WorldWideScience

Sample records for activity regulates skeletal

  1. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  2. Regulation of pH in human skeletal muscle: adaptations to physical activity

    DEFF Research Database (Denmark)

    Juel, C

    2008-01-01

    Regulation of pH in skeletal muscle is the sum of mechanisms involved in maintaining intracellular pH within the normal range. Aspects of pH regulation in human skeletal muscle have been studied with various techniques from analysis of membrane proteins, microdialysis, and the nuclear magnetic...... describes the contribution of each transport system in pH regulation at rest and during muscle activity. It is reported that the mechanisms involved in pH regulation can undergo adaptational changes in association with physical activity and that these changes are of functional importance....

  3. Peroxisome proliferator-activated receptor delta : regulation of skeletal muscle metabolism

    OpenAIRE

    Krämer, David Kitz

    2006-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) δ is a nuclear transcription factor which has been implicated in the regulation of lipid metabolism in skeletal muscle. In addition to the postural and locomotive functions of skeletal muscle, this organ has a major impact role on whole body metabolism. Reduced insulin sensitivity is a characteristic feature in subjects with type 2 diabetes mellitus. Physical exercise/muscle contraction alters the metabolic properties of skel...

  4. The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism

    OpenAIRE

    Anna Dziewulska; Paweł Dobrzyń; Agnieszka Dobrzyń

    2010-01-01

    AMP-activated protein kinase (AMPK) is a conserved, ubiquitously expressed eukaryotic enzyme that is activated in response to increasing AMP level. Regulation of AMPK activity in skeletal muscle is coordinated by contraction and phosphorylation by upstream kinases and a growing number of hormones and cytokines. Once activated, AMPK turns on catabolic, ATP-generating pathways, and turns off ATP-consuming metabolic processes such as biosynthesis and proliferation. Activation of AMPK promotes gl...

  5. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    state is determined by the overall content / activity of the regulatory proteins PDH kinase (PDK), of which there are 4 isoforms, and PDH phosphatase (PDP), of which there are 2 isoforms. The overall aim of the PhD project was to elucidate 4 issues. 1: Role of muscle type in resting and exercise......-induced PDH regulation in human skeletal muscle. 2: Effect of muscle glycogen on PDH regulation in human skeletal muscle at rest and during exercise. 3: The impact of physical inactivity on PDH regulation in human skeletal muscle at rest and during exercise. 4: Elucidating the importance of PGC-1? in PDH...... regulation in mouse skeletal muscle at rest and in response to fasting and during recovery from exercise. The studies indicate that the content of PDH-E1? in human muscle follows the metabolic profile of the muscle, rather than the myosin heavy chain fiber distribution of the muscle. The larger lactate...

  6. [Key regulators of skeletal myogenesis].

    Science.gov (United States)

    Kopantseva, E E; Belyavsky, A V

    2016-01-01

    Skeletal myogenesis has been extensively studied at both morphological and molecular levels. This review considers the main stages of embryonic skeletal myogenesis and myogenic factors that trigger their initiation, focusing on specific protein interactions involved in somitic myogenesis, head myogenesis, and limb myogenesis. The second part of the review describes the role of noncoding RNAs (microRNAs and long noncoding RNAs) in myogenesis. This information is of particular interest, because regulation of cell processes by noncoding RNAs is an actively developing field of molecular biology. Knowledge of mechanisms of skeletal myogenesis is of applied significance. Various transcription factors, noncoding RNAs, and other myogenic regulators can be employed in the induction of myogenic reprogramming in stem cells and differentiated somatic cells. Current trends and strategies in the field of skeletal myogenic reprogramming are discussed in the last part of the review. PMID:27239841

  7. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm;

    2013-01-01

    -activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for...... increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein...

  8. Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity

    OpenAIRE

    Alexander, Matthew S.; Shi, Xiaozhong; Voelker, Kevin A.; Grange, Robert W.; Garcia, Joseph A.; Robert E Hammer; Garry, Daniel J

    2009-01-01

    The mechanisms that regulate skeletal muscle differentiation, fiber type diversity and muscle regeneration are incompletely defined. Forkhead transcription factors are critical regulators of cellular fate determination, proliferation, and differentiation. We identified a forkhead/winged helix transcription factor, Foxj3, which was expressed in embryonic and adult skeletal muscle. To define the functional role of Foxj3, we examined Foxj3 mutant mice. Foxj3 mutant mice are viable but have signi...

