumonia (odds ratio 2.82,[CI] 1.18 to 6.77).Conclusions MODS is not the uncommon complication in elderly patients with AMI and is associated with poor prognosis.Advanced age,heart failure and pneumonia are predictors of the development of MODS in patients with AMI.(J Geriatr Cardiol 2008;5:199-202)

  7. Lung clearance of /sup 99m/Tc-DTPA in patients with acute lung injury and pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Coates, G.; O' Brodovich, H.; Dolovich, M.

    1988-07-01

    Several acute and chronic conditions that alter the integrity of the pulmonary epithelium increased the rate of absorption or clearance into the circulation of small solutes deposited in the alveoli. Technetium 99m diethylenetriamine pentaacetic acid can be deposited in the lungs as a submicronic aerosol and its rate of clearance measured with a gamma camera or simple probe. This clearance technique is currently being used to evaluate patients who have developed pulmonary edema and also to detect those patients from a high risk group who are likely to develop adult respiratory distress syndrome (ARDS). Its role in the evaluation of patients with pulmonary edema is still under active investigation. It is clear that a single measurement in patients who smoke is not useful, but repeated measurements may provide important information. The lung clearance measurement is very sensitive to changes in epithelial integrity but is not specific for ARDS. It may be most useful in combination with other predictive tests or when the clearance rate is normal. 54 references.

  8. Protective effects of pretreatment with Radix Paeoniae Rubra on acute lung injury induced by intestinal ischemia/ reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang; ZHANG Fan; XIA Zhong-yuan; LIN Hui; MO An-sheng

    2008-01-01

    Objective: To investigate the effect of pretreatment with Radix Paeoniae Rubra (RPR) on acute lung injury induced by intestinal ischemia/reperfusion in rats and its protective mechanism.Methods:n lung tissues was detected by immunohistochemistry and morphometry computer image analysis. Arterial blood gas analysis, lung permeability index, malondialdehyde (MDA) and superoxide dismutase (SOD) contents in lungs were measured. The histological changes of lung tissue were observed under light microscope.Results:The expression of HO-1 in RPR-pretreatment group and hemin group was obviously higher than that in sham-operation group and I/R group (P < 0.01). The level of MDA and lung permeability index in RPR-pretreatment and hemin group were significantly lower than those in I/R group (P<0.01 or P<0.05), while the activity of SOD in RPR-pretreatment and hemin group was obviously higher than that in I/R group (P<0.01 ). Under light microscope, the pathologic changes induced by I/R were significantly attenuated by RPR.Conclusion : Intestinal ischemia/reperfusion may result in acute lung injury and pretreatment with RPR injection can attenuate the injury. The protective effect of RPR on the acute lung injury is related to its property of inducing HO-1 expression and inhibiting lipid peroxidation.

  9. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome.

    Science.gov (United States)

    Zhang, Yong; Li, Xiru; Grailer, Jamison J; Wang, Na; Wang, Mingming; Yao, Jianfei; Zhong, Rui; Gao, George F; Ward, Peter A; Tan, Dun-Xian; Li, Xiangdong

    2016-05-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. Melatonin is a well-known anti-inflammatory molecule, which has proven to be effective in ALI induced by many conditions. Emerging studies suggest that the NLRP3 inflammasome plays a critical role during ALI. How melatonin directly blocks activation of the NLRP3 inflammasome in ALI remains unclear. In this study, using an LPS-induced ALI mouse model, we found intratracheal (i.t.) administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung. During ALI, the NLRP3 inflammasome is significantly activated with a large amount of IL-1β and the activated caspase-1 occurring in the lung. Melatonin inhibits the activation of the NLRP3 inflammasome by both suppressing the release of extracellular histones and directly blocking histone-induced NLRP3 inflammasome activation. Notably, i.t. route of melatonin administration opens a more efficient therapeutic approach for treating ALI.

  10. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    Directory of Open Access Journals (Sweden)

    Bramanti Placido

    2010-02-01

    Full Text Available Abstract Background Liver × receptor α (LXRα and β (LXRβ are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx, tumor necrosis factor-α, (TNF-α and interleukin-1β (IL-1β. Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases.

  11. Antiplatelet antibody may cause delayed transfusion-related acute lung injury

    Directory of Open Access Journals (Sweden)

    Torii Y

    2011-09-01

    Full Text Available Yoshitaro Torii1, Toshiki Shimizu1, Takashi Yokoi1, Hiroyuki Sugimoto1, Yuichi Katashiba1, Ryotaro Ozasa1, Shinya Fujita1, Yasushi Adachi2, Masahiko Maki3, Shosaku Nomura11The First Department of Internal Medicine, Kansai Medical University, Osaka, 2Department of Clinical Pathology, Toyooka Hospital, Hyogo, 3First Department of Pathology, Kansai Medical University, Osaka, JapanAbstract: A 61-year-old woman with lung cancer developed delayed transfusion-related acute lung injury (TRALI syndrome after transfusion of plasma- and leukoreduced red blood cells (RBCs for gastrointestinal bleeding due to intestinal metastasis. Acute lung injury (ALI recurred 31 days after the first ALI episode. Both ALI episodes occurred 48 hours after transfusion. Laboratory examinations revealed the presence of various antileukocyte antibodies including antiplatelet antibody in the recipient's serum but not in the donors' serum. The authors speculate that antiplatelet antibodies can have an inhibitory effect in the recipient, which can modulate the bona fide procedure of ALI and lead to a delay in the onset of ALI. This case illustrates the crucial role of a recipient's platelets in the development of TRALI.Keywords: delayed TRALI syndrome, recurrence, anti-platelet antibody

  12. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury

    Science.gov (United States)

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4+ CD25+ regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  13. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Kupatt Christian

    2004-09-01

    Full Text Available Abstract Background Hyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2 can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response. Methods Wild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h. Results Exposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice. Conclusion Taken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.

  14. Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads J; Ersbøll, Mads; Axelsson, Anna;

    2013-01-01

    BACKGROUND: Diastolic dysfunction is frequently seen after myocardial infarction and is characterized by a disproportionate increase in filling pressure during exercise to maintain stroke volume. We hypothesized that sildenafil would reduce filling pressure during exercise in patients...... with diastolic dysfunction after myocardial infarction. METHODS AND RESULTS: Seventy patients with diastolic dysfunction and near normal left ventricular ejection fraction on echocardiography were randomly assigned sildenafil 40 mg thrice daily or matching placebo for 9 weeks. Before randomization and after 9...... in the placebo group. CONCLUSIONS: Sildenafil did not decrease filling pressure at rest or during exercise in post-myocardial infarction patients with diastolic dysfunction. However, there were effects on secondary end points, which require further studies....

  15. Severe cognitive dysfunction and shrinking lung syndrome in systemic lupus erythematous

    Directory of Open Access Journals (Sweden)

    Breno José Alencar Pires Barbosa

    2014-12-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease that can affect any organ or system. Neuropsychiatric and pulmonary involvement can occur in 40 and 50% of patients respectively, and may occur in several different clinical forms. While the main neuropsychiatric manifestations are represented by cognitive impairment, organic cerebral syndromes, delirium, psychosis, seizures, and peripheral neuropathies, the main forms of pulmonary involvement are pleurisy with or without pleural effusion, pneumonitis, interstitial disease, pulmonary hypertension, and alveolar hemorrhage. The authors report the case of a 49-year-old woman whose first manifestation of SLE was represented by two rare manifestations: rapidly progressive cognitive impairment, which was associated with respiratory failure caused by the shrinking lung syndrome. The authors call attention to the under-diagnosis of lupus pulmonary complications and its association with severe cognitive impairment that often necessitates aggressive treatment.

  16. Protective Role of Liriodendrin in Sepsis-Induced Acute Lung Injury.

    Science.gov (United States)

    Yang, Lei; Li, Dihua; Zhuo, Yuzhen; Zhang, Shukun; Wang, Ximo; Gao, Hongwei

    2016-10-01

    In current study, we investigated the role of liriodendrin, a constituent isolated from Sargentodoxa cuneata (Oliv.) Rehd. Et Wils (Sargentodoxaceae), in cecal ligation and puncture (CLP)-induced acute lung inflammatory response and injury (ALI). The inflammatory mediator levels in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Pathologic changes in lung tissues were evaluated via pathological section with hematoxylin and eosin (H&E) staining. To investigate the mechanism whereby liriodendrin regulates lung inflammation, the phosphorylation of the NF-kB (p65) and expression of vascular endothelial growth factor (VEGF) were determined by western blot assay. We show that liriodendrin treatment significantly improved the survival rate of mice with CLP-induced sepsis. Pulmonary histopathologic changes, alveolar hemorrhage, and neutrophil infiltration were markedly decreased by liriodendrin. In addition, liriodendrin decreased the production of the proinflammatory mediators including (TNF-α, IL-1β, MCP-1, and IL-6) in lung tissues. Vascular permeability and lung myeloperoxidase (MPO) accumulation in the liriodendrin-treated mice were substantially reduced. Moreover, liriodendrin treatment significantly suppressed the expression of VEGF and activation of NF-kB in the lung. We further show that liriodendrin significantly reduced the production of proinflammatory mediators and downregulated NF-kB signaling in LPS-stimulated RAW 264.7 macrophage cells. Moreover, liriodendrin prevented the generation of reactive oxygen species (ROS) by upregulating the expression of SIRT1 in RAW 264.7 cells. These findings provide a novel theoretical basis for the possible application of liriodendrin in clinic.

  17. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    Science.gov (United States)

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI.

  18. CT Manifestations of Lung Changes and Complications in Patients with Severe Acute Respiratory Syndrome

    Institute of Scientific and Technical Information of China (English)

    张雪哲; 王武; 卢延; 黄振国; 洪闻; 尚燕宁; 任安

    2003-01-01

    Objective:To investigate the role of CT scanning in diagnosing severe acute respiratory syndrome(SARS). Methods: One hundred and twelve times of spiral CT scanning, 106 times on the chest with standard pulmonary and mediastinal window, 5 on the brain and once on the abdomen, were performed in 82 patients (37 males and 45 females) of SARS. Results: Bilateral shadows showed in 66 patients (80.48%) and unilateral shadow in 16 (19.52%). The lung CT findings were sub-pleural focal consolidation in 26 patients (31.70%), flaky cloudy opacity in 53 (64.63%), large area consolidation in 9 (10.97%), ground-glass blurry shadow in 31 (37.80%), alveolar substantive shadow in 14 (17.07%) and interstitial changes in 16 (19.51%). The pulmonary CT signs of SARS were relatively characterized by: (1) The lesions tending to multiply occur, mostly to be bilaterally distributed and commonly involved in the lower lung field. (2) The lung shadows mostly showed as sub-pleural focal consolidation, flaky cloudy shadow, large area consolidation, ground-glass blurry shadow, and often accompanied with signs of broncho-inflation. (3) Having opacified nodular shadows in the alveolar cavities. (4) Rapid progressions or changes on the size, amount, and distribution of the lesions likely to be found in dynamic observation of chest X-ray and CT scanning, i.e., markedly dynamic changes found within 24 to 48 hrs. Lesions with these characteristics may be recognized as pulmonary changes possibly induced by SARS. Complications were found in 6 patients (7.31%), including tuberculosis of lung and brain accompanied with pneumomediastinum in one patient, secondary infection of lung in 2, pneumothorax in 1, pulmonary fungus in 1, and pyothorax in 1.Conclusion: CT scanning is a sensitive method for diagnosis of SARS, by which more accurate assessment of the abnormal changes of lung and occurrence of complications in SARS patients can be made.

  19. Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei

    2016-04-01

    This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.

  20. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation.

    Directory of Open Access Journals (Sweden)

    Jochen Grommes

    Full Text Available INTRODUCTION: Treatment of acute lung injury (ALI remains an unsolved problem in intensive care medicine. As simvastatin exerts protective effects in inflammatory diseases we explored its effects on development of ALI and due to the importance of neutrophils in ALI also on neutrophil effector functions. METHODS: C57Bl/6 mice were exposed to aerosolized LPS (500 µg/ml for 30 min. The count of alveolar, interstitial, and intravasal neutrophils were assessed 4 h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and albumin content in the BAL fluid. In vitro, we analyzed the effect of simvastatin on neutrophil adhesion, degranulation, apoptosis, and formation of reactive oxygen species. To monitor effects of simvastatin on bacterial clearance we performed phagocytosis and bacterial killing studies in vitro as well as sepsis experiments in mice. RESULTS: Simvastatin treatment before and after onset of ALI reduces neutrophil influx into the lung as well as lung permeability indicating the protective role of simvastatin in ALI. Moreover, simvastatin reduces the formation of ROS species and adhesion of neutrophils without affecting apoptosis, bacterial phagocytosis and bacterial clearance. CONCLUSION: Simvastatin reduces recruitment and activation of neutrophils hereby protecting from LPS-induced ALI. Our results imply a potential role for statins in the management of ALI.

  1. Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model.

    Science.gov (United States)

    Fernandez-Bustamante, A; Easley, R B; Fuld, M; Mulreany, D; Chon, D; Lewis, J F; Simon, B A

    2012-08-15

    The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.

  2. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  3. Effects of Ischemic Acute Kidney Injury on Lung Water Balance: Nephrogenic Pulmonary Edema?

    Directory of Open Access Journals (Sweden)

    Rajit K. Basu

    2011-01-01

    Full Text Available Pulmonary edema worsens the morbidity and increases the mortality of critically ill patients. Mechanistically, edema formation in the lung is a result of net flow across the alveolar capillary membrane, dependent on the relationship of hydrostatic and oncotic pressures. Traditionally, the contribution of acute kidney injury (AKI to the formation of pulmonary edema has been attributed to bulk fluid accumulation, increasing capillary hydrostatic pressure and the gradient favoring net flow into the alveolar spaces. Recent research has revealed more subtle, and distant, effects of AKI. In this review we discuss the concept of nephrogenic pulmonary edema. Pro-inflammatory gene upregulation, chemokine over-expression, altered biochemical channel function, and apoptotic dysregulation manifest in the lung are now understood as “extra-renal” and pulmonary effects of AKI. AKI should be counted as a disease process that alters the endothelial integrity of the alveolar capillary barrier and has the potential to overpower the ability of the lung to regulate fluid balance. Nephrogenic pulmonary edema, therefore, is the net effect of fluid accumulation in the lung as a result of both the macroscopic and microscopic effects of AKI.

  4. Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P

    1995-01-01

    The role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the pathogenesis of acute lung injury in rats after intrapulmonary deposition of IgG immune complexes or intratracheal administration of LPS has been assessed. Critical to these studies was the cloning and functional expression...... of rat MIP-1 alpha. The resulting product shared 92% and 90% homology with the known murine sequence at the cDNA level and protein level, respectively. Recombinant rat MIP-1 alpha exhibited dose-dependent chemotactic activity for both rat and human monocytes and neutrophils, which could be blocked...... by anti-murine MIP-1 alpha Ab. Rat MIP-1 alpha mRNA and protein expression were determined as a function of time in both injury models. A time-dependent increase in MIP-1 alpha mRNA in lung extracts was observed in both models. In the LPS model, MIP-1 alpha protein could also be detected...

  5. Rosiglitazone dampens pulmonary inflammation in a porcine model of acute lung injury.

    Science.gov (United States)

    Mirakaj, Valbona; Mutz, Christian; Vagts, Dierk; Henes, Janek; Haeberle, Helene A; Husung, Susanne; König, Tony; Nöldge-Schomburg, Gabriele; Rosenberger, Peter

    2014-08-01

    The hallmarks of acute lung injury (ALI) are the compromised alveolar-capillary barrier and the extravasation of leukocytes into the alveolar space. Given the fact that the peroxisome proliferator-activated receptor-γ agonist rosiglitazone holds significant anti-inflammatory properties, we aimed to evaluate whether rosiglitazone could dampen these hallmarks of local pulmonary inflammation in a porcine model of lung injury. For this purpose, we used a model of lipopolysaccharide (LPS, 50 μg/kg)-induced ALI. One hundred twenty minutes following the infusion of LPS, we started the exposure to rosiglitazone through inhalation or infusion. We found that intravenous rosiglitazone significantly controlled local pulmonary inflammation as determined through the expression of cytokines within the alveolar compartment. Furthermore, we found a significant reduction of the protein concentration and neutrophil activity within the alveolar space. In summary, we therefore conclude that the treatment with rosiglitazone might dampen local pulmonary inflammation during the initial stages of ALI.

  6. Sesamin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibition of TLR4 Signaling Pathways.

    Science.gov (United States)

    Qiang, Li; Yuan, Jiang; Shouyin, Jiang; Yulin, Li; Libing, Jiang; Jian-An, Wang

    2016-02-01

    Recent studies suggested that TLR4 signaling pathways played an important role in the development of LPS-induced acute lung injury (ALI). Sesamin, a sesame lignan exacted from sesame seeds, has been shown to exhibit significant anti-inflammatory activity. The purpose of this study was to investigate the anti-inflammatory effects of sesamin on LPS-induced ALI in mice. Mice ALI model was induced by intratracheal instillation of LPS. Sesamin was given 1 h after LPS challenge. Our results showed that sesamin inhibited LPS-induced lung pathological change, edema, and myeloperoxidase (MPO) activity. Sesamin suppressed LPS-induced inflammatory cytokines TNF-α, IL-6, and IL-1β production. Furthermore, sesamin inhibited LPS-induced TLR4 expression and NF-κB activation. In conclusion, the results of this study indicated that sesamin protected against LPS-induced ALI by inhibition of TLR4 signaling pathways.

  7. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    Science.gov (United States)

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production.

  8. Symptoms of epilepsy and organic brain dysfunctions in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Directory of Open Access Journals (Sweden)

    Linaker Olav M

    2009-09-01

    Full Text Available Abstract Background In psychiatric acute departments some patients present with brief depressive periods accompanied with fluctuating arrays of other psychiatric symptoms like psychosis, panic or mania. For the purpose of the present study we call this condition Acute Unstable Depressive Syndrome (AUDS. The aims of the present study were to compare clinical signs of organic brain dysfunctions and epilepsy in patients with AUDS and Major Depressive Episode (MDE. Methods Out of 1038 consecutive patients admitted to a psychiatric acute ward, 16 patients with AUDS and 16 age- and gender-matched MDE patients were included in the study. Using standardized instruments and methods we recorded clinical data, EEG and MRI. Results A history of epileptic seizures and pathologic EEG activity was more common in the AUDS group than in the MDE group (seizures, n = 6 vs. 0, p = 0.018; pathologic EEG activity, n = 8 vs. 1, p = 0.015. Five patients in the AUDS group were diagnosed as having epilepsy, whereas none of those with MDE had epilepsy (p = 0.043. There were no differences between the groups regarding pathological findings in neurological bedside examination and cerebral MRI investigation. Conclusion Compared to patients admitted with mood symptoms fulfilling DSM 4 criteria of a major depressive disorder, short-lasting atypical depressive symptoms seem to be associated with a high frequency of epileptic and pathologic EEG activity in patients admitted to psychiatric acute departments. Trial registration NCT00201474

  9. Expression of Prothrombinase/fibroleukin Gene fg12 in Lung Impairment in a Murine Severe Acute Respiratory Syndrome Model

    Institute of Scientific and Technical Information of China (English)

    Wei-ming YAN; Jia-quan HUANG; Xiao-ping LUO; Qin NING

    2007-01-01

    To evaluate the role of murine fibrinogen like protein 2 (mfgl2) /fibroleukin in lung impairment in Severe acute respiratory syndrome (SARS), a murine SARS model induced by Murine hepatitis virus strain 3 (MHV-3) through trachea was established. Impressively, all the animals developed interstitial pneumonia with extensive hyaline membranes formation within alveoli, and presence of micro-vascular thrombosis in the pulmonary vessels. MHV-3 nucleocapsid gene transcripts were identified in multiple organs including lungs, spleen etc. As a representative proinflammatory gene, mfgl2 prothrombinase expression was evident in terminal and respiratory bronchioles, alveolar epithelia and infiltrated cells in the lungs associated with fibrin deposition and micro-vascular thrombosis. In summary, the established murine SARS model could mimic the pathologic characteristics of lungs in patients with SARS. Besides the physical damages due to virus replication in organs, the up-regulation of novel gene mfgl2 in lungs may play a vital role in the development of SARS associated lung damage.

  10. Identification and examination of a novel 9-bp insert/deletion polymorphism on porcine SFTPA1 exon 2 associated with acute lung injury using an oleic acid-acute lung injury model.

    Science.gov (United States)

    Zhang, Yuebo; Zhang, Longchao; Wang, Ligang; Qiao, Lijuan; Liang, Jing; Yan, Hua; Zhao, Kebin; Liu, Xin; Wang, Lixian

    2015-06-01

    The pulmonary surfactant-associated protein (SFTPA1, SP-A) gene has been studied as a candidate gene for lung disease resistance in humans and livestock. The objective of the present study was to identify polymorphisms of the porcine SFTPA1 gene coding region and its association with acute lung injury (ALI). Through DNA sequencing and the PCR-single-strand conformation polymorphism method, a novel 9-bp nucleotide insertion (+) or deletion (-) was detected on exon 2 of SFTPA1, which causes a change in three amino acids, namely, alanine (Ala), glycine (Gly) and proline (Pro). Individuals of three genotypes (-/-, +/- and +/+) were divided into equal groups from 60 Rongchang pigs that were genotyped. These pigs were selected for participation in the oleic acid (OA)-ALI model by 1-h and 3-h injections of OA, and there were equal numbers of pigs in the control and injection groups. The lung water content, a marker for acute lung injury, was measured in this study; there is a significant correlation between high lung water content and the presence of the 9-bp indel polymorphism (P polymorphism causing altered expression of the gene. The individuals with the -/- genotype showed lower lung water content than the +/+ genotype pigs, which suggests that polymorphism could be a potential marker for lung disease-resistant pig breeding and that pig can be a potential animal model for human lung disease resistance in future studies.

  11. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Yuben Moodley

    2016-07-01

    Full Text Available Acute lung injury/acute respiratory distress syndrome (ALI/ARDS is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n = 6 to intravenous oleic acid (OA injury, ventilation and hMSC infusion, while the controls (n = 5 had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1 h after the administration of OA. The animals were monitored for additional 4 h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB, a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p = 0.04. There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p = 0.063. There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4 h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.

  12. Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Directory of Open Access Journals (Sweden)

    Laskin Jeffrey D

    2002-08-01

    Full Text Available Abstract Background Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. Methods Rats were treated with 5 mg/kg lipopolysaccharide (i.v. to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. Results Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. Conclusion These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells.

  13. The role of the acute phase protein PTX3 in the ventilator-induced lung injury

    Directory of Open Access Journals (Sweden)

    JM Real

    2008-06-01

    Full Text Available The pentraxin 3 (PTX3 is an acute phase proinflammatory protein produced by fibroblasts and alveolar epithelial cells. We have previously demonstrated that PTX3 is a key modulator of inflammation. Mechanical ventilation (MV is a life saving therapeutic approach for patients with acute lung injury that, nevertheless could lead to an inflammatory response and tissue injury (ventilator-induced lung injury: VILI, representing a major cause of iatrogenic lung damage in intensive units. Our objective was to investigate the role of PTX3 in VILI. PTX3 transgenic, knockout and Wt control mice (n = 12/group were ventilated (45ml·kg–1 until respiratory system Elastance increased 50% (Ers150%, an indicator of VILI. Histological analysis demonstrated that using a Ers150% was appropriate for our analysis since identical degrees of inflammation were observed in Tg, KO and Wt mice as assessed by leukocyte infiltration, oedema, alveolar collapse and number of breaks in alveolar septa. However, Tg mice reached Ers150% faster than Wt controls (p = 0.0225. We also showed that the lack of PTX3 does not abolish the occurrence of VILI in KOs. Gene expression profile of PTX3, IL-1beta, IL-6, KC, IFNgamma, TGFbeta and PCIII were investigated by QPCR. MV drastically up modulated PTX3 as well as IL-1beta, IL-6, IFNgamma and KC. Alternatively, mice were ventilated for 20, 40 and 60 min. The faster kinetics of Tg mice to reach Ers150% was accompanied by an earlier augmentation of IL-1b and PTX3 expression. The kinetics of local PTX3 expression in the lungs of ventilated mice strongly suggests the involvement of this pentraxin in the pathogenesis of VILI.

  14. Review: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies

    Institute of Scientific and Technical Information of China (English)

    LUH Shi-ping; CHIANG Chi-huei

    2007-01-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), which manifests as non-cardiogenic pulmonary edema, respiratory distress and hypoxemia, could be resulted from various processes that directly or indirectly injure the lung.Extensive investigations in experimental models and humans with ALI/ARDS have revealed many molecular mechanisms that offer therapeutic opportunities for cell or gene therapy. Herein the present strategies and future perspectives of the treatment for ALI/ARDS, include the ventilatory, pharmacological, as well as cell therapies.

  15. Postmortem changes in lungs in severe closed traumatic brain injury complicated by acute respiratory failure

    Directory of Open Access Journals (Sweden)

    V. A. Tumanskiy

    2013-08-01

    Full Text Available V.А. Tumanskіy, S.І. Ternishniy, L.M. Tumanskaya Pathological changes in the lungs were studied in the work of 42 patiens who died from severe closed intracranial injury (SCII. It was complicated with acute respiratory insufficient (ARI. The most modified subpleural areas were selected from every lobe of the lungs for pathological studies. Prepared histological sections were stained by means of hemotoxylin and eosin and by Van Giеson for light microscopy. The results of the investigation have shown absence of the significant difference of pathological changes in the lungs of patients who died from ARI because of severe brain injury and traumatic intracranial hemorrhage. Pathognomic pathological changes in the lungs as a result of acute lung injury syndrome (ALIS were found in deceased patients on the third day since the SCII (n=8. There was a significant bilateral interstitial edema and mild alveolar edema with the presence of red and blood cells in the alveoli, vascular plethora of the septum interalveolar and stasis of blood in the capillaries, the slight pericapillary leukocyte infiltration, subpleural hemorrhage and laminar pulmonary atelectasis. In deceased patients on 4-6 days after SCII that was complicated with ARI (n=14, morphological changes had been detected in the lungs. It was pathognomic for acute respiratory distress syndrome (ARDS with local pneumonic to be layered. A significant interstitial pulmonary edema was observed in the respiratory part of the lungs. The edema has spread from the walls of the alveoli into the interstitial spaces of the bronchioles and blood vessels, and also less marked serous-hemorrhagic alveolar edema with presence of the fibrin in the alveoli and macrophages. The ways of intrapleural lymphatic drainage were dilatated. Histopathological changes in the lungs of those who died on the 7-15th days after severe closed craniocerebral injury with ARI to be complicated (n=12 have been indicative of two

  16. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Science.gov (United States)

    Tenhunen, Jyrki; Tonnessen, Tor Inge

    2017-01-01

    Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT) during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly) gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS) can lead to multiple organ dysfunction syndrome (MODS) during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs) are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP. PMID:28316860

  17. EFFECT OF LEFT VENTRICULAR SYSTOLIC DYSFUNCTION ON CEREBRAL HEMODYNAMICS IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION (THE RESULTS OF OBSERVATIONAL STUDIES

    Directory of Open Access Journals (Sweden)

    V. E. Kulikov

    2015-12-01

    Full Text Available Aim. To study the effect of left ventricular (LV systolic dysfunction on cerebral hemodynamic in patients with ST segment elevation myocardial infarction (STEMI during acute period. Material and methods. Cerebral hemodynamics ultrasound assessment was performed in the extra-and intracranial vessels in 118 patients with STEMI. Results. Significant changes in cerebral hemodynamics were found in LV systolic dysfunction with ejection fraction (LVEF ≤40% due to hemispheric blood flow asymmetry in the middle cerebral artery (MCA as large as 45.1±6.7% with correlation coefficient r=-0.87. Compensation of cerebral blood flow was manifested in vasoconstriction or vasodilation (resistive index 0.63-0.76 and 0.49-0.43 c.u., respectively. Conclusion. A strong relationship between LV systolic dysfunction and cerebral hemodynamic was found in patients with STEMI. It was manifested in significant contralateral hemispheric blood flow asymmetry in MCA in patients with LVEF ≤40%. Reduction in cerebral blood flow velocity activated autoregulation mechanism in the form of vasoconstriction or vasodilation.

  18. Mitochondrial dysfunction and transactivation of p53-dependent apoptotic genes in BaP-treated human fetal lung fibroblasts.

    Science.gov (United States)

    Yang, Guangtao; Jiang, Ying; Rao, Kaimin; Chen, Xi; Wang, Qian; Liu, Ailin; Xiong, Wei; Yuan, Jing

    2011-12-01

    Benzo(a)pyrene (BaP) has been shown to be an inducer of apoptosis. However, mechanisms involved in BaP-induced mitochondrial dysfunction are not well-known. In this study, human fetal lung fibroblasts cells were treated with BaP (8, 16, 32, 64 and 128 μM) for 4 and 12 h. Cell viability, intracellular level of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), mitochondrial membrane potential (ΔΨ(m)) and cytochrome c release were determined. Changes in transcriptional levels of p53-dependent apoptotic genes (p53, APAF1, CASPASE3, CASPASE9, NOXA and PUMA) were measured. At time point of 4 h, BaP induced the intracellular ROS generation in 64 (p BaP groups (p BaP groups (p BaP groups (p BaP group (p BaP groups (p BaP group a relatively little expression of p53 mRNA was observed (p BaP promoted the generation of excessive ROS and subsequently the mitochondrial depolarization, whereas transactivations of the p53-dependent apoptotic genes were significantly induced at the later period.