  9. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Isabella Irrcher

    Full Text Available The mechanisms by which PGC-1alpha gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1alpha using AICAR, an activator of AMPK, that is known to increase PGC-1alpha expression. A 2.2 kb fragment of the human PGC-1alpha promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-kappaB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1alpha promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at -495 within the PGC-1alpha promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1alpha promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1alpha promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1alpha promoter activity. The USF-1-mediated increase in PGC-1alpha promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1alpha gene expression. This could represent a potential therapeutic target to control PGC-1alpha expression in skeletal muscle.

  10. Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor gamma coactivator 1alpha

    OpenAIRE

    Handschin, C.

    2010-01-01

    Exercise triggers a pleiotropic response in skeletal muscle, which results in a profound remodeling of this tissue. Physical activity-dependent muscle fiber plasticity is regulated by a number of distinct signaling pathways. Even though most of these pathways are activated by different stimuli and in a temporally and spatially separated manner during exercise, many of the major signal transduction events converge on the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-...

  11. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Wojtaszewski, Jørgen; Richter, Erik

    2009-01-01

    In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in...... intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These...... mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the...

  12. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment

    OpenAIRE

    Martinez, Carlo O.; McHale, Matthew J.; Wells, Jason T.; OCHOA, OSCAR; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2010-01-01

    Muscle regeneration requires CC chemokine receptor 2 (CCR2) expression on bone marrow-derived cells; macrophages are a prominent CCR2-expressing cell in this process. CCR2−/− mice have severe impairments in angiogenesis, macrophage recruitment, and skeletal muscle regeneration following cardiotoxin (CTX)-induced injury. However, multiple chemokines activate CCR2, including monocyte chemotactic proteins (MCP)-1, -3, and -5. We hypothesized that MCP-1 is the chemokine ligand that mediates the i...

  13. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    OpenAIRE

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube ...

  14. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    OpenAIRE

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    International audience mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform m...

  15. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  16. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity

    Science.gov (United States)

    Moretti, Irene; Ciciliot, Stefano; Dyar, Kenneth A.; Abraham, Reimar; Murgia, Marta; Agatea, Lisa; Akimoto, Takayuki; Bicciato, Silvio; Forcato, Mattia; Pierre, Philippe; Uhlenhaut, N. Henriette; Rigby, Peter W. J.; Carvajal, Jaime J.; Blaauw, Bert; Calabria, Elisa; Schiaffino, Stefano

    2016-01-01

    The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia. PMID:27484840

  17. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity.

    Science.gov (United States)

    Moretti, Irene; Ciciliot, Stefano; Dyar, Kenneth A; Abraham, Reimar; Murgia, Marta; Agatea, Lisa; Akimoto, Takayuki; Bicciato, Silvio; Forcato, Mattia; Pierre, Philippe; Uhlenhaut, N Henriette; Rigby, Peter W J; Carvajal, Jaime J; Blaauw, Bert; Calabria, Elisa; Schiaffino, Stefano

    2016-01-01

    The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia. PMID:27484840

  18. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans

    Science.gov (United States)

    Petrie, Michael A.; Kimball, Amy L.; McHenry, Colleen L.; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K.

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative

  19. Na,K-ATPase regulation in skeletal muscle.

    Science.gov (United States)

    Pirkmajer, Sergej; Chibalin, Alexander V

    2016-07-01

    Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted. PMID:27166285

  20. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment.

    Science.gov (United States)

    Martinez, Carlo O; McHale, Matthew J; Wells, Jason T; Ochoa, Oscar; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2010-09-01

    Muscle regeneration requires CC chemokine receptor 2 (CCR2) expression on bone marrow-derived cells; macrophages are a prominent CCR2-expressing cell in this process. CCR2-/- mice have severe impairments in angiogenesis, macrophage recruitment, and skeletal muscle regeneration following cardiotoxin (CTX)-induced injury. However, multiple chemokines activate CCR2, including monocyte chemotactic proteins (MCP)-1, -3, and -5. We hypothesized that MCP-1 is the chemokine ligand that mediates the impairments present in CCR2-/- mice. We examined muscle regeneration, capillary density, and cellular recruitment in MCP-1-/- and CCR2-/- mice following injury. Muscle regeneration and adipocyte accumulation, but not capillary density, were significantly impaired in MCP-1-/- compared with wild-type (WT) mice; however, muscle regeneration and adipocyte accumulation impairments were not as severe as observed in CCR2-/- mice. Although tissue levels of MCP-5 were elevated in MCP-1-/- mice compared with WT, the administration of MCP-5 neutralizing antibody did not alter muscle regeneration in MCP-1-/- mice. While neutrophil accumulation after injury was similar in all three mouse strains, macrophage recruitment was highest in WT mice, intermediate in MCP-1-/- mice, and severely impaired in CCR2-/- mice. In conclusion, while the absence of MCP-1 resulted in impaired macrophage recruitment and muscle regeneration, MCP-1-/- mice exhibit an intermediate phenotype compared with CCR2-/- mice. Intermediate macrophage recruitment in MCP-1-/- mice was associated with similar capillary density to WT, suggesting that fewer macrophages may be needed to restore angiogenesis vs. muscle regeneration. Finally, other chemokines, in addition to MCP-1 and MCP-5, may activate CCR2-dependent regenerative processes resulting in an intermediate phenotype in MCP-1-/- mice. PMID:20631294

  1. Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Chen Yi-Ping

    2006-08-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation. Results This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research. Conclusion Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

  2. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.

    Science.gov (United States)

    Jaafar, Rami; De Larichaudy, Joffrey; Chanon, Stéphanie; Euthine, Vanessa; Durand, Christine; Naro, Fabio; Bertolino, Philippe; Vidal, Hubert; Lefai, Etienne; Némoz, Georges

    2013-01-01

    mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting. PMID:23915343

  3. A Rapid Up-Regulation in UCP3 Transcriptional Activity in Response to Moderate Intensity Exercise in Rat Skeletal Muscle

    OpenAIRE

    Keiko Kusuhara; Takashi Tobe; Takaharu Negoro; Takashi Abe

    2005-01-01

    Uncoupling protein 3 (UPC3) is a candidate protein transporter that uncouples oxidative phosphorylation of mitochondrial respiration in skeletal muscle. A number of studies on UCP3 functions under various physiological conditions have suggested that the function of UCP3 is not limited only to regulation of whole-body energy metabolism but is also involved in regulation of substrate (lipids and glucose) metabolism. The purpose of the present study was to clarify the time course of UCP3 mRNA ex...

  4. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    The aims of the present thesis were to investigate 1) The impact of physical inactivity on insulinstimulated Akt, TBC1D4 and GS regulation in human skeletal muscle, 2) The impact of exercise training on glucose-mediated regulation of PDH and GS in skeletal muscle in elderly men, 3) The impact of...... inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well as...... glucose to the level seen when exercise was performed before bed rest. Study II demonstrated that exercise training-improved glucose regulation in elderly healthy subjects was associated with increased HKII, GLUT4, Akt2, PDK2, GS and PDH-E1α protein content. Moreover, exercise training resulted in an...

  5. A RAPID UP-REGULATION IN UCP3 TRANSCRIPTIONAL ACTIVITY IN RESPONSE TO MODERATE INTENSITY EXERCISE IN RAT SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Keiko Kusuhara

    2005-06-01

    Full Text Available Uncoupling protein 3 (UPC3 is a candidate protein transporter that uncouples oxidative phosphorylation of mitochondrial respiration in skeletal muscle. A number of studies on UCP3 functions under various physiological conditions have suggested that the function of UCP3 is not limited only to regulation of whole-body energy metabolism but is also involved in regulation of substrate (lipids and glucose metabolism. The purpose of the present study was to clarify the time course of UCP3 mRNA expression in rat skeletal muscle during a 1 h bout of treadmill exercise and to examine whether changes in fat/glucose metabolism modulates UCP3 mRNA expression. The pattern of UCP3 mRNA expression during the exercise was biphasic in both the soleus and gastrocnemius muscles. UCP3 expression increased at 5 min of exercise (soleus: 232%, p < 0.05, gastrocnemius: 185%, p < 0.05, respectively, and at the end of the exercise (196%, p < 0.05 and 193%, p < 0.05, respectively. UCP3 mRNA expression was still increased at 3 h post-exercise in both muscles, 200% (p < 0.05 and 237% (p < 0.05, respectively. However, at 20 min of the exercise, UCP3 mRNA expression was similar to control levels in both muscles (104% and 97%, respectively. The time course of plasma free fatty acid (FFA did not follow the same time course as UCP3 mRNA expression. Plasma FFA peaked at the end of the exercise, suggesting that FFA did not play a role in inducing UCP3 mRNA expression. Glucose transporter 4 (GLUT4 mRNA expression did not change during or after exercise. These data indicated a rapid acceleration in UCP3's transcription activity in response to exercise, and suggest that potential factor(s other than changes in fat/glucose metabolism regulate UCP3 gene expression during moderate exercise

  6. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells

    OpenAIRE

    Leonardo J Magnoni; Yoryia Vraskou; Palstra, Arjan P.; Planas, Josep V.