  19. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  20. Effects of peroxisome proliferator-activated receptor-β/δ on sepsis induced acute lung injury

    Institute of Scientific and Technical Information of China (English)

    Wang Cairui; Zhou Guopeng; Zeng Zeng

    2014-01-01

    Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the first steps in the development of multiple organ failure induced by sepsis.A systemic excessive inflammatory reaction is currently the accepted mechanism of the pathogenesis of sepsis.Several studies have suggested a protective role of the peroxisome proliferator activated receptor-β/δ (PPAR-β/δ) in related inflammatory diseases.But the role of PPARβ/δ in ALI remains uncertain.The aim of this study was to investigate the role and possible mechanism of PPARβ/δ in ALI induced by sepsis.Methods Cecal ligation and puncture (CLP) was used as a sepsis model.Rats were randomly divided into four groups,the control group (CON,n=6),sham-operation group (SHAM,n=12),cecal ligation and puncture group (CLP,n=30),GW501516 group (CLP+GW,n=25),which underwent CLP and were subcutaneously injected with the PPAR-β/δ agonist GW501516 (0.05 mg/100 g body weight).Survival was monitored to 24 hours after operation.Blood pressure,serum creatinine,blood urea nitrogen,aspartate aminotrasferase and alanine aminotrasferase were measured after CLP.Concentrations of tumor necrosis factor α (TNF-α) and interleukin (IL)-1β in serum were detected by enzyme linked immunosorbent assay (ELISA) kits.Lung tissue samples were stained with H&E and scored according to the degree of inflammation.Bacterial colonies were counted in the peritoneal fluid.Alveolar macrophages were cultured and incubated with GW501516 (0.15 μmol/L) and PPARβ/δ adenovirus and then treated with Lipopolysaccharide (2 μg/ml) for 2 hours.The TNF-α,IL-1β and IL-6 RNA in lung and alveolar macrophages were determined by real-time PCR.Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in lung and alveolar macrophages was detected by Western blotting.Results GW501516 significantly increased the survival of septic rats,decreased histological damage of the lungs,reduced inflammatory cytokines in serum and

  1. ANP, BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism

    DEFF Research Database (Denmark)

    Mortensen, Jann; Jensen, Claus V; Von Der Recke, Peter;

    2010-01-01

    The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE).......The aim of this study was to predict right ventricular dysfunction (RVD) using plasma concentration of D-dimer, pro-atrial natriuretic peptide (pro-ANP), brain natriuretic peptide (BNP), endothelin-1 (ET-1) and cardiac troponin I (TNI) in patients with pulmonary embolism (PE)....

  2. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-01-01

    Full Text Available CeO2 nanoparticles (CeO2 NPs which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL- 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs.

  3. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  4. Bone marrow-derived mesenchymal stem cells protect rats from endotoxin-induced acute lung injury

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhi-xin; SUN Ji-ping; WANG Ping; TIAN Qing; YANG Zhen; CHEN Liang-an

    2011-01-01

    Background Acute lung injury (ALI) is a serious and common condition for which there are currently no specific strategies for treatment.Recent studies have suggested that bone marrow-derived multipotent mesenchymal stem cells (MSCs) may have therapeutic applications in multiple clinical disorders.We explored the biological effects of MSCs during endotoxin-induced ALl and the mechanisms involved.Methods MSCs were isolated from male rat bone marrow and the ALl model was induced by intravenous endotoxin injection.Female rats were sacrificed at 6 hours,24 hours,4 days,1 week and 3 weeks post-injection of MSCs or saline and the lung tissue,bronchoalveolar lavage fluid,and serum were harvested for analysis.We further evaluated the survival of the rats and examined the effects of endotoxin-induced injury on the interaction between alveolar macrophages (AMs) and MSCs in ex vivo.Results There was a significant decrease in numbers of neutrophils in bronchoalveolar lavage fluid (P <0.05),and myeloperoxidase activity in the lung (P<0.01),and of TNF-α and IL-1β in serum (P <0.05) in the MSC treated rats at 4 days.Furthermore,MSC treated rats exhibited improved survival,lower lung injury score,higher concentration of IL-10 in the serum and a reduced hydroxyproline content,but these differences were not statistically significant.Moreover,co-cultures of MSCs and AMs had significantly reduced levels of TNF-α,IL-1β and macrophage inflammatory protein (MIP)-1α and significantly increased levels of IL-10 (P<0.05) in the culture supernatants.Conclusions Treatment with intravenous injection of bone marrow-derived MSCs have beneficial effects on endotoxin-induced ALl in rats.The beneficial effect might be achieved through the engraftment of differentiated MSCs in the lungs and appears derive more from their capacity to secrete soluble factors that modulate immune responses.

  5. Protective Effects of Cucurbitacin B on Acute Lung Injury Induced by Sepsis in Rats

    Science.gov (United States)

    Hua, Shu; Liu, Xing; Lv, Shuguang; Wang, Zhifang

    2017-01-01

    Background The aim of this study was to investigate the protective effects of cucurbitacin B (CuB) on sepsis-induced acute lung injury (ALI) in rats. Material/Methods An ALI model was made by cecal ligation and puncture (CLP) in SD rats. Rats were randomly divided into 5 groups (n=15 per group): animals undergoing a sham CLP (sham group); animals undergoing CLP (CLP control group); animals undergoing CLP and treated with CuB at 1 mg/kg of body weight (bw) (low-dose CuB [L-CuB] group), animals undergoing CuB at 2 mg/kg of bw (mid-dose CuB [M-CuB] group); and animals undergoing CuB at 5 mg/kg of bw (high-dose CuB [H-CuB] group). Samples of blood and lung tissue were harvested at different time points (6, 12, and 24 hour post-CLP surgery) for the detection of indicators which represented ALI. Five rats were respectively sacrificed at each time point. Pathological changes of lung tissue were observed by H&E staining. Another 50 rats were distributed into the same five groups to record the 72 hour survival rates. Results Treatment with CuB significantly increased the blood gas PaO2 levels and decreased lung wet/dry (W/D) ratio (ptumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), (pprotection effects in a dose-depended manner. Conclusions CuB can effectively improve the pulmonary gas exchange function, reduce pulmonary edema, and inhibit the inflammatory response in the lung, revealing that CuB may serve as a potential therapeutic strategy for sepsis-induced ALI. PMID:28315572

  6. Ventilator „Chirana Aura V“ In Two Models Of Neonatal Acute Lung Injury - A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tomclkova L.

    2014-05-01

    Full Text Available In severe respiratory insufficiency, neonatal and pediatric patients should be ventilated artificially by a ventilator. Aim of this experimental study was to evaluate whether the newly developed ventilator Chirana Aura V may effectively ventilate the lungs of animals with two different models of acute lung injury: acute respiratory distress syndrome (ARDS induced by repetitive saline lavage and meconium aspiration syndrome (MAS induced by intratracheal instillation of neonatal meconium. The experiments were performed on 10 adult rabbits (New Zealand white. In ARDS group (n=5, the lungs were repetitively lavaged with saline (30 ml/kg until partial pressure of oxygen (PaO2 in arterial blood was under 26.7 kPa at inspiratory fraction of oxygen FiO2=1.0. In MAS group (n=5, animals were instilled 4 ml/kg of suspension of human meconium (25 mg/ml. When the model of acute lung injury was developed, animals were ventilated for additional 2 hours with pressure control ventilation (PCV regime by ventilator Chirana Aura V. Ventilatory parameters, blood gases, acid-base balance, end-tidal CO2, O2 saturation of hemoglobin, oxygenation indexes, ventilation efficiency index, dynamic lung compliance, and right-to-left pulmonary shunts were measured and calculated in regular time intervals. In both experimental groups, used ventilatory settings provided acceptable gas exchange within the period of observation. Thus, the results indicate that ventilator Chirana Aura V might be suitable for ventilation of animal models of acute lung injury. However, further pre-clinical investigation is needed before its use may be recommended in neonatal and/or pediatric patients with acute lung injury.

  7. Double isotope albuminflux measurement: diagnosis and monitoring of acute lung injury; Doppelisotopen-Albuminfluxmessung: Diagnose und Therapiemonitoring des Acute Lung Injury

    Energy Technology Data Exchange (ETDEWEB)

    Hoegerle, S. [Freiburg Univ. (Germany). Abt. Nuklearmedizin; Braeutigam, P. [Freiburg Univ. (Germany). Abt. Nuklearmedizin; Benzing, A. [Freiburg Univ. (Germany). Anaesthesiologische Klinik; Nitzsche, E. [Freiburg Univ. (Germany). Abt. Nuklearmedizin; Mols, G. [Freiburg Univ. (Germany). Anaesthesiologische Klinik; Geiger, K. [Freiburg Univ. (Germany). Anaesthesiologische Klinik; Moser, E. [Freiburg Univ. (Germany). Abt. Nuklearmedizin

    1997-06-01

    Purpose: Acute Lung Injury (ALI) is a clincial condition which is associated with a high lethality. It is characterized by an increased pulmonary capillary permeability and non-cardiogenic pulmonary edema. This study was designed to answer the question whether double isotope albuminflux measurement is a useful tool both for diagnosis of increased pulmonary capillary permeability and for monitoring therapeutic interventions (nitric oxide (NO) inhalation). Method: In 12 patients with clinical signs of ALI, transvascular albuminflux was measured by a double radioisotope technique before, during and after NO inhalation {sup 99m}Tc labeled albumin and {sup 51}Cr labeled autologous erythrocytes were used as tracer. The radioactivity of both radiopharmaceuticals was measured externally over the right lung by a radiation probe and simultaneously in arterial blood. For quantification of transvascular albuminflux Normalized Index (NI) and Normalized Slope Index (NSI) were calculated. Furthermore, pulmonal vascular pressures and other physiological parameters were recorded. Results: All 12 patients showed markedly increased NSI before inhalation of NO. NSI decreased from 0.0074{+-}0.0046 min{sup -1} without nitric oxide to -0.0051{+-}0.0041 min{sup -1} during nitric oxide and increased to 0.0046{+-}0.0111 min{sup -1} after nitric oxide. The decrease of the NSI correlated well with decrease of venous pulmonary resistance during inhalation of NO. Conclusion: Inhalation of NO reduces transvascular albuminflux in patients with ALI. Double isotope albuminflux measurement enables diagnosis of increased capillary permeability as well as monitoring therapeutic interventions. (orig.) [Deutsch] Ziel: Acute Lung Injury (ALI) ist ein Krankheitsbild mit hoher Letalitaet, das durch eine erhoehte pulmonale Kapillarpermeabilitaet mit einem nichtkardialen Lungenoedem gekennzeichnet ist. In der vorliegenden Studie sollte ueberprueft werden, ob die Doppelisotopen-Albuminfluxmessung sich neben

  8. In vivo microscopy in a porcine model of acute lung injury.

    Science.gov (United States)

    Bickenbach, Johannes; Czaplik, Michael; Dembinski, Rolf; Pelosi, Paolo; Schroeder, Wolfgang; Marx, Gernot; Rossaint, Rolf

    2010-07-31

    Regional inhomogeneity and alveolar mechanics in a porcine model of acute lung injury (ALI) was evaluated using confocal laser scanning microscopy (CLSM). CLSM was performed through thoracic windows of the upper and lower lobes. Image quantification was conducted by use of a volume air index (VAI). Twelve anesthetized, mechanically ventilated pigs were randomized to non-injury (control group, n = 6) or ALI induced by surfactant depletion (ALI group, n = 6). CLSM was performed at baseline, after 1 h at 5 mbar and after 2 h at 15 mbar positive end-expiratory pressure (PEEP). Haemodynamics, respiratory mechanics and calculation of pulmonary ventilation-perfusion distribution by MIGET were determined. At baseline, VAI was not different. In the upper lobes, VAI significantly decreased in ALI compared to control group, with no changes after PEEP application. In the lower lobes, VAI significantly decreased in ALI compared to control group. Incremental PEEP significantly increased VAI in ALI, but not in control group. Haemodynamics were significantly compromised in the ALI group. A significant deterioration in oxygenation and ventilation-perfusion distribution could be seen being restored after PEEP adjustment. The VAI may help to assess regional inhomogeneity of the acutely injured lung.

  9. Proteasome inhibitor ameliorates severe acute pancreatitis and associated lung injury of rats

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Shun-Le Li; Tao Wu; Ji-Dong Liu

    2008-01-01

    AIM:To observe the effect of proteasome inhibitor MG-132 on severe acute pancreatitis (SAP) and associated lung injury of rats.METHODS:Male adult SD rats were randomly divided into SAP group,sham-operation group,and MG-132 treatment group.A model of SAP was established by injection of 5% sodium taurocholate into the biliarypancreatic duct of rats.The MG-132 group was pretreated with 10 mg/kg MG-132 intraperitoneally (ip) 30 rnin before the induction of pancreatitis.The changes in serum amylase,myeloperoxidase (MPO) activity of pancreatic and pulmonary tissue were measured.The TNF-α level in pancreatic cytosolic fractions was assayed with an enzyme-linked immunosorbent assay (ELISA) kit.Meanwhile,the pathological changes in both pancreatic and pulmonary tissues were also observed.RESULTS:MG-132 significantly decreased serum amylase,pancreatic weight/body ratio,pancreatic TNF-α level,pancreatic and pulmonary MPO activity (P < 0.05).Histopathological examinations revealed that pancreatic and pulmonary samples from rats pretreated with MG-132 demonstrated milder edema,cellular damage,and inflammatory activity (P < 0.05).CONCLUSION:The proteasome inhibitor MG-132shows a protective effect on severe acute pancreatitis and associated lung injury of rats.

  10. Focused Sonographic Examination of the Heart, Lungs and Deep Veins in Acute Admitted Patients with Respiratory Symptoms

    DEFF Research Database (Denmark)

    Laursen, Christian Borbjerg; Sloth, Erik; Lassen, Annmarie Touborg;

    2012-01-01

    of the clinical examination. In addition, most of the diseases, which are commonly seen in patients with acute respiratory symptoms, can be diagnosed using sonography. Sonography could be integrated as a part of the primary evaluation, potentially improving the diagnostic performance. We therefore evaluated...... the use of sonographic examination of the heart, lungs and deep veins, performed within one hour of the primary evaluation, in acute admitted patients with respiratory symptoms. Methods: We performed a prospective cross sectional blinded observational study, conducted in a medical emergency department....... Patients were included if one or more of the following symptoms or clinical findings were present: respiratory rate > 20, saturation heart, lungs and deep veins...

  11. Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass.

    Science.gov (United States)

    Shi, Hai; Lu, Rujian; Wang, Shuo; Chen, Honglin; Wang, Fei; Liu, Kun

    2017-03-11

    Acute lung injury (ALI) is one of the most important complications after cardiopulmonary bypass (CPB) and the complex pathophysiology remains to be resolved incomplete. SDF-1/CXCR4 chemokine axis can chemotactically accumulate inflammatory cell to local tissue and regulate the release of inflammatory factors, and SDF-1 has a strong chemotaxis effect on neutrophils with CXCR4. Since CPB animal model was difficult to establish, there was still no report about the effect of SDF-1/CXCR4 on neutrophil chemotaxis in ALI after CPB. Here, a stable CPB rat model was constructed to clarify the role of SDF-1/CXCR4 axis in the CPB-induced ALI. Real-time quantitative PCR (RT-qPCR), Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to detect the changes of SDF-1 and CXCR4 in lung tissues, blood, bronchoalveolar lavage (BALF), and/or isolated neutrophils. SDF-1/CXCR4 was increased after CPB, both of that were increased in blood; CXCR4 was increased in neutrophils; SDF-1/CXCR4 was also increased in BALF of CPB model. Results indicated that SDF-1/CXCR4 axis played a key role in the process of early ALI after CPB, also showed that lung injury was significantly reduce after blocking SDF-1/CXCR4 axis, suggest that CXCR4 might be a new target for ALI treatment.

  12. Acute Lung Injury and Fibrosis in a Baboon Model of Escherichia coli Sepsis

    Science.gov (United States)

    Keshari, Ravi S.; Silasi-Mansat, Robert; Zhu, Hua; Popescu, Narcis I.; Peer, Glenn; Chaaban, Hala; Lambris, John D.; Polf, Holly; Lupu, Cristina; Kinasewitz, Gary

    2014-01-01

    Sepsis-induced inflammation of the lung leads to acute respiratory distress syndrome (ARDS), which may trigger persistent fibrosis. The pathology of ARDS is complex and poorly understood, and the therapeutic approaches are limited. We used a baboon model of Escherichia coli sepsis that mimics the complexity of human disease to study the pathophysiology of ARDS. We performed extensive biochemical, histological, and functional analyses to characterize the disease progression and the long-term effects of sepsis on the lung structure and function. Similar to humans, sepsis-induced ARDS in baboons displays an early inflammatory exudative phase, with extensive necrosis. This is followed by a regenerative phase dominated by proliferation of type 2 epithelial cells, expression of epithelial-to-mesenchymal transition markers, myofibroblast migration and proliferation, and collagen synthesis. Baboons that survived sepsis showed persistent inflammation and collagen deposition 6–27 months after the acute episodes. Long-term survivors had almost double the amount of collagen in the lung as compared with age-matched control animals. Immunostaining for procollagens showed persistent active collagen synthesis within the fibroblastic foci and interalveolar septa. Fibroblasts expressed markers of transforming growth factor-β and platelet-derived growth factor signaling, suggesting their potential role as mediators of myofibroblast migration and proliferation, and collagen deposition. In parallel, up-regulation of the inhibitors of extracellular proteases supports a deregulated matrix remodeling that may contribute to fibrosis. The primate model of sepsis-induced ARDS mimics the disease progression in humans, including chronic inflammation and long-lasting fibrosis. This model helps our understanding of the pathophysiology of fibrosis and the testing of new therapies. PMID:24066737

  13. MARESIN 1 PREVENTS LIPOPOLYSACCHARIDE-INDUCED NEUTROPHIL SURVIVAL AND ACCELERATES RESOLUTION OF ACUTE LUNG INJURY.

    Science.gov (United States)

    Gong, Jie; Liu, Hong; Wu, Jing; Qi, Hong; Wu, Zhou-Yang; Shu, Hua-Qing; Li, Hong-Bin; Chen, Lin; Wang, Ya-Xin; Li, Bo; Tang, Min; Ji, Yu-Dong; Yuan, Shi-Ying; Yao, Shang-Long; Shang, You

    2015-10-01

    Acute lung injury (ALI) is characterized by lung inflammation and diffuse infiltration of neutrophils. Neutrophil apoptosis is recognized as an important control point in the resolution of inflammation. Maresin 1 (MaR1) is a new docosahexaenoic acid-derived proresolving agent that promotes the resolution of inflammation. However, its function in neutrophil apoptosis is unknown. In this study, isolated human neutrophils were incubated with MaR1, the pan-caspase inhibitor z-VAD-fmk, and lipopolysaccharide (LPS) to determine the mechanism of neutrophil apoptosis. Acute lung injury was induced by intratracheal instillation of LPS. In addition, mice were treated with MaR1 intravenously at the peak of inflammation and administered z-VAD-fmk intraperitoneally. We found that culture of isolated human neutrophils with LPS dramatically delayed neutrophil apoptosis through the phosphorylation of AKT, ERK, and p38 to upregulate the expression of the antiapoptotic proteins Mcl-1 and Bcl-2, which was blocked by pretreatment with MaR1 in vitro. In mice, MaR1 accelerated the resolution of inflammation in LPS-induced ALI through attenuation of neutrophil accumulation, pathohistological changes, and pulmonary edema. Maresin 1 promoted resolution of inflammation by accelerating caspase-dependent neutrophil apoptosis. Moreover, MaR1 also reduced the LPS-induced production of proinflammatory cytokines and upregulated the production of the anti-inflammatory cytokine interleukin-10. In contrast, treatment with z-VAD-fmk inhibited the proapoptotic action of MaR1 and attenuated the protective effects of MaR1 in LPS-induced ALI. Taken together, MaR1 promotes the resolution of LPS-induced ALI by overcoming LPS-mediated suppression of neutrophil apoptosis.

  14. Assessment of heat shock proteins and endothelial dysfunction in acute pulmonary embolism.

    Science.gov (United States)

    İn, Erdal; Deveci, Figen; Kaman, Dilara

    2016-06-01

    We determined the levels of some heat shock proteins (HSP27, HSP70, and HSP90), L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) levels in patients with acute pulmonary embolism. The present case-control study comprised a healthy control group (n = 57) and patients with acute pulmonary embolism (n = 84). HSPs, L-arginine, ADMA, and SDMA levels were measured in all of the cases. The mean age of the control group was 56.72 ± 8.44 years, and the mean age of the patients with acute pulmonary embolism was 60.20 ± 16.56 years (P = 0.104). Compared with controls, patients with acute pulmonary embolism had significantly higher mean serum HSP27, HSP90, and ADMA levels, whereas the mean serum L-arginine and SDMA levels were lower (P In patients with acute pulmonary embolism serum HSP27, HSP70, and ADMA levels were negatively correlated with partial pressures of arterial oxygen levels (r = -0.281, P = 0.01; r = -0.263, P = 0.016; and r = -0.275, P = 0.011, respectively) and arterial oxygen saturation (r = -0.225, P = 0.039; r = -0.400, P in acute pulmonary embolism.

  15. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    Science.gov (United States)

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  16. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury

    NARCIS (Netherlands)

    A. Hartog (Anneke); G.F. Vazquez de Anda; D.A.M.P.J. Gommers (Diederik); U. Kaisers; S.J.C. Verbrugge (Serge); R. Schnabel; B.F. Lachmann (Burkhard)

    1999-01-01

    textabstractWe have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult r

  17. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid.

    Science.gov (United States)

    Fisher, Bernard J; Kraskauskas, Donatas; Martin, Erika J; Farkas, Daniela; Wegelin, Jacob A; Brophy, Donald; Ward, Kevin R; Voelkel, Norbert F; Fowler, Alpha A; Natarajan, Ramesh

    2012-07-01

    Bacterial infections of the lungs and abdomen are among the most common causes of sepsis. Abdominal peritonitis often results in acute lung injury (ALI). Recent reports demonstrate a potential benefit of parenteral vitamin C [ascorbic acid (AscA)] in the pathogenesis of sepsis. Therefore we examined the mechanisms of vitamin C supplementation in the setting of abdominal peritonitis-mediated ALI. We hypothesized that vitamin C supplementation would protect lungs by restoring alveolar epithelial barrier integrity and preventing sepsis-associated coagulopathy. Male C57BL/6 mice were intraperitoneally injected with a fecal stem solution to induce abdominal peritonitis (FIP) 30 min prior to receiving either AscA (200 mg/kg) or dehydroascorbic acid (200 mg/kg). Variables examined included survival, extent of ALI, pulmonary inflammatory markers (myeloperoxidase, chemokines), bronchoalveolar epithelial permeability, alveolar fluid clearance, epithelial ion channel, and pump expression (aquaporin 5, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and Na(+)-K(+)-ATPase), tight junction protein expression (claudins, occludins, zona occludens), cytoskeletal rearrangements (F-actin polymerization), and coagulation parameters (thromboelastography, pro- and anticoagulants, fibrinolysis mediators) of septic blood. FIP-mediated ALI was characterized by compromised lung epithelial permeability, reduced alveolar fluid clearance, pulmonary inflammation and neutrophil sequestration, coagulation abnormalities, and increased mortality. Parenteral vitamin C infusion protected mice from the deleterious consequences of sepsis by multiple mechanisms, including attenuation of the proinflammatory response, enhancement of epithelial barrier function, increasing alveolar fluid clearance, and prevention of sepsis-associated coagulation abnormalities. Parenteral vitamin C may potentially have a role in the management of sepsis and ALI associated with sepsis.

  18. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    Science.gov (United States)

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  19. Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs.

    Science.gov (United States)

    Wright, Benjamin S; Rezk, Peter E; Graham, Jacob R; Steele, Keith E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-05-01

    A microinstillation technique of inhalation exposure was utilized to assess lung injury following chemical warfare nerve agent VX [methylphosphonothioic acid S-(2-[bis(1-methylethyl)amino]ethyl) O-ethyl ester] exposure in guinea pigs. Animals were anesthetized using Telazol-meditomidine, gently intubated, and VX was aerosolized using a microcatheter placed 2 cm above the bifurcation of the trachea. Different doses (50.4 microg/m3, 70.4 micro g/m(m3), 90.4 microg/m(m3)) of VX were administered at 40 pulses/min for 5 min. Dosing of VX was calculated by the volume of aerosol produced per 200 pulses and diluting the agent accordingly. Although the survival rate of animals exposed to different doses of VX was similar to the controls, nearly a 20% weight reduction was observed in exposed animals. After 24 h of recovery, the animals were euthanized and bronchoalveolar lavage (BAL) was performed with oxygen free saline. BAL was centrifuged and separated into BAL fluid (BALF) and BAL cells (BALC) and analyzed for indication of lung injury. The edema by dry/wet weight ratio of the accessory lobe increased 11% in VX-treated animals. BAL cell number was increased in VX-treated animals compared to controls, independent of dosage. Trypan blue viability assay indicated an increase in BAL cell death in 70.4 microg/m(m3) and 90.4 microg/m(m3) VX-exposed animals. Differential cell counting of BALC indicated a decrease in macrophage/monocytes in VX-exposed animals. The total amount of BAL protein increased gradually with the exposed dose of VX and was highest in animals exposed to 90.4 microg/m(m3), indicating that this dose of VX caused lung injury that persisted at 24 h. In addition, histopathology results also suggest that inhalation exposure to VX induces acute lung injury.

  20. Extracorporeal gas exchange in acute lung injury: step by step towards expanded indications?

    Science.gov (United States)

    Dembinski, Rolf; Kuhlen, Ralf

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is widely accepted as a rescue therapy in patients with acute life-threatening hypoxemia in the course of severe acute respiratory distress syndrome (ARDS). However, possible side effects and complications are considered to limit beneficial outcome effects. Therefore, widening indications with the aim of reducing ventilator induced lung injury (VILI) is still controversial. Consequently, technological progress is an important strategy. Miniaturized ECMO systems are believed to simplify handling and reduce side effects and complications. Mueller and co-workers evaluated such a small-sized device in 60 patients with severe ARDS. They accomplished both the treatment of severe hypoxemia and reduction of VILI, demonstrating feasibility, a moderate rate of severe complications, and a 45% intensive care survival rate. Although neither randomized nor controlled, this study should encourage others to implement such systems in clinical practice. From a strategic perspective, this is another small but useful step towards implementing extracorporeal gas exchange for the prevention of VILI. It is already common sense that the prevention of acute life-threatening hypoxemia usually outweighs the risks of this technique. The next step should be to prove that prevention of life-threatening VILI balances the risks too.

  1. [Acute respiratory insufficiency due to severe lung injury - ARDS and ALI].

    Science.gov (United States)

    Pfeifer, M

    2010-09-01

    As a consequence of the novel therapeutic option of mechanical ventilation in early intensive care medicine, the acute respiratory distress syndrome (ARDS) was defined as a disease entity of its own representing the most severe form of acute lung injury (ALI). Since its first description four decades ago, our knowledge about the aetiology, physiology, histology and epidemiology of this lethal pulmonary complication of severe acute diseases such as pneumonia or sepsis has been increasing steadily. The initial major therapeutic advances were due to improvements in intensive care medical procedures and monitoring. The large ARDS Network clinical trial on the magnitude of tidal volume impressively demonstrated the feasibility of targeted clinical trials in patients with ARDS that provide robust evidence in this field. This clinical trial, as well as following large-scale trials in ARDS patients, led to significant changes of ventilation therapy and therapeutic strategies that improve the outcome of this disease entity. Advances in the standardisation of care for ARDS patients involving innovative therapeutic procedures such as extracorporeal gas exchange systems will lead to a further improvement in ARDS management and outcome. Modern pulmonary medicine can play a pivotal role in this process and can contribute its rich experiences in all areas of the respiratory system.

  2. Expression of TLR4 and CD40 in activated macrophage surface after transfusion-related acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Xiu Cai

    2016-01-01

    Objective:To study the expression of TLR4 and CD40 in activated macrophage surface after transfusion-related acute lung injury in rats. Methods:SD rats were selected as experimental animals, lipopolysaccharide and plasma were transfused in turn, animal models with transfusion-related acute lung injury (TRALI) were established, lung tissue was collected to detect wet to dry weight ratio as well as mRNA expression levels of TLR4, NF-κB, CD40, TNF-α, IL-1β, MIP-2 and GRP78, serum was collected to detect TNF-α, IL-1βand MIP-2 contents, and macrophages in peripheral blood were collected to detect mRNA expression levels of TLR4, NF-κB and CD40. Results:Lung tissue wet to dry weight ratio of TRALI group was significantly higher than that of Sham group;mRNA expression levels of TLR4, NF-κB and CD40 in macrophages of TRALI group were significantly higher than those of Sham group;mRNA expression levels of TLR4, NF-κB, CD40, TNF-α, IL-1β, MIP-2 and GRP78 in lung tissue of TRALI group were significantly higher than those of Sham group;serum TNF-α, IL-1βand MIP-2 contents of TRALI group were significantly higher than those of Sham group;SOD and GSH contents in lung tissue of TRALI group were lower than those of Sham group, and contents of MDA and 8-OhdG were higher than those of Sham group. Conclusion:Expression levels of TLR4 and CD40 in activated macrophage surface significantly increase after transfusion-related acute lung injury in rats, which will cause lung injury through inflammatory response, oxidative stress response, endoplasmic reticulum stress and others aspects.