    2012-01-01

    AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP∶ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates,...

  7. Regulation of skeletal muscle proteolysis

    OpenAIRE

    Slee, Adrian

    2005-01-01

    Proteolysis is a component of protein turnover, controlled by multiple proteolytic systems. Alterations in system components within skeletal muscle has been associated with hypertrophy, remodelling, atrophy, apoptosis and metabolic dysregulation. Key components may have novel regulatory roles, e. g. calpain-3 and cathepsin-L. Experiments described within this thesis investigated the hypothesis that the gene expression of specific proteolytic system components within skeletal muscle may be co-...

  8. Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Taylor, Eric B.; Witczak, Carol A.;

    2010-01-01

    TBC1D4 (also known as AS160) regulates GLUT4 translocation and glucose uptake in adipocytes and skeletal muscle. Its mode of action involves phosphorylation of Serine (S)/Threonine (T) residues by upstream kinases resulting in inactivation of Rab-GAP activity leading to GLUT4 mobilization. The...... sites. Mouse skeletal muscles were contracted or stimulated with 5-aminoimidazole-4-carboxmide riboside (AICAR) and muscle lysates were subjected to mass spectrometry analyses resulting in identification of novel putative phosphorylation sites on TBC1D4. The surrounding amino acid sequence predicted...... that S711 would be recognized by AMPK. Using a phospho-specific antibody against S711, we found that AICAR and contraction increased S711 phosphorylation in mouse skeletal muscle and this increase was abolished in muscle-specific AMPKalpha2 kinase dead transgenic mice. Exercise in human vastus...

  9. NFATc1 Controls Skeletal Muscle Fiber Type and Is a Negative Regulator of MyoD Activity

    Directory of Open Access Journals (Sweden)

    Melissa L. Ehlers

    2014-09-01

    Full Text Available Skeletal muscle comprises a heterogeneous population of fibers with important physiological differences. Fast fibers are glycolytic and fatigue rapidly. Slow fibers utilize oxidative metabolism and are fatigue resistant. Muscle diseases such as sarcopenia and atrophy selectively affect fast fibers, but the molecular mechanisms regulating fiber type-specific gene expression remain incompletely understood. Here, we show that the transcription factor NFATc1 controls fiber type composition and is required for fast-to-slow fiber type switching in response to exercise in vivo. Moreover, MyoD is a crucial transcriptional effector of the fast fiber phenotype, and we show that NFATc1 inhibits MyoD-dependent fast fiber gene promoters by physically interacting with the N-terminal activation domain of MyoD and blocking recruitment of the essential transcriptional coactivator p300. These studies establish a molecular mechanism for fiber type switching through direct inhibition of MyoD to control the opposing roles of MyoD and NFATc1 in fast versus slow fiber phenotypes.

  10. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    International Nuclear Information System (INIS)

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP3/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation

  11. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, R. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Fuentes, E.N.; Molina, A. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile)

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  12. The cAMP response element binding protein (CREB) is activated by insulin-like growth factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast.

    Science.gov (United States)

    Zuloaga, R; Fuentes, E N; Molina, A; Valdés, J A

    2013-10-18

    Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP3/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA-CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation. PMID:24064350

  13. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    Regulation of glucose metabolism, despite intense research through decades, is still not clear. Skeletal muscle is highly important for maintaining glucose homeostasis. Regulation of skeletal muscle glucose metabolism is influenced by protein signaling and changes in the activity of metabolic...... enzymes. Skeletal muscle consists of thousands of muscle fibers. These fibers can roughly be classified into type I and type II muscle fibers. The overall aim of this PhD thesis was to investigate the effect of insulin and exercise on human muscle fiber type specific metabolic signaling. The importance of...... biopsies, single muscle fibers were dissected. Muscle fiber type determination was performed and fibers were pooled in groups of type I and II muscle fibers. Muscle fiber pools were investigated for regulation of signaling molecules and enzymes, involved in glucose metabolism. Irrespective of the group of...

  14. Skeletal Muscle Autophagy: A New Metabolic Regulator

    OpenAIRE

    Neel, Brian A.; Lin, Yuxi; Pessin, Jeffrey E.

    2013-01-01

    Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that...

  15. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity

    DEFF Research Database (Denmark)

    Rasmussen, M K; Kristensen, M; Juel, C

    2008-01-01

    BACKGROUND: Na(+)/K(+)-ATPase activity is upregulated during muscle exercise to maintain ionic homeostasis. One mechanism may involve movement of alpha-subunits to the outer membrane (translocation). AIM: We investigated the existence of exercise-induced translocation and phosphorylation of...... phospholemman (PLM, FXYD1) protein in rat skeletal muscle and exercise-induced changes in V(max) and K(m) for Na(+) of the Na(+)/K(+)-ATPase. METHODS: Two membrane fractionation methods and immunoprecipitation were used. Results: Both fractionation methods revealed a 200-350% increase in PLM in the sarcolemma...... after 30 min of treadmill running, while the phosphorylation of Ser-68 of PLM appeared to be unchanged. Exercise did not change V(max) or K(m) for Na(+) of the Na(+)/K(+)-ATPase in muscle homogenate, but induced a 67% increase in V(max) in the sarcolemmal giant vesicle preparation; K(m) for Na...

  16. Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Schjerling, P.; Vistisen, Bodil;

    2005-01-01

    AIM: To investigate gender-related differences in the responses of oxidative enzymes and eukaryotic elongation factor-2 (eEF2) to exercise. METHODS: The influence of exercise (90 min, 60%VO(2peak)) on citrate synthase (CS) and beta-hydroxyacyl-CoA dehydrogenase (HAD) activity and mRNA content......, together with eEF2 expression and phosphorylation at rest, were assessed in skeletal muscle of untrained (UT) and endurance trained (ET) females and males. RESULTS: Citrate synthase and HAD mRNA were higher in females than in males (27% and 48%, respectively, P < 0.05) whereas CS and HAD activity did not...... differ between females and males (NS). In females only, CS activity was enhanced (P < 0.05) by 90 min exercise. Resting CS mRNA content did not differ between UT and ET but, nevertheless, CS activity was 56% higher in ET than in UT volunteers (P < 0.001). HAD mRNA and activity were not influenced by...

  17. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Directory of Open Access Journals (Sweden)

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  18. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle

    Science.gov (United States)

    Rasmussen, Blake B.; Holmbäck, Ulf C.; Volpi, Elena; Morio-Liondore, Beatrice; Paddon-Jones, Douglas; Wolfe, Robert R.

    2002-01-01

    Physiological hyperglycemia with hyperinsulinemia reduces fat oxidation in skeletal muscle. The mechanism responsible for this decrease in fat oxidation in human muscle is not known and may contribute to the development of insulin resistance. We hypothesized that the transfer of long-chain fatty acids (LCFAs) into the mitochondria via carnitine palmitoyltransferase-1 (CPT-1) is inhibited by increased malonyl coenzyme A (malonyl-CoA) (a known potent inhibitor of CPT-1) in human muscle during hyperglycemia with hyperinsulinemia. We studied six healthy subjects after an overnight fast and during an induced 5-hour period of hyperglycemia with hyperinsulinemia. Muscle fatty acid oxidation was calculated using stable isotope methodology combined with blood sampling from the femoral artery and vein of one leg. Muscle functional CPT-1 activity was assessed by concurrently infusing an LCFA tracer and a CPT-independent medium-chain fatty acid tracer. Muscle biopsies were obtained from the vastus lateralis after the periods of fasting and hyperglycemia with hyperinsulinemia. Hyperglycemia with hyperinsulinemia decreased LCFA oxidation, but had no effect on LCFA uptake or medium-chain fatty acid oxidation across the leg. Malonyl-CoA concentration significantly increased from 0.13 ± 0.01 to 0.35 ± 0.07 nmol/g during hyperglycemia with hyperinsulinemia. We conclude that hyperglycemia with hyperinsulinemia increases malonyl-CoA, inhibits functional CPT-1 activity, and shunts LCFA away from oxidation and toward storage in human muscle. PMID:12464674

  19. Regulation of skeletal muscle perfusion during exercise

    Science.gov (United States)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  20. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    OpenAIRE

    Mazelet, Lize; Parker, Matthew; Li, Mei; Anders, Arner; Ashworth, Rachel

    2016-01-01

    Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharma...