  3. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  4. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy.

    Science.gov (United States)

    Zhang, Yao-Jun; Yang, Shao-Hua; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Mi, Qiong-Yu; Yu, Yi-Hui; Li, Jing-Jing; Zhao, Shu-Li; Tian, Nai-Liang; Chen, Shao-Liang

    2014-12-01

    The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.

  5. Severe acute interstitial lung disease in a patient with anaplastic lymphoma kinase rearrangement-positive non-small cell lung cancer treated with alectinib.

    Science.gov (United States)

    Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi

    2015-10-01

    Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.

  6. Amiodarone use after acute myocardial infarction complicated by heart failure and/or left ventricular dysfunction may be associated with excess mortality

    DEFF Research Database (Denmark)

    Thomas, Kevin L; Al-Khatib, Sana M; Lokhnygina, Yuliya;

    2008-01-01

    BACKGROUND: We sought to assess the association of amiodarone use with mortality during consecutive periods in patients with post-acute myocardial infarction with left ventricular systolic dysfunction and/or HF treated with a contemporary medical regimen. METHODS: This study used data from VALIAN...

  7. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  8. Acute and repeated inhalation lung injury by 3-methoxybutyl chloroformate in rats: CT-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yeon Soo [Department of Radiology, Holy Family Hospital, College of Medicine, Catholic University of Korea, 2, Sosa-dong, Wonmi-gu, Pucheon, Kyung gi-do 420-717 (Korea, Republic of); Chung, Myung Hee [Department of Radiology, Holy Family Hospital, College of Medicine, Catholic University of Korea, 2, Sosa-dong, Wonmi-gu, Pucheon, Kyung gi-do 420-717 (Korea, Republic of)]. E-mail: mhchung@catholic.ac.kr; Park, Seog Hee [Department of Radiology, Kangnam St. Mary Hospital, Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040 (Korea, Republic of); Kim, Hyeon-Yeong [Industrial Chemicals Research Center, Industrial Safety and Health Research Institute KISCO, 104-8, Moonji-dong, Yusong-gu, Taejon-si 305-380 (Korea, Republic of); Choi, Byung Gil [Department of Radiology, Kangnam St. Mary Hospital, Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-040 (Korea, Republic of); Lim, Hyun Wook [Department of Radiology, Holy Family Hospital, College of Medicine, Catholic University of Korea, 2, Sosa-dong, Wonmi-gu, Pucheon, Kyung gi-do 420-717 (Korea, Republic of); Kim, Jin Ah [Department of Pathology, Holy Family Hospital, Catholic University of Korea, 2, Sosa-dong, Wonmi-gu, Pucheon-si, Kyung gi-do 420-717 (Korea, Republic of); Yoo, Won Jong [Department of Radiology, Holy Family Hospital, College of Medicine, Catholic University of Korea, 2, Sosa-dong, Wonmi-gu, Pucheon, Kyung gi-do 420-717 (Korea, Republic of)

    2007-05-15

    Objectives: To investigate the acute and repeated pulmonary damage in Sprague-Dawley rats caused by the inhalation of 3-methoxybutyl chloroformate (3-MBCF) using computed tomography (CT), and to correlate these results with those obtained from a pathological study. Methods: Sixty, 7-week-old rats were exposed to 3-MBCF vapor via inhalation (6 h/day) for 1 day (N = 20), 3 days (N = 20), and 28 days (5 days/week) (N = 20) using whole body exposure chambers at a concentration of 0 (control), 3, 6 and 12 ppm. CT examinations including densitometry and histopathologic studies were carried out. For the follow-up study, the rats exposed for 3 days were scanned using CT and their pathology was examined at 7, 14, and 28 days. Results: There was a significant decrease in the parenchymal density in the groups exposed to the 3-MBCF vapors for 1 day at 3 ppm (p = 0.022) or 6 ppm (p = 0.010), compared with the control. The parenchymal density of the rats exposed to12 ppm was significantly higher. The pathological findings in this period, the grades of vascular congestion, tracheobronchial exfoliation, and alveolar rupture were significant. In the groups exposed for 3 days, there was a large decrease in the parenchymal density with increasing dose (control: -675.48 {+-} 32.82 HU, 3 ppm: -720.65 {+-} 34.21 HU, 6 ppm: -756.41 {+-} 41.68 HU, 12 ppm: -812.56 {+-} 53.48 HU) (p = 0.000). There were significant density differences between each dose in the groups exposed for 28 days (p = 0.000). The CT findings include an irregular lung surface, areas of multifocal, wedge-shaped increased density, a heterogeneous lung density, bronchial dilatation, and axial peribronchovascular bundle thickening. The histopathology examination revealed the development of alveolar interstitial thickening and vasculitis, and an aggravation of the mainstem bronchial exudates and bronchial inflammation. The alveolar wall ruptures and bronchial dilatation became severe during this period. On the follow

  9. Partial ventilatory support modalities in acute lung injury and acute respiratory distress syndrome-a systematic review.

    Directory of Open Access Journals (Sweden)

    Sarah M McMullen

    Full Text Available PURPOSE: The efficacy of partial ventilatory support modes that allow spontaneous breathing in patients with acute lung injury (ALI and acute respiratory distress syndrome (ARDS is unclear. The objective of this scoping review was to assess the effects of partial ventilatory support on mortality, duration of mechanical ventilation, and both hospital and intensive care unit (ICU lengths of stay (LOS for patients with ALI and ARDS; the secondary objective was to describe physiologic effects on hemodynamics, respiratory system and other organ function. METHODS: MEDLINE (1966-2009, Cochrane, and EmBase (1980-2009 databases were searched using common ventilator modes as keywords and reference lists from retrieved manuscripts hand searched for additional studies. Two researchers independently reviewed and graded the studies using a modified Oxford Centre for Evidence-Based Medicine grading system. Studies in adult ALI/ARDS patients were included for primary objectives and pre-clinical studies for supporting evidence. RESULTS: Two randomized controlled trials (RCTs were identified, in addition to six prospective cohort studies, one retrospective cohort study, one case control study, 41 clinical physiologic studies and 28 pre-clinical studies. No study was powered to assess mortality, one RCT showed shorter ICU length of stay, and the other demonstrated more ventilator free days. Beneficial effects of preserved spontaneous breathing were mainly physiological effects demonstrated as improvement of gas exchange, hemodynamics and non-pulmonary organ perfusion and function. CONCLUSIONS: The use of partial ventilatory support modalities is often feasible in patients with ALI/ARDS, and may be associated with short-term physiological benefits without appreciable impact on clinically important outcomes.

  10. Microvascular dysfunction is associated with plasma osteoprotegerin levels in patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan E; Christophersen, Thomas B

    2013-01-01

    Osteoprotegerin (OPG) is a glycoprotein that inhibits nuclear factor-κB's regulatory effects on inflammation, skeletal, and vascular systems, and is a potential biomarker of atherosclerosis and seems to be involved in vascular calcifications. The objective of this study was to assess the relation...... the relationship between OPG, left ventricular function, and microvascular function in patients with acute myocardial infarction (AMI)....

  11. Perfusion Computed Tomography in the Acute Phase of Mild Head Injury : Regional Dysfunction and Prognostic Value

    NARCIS (Netherlands)

    Metting, Zwany; Rodiger, Lars A.; Stewart, Roy E.; Oudkerk, Matthijs; De Keyser, Jacques; van der Naalt, Joukje

    2009-01-01

    Objective: Traumatic brain injury is a major Cause of disability and death. Most patients sustain a mild head injury with a subgroup that experiences disabling symptoms interfering with return to work. Brain imaging in the acute phase is not predictive of outcome, as 20% of noncontrast computed tomo

  12. IL-17 response mediates acute lung injury induced by the 2009 Pandemic Influenza A(H1N1)Virus

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Chen Wang; Zhongwei Chen; Li Xing; Chong Tang; Xiangwu Ju; Feng Guo; Jiejie Deng; Yan Zhao; Peng Yang; Jun Tang; Penghui Yang; Huanling Wang; Zhongpeng Zhao; Zhinan Yin; Bin Cao; Xiliang Wang; Chengyu Jiang; Yang Sun; Taisheng Li; Chen Wang; Zhong Wang; Zhen Zou; Yiwu Yan; Wei Wang

    2012-01-01

    The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus(S-OIV H1N1)that infected almost every country in the world.Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury.In this report,we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease.The clinical efficacy of the antiviral oseltamivir(Tamiflu)administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model.Moreover,elevated levels of IL-17,Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing.IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice.These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.

  13. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy.

    Science.gov (United States)

    Willis, B Cicero; Salazar-Cantú, Ayleen; Silva-Platas, Christian; Fernández-Sada, Evaristo; Villegas, César A; Rios-Argaiz, Eduardo; González-Serrano, Pilar; Sánchez, Luis A; Guerrero-Beltrán, Carlos E; García, Noemí; Torre-Amione, Guillermo; García-Rivas, Gerardo J; Altamirano, Julio

    2015-03-01

    Stress-induced cardiomyopathy, triggered by acute catecholamine discharge, is a syndrome characterized by transient, apical ballooning linked to acute heart failure and ventricular arrhythmias. Rats receiving an acute isoproterenol (ISO) overdose (OV) suffer cardiac apex ischemia-reperfusion damage and arrhythmia, and then undergo cardiac remodeling and dysfunction. Nevertheless, the subcellular mechanisms underlying cardiac dysfunction after acute damage subsides are not thoroughly understood. To address this question, Wistar rats received a single ISO injection (67 mg/kg). We found in vivo moderate systolic and diastolic dysfunction at 2 wk post-ISO-OV; however, systolic dysfunction recovered after 4 wk, while diastolic dysfunction worsened. At 2 wk post-ISO-OV, cardiac function was assessed ex vivo, while mitochondrial oxidative metabolism and stress were assessed in vitro, and Ca(2+) handling in ventricular myocytes. These were complemented with sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and RyR2 expression studies. Ex vivo, basal mechanical performance index (MPI) and oxygen consumption rate (MVO2) were unchanged. Nevertheless, upon increase of metabolic demand, by β-adrenergic stimulation (1-100 nM ISO), the MPI versus MVO2 relation decreased and shifted to the right, suggesting MPI and mitochondrial energy production uncoupling. Mitochondria showed decreased oxidative metabolism, membrane fragility, and enhanced oxidative stress. Myocytes presented systolic and diastolic Ca(2+) mishandling, and blunted response to ISO (100 nM), and all these without apparent changes in SERCA, PLB, or RyR2 expression. We suggest that post-ISO-OV mitochondrial dysfunction may underlie decreased cardiac contractility, mainly by depletion of ATP needed for myofilaments and Ca(2+) transport by SERCA, while exacerbated oxidative stress may enhance diastolic RyR2 activity.

  14. Changes in lung parenchyma after acute respiratory distress syndrome (ARDS): assessment with high-resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Noebauer-Huhmann, I.-M.; Eibenberger, K.; Schaefer-Prokop, C.; Herold, C.J. [Vienna Univ. (Austria). Inst. fuer Radiologie; Steltzer, H.; Strasser, K.; Fridrich, P. [Dept. of General Anesthesia and Intensive Care, Univ. of Vienna (Austria); Schlick, W. [Dept. of Cardio-Thoracic Surgery, Univ. of Vienna (Austria)

    2001-12-01

    The aim of this study was to evaluate the appearance, extent, and distribution of parenchymal changes in the lung after acute respiratory distress syndrome (ARDS) as a function of disease severity and therapeutic procedures. High-resolution computed tomography (HRCT), clinical examination, and lung function tests were performed in 15 patients, 6-10 months after ARDS. The appearance and extent of parenchymal changes were compared with the severity of ARDS, as well as with clinical and therapeutic data. Lung parenchymal changes resembling those found in the presence of pulmonary fibrosis were observed in 13 of 15 patients (87%). The changes were significantly more frequent and more pronounced in the ventral than in the dorsal portions of the lung (p<0.01). A significant correlation was observed between the extent of lung alterations and the severity of ARDS (p<0.01), and the duration in which patients had received mechanical ventilation either with a peak inspiratory pressure greater than 30 mmHg (p<0.05), or with more than 70% oxygen (p<0.01). Acute respiratory distress syndrome frequently is followed by fibrotic changes in lung parenchyma. The predominantly ventral distribution of these changes indicates that they may be caused by the ventilation regimen and the oxygen therapy rather than by the ARDS. (orig.)

  15. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.

    Science.gov (United States)

    Imai, Yumiko; Kuba, Keiji; Neely, G Greg; Yaghubian-Malhami, Rubina; Perkmann, Thomas; van Loo, Geert; Ermolaeva, Maria; Veldhuizen, Ruud; Leung, Y H Connie; Wang, Hongliang; Liu, Haolin; Sun, Yang; Pasparakis, Manolis; Kopf, Manfred; Mech, Christin; Bavari, Sina; Peiris, J S Malik; Slutsky, Arthur S; Akira, Shizuo; Hultqvist, Malin; Holmdahl, Rikard; Nicholls, John; Jiang, Chengyu; Binder, Christoph J; Penninger, Josef M

    2008-04-18

    Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.

  16. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Nozomi Yabuuchi

    2016-12-01

    Full Text Available High mortality of acute kidney injury (AKI is associated with acute lung injury (ALI, which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS, in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5, in bilateral nephrectomy (BNx-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr, blood urea nitrogen (BUN and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  17. Attenuation of hypoxic pulmonary vasoconstriction in acute oleic acid lung injury--significance of vasodilator prostanoids.

    Science.gov (United States)

    Yamaguchi, K; Mori, M; Kawai, A; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1992-01-01

    To assess a significant role of hypoxic pulmonary vasoconstriction, HPV, on maintaining the gas exchange efficiency in acute lung injury, 24 mongrel dogs were treated with intravenously injecting 0.07 ml/kg of oleic acid. Hemodynamic and gas-exchange parameters were investigated at varied inspired O2 concentration, FIO2. To know a possible contribution of vasoactive prostanoids in regulating vascular reactivity under these circumstances, observations were repeated after infusion of indomethacin. The impairment of gas exchange in injured lungs was examined by measuring the fractional retention, R, of the gas in arterial blood. For this evaluation, a normal saline containing five foreign inert gases such as sulfur hexafluoride, SF6, ethane, cyclopropane, halothane and diethyl ether was infused at a constant rate through a peripheral vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken for the inert-gas analysis. The concentrations of the indicator gases in the samples were measured in terms of a gas chromatograph equipped with an electron capture detector for SF6 and a flame ionization detector for the other four gases. Although pulmonary vascular resistance, PVR, after injecting oleic acid at FIO2 0.60 was significantly smaller than that obtained at FIO2 0.21, cardiac output, QT as well as extravascular lung water were not different between the two conditions. R value for the indicator gas was consistently lower at FIO2 0.60 irrespective of the gas species. As increasing FIO2, R estimate concerning SF6, RSF6, rational index of the fractional blood flow perfusing shunt area, decreased significantly. Administration of indomethacin caused the rise in PVR without an appreciable change in either QT or extravascular lung water but a considerable diminution in R value for the inert gas. RSF6 after infusion of indomethacin decreased from 0.35 to 0.27, accompanied by a

  18. Sulfur dioxide attenuates LPS-induced acute lung injury via enhancing polymorphonuclear neutrophil apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hui-jie MA; Xin-li HUANG; Yan LIU; Ya-min FAN

    2012-01-01

    Aim:We speculated that the enhanced apoptosis of polymorphonuclear neutrophil (PMN) might be responsible for the inhibition of PMN infiltration in the lung.This study was designed to investigate the effects of sulfur dioxide (SO2) on PMN apoptosis in vivo and in vitro,which may mediate the protective action of SO2 on pulmonary diseases.Methods:Acute lung injury (ALI) was induced by intratracheally instillation of lipopolysaccharide (LPS,100 μg/100 g.in 200 μL saline) in adult male SD rats.SO2 solution (25 μmol/kg) was administered intraperitoneally 30 min before LPS treatment.The rats were killed 6 h after LPS treatment.Lung tissues were collected for histopathologic study and SO2 concentration assay.Bronchoalveolar lavage fluid (BALF) was collected for the measurement of PMN apoptosis.For in vitro experiments,rat peripheral blood PMNs were cultured and treated with LPS (30 mg/L) and S02 (10,20 and 30 μmol/L) for 6 h,and apoptosis-related protein expression was detected by Western blotting,and apoptosis rate was measured with flow cytometry.Results:LPS treatment significantly reduced the SO2 concentrations in the lung tissue and peripheral blood,as compared with the control group.Pretreatment with SO2 prevented LPS-induced reduction of the SO2 concentration in the lung tissue and peripheral blood.LPS treatment significantly reduced PMN apoptosis both in vivo and in vitro,which could be prevented by the pretreatment with SO2.The protein levels of caspase-3 and Bax was significantly increased,but Bcl-2 was decreased by the pretreatment with SO2,as compared with LPS administration alone.Conclusion:SO2 plays an important role as the modulator of PMN apoptosis during LPS-induced ALl,which might be one of the mechanisms underlying the protective action of SO2 on pulmonary diseases.

  19. Long term prognosis of acute coronary syndrome with chronic renal dysfunction treated in different therapy units at department of cardiology: a retrospective cohort study.

    Science.gov (United States)

    Fu, Cong; Sheng, Zulong; Yao, Yuyu; Wang, Xin; Yu, Chaojun; Ma, Genshan

    2015-01-01

    Coronary care unit is common in hospitals and clinical centers which offer intensive care and therapy for severe coronary artery disease patients. However, if coronary care unit could improve the long term prognosis of acute coronary syndrome patients with renal dysfunction remain unknown. Accordingly, we designed this study to evaluate the differences of incidence of major adverse cardiovascular events for acute coronary syndromes patients with renal dysfunction who treated in coronary care unit or normal unit. The primary end point was all cause mortality. A total of 414 acute coronary syndromes patients with renal dysfunction involved in the study. The results showed that during 12-48 months follow-up, death of any cause occurred in 1.8% patients (4 of 247) in coronary care unit group, as compared with 1.8% in the normal group (3 of 167) (hazard ratio, 1.098; 95% confidence interval, 0.246 to 4.904; P=0.903). Kaplan-Meier survival analysis showed that there were no significant differences between the two groups with respect to the risk of death (P=0.903), revascularization (P=0.948), stroke (P=0.542), heart failure (P=0.198). This trial firstly revealed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit and normal units. Our study showed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit obtained no significant benefits compared with patients in normal units, although there was a declining tendency of the risk of major adverse cardiovascular effectswith patients in coronary care unit.

  20. Long term prognosis of acute coronary syndrome with chronic renal dysfunction treated in different therapy units at department of cardiology: a retrospective cohort study

    Science.gov (United States)

    Fu, Cong; Sheng, Zulong; Yao, Yuyu; Wang, Xin; Yu, Chaojun; Ma, Genshan

    2015-01-01

    Coronary care unit is common in hospitals and clinical centers which offer intensive care and therapy for severe coronary artery disease patients. However, if coronary care unit could improve the long term prognosis of acute coronary syndrome patients with renal dysfunction remain unknown. Accordingly, we designed this study to evaluate the differences of incidence of major adverse cardiovascular events for acute coronary syndromes patients with renal dysfunction who treated in coronary care unit or normal unit. The primary end point was all cause mortality. A total of 414 acute coronary syndromes patients with renal dysfunction involved in the study. The results showed that during 12-48 months follow-up, death of any cause occurred in 1.8% patients (4 of 247) in coronary care unit group, as compared with 1.8% in the normal group (3 of 167) (hazard ratio, 1.098; 95% confidence interval, 0.246 to 4.904; P=0.903). Kaplan-Meier survival analysis showed that there were no significant differences between the two groups with respect to the risk of death (P=0.903), revascularization (P=0.948), stroke (P=0.542), heart failure (P=0.198). This trial firstly revealed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit and normal units. Our study showed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit obtained no significant benefits compared with patients in normal units, although there was a declining tendency of the risk of major adverse cardiovascular effectswith patients in coronary care unit. PMID:26770436

  1. Radioisotope albumin flux measurement of microvascular lung permeability: an independent parameter in acute respiratory failure?

    Energy Technology Data Exchange (ETDEWEB)

    Hoegerle, S.; Nitzsche, E.U.; Reinhardt, M.J.; Moser, E. [Freiburg Univ. (Germany). Div. of Nuclear Medicine; Benzing, A.; Geiger, K. [Freiburg Univ. (Germany). Dept. of Anesthesiology; Schulte Moenting, J. [Freiburg Univ. (Germany). Dept. of Medical Biometry and Statistics

    2001-04-01

    Aim: To evaluate the extent to which single measurements of microvascular lung permeability may be relevant as an additional parameter in a heterogenous clinical patient collective with Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Methods: In 36 patients with pneumonia (13), non pneumogenic sepsis (9) or trauma (14) meeting the consensus conference criteria of ALI or ARDS double-isotope protein flux measurements ({sup 51}Cr erythrocytes as intravascular tracer, Tc-99m human albumin as diffusible tracer) of microvascular lung permeability were performed using the Normalized Slope Index (NSI). The examination was to determine whether there is a relationship between the clinical diagnosis of ALI/ARDS, impaired permeability and clinical parameters, that is the underlying disease, oxygenation, duration of mechanical ventilation and mean pulmonary-artery pressure (PAP). Results: At the time of study, 25 patients presented with increased permeability (NSI > 1 x 10{sup -3} min{sup -1}) indicating an exudative stage of disease, and 11 patients with normal permeability. The permeability impairment correlated with the underlying disease (p > 0.05). With respect to survival, there was a negative correlation to PAP (p < 0.01). Apart from that no correlations between the individual parameters were found. Especially no correlation was found between permeability impairment and oxygenation, duration of disease of PAP. Conclusion: In ALI and ARDS, pulmonary capillary permeability is a diagnostic parameter which is independent from clinical variables. Permeability measurement makes a stage classification (exudative versus non exudative phase) of ALI/ARDS possible based on a measurable pathophysiological correlate. (orig.) [German] Ziel: Es sollte evaluiert werden, inwieweit Einzelmessungen der mikrovaskulaeren Lungenpermeabilitaet als zusaetzlicher Parameter bei einem heterogenen klinischen Patientenkollektiv mit Acute Lung Injury (ALI) und akuten

  2. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  3. Adalimumab-induced acute interstitial lung disease in a patient with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Olivia Meira Dias

    2014-01-01

    Full Text Available The use of immunobiological agents for the treatment of autoimmune diseases is increasing in medical practice. Anti-TNF therapies have been increasingly used in refractory autoimmune diseases, especially rheumatoid arthritis, with promising results. However, the use of such therapies has been associated with an increased risk of developing other autoimmune diseases. In addition, the use of anti-TNF agents can cause pulmonary complications, such as reactivation of mycobacterial and fungal infections, as well as sarcoidosis and other interstitial lung diseases (ILDs. There is evidence of an association between ILD and the use of anti-TNF agents, etanercept and infliximab in particular. Adalimumab is the newest drug in this class, and some authors have suggested that its use might induce or exacerbate preexisting ILDs. In this study, we report the first case of acute ILD secondary to the use of adalimumab in Brazil, in a patient with rheumatoid arthritis and without a history of ILD.

  4. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia

    Science.gov (United States)

    Kraft, Bryan D.; Hess, Dean R.; Harris, R. Scott; Wolf, Monroe A.; Suliman, Hagir B.; Roggli, Victor L.; Davies, John D.; Winkler, Tilo; Stenzler, Alex; Baron, Rebecca M.; Thompson, B. Taylor; Choi, Augustine M.; Welty-Wolf, Karen E.; Piantadosi, Claude A.

    2015-01-01

    Inhaled carbon monoxide (CO) gas has therapeutic potential for patients with acute respiratory distress syndrome if a safe, evidence-based dosing strategy and a ventilator-compatible CO delivery system can be developed. In this study, we used a clinically relevant baboon model of Streptococcus pneumoniae pneumonia to 1) test a novel, ventilator-compatible CO delivery system; 2) establish a safe and effective CO dosing regimen; and 3) investigate the local and systemic effects of CO therapy on inflammation and acute lung injury (ALI). Animals were inoculated with S. pneumoniae (108-109 CFU) (n = 14) or saline vehicle (n = 5); in a subset with pneumonia (n = 5), we administered low-dose, inhaled CO gas (100–300 ppm × 60–90 min) at 0, 6, 24, and/or 48 h postinoculation and serially measured blood carboxyhemoglobin (COHb) levels. We found that CO inhalation at 200 ppm for 60 min is well tolerated and achieves a COHb of 6–8% with ambient CO levels ≤ 1 ppm. The COHb level measured at 20 min predicted the 60-min COHb level by the Coburn-Forster-Kane equation with high accuracy. Animals given inhaled CO + antibiotics displayed significantly less ALI at 8 days postinoculation compared with antibiotics alone. Inhaled CO was associated with activation of mitochondrial biogenesis in the lung and with augmentation of renal antioxidative programs. These data support the feasibility of safely delivering inhaled CO gas during mechanical ventilation and provide preliminary evidence that CO may accelerate the resolution of ALI in a clinically relevant nonhuman primate pneumonia model. PMID:26320156

  5. Acute ozone-induced differential gene expression profiles in rat lung.

    Science.gov (United States)

    Nadadur, Srikanth S; Costa, Daniel L; Slade, Ralph; Silbjoris, Robert; Hatch, Gary E

    2005-12-01

    Ozone is an oxidant gas that can directly induce lung injury. Knowledge of the initial molecular events of the acute O3 response would be useful in developing biomarkers of exposure or response. Toward this goal, we exposed rats to toxic concentrations of O3 (2 and 5 ppm) for 2 hr and the molecular changes were assessed in lung tissue 2 hr postexposure using a rat cDNA expression array containing 588 characterized genes. Gene array analysis indicated differential expression in almost equal numbers of genes for the two exposure groups: 62 at 2 ppm and 57 at 5 ppm. Most of these genes were common to both exposure groups, suggesting common roles in the initial toxicity response. However, we also identified the induction of nine genes specific to 2-ppm (thyroid hormone-beta receptor c-erb-A-beta; and glutathione reductase) or 5-ppm exposure groups (c-jun, induced nitric oxide synthase, macrophage inflammatory protein-2, and heat shock protein 27). Injury markers in bronchoalveolar lavage fluid (BALF) were used to assess immediate toxicity and inflammation in rats similarly exposed. At 2 ppm, injury was marked by significant increases in BALF total protein, N-acetylglucosaminidase, and lavageable ciliated cells. Because infiltration of neutrophils was observed only at the higher 5 ppm concentration, the distinctive genes suggested a potential amplification role for inflammation in the gene profile. Although the specific gene interactions remain unclear, this is the first report indicating a dose-dependent direct and immediate induction of gene expression that may be separate from those genes involved in inflammation after acute O3 exposure.

  6. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  7. 6-Thioguanine Induces Mitochondrial Dysfunction and Oxidative DNA Damage in Acute Lymphoblastic Leukemia Cells*

    OpenAIRE

    Zhang, Fan; Fu, Lijuan; Wang, Yinsheng

    2013-01-01

    Thiopurines are among the most successful chemotherapeutic agents used for treating various human diseases, including acute lymphoblastic leukemia and chronic inflammation. Although metabolic conversion and the subsequent incorporation of 6-thioguanine (SG) nucleotides into nucleic acids are considered important for allowing the thiopurine drugs to induce their cytotoxic effects, alternative mechanisms may also exist. We hypothesized that an unbiased analysis of SG-induced perturbation of the...

  8. Evaluation of an Acute RNAi-Mediated Therapeutic for Visual Dysfunction Associated with Traumatic Brain Injury

    Science.gov (United States)

    2013-10-01

    brain injury (TBI) is the leading cause of death in children and young adults globally. Malignant cerebral edema plays a major role in the...pathophysiology which evolves after severe TBI. Added to this is the significant morbidity and mortality from cerebral edema associated with acute stroke...hypoxic ischemic coma, neurological cancers and brain infection. Therapeutic strategies to prevent cerebral edema are limited and if brain swelling

  9. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Chun-jun Chu

    2014-01-01

    Full Text Available Rabdosia japonica var. glaucocalyx (Maxim. Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim. Hara (RJFs in acute lung injury (ALI mice induced by lipopolysaccharide (LPS. Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3 in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β, and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO activity and nitric oxide (NO and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.

  10. A case of lung cancer associated with acute respiratory distress syndrome after thoracic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Enoki, Masafumi; Tojima, Hirokazu [Tokyo Rosai Hospital (Japan)

    1996-12-01

    A 73-year-old man presented with dyspnea, cough, fever, appetite loss and stridor due to bronchial stenosis. Fiber-optic bronchoscopy revealed an endobronchial lesion in the right main bronchus and biopsy specimens showed poorly differentiated squamous cell carcinoma. The clinical stage of lung cancer was IIIB (T4N2M0). The patient received 60 Gy in 30 fractions over 43 days to a field including the right hilum and mediastinum. The tumor decreased in size and stenosis of the bronchus disappeared. A week after completion of radiation the patient began to have high grade fever and dyspnea, and progressive hypoxia developed. A chest radiograph showed diffuse bilateral interstitial infiltrates. Despite mechanical ventilation with PEEP and the administration of steroids, he died of respiratory failure three weeks after completion of radiation. Necropsy specimens obtained from the left lung revealed massive deposition of fibrin in the alveolar airspaces associated with hyaline membranes and hyperplasia of type II cells indicating diffuse alveolar damage. The patient had mild pulmonary fibrosis on a CT scan taken before the start of radiotherapy. We conclude that care should be taken if the case has pulmonary fibrosis because radiation therapy can precipitate severe radiation pneumonitis and acute respiratory distress syndrome in such cases. (author)

  11. Acute morphine treatment alters cellular immune function in the lungs of healthy rats.

    Science.gov (United States)

    Coussons-Read, M E; Giese, S

    2001-08-01

    Previous work has shown that morphine suppresses the pulmonary immune response to infection and reduces pulmonary inflammation. No published studies have addressed the impact of morphine on lymphocyte function in the lungs without infection. This study addressed this question by assessing the impact of acute morphine treatment on proliferation, cytokine production, and natural killer (NK) cell activity in resident pulmonary lymphocytes from healthy rats. Male Lewis rats received either a single 15 mg/kg morphine sulfate or vehicle injection 1 h prior to sacrifice. Lungs were minced and passed through wire mesh following collagenase digestion. The resulting cell preparations were pooled (2 rats/pool) to yield sufficient cell numbers for the functional assays, and a portion of these suspensions were separated using a density gradient. Crude and purified cell suspensions were used in assays of NK cell activity and mitogen-induced proliferation and cytokine production. Morphine significantly suppressed lymphocyte proliferation and cytokine production in whole cell suspensions, but not in purified cultures. NK activity was enhanced by morphine treatment in purified treated cultures. Studies of nitrate/nitrite levels in crude and purified cultures suggest that macrophage-derived nitric oxide may be a mechanism of the suppression observed in whole cell suspensions following morphine treatment. These data are consistent with previous work showing that morphine suppresses mitogenic responsiveness and NK activity in the spleen and peripheral blood, and may do so through a macrophage-derived nitric oxide mechanism.

  12. Acute lung injury induced by H9N2 virus in mice

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Shan Yunfeng; Chi Ying; Wen Tian; Han Xiaodong

    2014-01-01

    Background H9N2 avian influenza viruses (AIVs) have repeatedly caused infections in mammals even humans in many countries.The purpose of our study was to evaluate the acute lung injury (ALI) caused by H9N2 viral infection in mice.Methods Six-to eight-week-old female SPF C57BL/6 mice were infected intranasally with 1x104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK)] virus.Clinical signs,pathological changes,virus titration in tissues of mice,arterial blood gas,and cytokines in bronchoalveolar lavage fluid (BALF) and serum were observed at different time points after AIV infection.Results H9N2-AIV-infected mice exhibited severe respiratory syndrome,with a mortality rate of 50%.Lung histopathological changes in infected mice included diffuse pneumonia,alveolar damage,inflammatory cellular infiltration,interstitial and alveolar edema,and hemorrhage.In addition,H9N2 viral infection resulted in severe progressive hypoxemia,lymphopenia,and a significant increase in interleukin 1,interleukin 6,tumor necrosis factor,and interferon in BALF and serum.Conclusions The results suggest that H9N2 viral infection induces a typical ALl in mice that resembles the common features of ALl.Our data may facilitate the future studies of potential avian H9N2 disease in humans.

  13. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-01-01

    Full Text Available Lipopolysaccharide (LPS-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI. The high mobility group box 1 (HMGB1 protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS, and LPS+GAL group (5 mg/kg GAL before LPS administration. Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D weight ratio, myeloperoxidase (MPO activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline, 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA. Moreover, GAL treatment significantly decreased the mortality rate (ANOVA. In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  14. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    Energy Technology Data Exchange (ETDEWEB)

    Lingappan, Krithika, E-mail: lingappa@bcm.edu [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I. [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Barrios, Roberto [Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, 6565 Fannin Street, Suite M227, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States)

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  15. Acute respiratory distress syndrome and lung fibrosis after ingestion of a high dose of ortho-phenylphenol.

    Science.gov (United States)

    Cheng, Shih-Lung; Wang, Hao-Chien; Yang, Pan-Chyr

    2005-08-01

    Ortho-phenylphenol (OPP) and its sodium salt are used as fungicides and antibacterial agents, ingestion of which has been found to cause liver toxicity, renal toxicity and carcinomas in the urinary tract of rats. Lung damage due to OPP ingestion has not been reported in humans. We report a suicidal 39-year-old woman with stage II cervical cancer who drank a potentially lethal dose of OPP in the form of a commercial antiseptic, which led to the complication of liver and renal function impairment, severe lung damage with acute respiratory distress syndrome and subsequent severe lung fibrosis. Open lung biopsy showed diffuse alveolar damage. She was discharged after 34 days of hospitalization with continuing domiciliary oxygen therapy.

  16. Extracorporeal Membrane Oxygenation (ECMO) for Lung Injury in Severe Acute Respiratory Distress Syndrome (ARDS): Review of the Literature.

    Science.gov (United States)

    Paolone, Summer

    2016-11-10

    Despite advances in mechanical ventilation, severe acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality rates ranging from 26% to 58%. Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass circuit that serves as an artificial membrane lung and blood pump to provide gas exchange and systemic perfusion for patients when their own heart and lungs are unable to function adequately. ECMO is a complex network that provides oxygenation and ventilation and allows the lungs to rest and recover from respiratory failure while minimizing iatrogenic ventilator-induced lung injury. In critical care settings, ECMO is proven to improve survival rates and outcomes in patients with severe ARDS. This review defines severe ARDS; describes the ECMO circuit; and discusses recent research, optimal use of the ECMO circuit, limitations of therapy including potential complications, economic impact, and logistical factors; and discusses future research considerations.

  17. Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury.

    Science.gov (United States)

    Demiralay, Rezan; Gürsan, Nesrin; Ozbilim, Gülay; Erdogan, Gülgün; Demirci, Elif

    2006-01-01

    This study was carried out to investigate comparatively the frequency of apoptosis in lung epithelial cells after intratracheal instillation of endotoxin [lipopolysaccharide (LPS)] in rats and the role of tumor necrosis factor alpha (TNF-alpha) on apoptosis, and the effects of erdosteine and N-acetylcysteine on the regulation of apoptosis. Female Wistar rats were given oral erdosteine (10-500 mg kg(-1)) or N-acetylcysteine (10-500 mg kg(-1)) once a day for 3 consecutive days. Then the rats were intratracheally instilled with LPS (5 mg kg(-1)) to induce acute lung injury. The rats were killed at 24 h after LPS administration. Lung tissue samples were stained with hematoxylin-eosin for histopathological assessments. The apoptosis level in the lung bronchial and bronchiolar epithelium was determined using the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabelling) method. Cytoplasmic TNF-alpha was evaluated by immunohistochemistry. Pretreatment with erdosteine and pretreatment with N-acetylcysteine at a dose of 10 mg kg(-1) had no protective effect on LPS-induced lung injury. When the doses of drugs increased, the severity of the lung damage caused by LPS decreased. It was found that as the pretreatment dose of erdosteine was increased, the rate of apoptosis induced by LPS in lung epithelial cells decreased and this decrease was statistically significant in doses of 300 mg kg(-1) and 500 mg kg(-1). Pretreatment with N-acetylcysteine up to a dose of 500 mg kg(-1) did not show any significant effect on apoptosis regulation. It was noticed that both antioxidants had no significant effect on the local production level of TNF-alpha. These findings suggest that erdosteine could be a possible therapeutic agent for acute lethal lung injury and its mortality.

  18. Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Yuan Ruixia; Yao Chengyue; Wu Qingping; Marie Christelle; Xie Wanli; Zhang Xingcai

    2014-01-01

    Background A variety of inflammatory mediators and effector cells participate together in acute lung injury,and lead to secondary injury that is due to an inflammatory cascade and secondary diffuse lung parenchyma injury.Inflammation is associated with an oxidative stress reaction,which is produced in the development of airway inflammation,and which has positive feedback on inflammation itself.Resolvin D1 can reduce the infiltration of neutrophils,regulate cytokine levels and reduce the inflammation reaction,and thereby promote the resolution of inflammation.The purpose of this study is to investigate the effects of resolvin D1 on an inflammatory response and oxidative stress during lipopolysaccharide (LPS)-induced acute lung injury.Methods LPS (3 mg/kg) was used to induce the acute lung injury model.Pretreatment resolvin D1 (100 ng/mouse) was given to mice 30 minutes before inducing acute lung injury.Mice were observed at 6 hours,12 hours,1 day,2 days,3 days,4 days and 7 days after LPS was administrated,then they were humanely sacrificed.We collected bronchoalveolar lavage fluid (BALF) and the lung tissues for further analysis.Paraffin section and HE staining of the lung tissues were made for histopathology observations.Parts of the lung tissues were evaluated for wet-to-dry (W/D) weight ratio.tumor necrosis factor (TNF)-α,inter leukin (IL)-1β,IL-10 and myeloperoxidase (MPO) were detected by enzyme-linked immunosorbent assay (ELISA).A lipid peroxidation malondialdehyde (MDA) assay kit was used to detect MDA.A total superoxide dismutase assay kit with WST-1 was used to analyze superoxide dismutase (SOD).We determined the apoptosis of neutrophils by Flow Cytometry.A real-time quantitative PCR Detecting System detected the expression of mRNA for heme oxygenase (HO)-1.Results Pretreatment with resolvin D1 reduced the pathological damage in the lung,decreased the recruitment of neutrophils and stimulated their apoptosis.It markedly decreased the expressions of TNF

  19. Protective effect of raloxifene on lipopolysaccharide and acid- induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    Guang-ju ZHOU; Hong ZHANG; Sheng-de ZHI; Guo-ping JIANG; Jing WANG; Mao ZHANGI; Jian-xin GAN; Shao-wen XU; Guan-yu JIANG

    2007-01-01

    Aim: To evaluate the protective effect of oral raloxifene on acute lung injury.Methods: Thirty adult, male Sprague-Dawley rats each weighing 180-210 g were used and divided into 3 groups: the raloxifene-lipopolysacchadde (LPS)-HC1 group(n=10), the LPS-raloxifene-HCl group (n=10), and the placebo group (n=10). All the rats were injected intraperitoneally (ip) with 5 mg/kg LPS, and raloxifene (30mg/kg) was orally administered 1 h before and 14 h after LPS injection into the raloxifene-LPS-HCl and the LPS-raloxifene-HCl groups, respectively; the placebo group received nothing. Sixteen hours after LPS injection, all the animals were anesthetized and the femoral artery was cannulated. All the rats received a direct intratracheal (IT) injection ofHCl (pH 1.2; 0.5 mL/kg). The mean arterial pressure(MAP) and blood gas concentrations were measured. Fifteen rats (5 in each group, respectively) underwent a micro positron emission to mography (microPET)scan of the thorax 4 h after HC1 instillation. The wet/dry (W/D) weight ratio determination and histopathological examination were also performed. Results:The rats in the LPS-raloxifene-HC1 group had a lower [18F]fluorodeoxyglucose uptake compared with the rats in the placebo group (4.67±1.33 vs 9.01±1.58,respectively, P<0.01). The rats in the LPS-raloxifene-HC1 group also had a lower histological lung injury score (8.20±1.23 vs 12.6±0.97, respectively, P<0.01) and W/D weight ratio (5.335±0.198 vs 5.886±0.257, respectively, P<0.01) compared to the placebo group. The rats in this group also showed better pulmonary gas exchange and more stable mean arterial pressure (MAP) compared to the placebo group. Conclusion: Raloxifene provides a significant protective effect on acute lung injury in rats induced first by LPS ip injection and then by HC1 IT instillation.

  20. Soluble Endothelial Selectin in Acute Lung Injury Complicated by Severe Pneumonia

    Directory of Open Access Journals (Sweden)

    Daisuke Osaka, Yoko Shibata, Kazunori Kanouchi, Michiko Nishiwaki, Tomomi Kimura, Hiroyuki Kishi, Shuichi Abe, Sumito Inoue, Yoshikane Tokairin, Akira Igarashi, Keiko Yamauchi, Yasuko Aida, Takako Nemoto, Keiko Nunomiya, Koji Fukuzaki, Isao Kubota

    2011-01-01

    Full Text Available Background: Pneumonia is still one of the most frequent causes of death in the elderly. Complication of acute lung injury (ALI/acute respiratory distress syndrome (ARDS by pneumonia makes patients very ill due to severe respiratory failure. Biomarkers that can discriminate the presence of complicating ALI/ARDS are required for early detection. The aim of this research was to investigate whether soluble endothelial selectin (sES could be a biomarker for ALI.Methods: Serum sES levels were measured in 27 pneumonia patients, who were enrolled between April 2006 and September 2007. Among these patients, six had ALI or a condition that was clinically comparable to ALI (cALI. All patients who were enrolled were successfully treated and survived.Results: Circulating sES levels were elevated in pneumonia patients with ALI/cALI, and sES levels decreased following treatment of their pneumonia. Univariate and multivariate logistic regression analyses showed that sES was the only significant factor for identifying complicating ALI/cALI, independently of C-reactive protein (CRP and lactate dehydrogenase (LDH. By receiver operating characteristic (ROC curve analysis, the cut-off value for sES was 40.1 ng/mL, with a sensitivity of 0.8 and a specificity of 0.8.Conclusion: sES may be a useful biomarker for discriminating complicating ALI/cALI in patients with severe pneumonia.

  1. Acute respiratory failure in critically ill patients with interstitial lung disease.

    Directory of Open Access Journals (Sweden)

    Lara Zafrani

    Full Text Available Patients with chronic known or unknown interstitial lung disease (ILD may present with severe respiratory flares that require intensive management. Outcome data in these patients are scarce.Clinical and radiological features were collected in 83 patients with ILD-associated acute respiratory failure (ARF. Determinants of hospital mortality and response to corticosteroid therapy were identified by logistic regression.Hospital and 1-year mortality rates were 41% and 54% respectively. Pulmonary hypertension, computed tomography (CT fibrosis and acute kidney injury were independently associated with mortality (odds ratio (OR 4.55; 95% confidence interval (95%CI (1.20-17.33; OR, 7.68; (1.78-33.22 and OR 10.60; (2.25-49.97 respectively. Response to steroids was higher in patients with shorter time from hospital admission to corticosteroid therapy. Patients with fibrosis on CT had lower response to steroids (OR, 0.03; (0.005-0.21. In mechanically ventilated patients, overdistension induced by high PEEP settings was associated with CT fibrosis and hospital mortality.Mortality is high in ILD-associated ARF. CT and echocardiography are valuable prognostic tools. Prompt corticosteroid therapy may improve survival.

  2. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Tian-Shun Lai

    2015-01-01

    Full Text Available Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN]-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI, and mesenchymal stem cell (MSC can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg. MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2 in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  3. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background:Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI),and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury,reduce lung impairs,and enhance the repair of VILI.However,whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown.This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI.Methods:Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg).MSCs were given before or after ventilation.The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation,and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation.Results:Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration,inflammatory chemokines (tumor necrosis factor-alpha,interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid,and injury score of the lung tissue.These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity,production of radical oxygen series.MSC intervention especially pretreatment attenuated subsequent lung injury,systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation.Conclusions:MV causes profound lung injury and PMN-predominate inflammatory responses.The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  4. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury.

    Science.gov (United States)

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-02-12

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs.

  5. Lung function in patients with acute exacerbation and stable COPD and its correlation with serum proinflammatory cytokines and chemokines

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Wang

    2016-01-01

    Objective:To analyze the lung function in patients with acute exacerbation and stable COPD and its correlation with serum proinflammatory factors and chemokines.Methods:A total of 87 patients with chronic obstructive pulmonary disease (COPD) were divided into observation group (n=32) at acute exacerbation phase and control group (n=55) at stable phase according to the illness. Differences in lung function indexes and serum levels of proinflammatory cytokines, chemokines were compared between two groups of patients, and the correlation between lung function indexes and serum levels of proinflammatory cytokines and chemokines was further analyzed.Results: FEV1, FVC, FEV1/FVC, FEF75, PEF and IC levels of observation group were significantly lower than those of control group; serum proinflammatory cytokines IL-1β, IL-4, IL-18, IL-23, TNF-α and IFN-γ content were significantly higher than those of control group; serum chemokines Eotaxin, MDC, FKN, MCP-1, CCL18 and RANTES content were significantly higher than those of control group. FEV1, FVC and FEV1/FVC levels in patients with COPD were negatively correlated with the content of proinflammatory cytokines and chemokines.Conclusions: Lung function declines in acute exacerbation COPD, and the changes in levels of both proinflammatory cytokines and chemokines are involved in it.

  6. Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats

    Institute of Scientific and Technical Information of China (English)

    Yong Meng; Mei Zhang; Jun Xu; Xue-Min Liu; Qing-Yong Ma

    2005-01-01

    AIM: To investigate the mechanism of resveratrol underlying the microcirculation disorder and lung injury following severe acute pancreatitis (SAP).METHODS: Twenty-four rats were divided into 3 groups (SAP, sham and resveratrol groups) randomly. SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing pancreatic ducts. Sham (control) group (8 rats) was established by turning over the duodenum.Resveratrol was given at 0.1 mg/kg b.m. intraperitoneally.Rats were sacrificed 9 h after SAP was induced. Blood samples were obtained for hemorrheological examination.Lung tissues were used for pathological observation, and examination of microvascular permeability, dry/wet ratio and myeloperoxidase (MPO) activity. Gene expression of intercellular adhesion molecule-1 (ICAM-1) was detected by RT-PCR.RESULTS: Compared with SAP group, resveratrol relieved the edema and infiltration of leukocytes in the lungs. Resveratrol improved markers of hemorrheology:high VTB (5.77±1.18 mPas vs9.49±1.34 mPas), low VTB (16.12±3.20 mPas vs30.91±7.28 mPas), PV (4.69±1.68 mPas vs8.00±1.34 mPas), BSR (1.25±0.42 mm/h vs 0.03±0.03mm/h), VPC (54.67±3.08% vs 62.17±3.39%), fibrinogen (203.2±87.8 g/L vs 51.3±19.1 g/L), original hemolysis (0.45±0.02 vs 0.49±0.02), and complete hemolysis (0.41±0.02 vs0.43±0.02) (P<0.05). Resveratrol decreased the OD ratio of ICAM-1 gene (0.800±0.03 vs 1.188±0.10),dry/wet ratio (0.74±0.02 vs 0.77±0.03), microvascular permeability (0.079±0.006 vs 0.112±0.004) and MPO activity (4.42±0.32 vs 5.03±0.51) significantly (P<0.05).CONCLUSION: Resveratrol can improve the microcirculation disorder of the lung by decreasing leukocyte-endothelial interaction, reducing blood viscosity, improving the decrease of blood flow, and stabilizing erythrocytes in SAP rats. It may be a potential candidate to treat SAP and its severe complications (ALI).

  7. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis

    Science.gov (United States)

    Yano, Junko; Noverr, Mairi C.

    2017-01-01

    ABSTRACT Despite acute inflammation by polymorphonuclear neutrophils (PMNs) during vulvovaginal candidiasis (VVC), clearance of Candida fails to occur. The purpose of this study was to uncover the mechanism of vaginal PMN dysfunction. Designs included assessing PMN migration, proinflammatory mediators, and tissue damage (by analysis of the activity of lactate dehydrogenase [LDH]) in mice susceptible (C3H/HeN-C57BL/6) or resistant (CD-1) to chronic VVC (CVVC-S or CVVC-R) and testing morphology-specific Candida albicans strains under conditions of preinduced PMN migration (CVVC-S mice) or PMN depletion (CVVC-R mice). In vitro designs included evaluation of C. albicans killing by elicited vaginal or peritoneal PMNs in standard or vaginal conditioned medium (VCM). Results showed that despite significant migration of PMNs and high levels of vaginal beta interleukin-1 (IL-1β) and alarmin S100A8, CVVC-S mice failed to reduce vaginal fungal burden irrespective of morphology or whether PMNs were present pre- or postinoculation, and had high LDH levels. In contrast, CVVC-R mice had reduced fungal burden and low LDH levels following PMN recruitment and IL-1β/S100A8 production, but maintained colonization in the absence of PMNs. Elicited vaginal and peritoneal PMNs showed substantial killing activity in standard media or VCM from CVVC-R mice but not in VCM from CVVC-S mice. The inhibitory effect of VCM from CVVC-S mice was unaffected by endogenous or exogenous estrogen and was ablated following depletion/neutralization of Mac-1 ligands using Mac-1+/+ PMNs or recombinant Mac-1. Heparan sulfate (HS) was identified as the putative inhibitor as evidenced by the rescue of PMN killing following heparanase treatment of VCM, as well as by inhibition of killing by purified HS. These results suggest that vaginal HS is linked to PMN dysfunction in CVVC-S mice as a competitive ligand for Mac-1. PMID:28292981

  8. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Science.gov (United States)

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  9. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1.

    Directory of Open Access Journals (Sweden)

    Shirley H J Mei

    2007-09-01

    Full Text Available BACKGROUND: The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. ALI is characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema associated with a proteinaceous alveolar exudate. Current specific treatment strategies for ALI/ARDS are lacking. We hypothesized that mesenchymal stem cells (MSCs, with or without transfection with the vasculoprotective gene angiopoietin 1 (ANGPT1 would have beneficial effects in experimental ALI in mice. METHODS AND FINDINGS: Syngeneic MSCs with or without transfection with plasmid containing the human ANGPT1 gene (pANGPT1 were delivered through the right jugular vein of mice 30 min after intratracheal instillation of lipopolysaccharide (LPS to induce lung injury. Administration of MSCs significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts in bronchoalveolar lavage (BAL fluid (53%, 95% confidence interval [CI] 7%-101%; and 60%, CI 4%-116%, respectively as well as reducing levels of proinflammatory cytokines in both BAL fluid and lung parenchymal homogenates. Furthermore, administration of MSCs transfected with pANGPT1 resulted in nearly complete reversal of LPS-induced increases in lung permeability as assessed by reductions in IgM and albumin levels in BAL (96%, CI 6%-185%; and 74%, CI 23%-126%, respectively. Fluorescently tagged MSCs were detected in the lung tissues by confocal microscopy and flow cytometry in both naïve and LPS-injured animals up to 3 d. CONCLUSIONS: Treatment with MSCs alone significantly reduced LPS-induced acute pulmonary inflammation in mice, while administration of pANGPT1-transfected MSCs resulted in a further improvement in both alveolar inflammation and permeability. These results suggest a potential role for cell-based ANGPT1 gene therapy

  10. Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS production.

    Directory of Open Access Journals (Sweden)

    John W Semple

    Full Text Available Transfusion-related acute lung injury (TRALI is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature and respiratory distress (dyspnea were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage.

  11. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs

    Science.gov (United States)

    Ware, Lorraine B.; Lee, Jae W.; Wickersham, Nancy; Nguyen, John; Matthay, Michael A.; Calfee, Carolyn S.

    2014-01-01

    Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage surfactant protein-D and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n=127) compared to non-smokers (median 408g, IQR 364-500 vs. 385g, IQR 340 - 460, p=0.009). Oxygenation at study enrollment was worse in current smokers versus non-smokers (median PaO2/FiO2 214 mmHg, IQR 126-323 vs. 266 mmHg, IQR 154-370, p=0.02). Current smokers with the highest exposure (≥20 pack-years) had significantly lower rates of alveolar fluid clearance, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while surfactant protein-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient. PMID:25146497

  12. Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome.

    Science.gov (United States)

    Gongora, Maria Carolina; Lob, Heinrich E; Landmesser, Ulf; Guzik, Tomasz J; Martin, W David; Ozumi, Kiyoski; Wall, Susan M; Wilson, David Scott; Murthy, Niren; Gravanis, Michael; Fukai, Tohru; Harrison, David G

    2008-10-01

    The extracellular superoxide dismutase 3 (SOD3) is highly expressed in both blood vessels and lungs. In different models of pulmonary injury, SOD3 is reduced; however, it is unclear whether this contributes to lung injury. To study the role of acute SOD3 reduction in lung injury, the SOD3 gene was deleted in adult mice by using the Cre-Lox technology. Acute reduction of SOD3 led to a fivefold increase in lung superoxide, marked inflammatory cell infiltration, a threefold increase in the arterial-alveolar gradient, respiratory acidosis, histological changes similar to those observed in adult respiratory distress syndrome, and 85% mortality. Treatment with the SOD mimetic MnTBAP and intranasal administration of SOD-containing polyketal microparticles reduced mortality, prevented the histological alterations, and reduced lung superoxide levels. To understand how mice with the SOD3 embryonic deletion survived without lung injury, gene array analysis was performed. These data demonstrated the up-regulation of 37 genes and down-regulation of nine genes, including those involved in cell signaling, inflammation, and gene transcription in SOD3-/- mice compared with either mice with acute SOD3 reduction or wild-type controls. These studies show that SOD3 is essential for survival in the presence of ambient oxygen and that acute loss of this enzyme can lead to severe lung damage. Strategies either to prevent SOD3 inactivation or to augment its levels might prove useful in the treatment of acute lung injury.

  13. Amisulpride-induced acute akathisia in OCD: an example of dysfunctional dopamine-serotonin interactions?

    Science.gov (United States)

    Ersche, Karen D; Cumming, Paul; Craig, Kevin J; Müller, Ulrich; Fineberg, Naomi A; Bullmore, Edward T; Robbins, Trevor W

    2012-06-01

    We report about a clinical observation in a well-characterized group of patients with obsessive-compulsive disorder (OCD) during an experimental medicine study in which a single dose of amisulpride (a selective D₂/₃ antagonist) was administered. Almost half of the OCD patients, in particular those with less severe obsessive-compulsive symptoms, experienced acute akathisia in response to the amisulpride challenge. This unexpectedly high incidence of akathisia in the selective serotonin reuptake inhibitor (SSRI)-treated patients with OCD suggests that individual differences in dopamine-serotonin interactions underlie the clinical heterogeneity of OCD, and may thus explain the insufficiency of SSRI monotherapy in those patients not experiencing a satisfactory outcome in symptom reduction. We further speculate about the neuropathology possibly underlying this clinical observation and outline a testable hypothesis for future molecular imaging studies.

  14. First case of atypical takotsubo cardiomyopathy in a bilateral lung-transplanted patient due to acute respiratory failure.

    Science.gov (United States)

    Ghadri, Jelena R; Bataisou, Roxana D; Diekmann, Johanna; Lüscher, Thomas F; Templin, Christian

    2015-10-01

    Takotsubo cardiomyopathy which is characterised by a transient left ventricular wall motion abnormality was first described in 1990. The disease is still not well known, and as such it is suggested that an emotional trigger is mandatory in this disease. We present the case of a 51-year old female patient seven years after bilateral lung transplantation, who developed acute respiratory distress syndrome and subsequently suffered from atypical takotsubo cardiomyopathy with transient severe reduction of ejection fraction and haemodynamic instability needing acute intensive care treatment. Acute respiratory failure has emerged as an important physical trigger factor in takotsubo cardiomyopathy. Little is known about the association of hypoxia and takotsubo cardiomyopathy which can elicit a life-threatening condition requiring acute intensive care. Therefore, experimental studies are needed to investigate the role of hypoxia in takotsubo cardiomyopathy.

  15. Effects of Xuanbai Chengqi decoction on lung compliance for patients with exogenous pulmonary acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Mao ZR

    2016-02-01

    Full Text Available Zhengrong Mao,1 Haifeng Wang2,3 1Department of Critical Care Medicine, The First Affiliated Hospital of Henan, University of Traditional Chinese Medicine, 2Department of Respiratory Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 3Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou City, Henan, People’s Republic of China Objective: To observe the effects of Xuanbai Chengqi decoction on lung compliance for patients with exogenous pulmonary acute respiratory distress syndrome. Subjects and methods: A total of 53 patients with exogenous pulmonary acute respiratory distress syndrome, who were admitted to the intensive care unit of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine from March 2009 to February 2013, were selected. They were randomly divided into the treatment group (25 cases and the control group (28 cases. Both the groups were treated with conventional treatment and lung-protective ventilation strategy; apart from these, enema therapy with Xuanbai Chengqi decoction was given to the treatment group. Meanwhile, static lung compliance, dynamic lung compliance, peak airway pressure, plateau pressure, and positive end-expiratory pressure (PEEP for patients in both the groups were observed and recorded at 24, 48, and 72 hours after the drug was used. Moreover, variations in the duration of parenteral nutrition, incidence rate of complications, and case fatality rate in patients after treatment were recorded. Results: For patients in the treatment group, at 48 and 72 hours after treatment, the static lung compliance and dynamic lung compliance were significantly higher than those in the control group, while plateau pressure, peak airway pressure, and PEEP were significantly lower than those before treatment. At the same time, PEEP for patients in the treatment group at 72

  16. Oral glutamine supplementation improves intestinal permeability dysfunction in a murine acute graft-vs.-host disease model.

    Science.gov (United States)

    Noth, Rainer; Häsler, Robert; Stüber, Eckhard; Ellrichmann, Mark; Schäfer, Heiner; Geismann, Claudia; Hampe, Jochen; Bewig, Burkhard; Wedel, Thilo; Böttner, Martina; Schreiber, Stefan; Rosenstiel, Philip; Arlt, Alexander

    2013-04-01

    Although a profound barrier dysfunction has been reported, little is known about the pathophysiological mechanism evoking gastrointestinal graft-vs.-host disease (GI-GvHD) and apparent therapeutic options. The aim of this study was to evaluate the influence of oral glutamine on the course of GI-GvHD in an acute semiallogenic graft-vs.-host disease (GvHD) in irradiated B6D2F1 mice. An acute semiallogenic GvHD was induced by intraperitoneal injection of lymphocytes from C57BL/6 mice to irradiated B6D2F1 mice. Half of the GvHD animals received oral glutamine supplementation for 6 days started at the time of lymphocyte transfer. Six days after induction of the semiallogenic GvHD, jejunum specimens were prepared. The expression of the proinflammatory cytokine TNF-α and the tight junction protein occludin was investigated by PCR. Histological changes along with the apoptotic response were evaluated and intestinal permeability was assessed. Animals with GvHD showed a strong increase in paracellular permeability as a sign of the disturbed barrier function. TNF-α expression was significantly increased and the expression of the tight junction protein occludin decreased. GvHD led to mucosal atrophy, crypt hyperplasia, crypt apoptosis, and a disintegration of the tight junctions. Glutamine-treated mice showed reduced expression of TNF-α, increased occludin expression, fewer histological changes in the jejunum, smaller number of apoptotic cells in the crypt, and reduced gastrointestinal permeability. In conclusion, oral glutamine seems to have beneficial effects on the severity of inflammatory changes in the course of GvHD and might be a therapeutic option.