  1. Epigenetic regulation of skeletal muscle metabolism.

    Science.gov (United States)

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  2. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    OpenAIRE

    Murphy, Megan N.; Mizuno, Masaki; Mitchell, Jere H.; Smith, Scott A

    2011-01-01

    Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent...

  3. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Guofeng Qian

    Full Text Available Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat, whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and

  4. Plasminogen Activator Inhibitor Type 1 Up-Regulation Is Associated with Skeletal Muscle Atrophy and Associated Fibrosis

    OpenAIRE

    Naderi, Jasmin; Bernreuther, Christian; Grabinski, Nicole; Charles T. Putman; Henkel, Birgit; Bell, Gordon; Glatzel, Markus; Sultan, Karim R.

    2009-01-01

    Muscle wasting remains a feature of many diseases and is counteracted by anabolic supplementation or exercise. Persisting atrophy-inducing conditions can be complicated by skeletal muscle fibrosis, which leads to functional impairment. Identification of early mechanisms that initiate atrophy-induced fibrosis may reveal novel targets for therapy or diagnosis. Therefore, we investigated changes in the expression of genes involved in extracellular matrix homeostasis during glucocorticoid-induced...

  5. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle

    OpenAIRE

    RASMUSSEN, BLAKE B.; Holmbäck, Ulf C.; Volpi, Elena; Morio-Liondore, Beatrice; Paddon-Jones, Douglas; Robert R. Wolfe

    2002-01-01

    Physiological hyperglycemia with hyperinsulinemia reduces fat oxidation in skeletal muscle. The mechanism responsible for this decrease in fat oxidation in human muscle is not known and may contribute to the development of insulin resistance. We hypothesized that the transfer of long-chain fatty acids (LCFAs) into the mitochondria via carnitine palmitoyltransferase-1 (CPT-1) is inhibited by increased malonyl coenzyme A (malonyl-CoA) (a known potent inhibitor of CPT-1) in human muscle during h...

  6. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian;

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...... metabolism, including glucose transport and glycogen synthesis. In addition, we discuss the plausible interplay between AMPK and insulin signaling regulating these processes....

  7. Regulation of skeletal muscle sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes.

    OpenAIRE

    Rune, A.; Osler, M. E.; Fritz, T.; Zierath, J. R.

    2010-01-01

    Aims/hypothesis Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) is involved in cellular stress responses linked to obesity and type 2 diabetes. We determined the role of SNARK in response to metabolic stress and insulin action on glucose and lipid metabolism in skeletal muscle. Methods Vastus lateralis skeletal muscle biopsies were obtained from normal glucose tolerant (n = 35) and type 2 diabetic (n = 31) men and women for SNARK expression studies. Primary myotu...

  8. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Holst, Dorte; Luquet, Serge; Nogueira, Véronique;

    2003-01-01

    starvation period, PPARdelta mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARdelta is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while...... refeeding promotes down-regulation of both genes. To directly access the role of PPARdelta in muscle cells, we forced its expression and that of a dominant-negative PPARdelta mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARdelta agonist by induction...

  9. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Richter, Erik; Wojtaszewski, Jørgen

    2006-01-01

    The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism...... furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in...... during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We...

  10. Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Knudsen, Jakob Grunnet; Brandt, Nina;

    2014-01-01

    Skeletal muscle regulates substrate choice according to demand and availability and pyruvate dehydrogenase (PDH) is central in this regulation. Circulating interleukin (IL)-6 increases during exercise and IL-6 has been suggested to increase whole body fat oxidation. Furthermore, IL-6 has been...... reported to increase AMP-activated protein kinase (AMPK) phosphorylation and AMPK suggested to regulate PDHa activity. Together, this suggests that IL-6 may be involved in regulating PDH. The aim of this study was to investigate the effect of a single injection of IL-6 on PDH regulation in skeletal muscle...... in fed and fasted mice. Fed and 16-18 h fasted mice were injected with either 3 ng · g(-1) recombinant mouse IL-6 or PBS as control. Fasting markedly reduced plasma glucose, muscle glycogen, muscle PDHa activity, as well as increased PDK4 mRNA and protein content in skeletal muscle. IL-6 injection...

  11. Regulation of gene expression in vertebrate skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, Jaime J., E-mail: jaime.carvajal@icr.ac.uk; Rigby, Peter W.J., E-mail: peter.rigby@icr.ac.uk

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  12. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Directory of Open Access Journals (Sweden)

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  13. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P;

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...... translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood....

  14. Regulation of Skeletal Muscle by microRNAs.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Wang, Da-Zhi

    2016-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. © 2016 American Physiological Society. Compr Physiol 6:1279-1294, 2016. PMID:27347893

  15. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed. PMID:16951988

  16. Skeletal muscle metabolic flexibility : The roles of AMP-activated protein kinase and calcineurin

    OpenAIRE

    Long, Yun Chau

    2007-01-01

    Skeletal muscle fibers differ considerably in their metabolic and physiological properties. The metabolic properties of skeletal muscle display a high degree of flexibility which adapts to various physiological demands by shifting energy substrate metabolism. Studies were conducted to evaluate the roles of AMP-activated protein kinase (AMPK) and calcineurin in the regulation of skeletal muscle metabolism. Fasting elicited a coordinated expression of genes involved in lipid ...

  17. Oxidative stress (Glutathionylation) and Na,K-ATPase activity in rat skeletal muscle

    OpenAIRE

    Juel, Carsten

    2014-01-01

    Background Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation) on the Na,K-ATPase in rat skeletal muscle membranes. Results Immunoprecipitation with an anti-glutathione antibody and subsequent ...

  18. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Angione Alison R

    2011-11-01

    Full Text Available Abstract Peroxisome proliferator-activated receptors (PPARs are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1 gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration.

  19. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation......In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...

  20. Skeletal muscle deiodinase type 2 regulation during illness in mice

    NARCIS (Netherlands)

    J. Kwakkel; H.C. van Beeren; M.T. Ackermans; M. Platvoet-ter Schiphorst; E. Fliers; W.M. Wiersinga; A. Boelen

    2009-01-01

    We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is up-regulated in an animal model of acute illness. However, human Studies on the expression Of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of skel

  1. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.;

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P < 0.05) in vastus lateralis than in deltoid. Dexamethasone treatment...... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P < 0.05) and 18 ± 6% (P < 0.05) as well as Na+,K+ pump content by 18 ± 9% (P < 0.001) and 24 ± 8% (P < 0.01), respectively. Treatment with dexamethasone resulted in a higher a1, a2, ß1 and ß2 mRNA expression in the deltoid...

  2. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    Science.gov (United States)

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (Putilization during prolonged exercise via effects on PDH. PMID:27327080

  3. Skeletal muscle as a regulator of the longevity protein, Klotho

    Directory of Open Access Journals (Sweden)

    Keith G Avin

    2014-06-01

    Full Text Available Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating klotho and skeletal muscle has not been investigated. In this paper, we present a review of the literature and preliminary evidence that, together, suggests klotho expression may be modulated by skeletal muscle activity. Our pilot clinical findings performed in young and aged individuals suggest that circulating klotho levels are upregulated in response to an acute exercise bout, but that the response may be dependent on fitness level. A similar upregulation of circulating klotho is also observed in response to an acute exercise in young and old mice, suggesting this may be a good model for mechanistically probing the role of physical activity on klotho expression. Finally, we highlight overlapping signaling pathways that are modulated by both klotho and skeletal muscle and propose potential mechanisms for cross-talk between the two. It is hoped that this review will stimulate further consideration of the relationship between skeletal muscle activity and klotho expression, potentially leading to important insights into the well-documented systemic anti-aging effects of exercise.

  4. Muscle Activity and Muscle Agrin Regulate the Organization of Cytoskeletal Proteins and Attached Acetylcholine Receptor (Achr) Aggregates in Skeletal Muscle Fibers

    OpenAIRE

    Bezakova, Gabriela; Lømo, Terje

    2001-01-01

    In innervated skeletal muscle fibers, dystrophin and β-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of ≥10 nM purified recombinant...

  5. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2004-01-01

    Intramyocellular triacylglycerol (TG) is an important energy store, and the energy content of this depot is higher than the energy content of the muscle glycogen depot. It has recently been shown that the mobilization of fatty acids from this TG pool may be regulated by the neutral lipase hormone...... in skeletal muscle and can be activated by phosphorylation in response to both adrenaline and muscle contractions. Training increases contraction-mediated HSL activation, but decreases adrenaline-mediated HSL activation in muscle....

  6. Bone marrow-derived cell regulation of skeletal muscle regeneration

    OpenAIRE

    Sun, Dongxu; Martinez, Carlo O.; OCHOA, OSCAR; Ruiz-Willhite, Lourdes; Bonilla, Jose R.; Centonze, Victoria E.; Waite, Lindsay L.; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2009-01-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type ...

  7. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle...