  17. Early Open-Lung Ventilation Improves Clinical Outcomes in Patients with Left Cardiac Dysfunction Undergoing Off-Pump Coronary Artery Bypass: a Randomized Controlled Trial

    Science.gov (United States)

    Bolzan, Douglas W.; Gomes, Walter José; Rocco, Isadora S.; Viceconte, Marcela; Nasrala, Mara L. S.; Pauletti, Hayanne O.; Moreira, Rita Simone L.; Hossne Jr, Nelson A.; Arena, Ross; Guizilini, Solange

    2016-01-01

    Objective To compare pulmonary function, functional capacity and clinical outcomes amongst three groups of patients with left ventricular dysfunction following off-pump coronary artery bypass, namely: 1) conventional mechanical ventilation (CMV); 2) late open lung strategy (L-OLS); and 3) early open lung strategy (E-OLS). Methods Sixty-one patients were randomized into 3 groups: 1) CMV (n=21); 2) L-OLS (n=20) initiated after intensive care unit arrival; and 3) E-OLS (n=20) initiated after intubation. Spirometry was performed at bedside on preoperative and postoperative days (PODs) 1, 3, and 5. Partial pressure of arterial oxygen (PaO2) and pulmonary shunt fraction were evaluated preoperatively and on POD1. The 6-minute walk test was applied on the day before the operation and on POD5. Results Both the open lung groups demonstrated higher forced vital capacity and forced expiratory volume in 1 second on PODs 1, 3 and 5 when compared to the CMV group (P<0.05). The 6-minute walk test distance was more preserved, shunt fraction was lower, and PaO2 was higher in both open-lung groups (P<0.05). Open-lung groups had shorter intubation time and hospital stay and also fewer respiratory events (P<0.05). Key measures were significantly more favorable in the E-OLS group compared to the L-OLS group. Conclusion Both OLSs (L-OLS and E-OLS) were able to promote higher preservation of pulmonary function, greater recovery of functional capacity and better clinical outcomes following off-pump coronary artery bypass when compared to conventional mechanical ventilation. However, in this group of patients with reduced left ventricular function, initiation of the OLS intra-operatively was found to be more beneficial and optimal when compared to OLS initiation after intensive care unit arrival. PMID:27982344

  18. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Matsuda Akihisa

    2012-08-01

    Full Text Available Abstract Background A previous meta-analysis reported a positive association between an insertion/deletion (I/D polymorphism in the angiotensin-converting enzyme gene (ACE and the risk of acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Here, we updated this meta-analysis and additionally assessed the association of this polymorphism with ALI/ARDS mortality. Methods We searched electronic databases through October 2011 for the terms “angiotensin-converting enzyme gene”, “acute lung injury”, and “acute respiratory distress syndrome,” and reviewed all studies that reported the relationship of the I/D polymorphism in ACE with ALI/ARDS in humans. Seven studies met the inclusion criteria, comprising 532 ALI/ARDS patients, 3032 healthy controls, and 1432 patients without ALI/ARDS. We used three genetic models: the allele, dominant, and recessive models. Results The ACE I/D polymorphism was not associated with susceptibility to ALI/ARDS for any genetic model. However, the ACE I/D polymorphism was associated with the mortality risk of ALI/ARDS in Asian subjects ( Pallele Pdominant = 0.001, Precessive = 0.002. This finding remained significant after correction for multiple comparisons. Conclusions There is a possible association between the ACE I/D polymorphism genotype and the mortality risk of ALI/ARDS in Asians.

  19. The role of iron in Libby amphibole-induced acute lung injury and inflammation.

    Science.gov (United States)

    Shannahan, Jonathan H; Ghio, Andrew J; Schladweiler, Mette C; McGee, John K; Richards, Judy H; Gavett, Stephen H; Kodavanti, Urmila P

    2011-05-01

    Complexation of host iron (Fe) on the surface of inhaled asbestos fibers has been postulated to cause oxidative stress contributing to in vivo pulmonary injury and inflammation. We examined the role of Fe in Libby amphibole (LA; mean length 4.99 µm ± 4.53 and width 0.28 µm ± 0.19) asbestos-induced inflammogenic effects in vitro and in vivo. LA contained acid-leachable Fe and silicon. In a cell-free media containing FeCl(3), LA bound #17 µg of Fe/mg of fiber and increased reactive oxygen species generation #3.5 fold, which was reduced by deferoxamine (DEF) treatment. In BEAS-2B cells exposure to LA, LA loaded with Fe (FeLA), or LA with DEF did not increase HO-1 or ferritin mRNA expression. LA increased IL-8 expression, which was reduced by Fe loading but increased by DEF. To determine the role of Fe in LA-induced lung injury in vivo, spontaneously hypertensive rats were exposed intratracheally to either saline (300 µL), DEF (1 mg), FeCl(3) (21 µg), LA (0.5 mg), FeLA (0.5 mg), or LA + DEF (0.5 mg). LA caused BALF neutrophils to increase 24 h post-exposure. Loading of Fe on LA but not chelation slightly decreased neutrophilic influx (LA + DEF > LA > FeLA). At 4 h post-exposure, LA-induced lung expression of MIP-2 was reduced in rats exposed to FeLA but increased by LA + DEF (LA + DEF > LA > FeLA). Ferritin mRNA was elevated in rats exposed to FeLA compared to LA. In conclusion, the acute inflammatory response to respirable fibers and particles may be inhibited in the presence of surface-complexed or cellular bioavailable Fe. Cell and tissue Fe-overload conditions may influence the pulmonary injury and inflammation caused by fibers.

  20. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury.

    Science.gov (United States)

    Santana, Maria Cristina E; Garcia, Cristiane S N B; Xisto, Débora G; Nagato, Lilian K S; Lassance, Roberta M; Prota, Luiz Felipe M; Ornellas, Felipe M; Capelozzi, Vera L; Morales, Marcelo M; Zin, Walter A; Pelosi, Paolo; Rocco, Patricia R M

    2009-06-30

    Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa O2), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa O2. PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain.

  1. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  2. Roger S. Mitchell lecture. Uses of expression microarrays in studies of pulmonary fibrosis, asthma, acute lung injury, and emphysema.

    Science.gov (United States)

    Sheppard, Dean

    2002-03-01

    Expression microarrays are a powerful tool that could provide new information about the molecular pathways regulating common lung diseases. To exemplify how this tool can be useful, selected examples of informative experiments are reviewed. In studies relevant to asthma, the cytokine interleukin-13 has been shown to produce many of the phenotypic features of this disease, but the cellular targets in the airways and the molecular pathways activated are largely unknown. We have used microarrays to begin to dissect the different transcriptional responses of primary lung cells to this cytokine. In experiments designed to identify global transcriptional programs responsible for regulating lung inflammation and pulmonary fibrosis, we performed microarray experiments on lung tissue from wild-type mice and mice lacking a member of the integrin family know to be involved in activation of latent transforming growth factor (TGF)-beta. In addition to identifying distinct cluster of genes involved in each of these processes, these studies led to the identification of novel pathways by which TGF-beta can regulate acute lung injury and emphysema. Together, these examples demonstrate how careful application and thorough analysis of expression microarrays can facilitate the discovery of novel molecular targets for intervening in common lung diseases.

  3. Fever, Haematuria, and Acute Graft Dysfunction in Renal Transplant Recipients Secondary to Adenovirus Infection: Two Case Reports

    Directory of Open Access Journals (Sweden)

    J. Ramírez

    2013-01-01

    Full Text Available We report two cases of adenoviral infection in kidney transplant recipients that presented with different clinical characteristics under similar demographic and posttransplant conditions. The first case presented with fever, gross haematuria, and acute graft dysfunction 15 days following renal transplantation. A graft biopsy, analyzed with immunohistochemistry, yielded negative results. However, the diagnosis was confirmed with blood and urine real-time PCR for adenovirus 3 days after the initial clinical manifestations. The immunosuppression dose was reduced, and ribavirin treatment was started, for which the patient quickly developed toxicity. Antiviral treatment allowed for transient response; however, a relapse occurred. The viral real-time PCR became negative upon immunosuppression reduction and administration of IVIG; graft function normalized. In the second case, the patient presented with fever and dysuria 1 month after transplantation. The initial imaging studies revealed graft enlargement and areas of hypoperfusion. In this case, the diagnosis was also confirmed with blood and urine real-time PCR for adenovirus 3 days after the initial clinical manifestations. Adenoviral nephritis was confirmed through a graft biopsy analyzed with light microscopy, immunohistochemistry, and PCR in frozen tissue. The immunosuppression dose was reduced, and IVIG was administered obtaining excellent clinical results along with a negative real-time PCR.

  4. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans.

    Science.gov (United States)

    Pleiner, Johannes; Heere-Ress, Elisabeth; Langenberger, Herbert; Sieder, Anna E; Bayerle-Eder, Michaela; Mittermayer, Fritz; Fuchsjäger-Mayrl, Gabriele; Böhm, Johannes; Jansen, Burkhard; Wolzt, Michael

    2002-01-01

    Impaired response to catecholamines contributes to the altered hemodynamics in sepsis, which has been attributed to excessive NO formation. We have studied the systemic hemodynamic and local forearm responses and inducible NO synthase (iNOS) expression during experimental endotoxemia in humans. Escherichia coli endotoxin (lipopolysaccharide [LPS]) was administered at doses of 1 or 2 ng/kg to healthy volunteers. In 10 subjects, the systemic pressor effect of phenylephrine was assessed before and after the administration of LPS. In 9 further subjects, forearm blood flow responses to intra-arterial noradrenaline, acetylcholine, glyceryl trinitrate, and N(G)-monomethyl-L-arginine (L-NMMA) were studied at baseline and after LPS administration. Peripheral blood was collected and analyzed for iNOS mRNA and protein. Four hours after LPS, the response of systolic blood pressure (P<0.0005) and heart rate (P<0.05) to phenylephrine was significantly reduced. In the forearm, noradrenaline-induced vasoconstriction was also reduced by approximately 50% (P<0.01), but L-NMMA responsiveness was unchanged. iNOS mRNA or protein was not increased. Marked vascular adrenoceptor hyporeactivity is detectable in the absence of increased NO activity or iNOS expression in endotoxemia, arguing against major involvement of vascular iNOS activity in the acute systemic vasodilation to LPS.

  5. α1-ANTITRYPSIN ATTENUATES ENDOTOXIN-INDUCED ACUTE LUNG INJURY IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    揭志军; 蔡映云; 杨文兰; 金美玲; 朱威; 祝慈芳

    2003-01-01

    Objective To investigate whether pretreatment with α1-AT can attenuate acute lung injury (ALI) in rabbits induced with endotoxin. Methods Thirty-two New Zealand rabbits were randomly assigned to four groups(n=8):1.Infusion of endotoxin(Lipopolysaccharide,LPS 500μg/kg)without α1-AT (group LPS).2.Infusion α1-AT 120mg/kg at 15min before challenge with LPS(group LAV).3.Infusion of α1-AT 120mg/kg(group AAT).4 Infusion of saline 4ml/kg as control (group NS).Arterial blood gases,peripheral leukocyte counts and airway pressure were recorded every 1h.Physiologic intrapulmonary shunting (Qs/Qt) was measured every 4h.After 8h the bloods were collected for measurement of plasma concentration and activity of α1-AT.Then bronchoalveolar lavage fluid (BALF)was collected for measurement of concentrations of total protein (TP),interleukin-8(IL-8),tumor necrosis factor(TNF-α),the activities of elastase-like and α1-AT,total phospholipids(TPL) and disaturated phosphatidylcholine (DSPC).In addition,the wet-to-dry lung weight ratio(W/D) was measured. Results After infusion of endotoxin,it was observed that PaO2,peripheral luekocyte counts,total respiratory compliance progressively decreased and Ppeak and Qs/Qt increased comparing with the baseline values.In contrast to group NS,the increased plasma concentration but reduced activity of α1-AT was found in group LPS.In the BALF,the activity of α1-AT,TPL,DSPC/TPL were lower,but the concentrations of albumin,IL-8,TNF-α,and the activity of NE were higher.The ratio of W/D also increased.The pretreatment of α1-AT attenuated the deterioration of oxygenation,the reduction of compliance and the deterioration of other physiological,biochemical parameters mentioned above. Conclusion Pretreatment with α1-AT could attenuate endotoxin-induced lung injury in rabbits.Those beneficial effects of α1-AT might be due in part to the inhibitory effect on neutrophil elastase.

  6. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    Science.gov (United States)

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  7. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints

    Science.gov (United States)

    Karachaliou, Niki; Cao, Maria Gonzalez; Teixidó, Cristina; Viteri, Santiago; Morales-Espinosa, Daniela; Santarpia, Mariacarmela; Rosell, Rafael

    2015-01-01

    Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis; a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system—with its capacity for memory, exquisite specificity and central and universal role in human biology—immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer. PMID:26175923

  8. Proceedings of the Workshop on Acute Lung Injury and Pulmonary Edema Held in Aberdeen Proving Ground, Maryland on 4-5 May 1989

    Science.gov (United States)

    1989-11-01

    with side effects, including pulmonary edema . The objective of this study was to determine if the pulmonary edema was cardiogenic or noncardio- genic...Proeedings ~FL gof the .1Workshop on Acute Lung Injury and Pulmonary Edema 4-5 May 1989a Aberdeen Proving Ground, Maryland I7 21 Sponsored by the...TITLE (include Security Classification) (U) Proceedings of the" Workshop on Acute Lung Injury and Pulmonary Edema , May 1989 12. PERSONAL AUTHOR(S) David

  9. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    Science.gov (United States)

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation.

  10. Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction.

    Science.gov (United States)

    Hwang, Ki-Eun; Park, Chul; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Lee, Mi-Kyung; Kim, Byoung-Ryun; Park, Seong-Hoon; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2013-07-01

    Prevention of lung cancer is more feasible and holds greater promise when different agents are used in combination to target multiple processes during carcinogenesis. The mechanisms by which non-steroidal anti-inflammatory drugs and statins inhibit cancer cell growth and induce apoptosis are not fully understood. This study was designed to investigate lung cancer chemoprevention through a mechanism-based approach using sulindac at low doses in combination with simvastatin. We found that sulindac-induced cytotoxicity was significantly enhanced in the presence of simvastatin. The combination of sulindac and simvastatin induced more extensive caspase-dependent apoptosis in A549 cells compared to that induced with either drug alone. The combination of sulindac and simvastatin also increased the loss of mitochondrial transmembrane potential (∆Ψm) and the cytosolic release of cytochrome c. In addition, ROS generation in cells treated with both sulindac and simvastatin was markedly increased compared to cells treated with either sulindac or simvastatin alone. The enhancement of ROS generation by sulindac and simvastatin was abrogated by pretreatment with NAC, which also prevented apoptosis and mitochondrial dysfunction induced by sulindac and simvastatin. These results suggest that sulindac and simvastatin-induced ROS generation in A549 lung cancer cells causes their accumulation in mitochondria, triggering the release of apoptogenic molecules from the mitochondria to the cytosol, and thus leading to caspase activation and cell death.

  11. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  12. Acute myocardial infarction mimicking squamous cell lung cancer with bone metastases due to hypercalcemia: a case report

    Institute of Scientific and Technical Information of China (English)

    FANG Chong-feng; XU Geng; CHEN Yang-xin

    2010-01-01

    @@ Acute myocardial infarction (AMI), the most severe coronary artery disease, is one of the most frequent cardiac emergencies, and early diagnosis and treatment are very important to decrease the subsequent cardiac adverse events such as malignant arrhythmia and sudden cardiac death. But in fact, lots of diseases are similar to AMI in clinical practice, of which the most common are myocarditis, pulmonary embolism in department of cardiology. Here we report a case of AMI-like squamous cell lung cancer with bone metastases.

  13. Differential diagnosis of acute miliary pulmonary tuberculosis from widespread-metastatic cancer for postoperative lung cancer patients: two cases

    Science.gov (United States)

    Zhao, Wei; Tian, Yuke; Peng, Feng; Long, Jianlin; Liu, Lan; Lu, You

    2017-01-01

    Pulmonary infections and lung cancer can resemble each other on radiographic images, which makes it difficult to diagnosis accurately and apply an appropriate therapy. Here we report two cases that two postoperative patients with lung adenocarcinoma developed diffuse nodules in bilateral lungs in a month which needed to be distinguished between metastatic malignancies and infectious diseases. Although there are much similarities in disease characteristics of two cases, patient in case one was diagnosed as acute miliary pulmonary tuberculosis (TB) while patient in case two was diagnosed as metastatic disease. The symptoms and pulmonary foci on CT scan of patient in case one improved distinctly after the immediate anti-TB treatment, but the disease of patient in case two progressed after chemotherapy. These findings caution us that differential diagnosis is crucial and have significance in guiding clinical work.

  14. Elevated mRNA levels of CTLA-4, FoxP3, and granzyme B in BAL, but not in blood, during acute rejection of lung allografts

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Nørgaard, Astrid; Iversen, Martin

    2010-01-01

    expression and acute rejection is still being debated. Some studies have been performed on blood samples from lung-transplanted patients, while others have investigated the local immune response in the lungs by analysing broncho-alveolar-lavage (BAL) fluids or biopsies. Biopsies are considered the gold...

  15. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury.

    Science.gov (United States)

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-02-04

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM.

  16. Acute lung inflammation in Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice: a comparative study.

    Science.gov (United States)

    Kumar, Vijay; Chhibber, Sanjay

    2011-10-01

    Lungs play an important role in the body's defense against a variety of pathogens, but this network of immune system-mediated defense can be deregulated during acute pulmonary infections. The present study compares acute lung inflammation occurring during Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice. Pneumonia was induced by intranasal instillation of bacteria (10(4) cfu), while sepsis was developed by placing the fibrin-thrombin clot containing known amount of bacteria (10(2) cfu) into the peritoneal cavity of animals. Mice with sepsis showed 100% mortality within five post-infection days, whereas all the animals with pneumonia survived. In animals suffering from K. pneumoniae B5055-induced pneumonia, all the inflammatory parameters (TNF-α, IL-1α, MPO, MDA, and NO) were found to be maximum till third post-infection day, after that, a decline was observed, whereas in septic animals, all the above-mentioned markers of inflammation kept on increasing. Histopathological study showed presence of alternatively activated alveolar macrophages (or foam cells) in lungs of mice with pneumonia after third post-infection day, which might have contributed to the induction of resolution of inflammation, but no such observation was made in lungs of septic mice. Hence, during pneumonia, controlled activation of macrophages may lead to resolution of inflammation.

  17. Acute and subacute non-infectious lung diseases. Usefulness of HRCT for evaluation of activity especially in follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Johkoh, Takeshi; Tomiyama, Noriyuki; Honda, Osamu [Osaka Univ., Suita (Japan). Medical School] (and others)

    2000-08-01

    The purpose of this study was to survey the usefulness of high-resolution CT (HRCT) for the evaluation of activity in acute and subacute non-infectious diffuse infiltrative lung diseases before and after corticosteroid treatment. Sequential HRCT images and chest radiographs obtained before and after treatment were retrospectively evaluated in 33 patients with acute or subacute non-infectious diffuse infiltrative lung diseases. All these patients were histologically confirmed to have pulmonary Inflammation and to have responded to treatment with corticosteroid. Radiographic and CT scores were correlated with the degree of dyspnea and the results of arterial blood gas analysis using Spearman's rank-correlation coefficient. On follow-up HRCT, the profusion score of areas with increased attenuation was significantly correlated with arterial oxygen tension (PaO{sub 2}) (p=.003, r=-.53) and the alveolar-arterial oxygen tension difference (AaDO{sub 2}) (p=.001, r=.57). No other correlation was found after treatment. Nodular and linear opacities were more commonly seen on follow-up chest radiographs and HRCT images than on initial ones. HRCT is useful for the evaluation of disease activity in acute and subacute non-infectious infiltrative lung diseases before and after treatment if paying special attention to the profusion of ground-glass attenuation. Even if pretreatment HRCT has not been performed, posttreatment HRCT should be examined. (author)

  18. Autonomic dysfunction and new-onset atrial fibrillation in patients with left ventricular systolic dysfunction after acute myocardial infarction: a CARISMA substudy

    DEFF Research Database (Denmark)

    Jøns, Christian; Raatikainen, Pekka; Gang, Uffe J;

    2010-01-01

    Atrial fibrillation (AF) increases morbidity and mortality in patients with previous myocardial infarction and left ventricular systolic dysfunction. The purpose of this study was to identify patients with a high risk for new-onset AF in this population using invasive and noninvasive...

  19. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs.

    Science.gov (United States)

    Chen, Yan; Wu, Hao; Nie, Yi-chu; Li, Pei-bo; Shen, Jian-gang; Su, Wei-wei

    2014-07-01

    Our previous study has demonstrated that naringin attenuates EGF-induced MUC5AC hypersecretion in A549 cells by suppressing the cooperative activities of MAPKs/AP-1 and IKKs/IκB/NF-κB signaling pathways. However, the volume of airway mucus is determined by two factors including the number of mucous cells and capacity of mucus secretion. The aim of the present study is to explore the mucoactive effects of naringin in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and beagle dogs. The results demonstrated that naringin of 12.4 mg/kg treatment significantly decreased LPS-induced enhancement of sputum volume and pulmonary inflammation, remarkably increased the subglottic sputum volume and solids content in sputum of lower trachea, while partially, but not fully, significantly increased the elasticity and viscosity of sputum in lower trachea of beagle dogs. Moreover, the MUC5AC content in BALF and goblet-cells in large airways of LPS-induced ALI mice were significantly attenuated by dexamethasone (5 mg/kg), ambroxol (25 mg/kg), and naringin (15, 60 mg/kg). However, the goblet-cells hyperplasia in small airways induced by LPS was only significantly inhibited by dexamethasone and naringin (60 mg/kg). In conclusion, naringin exhibits mucoactive effects through multiple targets which including reduction of goblet cells hyperplasia and mucus hypersecretion, as well as promotion of sputum excretion.

  20. The impact of intravenous fat emulsion administration in acute lung injury.

    Science.gov (United States)

    Lekka, Marilena E; Liokatis, Stamatis; Nathanail, Christos; Galani, Vasiliki; Nakos, George

    2004-03-01

    The aim of this study was to evaluate the effect of parenteral nutrition containing medium- and long-chain triglycerides on the function of the respiratory system and to investigate mechanisms involved in this process. We studied 13 patients with acute respiratory distress syndrome (ARDS), 8 receiving lipid and 5 placebo, and 6 without ARDS, receiving lipid. Bronchoalveolar lavage (BAL) was performed before and 1 hour after administration of lipid or placebo. In patients with ARDS, lipid administration resulted in deterioration of oxygenation (Pa(O(2))/FI(O(2)): from 129 +/- 37 to 95 +/- 42), compliance of respiratory system (from 39.2 +/- 12 to 33.1 +/- 9.2 ml/cm H(2)O), and pulmonary vascular resistance (from 258 +/- 47 to 321 +/- 58 dyne x s x cm(-5)). In the BAL fluid of the same group, an increase in total protein and phospholipid concentrations, phospholipase activities, platelet-activating factor and neutrophils, as well as alterations in BAL lipid profile were observed. No significant changes were observed in the control or in the ARDS-Placebo groups. In conclusion, this study indicates that administration of medium- and long-chain triglycerides in patients with ARDS causes alterations in lung function and hemodynamics. Inflammatory cells, possibly activated by lipids, release phospholipase A(2) and platelet-activating factor, enhancing edema formation, inflammation, and surfactant alterations.

  1. A clinical study of multiple trauma combined with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    Tao Liang; Yong-Fu Ma; Jian Zhu; Dao-Xi Wang; Yang Liu

    2016-01-01

    Objective: To study the changes of the contents of inflammatory mediators in serum of polytrauma patients with acute lung injury (ALI) and their correlation with the disease. Methods: Patients suffering from multiple trauma combined with ALI were selected as ALI group (n=54). Patients suffering from multiple trauma without ALI were considered as the control group (n=117). The severity of the disease of patients in the two groups was assessed. Arterial blood was extracted for blood gas analysis. Venous blood was extracted to detect the contents of inflammatory mediators tumor necrosis factor-a, interleukin-1b (IL-1b), IL-10, granulocyte-macrophage colony stimulating factor, NO, endothelin-1. Results: The scores of injury severity score [(25.42 ± 3.58) vs. (17.03 ± 2.25)], systemic inflammatory response syndrome [(3.85 ± 0.52) vs. (2.20 ± 0.36)] and acute physiology and chronic health evaluation II [(92.63 ± 11.04) vs. (60.46 ± 8.87)] in patients in ALI group were all significantly higher than those in the control group and its correcting shock time [(8.39 ± 1.05) vs. (5.15 ± 0.72) h] was longer than that of the control group. The amount of blood transfusion [(674.69 ± 93.52) vs. (402.55 ± 57.65) mL] was greater than that in the control group. The contents of the arterial partial pressure of oxygen [(76.65 ± 9.68) vs. (86.51 ± 10.56) mmHg], arterial blood pressure of carbon dioxide [(27.76 ± 4.82) vs. (36.78 ± 5.82) mmHg] and arterial partial pressure of oxygen/fraction of inspired oxygen [(236.94 ± 36.49) vs. (353.95 ± 47.76)] were all significantly lower than those in the control group. The contents of serum tumor necrosis factor-a, IL-1b, IL-10, granulocyte-macrophage colony stimulating factor, NO and endothelin-1 were obviously higher than those of control group and also positively correlated with the scores of injury severity score, systemic inflammatory response syndrome and acute physiology and chronic health evaluation II.

  2. A clinical study of multiple trauma combined with acute lung injury

    Directory of Open Access Journals (Sweden)

    Tao Liang

    2016-11-01

    Full Text Available Objective: To study the changes of the contents of inflammatory mediators in serum of polytrauma patients with acute lung injury (ALI and their correlation with the disease. Methods: Patients suffering from multiple trauma combined with ALI were selected as ALI group (n = 54. Patients suffering from multiple trauma without ALI were considered as the control group (n = 117. The severity of the disease of patients in the two groups was assessed. Arterial blood was extracted for blood gas analysis. Venous blood was extracted to detect the contents of inflammatory mediators tumor necrosis factor-a, interleukin-1b (IL-1b, IL-10, granulocyte-macrophage colony stimulating factor, NO, endothelin-1. Results: The scores of injury severity score [(25.42 ± 3.58 vs. (17.03 ± 2.25], systemic inflammatory response syndrome [(3.85 ± 0.52 vs. (2.20 ± 0.36] and acute physiology and chronic health evaluation II [(92.63 ± 11.04 vs. (60.46 ± 8.87] in patients in ALI group were all significantly higher than those in the control group and its correcting shock time [(8.39 ± 1.05 vs. (5.15 ± 0.72 h] was longer than that of the control group. The amount of blood transfusion [(674.69 ± 93.52 vs. (402.55 ± 57.65 mL] was greater than that in the control group. The contents of the arterial partial pressure of oxygen [(76.65 ± 9.68 vs. (86.51 ± 10.56 mmHg], arterial blood pressure of carbon dioxide [(27.76 ± 4.82 vs. (36.78 ± 5.82 mmHg] and arterial partial pressure of oxygen/fraction of inspired oxygen [(236.94 ± 36.49 vs. (353.95 ± 47.76] were all significantly lower than those in the control group. The contents of serum tumor necrosis factor-a, IL-1b, IL- 10, granulocyte-macrophage colony stimulating factor, NO and endothelin-1 were obviously higher than those of control group and also positively correlated with the scores of injury severity score, systemic inflammatory response syndrome and acute physiology and chronic health evaluation II. Conclusions

  3. Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, β-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-induced Dysfunction.

    Science.gov (United States)

    Wasilewski, Melissa A; Grisanti, Laurel A; Song, Jianliang; Carter, Rhonda L; Repas, Ashley A; Myers, Valerie D; Gao, Erhe; Koch, Walter J; Cheung, Joseph Y; Feldman, Arthur M; Tilley, Douglas

    2016-09-02

    V1AR expression is elevated in chronic human heart failure and contributes to cardiac dysfunction in animal models, in part via reduced βAR responsiveness.  While cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease βAR activity, it is unknown whether V1AR inhibition conversely augments βAR responsiveness.  Further, although V1AR has been shown to contribute to chronic progression of heart failure, its impact on cardiac function following acute ischemic injury has not been reported.  Using V1AR KO mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischemic injury, βAR sensitivity and cardiomyocyte responsiveness to βAR stimulation.  Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ.  Enhanced cardiac contractility in V1AR KO mice was associated with augmented β-blocker sensitivity, suggesting increased basal βAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban and cardiac troponin I phosphorylation were elevated versus control mice.  At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to βAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced βAR-mediated contractility in control myocytes.  Therefore, while V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischemic injury, its effects on βAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

  4. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  5. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion.

    Science.gov (United States)

    Kozan, Ahmet; Kilic, Nermin; Alacam, Hasan; Guzel, Ahmet; Guvenc, Tolga; Acikgoz, Mehmet

    2016-10-01

    The therapeutic efficiency of an anti-inflammatory agent, dexamethasone (DXM), and a nitric oxide synthase (NOS) inhibitor, Nitro-L-arginine methyl ester (L-NAME), in lung tissue injury after lung contusion was investigated. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), YKL-40, an inflammatory peptide, inducible NOS (iNOS), and Clara cell protein 16 (CC-16) were evaluated. Immunohistochemical analyses were also performed, and the lung tissue was examined histopathologically. The study consisted of eight groups of Sprague-Dawley rats (n = 10 in each group), weighing 250-300 g: (1) control, (2) contusion, (3) control + DXM, (4) contusion + DXM, (5) control + L-NAME (6) contusion + L-NAME, (7) control + DXM + L-NAME, and (8) contusion + DXM + L-NAME. A previously developed lung contusion model was used, in addition to the control group. The rats were administered DXM and L-NAME intraperitoneally (i.p.) at doses of 15 and 60 mg/kg/day, respectively. DXM and L-NAME administration decreased the iNOS level in the contusion groups. DXM increased the levels of YKL-40 and IL-10 in both the control and contusion groups, with higher levels in the contusion groups. L-NAME increased the serum level of IL-10 in the lung contusion groups. DXM increased the synthesis of CC-16 in the control and contusion groups. The combined use of a high-dose steroid and NOS inhibitor resulted in the death of the rats. Steroids can increase the level of cytokines, such as YKL-40 and IL-10, and the synthesis of CC-16 and prevent pneumonia, ALI/ARDS, and sepsis in lung contusion.

  6. Regulation on the expression of Clara cell secretory protein in the lungs of the rats with acute lung injury by growth hormone

    Institute of Scientific and Technical Information of China (English)

    MIN Jia; LUO Fo-quan; ZHAO Wei-lu

    2012-01-01

    Background Clara cell secretory protein (CC16) is an important lung derived protective factor and may play an important role on the pathogenesis of acute lung injury (ALl) induced by endotoxemia.Growth hormone (GH) is an important anabolism hormone secreted by GH cells of the hypophysis.Pravious research showed that GH would significantly exacerbate ALl induced by endotoxemia,but the mechanism is not very clear yet.Whether the effects are related to CC16 or not is undetermined.Methods One hundred and twelve male Sprague-Dawley rats were randomly divided into an ALl group and a GH group.The rats in the two groups were subdivided into seven subgroups,according to injection with lipopolysaccharides (LPS) or not,then according to different intervals of time after LPS injection; 0 hour (pre-injection of LPS,acted as control group),0.5 hour,1 hour,2 hours,4 hours,6 hours and 24 hours for subgroups.Pulmonary alveolar septa area density (PASAD) and ploymorphonuclear cells (PMN) in the lungs were analyzed morphometrically.The levels of tumor necrosis factor (TNF) and interleukin 6 (1L-6) were determined by radioimmunoassay.To analyze the expression and activation of nuclear factor kappa B (NF-kB),the numbers of NF-kB positive cells in lungs were counted after immunofluorescence staining.and the levels of NF-KB inhibitory protein-α (1KB-α) in lung homogenates of rats were detected by Western blotting.The expression levels of CC16 mRNA in lungs of the rats with ALl were determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR).The levels of CC16 protein in lung homogenates were detected by Western blotting.Results Half an hour after LPS injury both the PASAD and PMN numbers in lungs of the rats with ALl began to increase significantly and peaked at 6-hour post-injury.They then began to recover and reached normal levels at 24-hour post-injury.Both the PASAD and PMN numbers in the GH group increased more significantly than those in the ALl group

  7. Long-term effects of severe acute malnutrition on lung function in Malawian children: a cohort study.

    Science.gov (United States)

    Lelijveld, Natasha; Kerac, Marko; Seal, Andrew; Chimwezi, Emmanuel; Wells, Jonathan C; Heyderman, Robert S; Nyirenda, Moffat J; Stocks, Janet; Kirkby, Jane

    2017-04-01

    Early nutritional insults may increase risk of adult lung disease. We aimed to quantify the impact of severe acute malnutrition (SAM) on spirometric outcomes 7 years post-treatment and explore predictors of impaired lung function.Spirometry and pulse oximetry were assessed in 237 Malawian children (median age: 9.3 years) who had been treated for SAM and compared with sibling and age/sex-matched community controls. Spirometry results were expressed as z-scores based on Global Lung Function Initiative reference data for the African-American population.Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were low in all groups (mean FEV1 z-score: -0.47 for cases, -0.48 for siblings, -0.34 for community controls; mean FVC z-score: -0.32, -0.38, and -0.15 respectively). There were no differences in spirometric or oximetry outcomes between SAM survivors and controls. Leg length was shorter in SAM survivors but inter-group sitting heights were similar. HIV positive status or female sex was associated with poorer FEV1, by 0.55 and 0.31 z-scores, respectively.SAM in early childhood was not associated with subsequent reduced lung function compared to local controls. Preservation of sitting height and compromised leg length suggest "thrifty" or "lung-sparing" growth. Female sex and HIV positive status were identified as potentially high-risk groups.

  8. 15-deoxy-△12,14-prostaglandin J2 ameliorates endotoxin-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    Liu Dong; Geng Zhilong; Zhu Wankun; Wang Huiwen; Chen Ye; Liang Juan

    2014-01-01

    Background A proinflammatory milieu emerging in the lung due to neutrophil accumulation and activation is a key in the pathogenesis of acute lung injury (ALI).15-deoxy-△12,14-prostaglandin J2 (15d-PGJ2),one of the terminal products of the cyclooxygenase-2 pathway,is known to be the endogenous ligand of peroxisome proliferator-activated receptor y (PPAR-y) with multiple physiological properties.Growing evidence indicates that 15d-PGJ2 has anti-inflammatory,antiproliferative,cytoprotective and pro-resolving effects.We investigated whether 15d-PGJ2 has a protective effect against endotoxin-induced acute lung injury in rats.Methods Twenty-four male Wistar rats were randomly assigned into four groups (n=6 per group):sham+vehicle group,sham+15d-PGJ2 group,LPS+vehicle group,and LPS+15d-PGJ2 group.The rats were given either lipopolysaccharide (LPS,6 mg/kg intravenously) or saline,and pretreated with 15d-PGJ2 (0.3 mg/kg intravenously) or its vehicle (dimethyl sulphoxide) 30 minutes before LPS.Histological alterations,wet/dry weight (W/D) ratio and myeloperoxidase (MPO) activity as well as tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels were determined in lung tissues four hours after LPS injection.Immunohistochemical analysis for intercellular adhesion molecule-1 (ICAM-1) expression and Western blotting analysis for nuclear factor (NF)-κB p65 translocation and IκBα protein levels were also studied.Results 15d-PGJ2 pretreatment significantly attenuated LPS-induced lung injury,and reduced the increased W/D ratio,MPO activity,TNF-α,CINC-1 levels,and ICAM-1 expression in the lung.15d-PGJ2 also suppressed the nuclear NF-ΚB p65 translocation and increased cytosolic IKBα levels.Conclusions 15d-PGJ2 protects against endotoxin-induced acute lung injury,most likely through the reduction of proinflammatory protein levels during endotoxemia subsequent to the inhibition of NF-ΚB activation.

  9. DISFUNCIÓN DIASTÓLICA EN EL INFARTO AGUDO DE MIOCARDIO / Diastolic dysfunction in acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Norge Ramón Lara Pérez

    2010-03-01

    Full Text Available Introduction and objectives: Ischemic heart disease is among the first causes of disability and death in the world. The acute myocardial infarction alters considerably the myocardial relaxation. The echocardiogram is a useful, economic and harmless method to assess diastolic function in these patients; that is why the aim of the study was to characterize the behavior of this left ventricular function by means of an echocardiography. Methods: an observational descriptive study was carried out with 91 patients with myocardial infarction who were hospitalized at the Cardiology Ward of the Arnaldo Milian Castro Provincial University Hospital in Santa Clara during 2008. An echocardiogram was performed between the fifth and the seventh day of evolution, and the patterns of diastolic function were compared with other variables. Results: There was a prevalence of the male sex (74,7 %, the infarctions without ST segment elevation were more frequent (83,1 % – which showed a bigger alteration of the relaxation, much more when the anterior and lateral walls of the left ventricle were involved. The presence of complications was linked to a bigger alteration of the relaxation, and the most associate ones were the contractile dysfunction and malignant arrhythmias. The decrease of the ejection fraction was linked to (p = 0,000 the prolongation of the relaxation. Conclusions: There was a prevalence of the infarction without ST segment elevation. It was more frequent in the male sex and it was associated with a higher level of alteration of the relaxation. The infarctions with anterior or lateral location, and those which caused complications, presented a higher level of this alteration. All patients with a reduced ejection fraction had relaxation disorders.

  10. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Shike Hou

    Full Text Available Acute lung injury (ALI and its more severe form, acute respiratory distress syndrome (ARDS are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC, a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide. In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group, 18 rats were treated with LPS by intratracheal instillation (LPS group and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group. The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2 and lung wet-dry weight ratio (W/D of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO, intercellular adhesion molecule-1 (ICAM-1 of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice.

  11. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats.

    Science.gov (United States)

    Hou, Shike; Ding, Hui; Lv, Qi; Yin, Xiaofeng; Song, Jianqi; Landén, Ning Xu; Fan, Haojun

    2014-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice.

  12. Sonic Hedgehog Signaling: Evidence for Its Protective Role in Endotoxin Induced Acute Lung Injury in Mouse Model.

    Directory of Open Access Journals (Sweden)

    Xing Chen

    Full Text Available To investigate the protective role of the sonic hedgehog (SHH signaling associated with a lipopolysaccharide (LPS-induced acute lung injury (ALI in a mouse model.Male BALB/c mice were randomly divided into four groups: control, LPS, LPS-cyclopamine group and cyclopamine group. ALI was induced by LPS ip injection (5 mg/kg. The sonic hedgehog inhibitor cyclopamine (50 mg/kg was given to the LPS-cyclopamine group at 30 min after LPS injection as well as normal mice as control. Lung injury was observed histologically in hematoxylin and eosin (HE stained tissue sections, semi-quantified by lung tissue injury score, and the lung tissue mass alteration was measured by wet to dry weight ratio (W/D. mRNA expression levels of TNF-α, SHH, Patched (PTC and GLI1 in lung tissue were studied with real time quantitative PCR (RT-PCR, while the protein expression of SHH and GLI1 was determined by western blot analysis.Lung tissue injury score, thickness of alveolar septa, W/D, and TNF-α mRNA expression levels were significantly higher in the ALI mice than the normal mice (P<0.05. The mRNA expression levels of SHH, PTC, and GLI1 in the ALI mice were significantly higher at 12h and 24h after LPS injection, but not at the 6h time point. Protein production of SHH and GLI1 at 6h, 12h, and 24h in the lungs of ALI mice significantly increased, in a time-dependent manner, compared with that in normal mice. Cyclopamine alone has no effect on pathological changes in normal mice. Intervention with cyclopamine in ALI mice led to a reduction in mRNA levels of SHH, PTC, and GLI1 as well as SHH and GLI1 protein levels; meanwhile, the pathological injury scores of lung tissues, thickness of alveolar septa, W/D, and mRNA expression levels of TNF-α increased compared with mice receiving LPS only.The SHH signaling pathway was activated in response to LPS-induced ALI, and up-regulation of SHH expression could alleviate lung injury and be involved in the repair of injured lung

  13. Toll-Like Receptor-9 (TLR9) is Requisite for Acute Inflammatory Response and Injury Following Lung Contusion.

    Science.gov (United States)

    Suresh, Madathilparambil V; Thomas, Bivin; Dolgachev, Vladislav A; Sherman, Matthew A; Goldberg, Rebecca; Johnson, Mark; Chowdhury, Aulina; Machado-Aranda, David; Raghavendran, Krishnan

    2016-10-01

    Lung contusion (LC) is a significant risk factor for the development of acute respiratory distress syndrome. Toll-like receptor 9 (TLR9) recognizes specific unmethylated CpG motifs, which are prevalent in microbial but not vertebrate genomic DNA, leading to innate and acquired immune responses. TLR9 signaling has recently been implicated as a critical component of the inflammatory response following lung injury. The aim of the present study was to evaluate the contribution of TLR9 signaling to the acute physiologic changes following LC. Nonlethal unilateral closed-chest LC was induced in TLR9 (-/-) and wild-type (WT) mice. The mice were sacrificed at 5, 24, 48, and 72-h time points. The extent of injury was assessed by measuring bronchoalveolar lavage, cells (cytospin), albumin (permeability injury), and cytokines (inflammation). Following LC, only the TLR9 (-/-) mice showed significant reductions in the levels of albumin; release of pro-inflammatory cytokines IL-1β, IL-6, and Keratinocyte chemoattractant; production of macrophage chemoattractant protein 5; and recruitment of alveolar macrophages and neutrophil infiltration. Histological evaluation demonstrated significantly worse injury at all-time points for WT mice. Macrophages, isolated from TLR9 (-/-) mice, exhibited increased phagocytic activity at 24 h after LC compared with those isolated from WT mice. TLR9, therefore, appears to be functionally important in the development of progressive lung injury and inflammation following LC. Our findings provide a new framework for understanding the pathogenesis of lung injury and suggest blockade of TLR9 as a new therapeutic strategy for the treatment of LC-induced lung injury.

  14. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Directory of Open Access Journals (Sweden)

    Andrew S Brown

    2016-06-01

    Full Text Available Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC, which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  15. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Science.gov (United States)

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  16. Interleukin-1 alpha drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD

    NARCIS (Netherlands)

    Osei, Emmanuel T.; Noordhoek, Jacobine; Hackett, Tillie L.; Spanjer, Anita I. R.; Postma, Dirkje S.; Timens, Wim; Brandsma, Corry-Anke; Heijink, Irene H.

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the

  17. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD

    NARCIS (Netherlands)

    Osei, Emmanuel T; Noordhoek, Jacobien A; Hackett, Tillie L; Spanjer, Anita I R; Postma, Dirkje S; Timens, Wim; Brandsma, Corry-Anke; Heijink, Irene H

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) has been associated with aberrant epithelial-mesenchymal interactions resulting in inflammatory and remodelling processes. We developed a co-culture model using COPD and control-derived airway epithelial cells (AECs) and lung fibroblasts to understand the

  18. Understanding the function and dysfunction of the immune system in lung cancer:the role of immune checkpoints

    Institute of Scientific and Technical Information of China (English)

    Niki Karachaliou; Maria Gonzalez Cao; Cristina Teixid; Santiago Viteri; Daniela Morales-Espinosa; Mariacarmela Santarpia; Rafael Rosell

    2015-01-01

    AbstrAct Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis;a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system—with its capacity for memory, exquisite speciifcity and central and universal role in human biology—immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer.

  19. PAMAM Nanoparticles Promote Acute Lung Injury by Inducing Autophagic Cell Death through the Akt-TSC2-mTOR Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Haolin Liu; Yang Sun; Hongliang Wang; Feng Guo; Shuan Rao; Jiejie Deng; Yanli Zhang; Yufa Miao; Chenying Guo; Jie Meng; Xiping Chen; Limin Li; Dangsheng Li; Haiyan Xu; Heng Wang; Bo Li; Chengyu Jiang

    2009-01-01

    Nanotechnology is an important and emerging industry with a projected annual market of around one trillion US dollars by 2011–2015. Concerns about the toxicity of nanomaterials in humans, however, have recently been raised. Although studies of nanoparticle toxicity have focused on lung disease the molecular link between nanoparticle exposure and lung injury remained unclear. In this report, we show that cationic Starburst polyamidoamine dendrimer (PAMAM), a class of nanomaterials that are being widely developed for clinical applications can induce acute lung injury in vivo. PAMAM triggers autophagic cell death by deregulating the Akt-TSC2-mTOR signaling pathway. The autophagy inhibitor 3-methyladenine rescued PAMAM dendrimer-induced cell death and ameliorated acute lung injury caused by PAMAM in mice. Our data provide a molecular explanation for nanoparticle-induced lung injury, and suggest potential remedies to address the growing concerns of nanotechnology safety.

  20. Lung function

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005200 The effect of body position changes on lung function, lung CT imaging and pathology in an oleic acid induced acute lung injury model. JI Xin-ping (戢新平), et al. Dept Emergency, 1st Affili Hosp, China Med Univ, Shenyang 110001. Chin J Tuberc Respir Dis, 2005;28(1) :33-36. Objective: To study the effect of body position changes on lung mechanics, oxygenation, CT images and pathology in an oleic acid-induced acute lung injury (ALl) model. Methods: The study groups con-

  1. Green tea and its major components ameliorate immune dysfunction in mice bearing Lewis lung carcinoma and treated with the carcinogen NNK.

    Science.gov (United States)

    Zhu, M; Gong, Y; Yang, Z; Ge, G; Han, C; Chen, J

    1999-01-01

    The protective effects of tea and/or its components on dysfunction of immune functions during tumor growth and carcinogenesis in mice were studied using two experimental models: C57/BL6J mice transplanted with Lewis lung carcinoma (LLC) and Kunming mice treated with a single dose of 4-(methylnitrosamino-)-1-(3-pyridyl)-1-butanone (NNK). In C57/BL6J mice bearing LLC, the weight of the thymus decreased, the proportion of CD4(+)-positive T lymphocytes and the ratio of CD4+ to CD8+ decreased, luminol-enhanced chemiluminescence of white blood cells in peripheral blood stimulated by zymosan increased, and plaque-forming cells (PFC) decreased. However, in LLC-bearing mice given green tea as drinking water, all immune functions were improved, along with inhibition of tumor growth. In Kunming mice treated with NNK, during the four weeks of observation, their immunologic indicators, such as phagocytosis of macrophages in the abdominal cavity, luminol-enhanced chemiluminescence of white blood cells, plaque-forming cells, and delayed-type hypersensitivity, increased or decreased to various extents compared with normal controls. However, these changes were significantly prevented in the mice given green tea, mixed tea, or tea polyphenol as drinking water. In conclusion, tea and its components ameliorated immune dysfunction in mice bearing LLC or treated with the carcinogen NNK.

  2. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwint, Margriet [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Uyterlinde, Wilma [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Heuvel, Michel van den [Department of Thoracic Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Knegjens, Joost; Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Belderbos, Jose, E-mail: j.belderbos@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  3. A genetic mouse model to investigate hyperoxic acute lung injury survival.

    Science.gov (United States)

    Prows, Daniel R; Hafertepen, Amanda P; Gibbons, William J; Winterberg, Abby V; Nick, Todd G

    2007-08-20

    Acute lung injury (ALI) is a devastating disease that maintains a high mortality rate, despite decades of research. Hyperoxia, a universal treatment for ALI and other critically ill patients, can itself cause pulmonary damage, which drastically restricts its therapeutic potential. We stipulate that having the ability to use higher levels of supplemental O2 for longer periods would improve recovery rates. Toward this goal, a mouse model was sought to identify genes contributing to hyperoxic ALI (HALI) mortality. Eighteen inbred mouse strains were screened in continuous >95% O2. A significant survival difference was identified between sensitive C57BL/6J and resistant 129X1/SvJ strains. Although resistant, only one-fourth of 129X1/SvJ mice survived longer than any C57BL/6J mouse, demonstrating decreased penetrance of resistance. A survival time difference between reciprocal F1 mice implicated a parent-of-origin (imprinting) effect. To further evaluate imprinting and begin to delineate the genetic components of HALI survival, we generated and phenotyped offspring from all four possible intercrosses. Segregation analysis supported maternal inheritance of one or more genes but paternal inheritance of one or more contributor genes. A significant sex effect was demonstrated, with males more resistant than females for all F2 crosses. Survival time ranges and sensitive-to-resistant ratios of the different F2 crosses also supported imprinting and predicted that increased survival is due to dominant resistance alleles contributed by both the resistant and sensitive parental strains. HALI survival is multigenic with a complex mode of inheritance, which should be amenable to genetic dissection with this mouse model.

  4. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis.

    Science.gov (United States)

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-03-09

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419-0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34-0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P-V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients.

  5. Emodin Ameliorates LPS-Induced Acute Lung Injury, Involving the Inactivation of NF-κB in Mice

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2014-10-01

    Full Text Available Acute lung injury (ALI and its severe manifestation of acute respiratory distress syndrome (ARDS are well-known illnesses. Uncontrolled and self-amplified pulmonary inflammation lies at the center of the pathology of this disease. Emodin, the bio-active coxund of herb Radix rhizoma Rhei, shows potent anti-inflammatory properties through inactivation of nuclear factor-κB (NF-κB. The aim of this study was to evaluate the effect of emodin on lipopolysaccharide (LPS-induced ALI in mice, and its potential bio-mechanism. In our study, BALB/c mice were stimulated with LPS to induce ALI. After 72 h of LPS stimulation, pulmonary pathological changes, lung injury scores, pulmonary edema, myeloperoxidase (MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid (BALF, and MCP-1 and E-selectin expression were notably attenuated by emodin in mice. Meanwhile, our data also revealed that emodin significantly inhibited the LPS-enhanced the phosphorylation of NF-κB p65 and NF-κB p65 DNA binding activity in lung. Our data indicates that emodin potently inhibits LPS-induced pulmonary inflammation, pulmonary edema and MCP-1 and E-selectin expression, and that these effects were very likely mediated by inactivation of NF-κB in mice. These results suggest a therapeutic potential of emodin as an anti-inflammatory agent for ALI/ARDS treatment.

  6. Understanding Lung Deposition of Alpha-1 Antitrypsin in Acute Experimental Mouse Lung Injury Model Using Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Mengmeng Wang

    2016-01-01

    Full Text Available Human plasma-derived α1-antitrypsin (AAT delivered by intravenous infusion is used as augmentation therapy in patients with emphysema who have a genetic mutation resulting in deficiency of AAT. Inhalation is an alternative route of administration that can potentially increase the efficacy and convenience of treatment. This study was conducted to determine whether delivery to the lungs, initially via the intratracheal (IT route of administration, would deliver efficacious levels of a recombinant AAT (rAAT to the site of action in the lungs in mice. 125I-radiolabeled rAAT, fluorophore-conjugated rAAT (rAAT-Alexa488, and NE680 (neutrophil elastase 680, a silent fluorescent substrate of neutrophil elastase which fluoresces in the near-infrared range upon activation by neutrophil elastase were used to characterize the pharmacokinetics and tissue distribution profile, distribution of rAAT within the lung, and efficacy of rAAT to inhibit neutrophil elastase at the site of action, respectively. The study has demonstrated that rAAT was able to gain access to locations where neutrophil elastase was localized. The histochemical quantification of rAAT activity relative to dose at the site of action provided here will improve confidence in predicting the human dose via the inhalation route.

  7. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    Directory of Open Access Journals (Sweden)

    Shunying Jin

    Full Text Available Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC deposition-induced acute lung injury (ALI. Components of gamma amino butyric acid (GABA signaling, including GABA B receptor 2 (GABABR2, GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP, in the bronchoalveolar lavage fluid (BALF. Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting

  8. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    Science.gov (United States)

    Jin, Shunying; Merchant, Michael L; Ritzenthaler, Jeffrey D; McLeish, Kenneth R; Lederer, Eleanor D; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T; Lentsch, Alex B; Roman, Jesse; Klein, Jon B; Rane, Madhavi J

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  9. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs.

    Directory of Open Access Journals (Sweden)

    Rebecca Y Petersen

    Full Text Available Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP is being increasingly used clinically to transition preterm infants at birth.To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs.The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF, bronchoalveolar lavage fluid (BAL, right mainstem bronchi and peripheral lung tissue were evaluated for inflammation.Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used.Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep.

  10. Current perspectives on antibody-mediated rejection after lung transplantation

    Directory of Open Access Journals (Sweden)

    Witt CA

    2014-10-01

    Full Text Available Chad A Witt, Ramsey R Hachem Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO, USA Abstract: The role of donor-specific antibodies (DSA to human leukocyte antigens and the burden of antibody-mediated rejection (AMR in lung transplantation remain enigmatic. Over the past several years, evidence has been emerging that humoral immunity plays an important role in the development of both acute and chronic lung allograft dysfunction (CLAD. Multiple case reports and case series have identified lung allograft recipients with clinical findings consistent with acute AMR. However, there is currently no widely accepted definition for AMR in lung transplantation, and this has been a significant barrier to furthering our understanding of this form of rejection. Nonetheless, the development of DSA after transplantation has consistently been identified as an independent risk factor for persistent and high-grade acute cellular rejection and CLAD. This has raised the possibility that chronic AMR may be a distinct phenotype of CLAD although evidence supporting this paradigm is still lacking. Additionally, antibodies to lung-restricted self-antigens (collagen V and K-α 1 tubulin have been associated with primary graft dysfunction early and the development of CLAD late after transplantation, and emerging evidence underscores significant interactions between autoimmunity and alloimmunity after transplantation. There is currently an active International Society for Heart and Lung Transplantation working group that is developing an operational definition for AMR in lung transplantation. This will be critical to improve our understanding of this form of rejection and conduct clinical trials to identify optimal treatment strategies. This review will summarize the literature on DSA and AMR in lung transplantation and discuss the impact of antibodies to self-antigens on lung

  11. Smart imaging of acute lung injury: exploration of myeloperoxidase activity using in vivo endoscopic confocal fluorescence microscopy.

    Science.gov (United States)

    Chagnon, Frédéric; Bourgouin, Alexandra; Lebel, Réjean; Bonin, Marc-André; Marsault, Eric; Lepage, Martin; Lesur, Olivier

    2015-09-15

    The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB.

  12. Effect of the angiotensin-converting enzyme inhibitor trandolapril on mortality and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. Trace Study Group

    DEFF Research Database (Denmark)

    Gustafsson, I; Torp-Pedersen, C; Køber, L;

    1999-01-01

    OBJECTIVES: This study evaluated the efficacy of long-term treatment with the angiotensin-converting enzyme (ACE) inhibitor trandolapril in diabetic patients with left ventricular dysfunction after acute myocardial infarction (AMI). BACKGROUND: Patients with diabetes mellitus have a high mortality...... following AMI, probably due to a high risk of congestive heart failure and reinfarction. Because ACE inhibition effectively reduces progression of heart failure, it could be particularly beneficial in diabetic patients after AMI. METHODS: The study is a retrospective analysis using data from.......21 to 0.67]), and no significant reduction of this end point was found in the nondiabetic group. CONCLUSIONS: The ACE inhibition after myocardial infarction complicated by left ventricular dysfunction appears to be of considerable importance in patients with diabetes mellitus by saving lives...

  13. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response...... that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.......The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...

  14. Partial liquid ventilation decreases tissue and serum tumor necrosis factor-α concentrations in acute lung injury model of immature piglet induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; FAN Xiang-ming; LI Xiao-feng; LI Zhi-qiang; WANG Qiang; SUN Li-zhong; LIU Ying-long

    2012-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury in children often results in high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study was designed to examine the hypothesis that PLV would attenuate the production of local and systemic tumor necrosis factor (TNF)-α in an immature piglet model of acute lung injury induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced acute lung injury by OA.The animals were randomly assigned to two groups of six animals,(1) conventional mechanical ventilation (MV) group and (2) PLV with 10 ml/kg FC-77 group.Results Compared with MV group,the PLV group had better cardiopulmonary variables (P <0.05).These variables included heart rate,mean blood pressure,blood pH,partial pressure of arterial oxygen (PaO2),PaO2/inspired O2 fraction (FiO2) and partial pressure of arterial carbon dioxide (PaCO2).PLV reduced TNF-α levels both in plasma and tissue compared with MV group (P <0.05).Conclusion PLV provides protective effects against TNF-a response in OA-induced acute lung injury in immature piglets.

  15. Clinical effects of continuous high volume hemofiltration on severe acute pancreatitis complicated with multiple organ dysfunction syndrome

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Wei-Qin Li; Wei Zhou; Ning Li; Jie-Shou Li

    2003-01-01

    AIM: To investigate the efficiency of continuous high volume hemofiltration (HVHF) in the treatment of severe acute pancreatitis (SAP) complicated with multiple organ dysfunction syndrome (MODS).METHODS: A total of 28 SAP patients with an average of 14.36±3.96 APACHE Ⅱ score were involved. Diagnostic criteria for SAP standardized by the Chinese Medical Association and diagnostic criteria for MODS standardized by American College of Chest Physicians (ACCP) and Society of Critical Care Medicine (SCCM) were applied for inclusion. HVHF was started 6.0±6.1 (1-30) days after onset of the disease and sustained for at least 72 hours, AN69 hemofilter (1.2 m2)was changed every 24 hours. The ultrafiltration rate during HVHF was 4 000 mi/h, blood flow rate was 250-300 mi/min,and the substitute fluid was infused with pre-dilution. Low molecular weight heparin was used for anticoagulation.RESULTS: HVHF was well tolerated in all the patients, and lasted for 4.04±3.99 (3-24) days. 20 of the patients survived,6 patients died and 2 of the patients quited for financial reason.The ICU mortality was 21.4%. Body temperature, heart rate and breath rate decreased significantly after HVHF.APACHE Ⅱ score was 14.4±3.9 before HVHF, and 9.9±4.3after HVHF, which decreased significantly (P<0.01). Partial pressure of oxygen in arterial blood before HVHF was 68.5±19.5 mmHg, and increased significantly after HVHF,which was 91.9±25 mmHg (P<0.01). During HVHF the hemodynamics was stable, and serum potassium, sodium,chlorine, glucose and pH were at normal level.CONCLUSION: HVHF is technically possible in SAP patients complicated with MODS. It does not appear to have detrimental effects and may have beneficial effects.Continuous HVHF, which seldom disturbs the hemodynamics and causes few side-effects, is expected to become a beneficial adjunct therapy for SAP complicated with MODS.

  16. Fish oil-supplemented parenteral nutrition could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

    Science.gov (United States)

    Li, Xiaolong; Zhang, Xianxiang; Yang, Enqin; Zhang, Nanyang; Cao, Shougen; Zhou, Yanbing

    2015-09-01

    The objectives were to confirm that intravenous fish oil (FO) emulsions could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis and to explore the mechanisms of these effects. Thirty-six adult male Sprague-Dawley rats were divided into 4 groups randomly. Two days after central venous catheterization, rats were subjected to cecal ligation and puncture to produce abdominal sepsis. Rats were assigned to receive normal saline or total parenteral nutrition (TPN) containing standard soybean oil emulsions or FO-supplemented TPN at the onset of sepsis for 5 days. A sham operation and control treatment were performed in control group rats. Acute lung injury scores, peripheral blood lymphocyte subsets, plasma cytokines, and Foxp3 expression in the spleen were determined. Compared with the normal saline and TPN without FO, FO-supplemented TPN beneficially altered the distributions of the T-lymphocyte subsets and downregulated the acute lung injury scores, plasma cytokines, and expression of Foxp3 due to sepsis. Fish oil-supplemented TPN can decrease acute lung injury scores, alleviate histopathology, reduce the bacterial load in the peritoneal lavage fluid, modulate the lymphocyte subpopulation in the peripheral blood, downregulate Foxp3 expression in the spleen, and reduce plasma cytokines, which means that FO-supplemented TPN can alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

  17. Aerosolized alpha-tocopherol ameliorates acute lung injury following combined burn and smoke inhalation injury in sheep.

    Science.gov (United States)

    Morita, Naoki; Traber, Maret G; Enkhbaatar, Perenlei; Westphal, Martin; Murakami, Kazunori; Leonard, Scott W; Cox, Robert A; Hawkins, Hal K; Herndon, David; Traber, Lillian D; Traber, Daniel L

    2006-03-01

    Victims of fire accidents who sustain both thermal injury to the skin and smoke inhalation have gross evidence of oxidant injury. Therefore, we hypothesized that delivery of vitamin E, an oxygen superoxide scavenger, directly into the airway would attenuate acute lung injury postburn and smoke inhalation. Sheep (N = 17 female, 35 +/- 5 kg) were divided into 3 groups: (1) injured, then nebulized with vitamin E (B&S, Vitamin E, n = 6); (2) injured, nebulized with saline (B&S, Saline, n = 6); and (3) not injured, not treated (Sham, n = 5). While under deep anesthesia with isoflurane, the sheep were subjected to a flame burn (40% total body surface area, 3rd degree) and inhalation injury (48 breaths of cotton smoke, Ringer lactate solution (4 mL/kg/%burn/24 h) and placed on a ventilator [positive end-expiratory pressure (PEEP) = 5 cm H2O, tidal volume = 15 mL/kg] for 48 h. B&S injury halved the lung alpha-tocopherol concentrations (0.9 +/- 0.1 nmol/g) compared with sham-injured animals (1.5 +/- 0.3), whereas vitamin E treatment elevated the lung alpha-tocopherol concentrations (7.40 +/- 2.61) in the injured animals. B&S injury decreased pulmonary gas exchange (PaO2/FiO2 ratios) from 517 +/- 15 at baseline to 329 +/- 49 at 24 h and to 149 +/- 32 at 48 h compared with sham ratios of 477 +/- 14, 536 +/- 48, and 609 +/- 49, respectively. Vitamin E treatment resulted in a significant improvement of pulmonary gas exchange; ratios were 415 +/- 34 and 283 +/- 42 at 24 and 48 h, respectively. Vitamin E nebulization therapy improved the clinical responses to burn and smoke inhalation-induced acute lung injury.

  18. A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Rector Edward S

    2004-11-01

    Full Text Available Abstract Background Biologically variable ventilation (return of physiological variability in rate and tidal volume using a computer-controller was compared to control mode ventilation with and without a recruitment manoeuvre – 40 cm H2O for 40 sec performed hourly; in a porcine oleic acid acute lung injury model. Methods We compared gas exchange, respiratory mechanics, and measured bronchoalveolar fluid for inflammatory cytokines, cell counts and surfactant function. Lung injury was scored by light microscopy. Pigs received mechanical ventilation (FIO2 = 0.3; PEEP 5 cm H2O in control mode until PaO2 decreased to 60 mm Hg with oleic acid infusion (PaO2/FIO2 2O was added after injury. Animals were randomized to one of the 3 modes of ventilation and followed for 5 hr after injury. Results PaO2 and respiratory system compliance was significantly greater with biologically variable ventilation compared to the other 2 groups. Mean and mean peak airway pressures were also lower. There were no differences in cell counts in bronchoalveolar fluid by flow cytometry, or interleukin-8 and -10 levels between groups. Lung injury scoring revealed no difference between groups in the regions examined. No differences in surfactant function were seen between groups by capillary surfactometry. Conclusions In this porcine model of acute lung injury, various indices to measure injury or inflammation did not differ between the 3 approaches to ventilation. However, when using a low tidal volume strategy with moderate levels of PEEP, sustained improvements in arterial oxygen tension and respiratory system compliance were only seen with BVV when compared to CMV or CMV with a recruitment manoeuvre.

  19. Cordyceps Militaris Alleviates Severity of Murine Acute Lung Injury Through miRNAs-Mediated CXCR2 Inhibition

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2015-07-01

    Full Text Available Background/Aims: Acute lung injury (ALI and acute respiratory distress syndrome (ARDS are lethal diseases in humans, and the current treatments have limited therapeutic effects. Cordyceps militaris (CM is a caterpillar-grown traditional medicinal mushroom, and has been used as a natural invigorant for longevity, endurance, and vitality in China. Recently, purified extracts from CM have been shown to have beneficial effects on various diseases including cancer. Nevertheless, a role of CM in ALI has not been examined previously. Methods: Here, we used a bleomycin-induced ALI model to study the effects of CM on the severity of ALI in mice. The levels of CXCR2, a receptor for Interleukin 8 (IL-8 in pulmonary microvascular endothelial cells, were examined in different experimental groups. The levels of microRNA (miR-1321 and miR-3188 were also examined in lung samples and in CM. Adeno-associated viruses carrying miR-1321 and miR-3188 were injected into bleomycin-treated mice for evaluation their effects on the severity of ALI. Results: CM treatment significantly alleviated the severity of bleomycin-induced ALI in mice. The increases in lung CXCR2 by bleomycin were significantly reduced by CM at protein level, but not at mRNA level. CM contained high levels of 2 miRNAs (miR-1321 and miR-3188 that target 3'-UTR of CXCR2 mRNA to inhibit its expression. Overexpression of miR-1321 and miR-3188 in mouse lung through AAV-mediated gene therapy mimicked the effects of CM. Conclusion: CM may alleviate severity of murine ALI through miRNAs-mediated CXCR2 inhibition.

  20. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    Science.gov (United States)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  1. Usefulness of a selective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients with sepsis

    Directory of Open Access Journals (Sweden)

    Miyoshi S

    2013-04-01

    Full Text Available Seigo Miyoshi,1 Hironobu Hamada,1,2 Ryoji Ito,1 Hitoshi Katayama,1 Kazunori Irifune,1 Toshimitsu Suwaki,3 Norihiko Nakanishi,4 Takanori Kanematsu,5 Kentaro Dote,6 Mayuki Aibiki,7 Takafumi Okura,1 Jitsuo Higaki1 1Department of Integrated Medicine and Informatics, Ehime University, Graduate School of Medicine, Toon, 2Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 3Department of Respiratory Medicine, Sumitomo Besshi Hospital, Niihama, 4Department of Respiratory Medicine, Ehime Prefectural Central Hospital, Matsuyama, 5Department of Respiratory Medicine, Matsuyama Red Cross Hospital, Matsuyama, 6Intensive Care Division, Ehime University Hospital, Toon, 7Department of Emergency Medicine, School of Medicine, Ehime University, Toon, Japan Background: Neutrophil elastase plays a crucial role in the development of acute lung injury (ALI in patients with systemic inflammatory response syndrome (SIRS. The clinical efficacy of the neutrophil elastase inhibitor, sivelestat, for patients with ALI associated with SIRS has not been convincingly demonstrated. The aim of this study was to determine if there are clinical features of patients with this condition that affect the efficacy of sivelestat. Methods: This was a retrospective study of 110 ALI patients with SIRS. Clinical information, including the etiology of ALI, the number of organs failing, scoring systems for assessing the severity of illness, and laboratory data, was collected at the time of diagnosis. Information on the number of ventilator-free days (VFDs and changes in PaO2/FIO2 (ΔP/F before and 7 days after the time of ALI diagnosis was also collected. The effect of sivelestat on ALI patients was also examined based on whether they had sepsis and whether their initial serum procalcitonin level was ≥0.5 ng/mL. Results: There were 70 patients who were treated with sivelestat and 40 control patients. VFDs and ΔP/F were significantly higher in the treated

  2. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  3. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1 virus in mice.

    Directory of Open Access Journals (Sweden)

    Chenggang Li

    Full Text Available BACKGROUND: The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. METHODOLOGY/PRINCIPAL FINDINGS: We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. CONCLUSIONS/SIGNIFICANCE: Using the established, very susceptible 2009 Pandemic Influenza A (H1N1 mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1 pandemics.

  4. I-FABP as biomarker for the early diagnosis of acute mesenteric ischemia and resultant lung injury.

    Directory of Open Access Journals (Sweden)

    Rachel G Khadaroo

    Full Text Available Acute mesenteric ischemia (AMI is a life-threatening condition that can result in multiple organ injury and death. A timely diagnosis and treatment would have a significant impact on the morbidity and mortality in high-risk patient population. The purpose of this study was to investigate if intestinal fatty acid binding protein (I-FABP and α-defensins can be used as biomarkers for early AMI and resultant lung injury. C57BL/6 mice were subjected to intestinal ischemia by occlusion of the superior mesenteric artery. A time course of intestinal ischemia from 0.5 to 3 h was performed and followed by reperfusion for 2 h. Additional mice were treated with N-acetyl-cysteine (NAC at 300 mg/kg given intraperitoneally prior to reperfusion. AMI resulted in severe intestinal injury characterized by neutrophil infiltrate, myeloperoxidase (MPO levels, cytokine/chemokine levels, and tissue histopathology. Pathologic signs of ischemia were evident at 1 h, and by 3 h of ischemia, the full thickness of the intestine mucosa had areas of coagulative necrosis. It was noted that the levels of α-defensins in intestinal tissue peaked at 1 h and I-FABP in plasma peaked at 3 h after AMI. Intestinal ischemia also resulted in lung injury in a time-dependent manner. Pretreatment with NAC decreased the levels of intestinal α-defensins and plasma I-FABP, as well as lung MPO and cytokines. In summary, the concentrations of intestinal α-defensins and plasma I-FABP predicted intestinal ischemia prior to pathological evidence of ischemia and I-FABP directly correlated with resultant lung injury. The antioxidant NAC reduced intestinal and lung injury induced by AMI, suggesting a role for oxidants in the mechanism for distant organ injury. I-FABP and α-defensins are promising biomarkers, and may guide the treatment with antioxidant in early intestinal and distal organ injury.

  5. Effect of penehyclidine hydrochloride on patients with acute lung injury and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    LI Bai-qiang; SUN Hai-chen; NIE Shi-nan; SHAO Dan-bing; LIU Hong-mei; QIAN Xiao-ming

    2010-01-01

    Objective: To assess the effects of penehyclidine hydrochloride on patients with acute lung injury (ALI), to observe the expression of Toll-like receptor 4 (TLR4) on the peripheral monocytes of ALI patients and changes of inflammatory & anti-inflammatory cytokines and to investigate the mechanism of TLR4 in ALI.Methods: Forty-five patients with ALI were randomly divided into penehyclidine hydrochloride treatment group (P group, n=21) and conventional treatment group (control group, C group, n=24). Patients in both groups received conventional treatment, including active treatment of the primary disease, respiratory support, nutritional support and fluid management therapy, while those in P group were given penehyclidine hydrochloride (1 mg, im, q. 12 h) in addition.The TLR4 expression of 20 healthy volunteers were detected.The clinical effect, average length of stay in ICU and hospital,values of PaO2 and PaO2/FiO2, expression of TLR4 on the surface of peripheral blood mononuclear cells and some serum cytokines were evaluated for 48 h.Results: The general conditions of the two groups were improved gradually and PaO2 increased progressively.Compared with 0 h, PaO2 and PaO2/FiO2 at 6, 12, 24 and 48 h after treatment were significantly increased (P<0.05). The improvement in P group was obviously greater than that in C group (P<0.05). The average length of hospitalization showed no difference between the two groups, but penehyclidine hydrochloride significantly decreased the average length of stay in ICU (t=3.485, P<0.01). The expression of TLR4 in two groups were both obviously higher than that of healthy volunteers (P<0.01). It decreased significantly at 24 h (t=2.032, P<0.05) and 48 h (t=3.620, P<0.01)and was lower in P group than in C group. The patients who showed a higher level of TLR4 expression in early stage had a worse prognosis and most of them developed acute respiratory distress syndrome (ARDS). The incidence of ARDS was 23.8% in P group and 29

  6. Effect and mechanism of acute graft versus host disease on early diffuse murine lung injury following allogeneic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To explore the effect and pathogenssis of acute graft-versus-host disease (aGVHD) on early diffuse lung injury in allogeneic hematopoietic stem cell transplantation (allo-HSCT), we established an aGVHD model of C57BL/6→BALB/c mice. Chest computed tomography (CT) scans, histopathology and the levels of cytokines including tumor necrosis factor α (TNFα) and Interferon (IFNγ) in lungs were dynamically detected in recipient mice after transplantation. The incidence of aGVHD was respectively 0%, 0% and 100% in simple irradiation group (A), syngeneic transplant group(B) and allogeneic transplant group (C). Chest CT scans of recipient mice were normal in 3 groups on days +3 and +7 after transplantation. CT showed that two of ten mice had bilateral lung diffuse infiltrate on day +12 (on the brink of death) in group A and 6 of 10 mice had bilateral lung diffuse infiltrate on day +14 (3 d after aGVHD occurring) in group C, and were normal on days +12 and +14 in group B after transplantation. Histopathology of lungs in the 3 groups was similar, consisting of minor interstitial pneumonitis on day +3. Group A showed edema, hyperplasia of epithelial cells and widened alveolar interval on day +7, and epithelial cell necrosis, lymphocyte infiltration, hemorrhage, protein leakage, and local consolidation on day +12. The histopathology of group B showed slight edema of epithelial cells on +7 day, which were slighter than that on day +3, and virtually normal on day +14. The histopathology in group C was characterized by the significant expansion and congestion of capillaries, and lymphocyte infiltration on day +7, the acute pneumonitis was present involving tissue edema, lymphocyte and macrophage infiltration, protein leakage and perivascular inflammation on day +14. In group A, the levels of TNFα were lower on day +7 than on day +3. In group B, the levels of TNFα attained a peak on day +3, which decreased on days +7 and +14. In group C, the levels of TNFα were highest on day

  7. The influence of reamberin on oxygen balance, oxidative stress and lung dysfunction in patients with abdominal sepsis

    Directory of Open Access Journals (Sweden)

    A. B. Tolkach

    2012-01-01

    Full Text Available The investigation was dedicated to the exploration of reamberin influence on oxidative stress and metabolic disturbances in 64 patients with abdominal sepsis. The authors used reamberin for correction of oxidative processes and metabolic disturbances for treatment of the patients with abdominal sepsis. The authors registered that reamberin improved the oxygen-transport function of the blood and metabolic processes during the abdominal sepsis via the hybernation condition — a form of adaptive reaction of organs and systems during the endotoxemia for creation of more effective environment for functioning of main organs and the whole organism. The authors show that the main pathogenetic mechanisms for multiorgan dysfunction are metabolic disturbances and energy deficiency in organs and systems with subsequent tissue hypoxia.

  8. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury.

    Science.gov (United States)

    Sueblinvong, Viranuj; Neveu, Wendy A; Neujahr, David C; Mills, Stephen T; Rojas, Mauricio; Roman, Jesse; Guidot, David M

    2014-01-01

    Fibrotic lung diseases increase with age. Previously we determined that senescence increases tissue expression of fibronectin EDA (Fn-EDA) and decreases fibroblast expression of Thy-1, and that fibrocytes contribute to fibrosis following bleomycin-induced lung injury in mice. In this study we hypothesized that fibroblasts lacking Thy-1 expression produce an extracellular matrix that promotes fibrocyte retention and myofibroblast transdifferentiation, thereby promoting fibrogenesis. Young and old mice were treated with bleomycin intratracheally; fibrocytes in the bone marrow, blood, and lungs were quantified, and lung fibroblast Thy-1 expression assessed. Bone marrow-derived fibrocytes were cultured on matrices derived from Thy-1(+) or Thy-1(-) fibroblasts ± the pro-fibrotic cytokine TGFβ1. Older mice had more fibrocytes in their bone marrows at baseline and more fibrocytes in their lungs following bleomycin treatment. In parallel, lung fibroblasts in older mice had lower expression of Thy-1 at baseline that increased transiently 7 days after bleomycin treatment but then rapidly waned such that 14 days after bleomycin treatment Thy-1 expression was again markedly lower. Fibrocytes cultured on matrices derived from Thy-1(-) fibroblasts + TGFβ1 had increased gene expression for collagen type 1, fibronectin, Fn-EDA, and α-smooth muscle actin. In parallel, whereas the matrices derived from Thy-1(-) fibroblasts stimulated phosphorylation of Akt in cultured fibrocytes, the matrices derived from Thy-1(+) fibroblasts induced apoptosis. These findings suggest that senescence increases fibrocyte recruitment to the lung following injury and that loss of Thy-1 expression by lung fibroblasts promotes fibrocyte retention and myofibroblast trans-differentiation that renders the "aging lung" susceptible to fibrosis.

  9. Immunomodulatory Effect of Chinese Herbal Medicine Formula Sheng-Fei-Yu-Chuan-Tang in Lipopolysaccharide-Induced Acute Lung Injury Mice

    OpenAIRE

    Chia-Hung Lin; Ching-Hua Yeh; Li-Jen Lin; Shulhn-Der Wang; Jen-Shu Wang; Shung-Te Kao

    2013-01-01

    Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor- α (TNF α ), interleukin-1 β , and...

  10. Experimental study of acute lung injury induced by different tidal volume ventilation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-ri; DU Yong-cheng; JIANG Hong-ying; XU Jian-ying; XU Yong-jian

    2005-01-01

    @@ Mechanical ventilation (MV) is a dual blade sward which if misused could lead to lung injury, called ventilator induced lung injury (VILI). Pathogenesis of VILI is very complex with various manifestations, which is the focus in MV field in recent years.1 In our research, the rats were ventilated with different tidal volume, then the pathological changes of the lungs were observed under macroscopy, light and electronic microscope, and various laboratory tests in blood and bronchoalveolar lavage fluid (BALF) were also carried out in order to probe further the pathologic characteristics and the pathogenesis of VILI.

  11. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    Qian-yi Peng; Yu Zou; Li-Na Zhang; Mei-Lin Ai; Wei Liu; Yu-Hang Ai

    2016-01-01

    Background:Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality.Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI,and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization.The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown.This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI.Methods:Septic rat models were established by cecal ligation and puncture (CLP).Rats were divided into the sham group,the CLP group,and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group.Nicotinamide adenine dinucleotide (NAD+),cADPR,CD38,and intracellular Ca2+ levels in the lung tissues were measured at 6,12,24,and 48 h after CLP surgery.Lung histologic injury,tumor necrosis factor (TNF)-α,malondialdehyde (MDA) levels,and superoxide dismutase (SOD) activities were measured.Results:NAD+,cADPR,CD38,and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery.Treatment with 8-Br-cADPR,a specific inhibitor of cADPR,significantly reduced intracellular Ca2+ levels (P =0.007),attenuated lung histological injury (P =0.023),reduced TNF-α and MDA levels (P < 0.001 and P =0.002,respectively) and recovered SOD activity (P =0.031) in the lungs of septic rats.Conclusions:The CD38/cADPR pathway is activated in the lungs of septic rats,and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI.

  12. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Spyridakis, Spyros; Leondaritis, George; Nakos, George; Lekka, Marilena E; Galanopoulou, Dia

    2010-03-01

    Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS.

  13. Captopril pretreatment protects the lung against severe acute pancreatitis induced injury via inhibiting angiotensin II production and suppressing Rho/ROCK pathway.

    Science.gov (United States)

    Yu, Qi-Hong; Guo, Jie-Fang; Chen, Yan; Guo, Xiao-Rong; Du, Yi-Qi; Li, Zhao-Shen

    2016-09-01

    Acute pancreatitis (AP) usually causes acute lung injury, which is also known as acute pancreatitis associated lung injury (APALI). This study aimed to investigate whether captopril pretreatment was able to protect lung against APALI via inhibiting angiotensin II (Ang II) production and suppressing Rho/ROCK (Rho kinase) pathway in rats. Severe AP (SAP) was introduced to rats by bile-pancreatic duct retrograde injection of 5% sodium taurocholate. Rats were randomly divided into three groups. In the sham group, sham operation was performed; in the SAP group, SAP was introduced; in the pre-cpl + SAP group, rats were intragastrically injected with 5 mg/kg captopril 1 hour prior to SAP induction. Pathological examination of the lung and pancreas, evaluation of pulmonary vascular permeability by wet/dry ratio and Evans Blue staining, detection of serum amylase, Western blot assay for Ang II receptor type 1 (AT1), RhoA, ROCK (Rho kinase), and MLCK (myosin light chain kinase) were performed after the animals were sacrificed at 24 hours. After the surgery, characteristic findings of pancreatitis were observed, accompanied by lung injury. The serum amylase, Ang II, and lung expression of AT1, RhoA, ROCK, and MLCK increased dramatically in SAP rats. However, captopril pretreatment improved the histological changes, reduced the pathological score of the pancreas and lung, inhibited serum amylase and Ang II production, and decreased expression of AT1, RhoA, ROCK, and MLCK in the lung. These findings suggest that captopril pretreatment is able to protect the lung against APALI, which is, at least partially, related to the inhibition of Ang II production and the suppression of the Rho/ROCK pathway.

  14. Heart Rate Variability in Patients with Acute Ischemic Stroke at Different Stages of Renal Dysfunction: A Cross-sectional Observational Study

    Science.gov (United States)

    Wei, Lin; Zhao, Wen-Bo; Ye, Huan-Wen; Chen, Yan-Hua; Zhang, Xiao-Pei; Huang, Yan; Cai, Ye-Feng; Chen, Quan-Fu; Pan, Su-Yue

    2017-01-01

    Background: Renal function is associated with mortality and functional disabilities in stroke patients, and impaired autonomic function is common in stroke, but little is known regarding its effects on stroke patients with renal dysfunction. This study sought to evaluate the association between autonomic function and stroke in patients with renal dysfunction. Methods: This study comprised 232 patients with acute ischemic stroke consecutively enrolled from February 2013 to November 2014 at Guangdong Provincial Hospital of Chinese Medicine in China. All patients recruited underwent laboratory evaluation and 24 h Holter electrocardiography (ECG). Autonomic function was measured based on the heart rate variability (HRV) using 24 h Holter ECG. Renal damage was assessed through the estimated glomerular filtration rate (eGFR), and stroke severity was rated according to the National Institutes of Health Stroke Scale (NIHSS). The Barthel index and modified Rankin score were also determined following admission. All the clinical covariates that could potentially affect autonomic outcome variables were adjusted with linear regression. Results: In the patients with a mild or moderate decreased eGFR, the values for the standard deviation of the averaged normal-to-normal RR interval (SDANN) index (P = 0.022), very low frequency (VLF) (P = 0.043), low frequency (LF) (P = 0.023), and ratio of low-to-high frequency power (LF/HF) (P = 0.001) were significantly lower than those in the patients with a normal eGFR. A multinomial linear regression indicated that eGFR (t = 2.47, P = 0.014), gender (t = −3.60, P < 0.001), and a history of hypertension (t = −2.65, P = 0.008) were the risk factors of LF/HF; the NIHSS score (SDANN index: t = −3.83, P < 0.001; VLF: t = −3.07, P = 0.002; LF: t = −2.79, P = 0.006) and a history of diabetes (SDANN index: t = −3.58, P < 0.001; VLF: t = −2.54, P = 0.012; LF: t = −2.87, P = 0.004) were independent factors for the SDANN index, VLF

  15. Ischemic post-conditioning attenuates acute lung injury induced by intestinal ischemia-reperfusion in mice: role of Nrf2.

    Science.gov (United States)

    Meng, Qing-Tao; Cao, Chen; Wu, Yang; Liu, Hui-Min; Li, Wei; Sun, Qian; Chen, Rong; Xiao, Yong-Guang; Tang, Ling-Hua; Jiang, Ying; Leng, Yan; Lei, Shao-Qing; Lee, Chris C; Barry, Devin M; Chen, Xiangdong; Xia, Zhong-Yuan

    2016-10-01

    Intestinal ischemic post-conditioning (IPo) protects against lung injury induced by intestinal ischemia-reperfusion (IIR) partly through promotion of expression and function of heme oxygenase-1 (HO-1). NF-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with HO-1 and regulates antioxidant defense. However, the role of Nrf2 in IPo protection of IIR-induced pulmonary injury is not completely understood. Here we show that IPo significantly attenuated IIR-induced lung injury and suppressed oxidative stress and systemic inflammatory responses. IPo also increased the expression of both Nrf2 and HO-1. Consistently, the beneficial effects of IPo were abolished by ATRA and Brusatol, potent inhibitors of Nrf2. Moreover, the Nrf2 agonist t-BHQ showed similar activity as IPo. Taken together, our data suggest that Nrf2 activity, along with HO-1, plays an important role in the protective effects of IPo against IIR-induced acute lung injury.

  16. Disaturated-phosphatidylcholine and Surfactant protein-B turnover in human acute lung injury and in control patients

    Directory of Open Access Journals (Sweden)

    Rizzi Sabina

    2011-03-01

    Full Text Available Abstract Background Patients with Adult Respiratory Distress Syndrome (ARDS and Acute Lung Injury (ALI have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover. Objectives To analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls. Methods 2H2O as precursor of disaturated-phosphatidylcholine-palmitate and 113C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the 2H and 13C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured. Results 1 Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2 In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p Conclusions 1 Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2 In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.

  17. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway.

    Science.gov (United States)

    Qiu, Jiaming; Yu, Lijun; Zhang, Xingxing; Wu, Qianchao; Wang, Di; Wang, Xiuzhi; Xia, Cheng; Feng, Haihua

    2015-05-01

    Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.

  18. A numerical model of the respiratory modulation of pulmonary shunt and PaO2 oscillations for acute lung injury.

    Science.gov (United States)

    Beda, Alessandro; Jandre, Frederico C; Giannella-Neto, Antonio

    2010-03-01

    It is an accepted hypothesis that the amplitude of the respiratory-related oscillations of arterial partial pressure of oxygen (DeltaPaO2) is primarily modulated by fluctuations of pulmonary shunt (Deltas), the latter generated mainly by cyclic alveolar collapse/reopening, when present. A better understanding of the relationship between DeltaPaO2, Deltas, and cyclic alveolar collapse/reopening can have clinical relevance for minimizing the severe lung damage that the latter can cause, for example during mechanical ventilation (MV) of patients with acute lung injury (ALI). To this aim, we numerically simulated the effect of such a relationship on an animal model of ALI under MV, using a combination of a model of lung gas exchange during tidal ventilation with a model of time dependence of shunt on alveolar collapse/opening. The results showed that: (a) the model could adequately replicate published experimental results regarding the complex dependence of DeltaPaO2 on respiratory frequency, driving pressure (DeltaP), and positive end-expiratory pressure (PEEP), while simpler models could not; (b) such a replication strongly depends on the value of the model parameters, especially of the speed of alveolar collapse/reopening; (c) the relationship between DeltaPaO2 and Deltas was overall markedly nonlinear, but approximately linear for PEEP>or=6 cmH2O, with very large DeltaPaO2 associated with relatively small Deltas.

  19. Blockage of P2X7 attenuates acute lung injury in mice by inhibiting NLRP3 inflammasome.

    Science.gov (United States)

    Wang, Shuang; Zhao, Jijun; Wang, Hongyue; Liang, Yingjie; Yang, Niansheng; Huang, Yuefang

    2015-07-01

    NLRP3 inflammasome is engaged in the inflammatory response during acute lung injury (ALI). Purinergic receptor P2X7 has been reported to be upstream of NLRP3 activation. However, the therapeutic implication of P2X7 in ALI remains to be explored. The present study used lipopolysaccharide (LPS)-induced mouse model to investigate the therapeutic potential of P2X7 blockage in ALI. Our results showed that P2X7/NLRP3 inflammasome pathway was significantly upregulated in the lungs of ALI mice as compared with control mice. P2X7 antagonist A438079 suppressed NLRP3/ASC/caspase 1 activation, production of IL-1β, IL-17A and IFN-γ and neutrophil infiltration but not the production of IL-10, resulting in a significant amelioration of lung injury. Moreover, blockage of P2X7 significantly inhibited NLRP3 inflammasome activation and IL-1β production in bone marrow derived macrophages. Similar results were obtained using another P2X7 inhibitor brilliant blue G (BBG) in vivo. Thus, pharmacological blockage of P2X7/NLRP3 pathway can be considered as a potential therapeutic strategy in patients with ALI.

  20. Lung transplantation

    Science.gov (United States)

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  1. Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure

    OpenAIRE

    Wilsterman, Marlon E. F.; de Jager, Pauline; Blokpoel, Robert; Frerichs, Inez; Dijkstra, Sandra K.; Albers, Marcel J. I. J.; Burgerhof, Johannes G.M.; Markhorst, Dick G; Kneyber, Martin C. J.

    2016-01-01

    Background Neuromuscular blockade (NMB) has been shown to improve outcome in acute respiratory distress syndrome (ARDS) in adults, challenging maintaining spontaneous breathing when there is severe lung injury. We tested in a prospective physiological study the hypothesis that continuous administration of NMB agents in mechanically ventilated children with severe acute hypoxemic respiratory failure (AHRF) improves the oxygenation index without a redistribution of tidal volume V T toward non-d...

  2. Protection of Total Flavonoid Fraction from Nervilia fordii on Lipopolysaccharide-induced Acute Lung Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Ming-qing; XIE You-liang; LAI Xiao-ping; LIN Ling; XU Yin-ji; LU Jin-jian; CHEN Xiu-ping

    2012-01-01

    Objective To investigate the effects of total flavonoid fraction(TFF)from Nervilia fordii on lipopolysaccharide(LPS)-induced acute lung injury(ALI)in rats,and to explore their protective mechanism.Methods LPS-induced ALI model was established by LPS(5 mg/kg)injection via left cervical vein.Blood samples were collected from the cervical artery of all rats at 5 and 6 h after LPS challenge for arterial blood gas test and cytokines measurements,and pulmonary microvascular permeability(PMP),lung wet/dry weight ratio(W/D),and pathological features were observed.Results Phytochemical study showed that the TFF contained 67.3% of flavonoids expressed in rutin and three flavone glycosides.The TFF pretreatment(6.24 and 12.48 mg/kg)attenuated the partial arterial pressure of oxygen decline in blood significantly,and decreased the PMP and lung W/D in ALI rats.In addition,the TFF(6.24 and 12.48 mg/kg)also ameliorated the LPS-induced lung damages including alveolar edema,neutrophils infiltration,alveolar hemorrhage,and thickening of the alveolar wall.Furthermore,the treatment with the TFF(6.24 and 12.48 mg/kg)also down-regulated the levels of pro-inflammatory cytokines,such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and intercellular adhesion molecule-1(ICAM-1),and up-regulated the level of anti-inflammatory cytokine IL-10 in serum of ALI rats simultaneously.Conclusion These results suggest that the TFF could protect LPS-induced ALI in rats,which may be mediated,at least in part,by adjusting the production of inflammatory cytokines including TNF-α,IL-6,ICAM-1,and IL-10.

  3. Effect of nebulized budesonide on respiratory mechanics and oxygenation in acute lung injury/acute respiratory distress syndrome: Randomized controlled study

    Science.gov (United States)

    Mohamed, Hatem Saber; Meguid, Mona Mohamed Abdel

    2017-01-01

    Background: We tested the hypothesis that nebulized budesonide would improve lung mechanics and oxygenation in patients with early acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) during protective mechanical ventilation strategy without adversely affecting systemic hemodynamics. Methods: Patients with ALI/ARDS were included and assigned into two groups; budesonide group (30 cases) in whom 1 mg–2 ml budesonide suspension was nebulized through the endotracheal tube and control group (30 cases) in whom 2 ml saline (placebo) were nebulized instead of budesonide. This regimen was repeated every 12 h for three successive days alongside with constant ventilator settings in both groups. Hemodynamics, airway pressures, and PaO2/FiO2 were measured throughout the study period (72 h) with either nebulized budesonide or saline. Furthermore, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) were analyzed serologically as markers of inflammation at pre- and post-nebulization sessions. Results: We found a significant difference between the two groups regarding PaO2/FiO2 (P = 0.023), peak (P = 0.021), and plateau (P = 0.032) airway pressures. Furthermore, TNF-α, IL-1β, and IL-6 were significantly reduced after budesonide nebulizations. No significant difference was found between the two groups regarding hemodynamic variables. Conclusion: Nebulized budesonide improved oxygenation, peak, and plateau airway pressures and significantly reduced inflammatory markers (TNF-α, IL-1β and IL-6) without affecting hemodynamics. Trial Registry: Australian New Zealand Clinical Trial Registry (ANZCTR) at the number: ACTRN12615000373572. PMID:28217046

  4. Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-jun; LING Feng; LI Zhi-qiang; LI Xiao-feng; LIU Ying-long; DU Jie; HAN Ling

    2013-01-01

    Background Animal models that demonstrate changes of renal function in response to acute lung injury (ALl) and mechanical ventilation (MV) are few.The present study was performed to examine the effect of ALl induced by oleic acid (OA) in combination with conventional MV strategy on renal function in piglets.Methods Twelve Chinese mini-piglets were randomly divided into two groups:the OA group (n=6),animals were ventilated with a conventional MV strategy of 12 ml/kg and suffered an ALl induced by administration of OA,and the control group (n=6),animals were ventilated with a protective MV strategy of 6 ml/kg and received the same amount of sterile saline.Results Six hours after OA injection a severe lung injury and a mild-moderate degree of renal histopathological injury were seen,while no apparent histological abnormalities were observed in the control group.Although we observed an increase in the plasma concentrations of creatinine and urea after ALl,there was no significant difference compared with the control group.Plasma concentrations of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C increased (5.6±1.3) and (7.4±1.5) times in the OA group compared to baseline values,and were significantly higher than the values in the control group.OA injection in combination with conventional MV strategy resulted in a dramatic aggravation of hemodynamic and blood gas exchange parameters,while these parameters remained stable during the experiment in the control group.The plasma expression of TNF-α and IL-6 in the OA group were significantly higher than that in the control group.Compared with high expression in the lung and renal tissue in the OA group,TNF-α and IL-6 were too low to be detected in the lung and renal tissue in the control group.Conclusions OA injection in combination with conventional MV strategy not only resulted in a severe lung injury but also an apparent renal injury.The potential mechanisms involved a cytokine response of TNF-α and

  5. Changes of expression of CFTR and ENaC in lung of mice after acute lung inj ury%小鼠急性肺损伤后肺内CFTR和ENaC的表达变化

    Institute of Scientific and Technical Information of China (English)

    蒋进军; 高磊

    2016-01-01

    Objective:To investigate the changes in the expression of cystic fibrosis transmembrane conductance regulator (CFTR)chloride channel and epithelial sodium channel (ENaC)protein in lung of mice with acute lung inj ury induced by endotoxin.Methods:Lipopolysaccharide (LPS)was instilled into the tracheas of the mice to induce acute lung inj ury.After 24 h,48 h and 72 h,the lung tissue was taken to detect the changes in the mRNA levels of ENaC and CFTR,alveolar fluid clearance (AFC)and wet/dry ratio.Results:24 h,48 h,and 72 h after acute lung injury in mice,the expression of CFTR all decreased in the lung (P<0.05).24 h,48 h,and 72 h after acute lung injury in mice,the expression ofα-ENaC all decreased in the lung (P<0.05).24 h and 48 h after acute lung injury in mice,the expression ofβ-ENaC andγ-ENaC both decreased in the lung (P<0.05),but at 72 h,the level returned to normal.24 h,48 h,and 72 h after acute lung injury in mice,the same change occurred in alveolar fluid clearance,but the lung wet/dry ratio increased.Conclusions:In endotoxin-induced acute lung inj ury in mice,the expression of CFTR and ENaC both decreased,alveolar fluid clearance also decreased but the wet/dry ratio increased.%目的:探讨囊性纤维化跨膜调节因子(cystic fibrosis transmembrane conductance regulator,CFTR)氯离子通道和上皮细胞钠通道(epithelial sodium channel,ENaC)蛋白在内毒素诱发急性肺损伤小鼠肺内的表达变化。方法:将内毒素经小鼠气管注入肺内后诱发急性肺损伤,24 h、48 h、72 h后取肺组织,检测其CFTR和ENaC的mRNA浓度变化、肺泡液体清除率、湿干重比。结果:小鼠急性肺损伤后24 h、48 h、72 h,CFTR在肺内的表达均降低(P<0.05)。小鼠急性肺损伤后24 h、48 h、72 h,α-ENaC在肺内表达均降低(P<0.05);β-ENaC、γ-ENaC在急性肺损伤后24 h、48 h表达降低(P<0.05),而在急性肺损伤后72 h恢复正

  6. Differential prognostic importance of QRS duration in heart failure and acute myocardial infarction associated with left ventricular dysfunction

    DEFF Research Database (Denmark)

    Fosbøl, Emil Loldrup; Seibaek, Marie; Brendorp, Bente;

    2007-01-01

    randomised 3028 patients to dofetilide (class III antiarrhythmic) or placebo. The study consisted of two almost identical trials conducted simultaneously. One trial included 1518 patients with chronic HF and the other trial 1510 patients with a recent MI. All patients had left ventricular dysfunction...

  7. Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis

    NARCIS (Netherlands)

    David, Sascha; Park, Joon-Keun; van Meurs, Matijs; Zijlstra, Jan G.; Koenecke, Christian; Schrimpf, Claudia; Shushakova, Nelli; Gueler, Faikah; Haller, Hermann; Kuempers, Philipp

    2011-01-01

    Introduction: Endothelial activation leading to vascular barrier breakdown plays an essential role in the pathophysiology of multiple-organ dysfunction syndrome (MODS) in sepsis. Increasing evidence suggests that the function of the vessel-protective factor Angiopoietin-1 (Ang-1), a ligand of the en

  8. Acute cigarette smoke exposure causes lung injury in rabbits treated with ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Witten, M.L.; Lemen, R.J.; Quan, S.F.; Sobonya, R.E.; Magarelli, J.L.; Bruck, D.C.

    1987-01-01

    We studied lung clearance of aerosolized technetium-labeled diethylenetriamine pentaacetic acid (/sup 99m/TcDTPA), plasma concentrations of 6-keto-PGF1 alpha and thromboxane B2, and pulmonary edema as indices of lung injury in rabbits exposed to cigarette smoke (CSE). Forty-six rabbits were randomly assigned to 4 groups: control sham smoke exposure (SS, N = 9), sham smoke exposure ibuprofen-pretreated (SS-I, N = 10), CSE (N = 9), sham smoke exposure ibuprofen-pretreated (SS-I, N = 10), CSE (N = 9), and CSE ibuprofen-pretreated (CSE-I, N = 19). Ibuprofen (cyclooxygenase eicosanoid inhibitor) was administered as a single daily intramuscular injection (25 mg/kg) for 7 days before the experiment. Cigarette or sham smoke was delivered by syringe in a series of 5, 10, 20, and 30 tidal volume breaths with a 15-min counting period between each subset of breaths to determine /sup 99m/TcDTPA biological half-life (T1/2). In the ibuprofen pretreated group, CSE caused significant decreases in /sup 99m/TcDTPA T1/2 and dynamic lung compliance. Furthermore, these changes in lung function were accompanied by severe injury to type I alveolar cell epithelium, pulmonary edema, and frequently death of the rabbits. These findings suggest that inhibition of the cyclooxygenase pathway before CSE exacerbates lung injury in rabbits.

  9. Respiratory dysfunction and proinflammatory chemokines in the pneumonia virus of mice (PVM) model of viral bronchiolitis.

    Science.gov (United States)

    Bonville, Cynthia A; Bennett, Nicholas J; Koehnlein, Melissa; Haines, Deborah M; Ellis, John A; DelVecchio, Alfred M; Rosenberg, Helene F; Domachowske, Joseph B

    2006-05-25

    We explore relationships linking clinical symptoms, respiratory dysfunction, and local production of proinflammatory chemokines in the pneumonia virus of mice (PVM) model of viral bronchiolitis. With a reduced inoculum of this natural rodent pathogen, we observe virus clearance by day 9, while clinical symptoms and respiratory dysfunction persist through days 14 and 17 postinoculation, respectively. Via microarray and ELISA, we identify expression profiles of proinflammatory mediators MIP-1alpha, MCP-1, and MIP-2 that correlate with persistent respiratory dysfunction. MIP-1alpha is localized in bronchial epithelium, which is also the major site of PVM replication. Interferon-gamma was detected in lung tissue, but at levels that do not correlate with respiratory dysfunction. Taken together, we present a modification of our pneumovirus infection model that results in improved survival and data that stand in support of a connection between local production of specific mediators and persistent respiratory dysfunction in the setting of acute viral bronchiolitis.

  10. Role of interleukin 18 in acute lung inflammation induced by gut ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    Yong-Jie Yang; Yun Shen; Song-Hua Chen; Xi-Rui Ge

    2005-01-01

    AIM: To study the changes of endogenous interleukin 18 (IL-18) levels and evaluate the role of IL-18 on lung injury following gut ischemia/reperfusion.METHODS: A superior mesenteric artery occlusion model was selected for this research. The mice were randomly divided into four groups: Sham operation (sham), ischemia (0.5 h) followed by different times of reperfusion (I/R),and I/R pretreated with exogenous IL-18 (I/R+IL-18) or IL-18 neutralizing antibody (I/R+IL-18Ab) 15 min before ischemia. Serum IL-18 levels were detected by Western blot and ELISA, and the levels of IL-18 in lung tissue were evaluated by immunohistochemical staining. For the study of pulmonary inflammation, the lung myeloperoxidase (MPO) contents and morphological changes were evaluated.RESULTS: Gut ischemia/reperfusion induced rapid increase of serum IL-18 levels, peaked at 1 h after reperfusion and then declined. The levels of IL-18 in lung tissue were gradually enhanced as the progress of reperfusion.Compared with I/R group, exogenous administration of IL-18 (I/R+IL-18) further remarkably enhanced the pulmonary MPO activity and inflammatory cell infiltration,and in I/R+IL-18Ab group, the content of MPO were significantly reduced and lung inflammation was also decreased.CONCLUSION: Gut ischemia/reperfusion induces the increase of IL-18 expression, which may make IL-18 act as an important proinflammatory cytokine and contribute to gut ischemia/reperfusion-induced lung inflammation.

  11. Lysine acetylsalicylate ameliorates lung injury in rats acutely exposed to paraquat

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei-dong; WANG Jie-zan; LU Yuan-qiang; DI Ya-min; JIANG Jiu-kun; ZHANG Qin

    2011-01-01

    Background Paraquat (PQ), an effective and widely used herbicide, has been proven to be safe when appropriately applied to eliminate weeds. However, PQ poisoning is an extremely frustrating clinical condition with a high mortality and with a lack of effective treatments in humans. PQ mainly accumulates in the lung, and the main molecular mechanism of PQ toxicity is based on redox cycling and intracellular oxidative stress generation. The aim of this study was to evaluate whether lysine acetylsalicylate (LAS) could protect the lung from the damage of PQ poisoning and to study the mechanisms of protection.Methods A model of PQ poisoning was established in 75 Sprague-Dawley rats by intragastric administration of 50 mg/kg PQ, followed by treatment with 200 mg/kg of LAS. The rats were randomly divided into sham, PQ, and PQ+LAS groups, with 25 in each group. We assessed and compared the malonaldehyde (MDA) content, superoxide dismutase activity (SOD), glutathion peroxidase (GSH-Px), and catalase (CAT) in serum and lung and the hydroxyproline (HYP)content, pathological changes, apoptosis and expression of Bcl-2/Bax protein in lung of rats on days 1, 3, 7, 14 and 21after PQ poisoning and LAS treatment.Results Compared to the PQ group rats, early treatment with LAS reduced the MDA and HYP contents, and increased the SOD, GSH-Px, and CAT activities in the serum and lung on days 1, 3, 7, 14, and 21 after PQ poisoning (all P<0.05).After early LAS treatment, the apoptotic rate and Bax expression of lung decreased, the Bcl-2 expression increased, and the Bcl-2/Bax ratio increased, compared to the PQ group rats. Furthermore, the pathological results of lungs revealed that after LAS treatment, early manifestations of PQ poisoning, such as hemorrhage, edema and inflammatory-cell infiltration, were improved to some degree, and collagen fibers in the pulmonary interstitium were also obviously reduced.Conclusion In this rat model of PQ poisoning, LAS effectively ameliorated the lung

  12. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study.

    NARCIS (Netherlands)

    Vlaar, A.P.J.; Hofstra, J.J.; Determann, R.M.; Veelo, D.P.; Paulus, F.; Kulik, W.; Korevaar, J.; Mol, B.A. de; Koopman, M.M.W.; Porcelijn, L.; Binnekade, J.M.; Vroom, M.B.; Schultz, M.J.; Juffermans, N.P.

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related morbidity and mortality. Both antibodies and bioactive lipids that have accumulated during storage of blood have been implicated in TRALI pathogenesis. In a single-center, nested, case-control study, patients w

  13. Transportable Life Support for Treatment of Acute Lung Failure Due to Smoke Inhalation and Burns

    Science.gov (United States)

    2014-04-01

    Batchinsky AI, Cancio LC, Chung KK. Acute respiratory distress syndrome in wartime military burns: application of the Berlin criteria. J Trauma Acute...Respiratory Distress Syndrome in Burns: Application of the Berlin Definition Definition. Critical Care Med. 2013; 41(12):A53. Scaravilli V, Kreyer S...distress syndrome secondary to inhalation of chlorine gas. J Trauma 2006;60 (5)(5):944-957. 18. Batchinsky AI, Weiss WB, Jordan BS, Dick EJ, Jr

  14. [Altitude, the ratio of PaO2 to fraction of inspired oxygen, and shunt: impact on the assessment of acute lung injury].

    Science.gov (United States)

    Pérez-Padilla, J R

    2004-10-01

    The ratio of PaO2 to the fraction of inspired oxygen (PaO2/FIO2) is commonly used to determine the severity of acute lung injury and acute respiratory distress syndrome (ARDS). The research presented here used computational models of the lung to analyze the effect of altitude on the PaO2/FIO2 ratio and pulmonary shunt. At a given shunt, the PaO2/FIO2 ratio is lower at higher altitudes. Therefore, when evaluating for ARDS based on a PaO2/FIO2 ratio of <200 mm Hg, patients residing at high altitudes will have less shunt and, presumably, less severe lung injury than patients at sea level. This should be taken into consideration when comparing patients from different altitudes. Shunt should more often be measured directly or be estimated assuming a constant arteriovenous oxygen content difference.

  15. Acute myelocytic leukemia and plasmacytoma secondary to chemotherapy and radiotherapy in a long-term survivor of small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fukunishi, Keiichi; Kurokawa, Teruo; Takeshita, Atsushi [Osaka Medical Coll., Takatsuki (Japan)] [and others

    1999-05-01

    A 68 year-old man was given a diagnosis of lung cancer of the right upper lobe (small cell carcinoma, T 4 N 2 M 0, stage IIIB) in February 1991. The tumor diminished after chemotherapy and radiotherapy. In February 1992, a partial resection of the lower lobe of the right lung was performed because of the appearance of a metastatic tumor. In September 1994, squamous cell carcinoma developed in the lower part of the esophagus, but disappeared after radiotherapy. In February 1998, a diagnosis of myelodysplastic syndrome was made. Two months later, the patient had an attack of acute myelocytic leukemia and died of cardiac tamponade. An autopsy determined that both the lung cancer and esophageal cancer had disappeared. Acute myelocytic leukemia and plasmacytoma of lymph nodes in the irradiated area were confirmed. These were regarded as secondary malignancies induced by chemotherapy and radiotherapy. (author)

  16. Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety.

    Science.gov (United States)

    Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong

    2015-08-28

    To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases.

  17. Levels of interleukin-6, superoxide dismutase and malondialdehyde in the lung tissue of a rat model of hypoxia-induced acute pulmonary edema

    Science.gov (United States)

    GAO, HENGBO; TIAN, YINGPING; WANG, WEI; YAO, DONGQI; ZHENG, TUOKANG; MENG, QINGBING

    2016-01-01

    The present study aimed to investigate the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and interleukin (IL)-6 in the lung tissue of a rat model of acute pulmonary edema induced by acute hypoxia, and its pathophysiological significance. A total of 48 adult Wistar rats were randomly divided into group A, a normal group; group B, a model of acute pulmonary edema induced by hypoxia for 24 h; group C, a model of acute pulmonary edema induced by hypoxia for 48 h; and group D, a model of acute pulmonary edema induced by hypoxia for 72 h. The rats in groups B-D were intraperitoneally injected with 6% ammonium chloride to establish the model of acute pulmonary edema, and were subsequently sacrificed following successful modeling for 24, 48 and 72 h. The plasma of rats was isolated and the lungs of the rats were removed. Subsequently, a 10% lung homogenate was prepared and the contents and the activities of MDA, SOD and IL-6 in the lung tissue and IL-6 in the plasma were detected by enzyme-linked immunosorbent assay. MDA and IL-6 expression levels increased and SOD activity decreased in the lung tissue in group B as compared with group A; however the difference did not reach significance (P>0.05). MDA, IL-6 and SOD levels in the lung tissue of rats were significantly altered following the increased duration of pulmonary edema in groups C and D, as compared group A (P<0.05). The plasma IL-6 levels of the rats in groups B-D significantly increased, as compared with those in group A (P<0.05). In conclusion, the results of the present study demonstrated that the incidence of acute pulmonary edema may be associated with oxidative stress. Furthermore, decreased antioxidant capacity and increased free radical levels may be associated with pulmonary edema, as in the present study the levels of IL-6, SOD and MDA in the lung tissue were observed to be associated with the pathological changes of the disease. PMID:26998026

  18. Rapidly vanishing lung pseudotumor in a patient with acute bilateral bronchopneumonia

    Directory of Open Access Journals (Sweden)

    Lazović Biljana

    2013-01-01

    Full Text Available Introduction. Rapidly vanishing lung pseudotumor (phantom tumor refers to the transient well-demarcated accumulation of pleural fluid in the interlobar pulmonary fissures. Most frequently their appearance is associated with congestive heart failure, but also other disorders like hypoalbuminemia, renal insufficiency or pleuritis. Its rapid disappearance in response to the treatment of the underlying disorder is a classical feature of this clinical entity. Case report. A 47-yearold woman, chronic smoker with symptoms of shortness of breath, orthopnea, chills, cough, weakness and the temperature of 39.2°C was admitted to our hospital. A posteroanterior chest X-ray revealed cardiomegaly with the cardiothoracic ratio of > 0.5, blunting of both costophrenic angles and an adjacent 6 x 5 cm well-defined, rounded opacity in the right interlobar fissure. Transthoracic 2-dimensional echocardiography demonstrated left ventricular hyperthrophy with a systolic ejection fraction of 25% and moderate mitral regurgitation. The patient’s symptoms resolved rapidly after diuresis, and repeated chest X-ray four days later showed that the right lung opacity and pleural effusions had vanished. Conclusion. The presented case underlines the importance of the possibility of vanishing lung tumor in patients with left ventricular failure and a sharp oval lung mass on the chest X-ray. This is the way to avoid incorrect interpretation of this finding causing additional, unnecessary, costly or invasive imaging, interventions and drugs.

  19. Impact of oral simvastatin therapy on acute lung injury in mice during pneumococcal pneumonia

    Directory of Open Access Journals (Sweden)

    Boyd Angela R

    2012-05-01

    Full Text Available Abstract Background Recent studies suggest that the reported protective effects of statins (HMG-CoA reductase inhibitors against community-acquired pneumonia (CAP and sepsis in humans may be due to confounders and a healthy user-effect. To directly test whether statins are protective against Streptococcus pneumoniae, the leading cause of CAP, we examined the impact of prolonged oral simvastatin therapy at physiologically relevant doses in a mouse model of pneumococcal pneumonia. BALB/c mice were placed on rodent chow containing 0 mg/kg (control, 12 mg/kg (low simvastatin diet [LSD]; corresponds to 1.0 mg/kg/day, or 120 mg/kg (high simvastatin diet [HSD]; corresponds to 10 mg/kg/day simvastatin for four weeks, infected intratracheally with S. pneumoniae serotype 4 strain TIGR4, and sacrificed at 24, 36, or 42 h post-infection for assessment of lung histology, cytokine production, vascular leakage and edema, bacterial burden and bloodstream dissemination. Some mice received ampicillin at 12-h intervals beginning at 48 h post-infection and were monitored for survival. Immunoblots of homogenized lung samples was used to assess ICAM-1 production. Results Mice receiving HSD had reduced lung consolidation characterized by less macrophage and neutrophil infiltration and a significant reduction in the chemokines MCP-1 (P = 0.03 and KC (P = 0.02 and ICAM-1 in the lungs compared to control mice. HSD mice also had significantly lower bacterial titers in the blood at 36 (P = 0.007 and 42 (P = 0.03 hours post-infection versus controls. LSD had a more modest effect against S. pneumoniae but also resulted in reduced bacterial titers in the lungs and blood of mice after 42 h and a reduced number of infiltrated neutrophils. Neither LSD nor HSD mice had reduced mortality in a pneumonia model where mice received ampicillin 48 h after challenge. Conclusions Prolonged oral simvastatin therapy had a strong dose-dependent effect on protection

  20. Effect of captopril on serum TNF-α level in acute lung injury rats induced by HCL

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Liu; Yu-Na Guo

    2014-01-01

    Objective:To observe the effect of captopril on the tumor necrosis factor-α (TNF-α) level and arterial blood gases in acute lung injury (ALI) induced by HCL in rats, and to analyze its protective mechanism. Methods:Fifty Wistar rats were selected and randomly divided into three groups, with 20 rats in GroupⅠandⅡ, respectively and 10 animals in GroupⅢ. ALI model was constructed by intratracheal injection of diluted hydrochloric acid (pH=1.25, 1.2 mL/kg). Group I rats received not any treatment after construction of ALI model. GroupⅡrats were treated with captopril (5 mg/kg, i.p.) 5 min after induction of ALI. GroupⅢserved as normal control without any treatment. Ninety minutes after construction of ALI model, all the rats were sacrificed. Blood was withdrawn for detection of TNF-αlevel and arterial blood gases index. And lung tissue slices of the three groups were prepared for observation of pathologic histology changes. Results:TNF-αlevel in serum of GroupⅠand Ⅱrats was significantly higher than that in GroupⅢ(P<0.05), while TNF-αlevel in serum of GroupⅡwas significantly lower in Group I (P<0.05). PaCO2 level was significantly higher (P<0.05), while PaO2 was significantly lower (P<0.05) in Group I andⅡrats than those in GroupⅢ. PaCO2 was significantly lower (P<0.05) and PaO2 was significantly higher (P<0.05) in GroupⅡthan those in Group I. Histological observation showed diffuse congestion and severe edema of lung tissue, obvious thickening and structure damage of alveolar walls and a large amount of neutrophil infiltration in Group I rats. GroupⅡrats showed mild edema of lung tissue;only a small portion of alveolar walls showed thickening and only a few of neutrophil infiltration could be observed. The degree of injury was remarkably slighter than that of Group I rats. GroupⅢrats showed clear lung tissue structure and normal morphology;alveolar walls were uniform and the margin was smooth and few neutrophil could be observed

  1. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... descending coronary artery who were successfully treated with pPCI. Cardiac dysfunction was defined as left ventricular ejection fraction LVEF or = 35%. After adjustment...

  2. Rituximab treatment in a case of antisynthetase syndrome with severe interstitial lung disease and acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Zappa Maria

    2011-08-01

    Full Text Available Abstract We present a case of severe interstitial pneumonitis, mild polyarthritis and polymyositis, and Raynaud's syndrome with the presence of anti-Jo-1 antibodies, which had been diagnosed as anti-synthetase syndrome. The presence, however, of anti-Ro/SSA antibodies led us to understand that we were dealing here with a more severe form of interstitial lung disease. The patient was treated for acute respiratory failure but he showed resistance to glucocorticoids and cyclosporine. Thus, he was treated with infusions of anti-CD20 therapy (rituximab: his clinical conditions improved very rapidly and a significant decrease in the activity of pulmonary disease was detected using high-resolution computerized tomography (HRCT of the thorax and pulmonary function tests.

  3. [Renal infarction and acute arterial obstruction of the lower extremity encountered after surgery for primary lung cancer].

    Science.gov (United States)

    Tamaki, Masafumi; Miura, Kazumasa; Norimura, Shoko; Kenzaki, Koichirou; Yosizawa, Kiyoshi

    2013-02-01

    The patient was 68-year-old who underwent left upper lobectomy and lymph node dissection. On the 4th postoperative day, he developed vomiting and lumbar pain. On 5th postoperative day, he complained of pain, sensory paralysis and cold sensation of the right lower extremity. Computed tomography(CT)examination revealed left renal infarction and acute arterial obstruction of the right common iliac artery. Emergency thrombectomy of the right lower extremity was performed. Postoperatively, he received anticoagulant therapy and was able to leave the hospital on the 20th postoperative day. Attention should be paid to the infarction of abdominal organs when developing abdominal symptoms after lung cancer surgery in elderly patients.

  4. Glucose-induced thermogenesis in patients with small cell lung carcinoma. The effect of acute beta-adrenergic inhibition

    DEFF Research Datab