  8. Activity-dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)-Dach2-myogenin signal transduction cascade

    OpenAIRE

    Tang, Huibin; Goldman, Daniel

    2006-01-01

    Muscle activity contributes to muscle development and function largely by means of regulated gene expression. Many genes crucial to neuromuscular synapse formation, such as MuSK and nAChRs, are induced before muscle innervation or after muscle denervation, and this induction requires expression of the E-box binding, basic helix–loop–helix muscle-specific transcription factor, myogenin (Mgn). The mechanism by which muscle activity is coupled to gene expression is poorly defined. Here we report...

  9. Up-regulation of lipolysis genes and increased production of AMP-activated protein kinase protein in the skeletal muscle of rats after resistance training.

    Science.gov (United States)

    An, Jae-Heung; Yoon, Jin-Hwan; Suk, Min-Hwa; Shin, Yun-A

    2016-06-01

    The purpose of this study was to investigate the expression of lipogenesis- and lipolysis-related genes and proteins in skeletal muscles after 12 weeks of resistance training. Sprague-Dawley rats (n=12) were randomly divided into control (resting) and resistance training groups. A tower-climbing exercise, in which rats climbed to the top of their cage with a weight applied to their tails, used for resistance training. After 12 weeks, rats from the resistance training group had lower body weights (411.66±14.71 g vs. 478.33±24.63 g in the control), there was no significant difference between the two groups in the concentrations of total cholesterol, and high or low density lipoprotein cholesterol. However, the concentration of triglyceride was lower in resistance-trained rats (59.83±14.05 μg/mL vs 93.33±33.89 μg/mL in the control). The mRNA expression levels of the lipogenesis-related genes sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase were not significantly different between the resistance-trained and control rats; however, mRNA expression of the lipolysis-related carnitine palmitoyl transferase 1 and malonyl-CoA decarboxylase increased significantly with resistance training. AMP-activated protein kinase protein levels also significantly increased in resistance training group compared with in the control group. These results suggested that resistance exercise training contributing to reduced weight gain may be in part be due to increase the lipolysis metabolism and energy expenditure in response to resistance training. PMID:27419110

  10. Regulation of mTOR by mechanically induced signaling events in skeletal muscle.

    Science.gov (United States)

    Hornberger, Troy Alan; Sukhija, Kunal Balu; Chien, Shu

    2006-07-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and the quality of life. Although a link between mechanical stimuli and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process have not been defined. Nevertheless, significant advancements are being made in this field, and it has recently been established that signaling through a rapamycin-sensitive pathway is necessary for mechanically induced growth of skeletal muscle. Since rapamycin is a highly specific inhibitor of a protein kinase called the mammalian target of rapamycin (mTOR), many investigators have concluded that mTOR signaling is necessary for the mechanically induced growth of skeletal muscle. In this review, we have summarized the current knowledge regarding how mechanical stimuli activate mTOR signaling, discussed the newly discovered role of phospholipase D (PLD) and phosphatidic acid (PA) in this pathway, and considered the potential roles of PLD and PA in the mechanical regulation of skeletal muscle mass. PMID:16855395

  11. Skeletal muscle as a regulator of the longevity protein, Klotho

    OpenAIRE

    KeithGAvin; PaulMCoen; DonnaStolz; JohnJDubé; FabrisiaAmbrosio

    2014-01-01

    Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and Klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating Klotho and skeletal muscle has not been investigated. In this paper, we present a review of the liter...

  12. Rac1- a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian;

    2014-01-01

    Muscle contraction stimulates muscle glucose uptake by facilitating translocation of the glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibers. However, the intracellular mechanisms regulating this process are not well....../contraction-stimulated glucose uptake in skeletal muscle, since muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake in skeletal muscle. The molecular mechanisms by which Rac1 regulate glucose uptake is presently unknown. However, recent studies link Rac1 to the...... actin cytoskeleton, the small GTPase RalA, and/or free radical production, which have previously been shown to be regulators of glucose uptake in muscle. We propose a model in which Rac1 is activated by contraction- and exercise-induced stretch signals and that Rac1 in conjunction with other signaling...

  13. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    Science.gov (United States)

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  14. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation

    OpenAIRE

    Ling, Belinda Mei Tze; Bharathy, Narendra; Chung, Teng-Kai; Kok, Wai Kay; Li, SiDe; Tan, Yong Hua; Rao, Vinay Kumar; Gopinadhan, Suma; Sartorelli, Vittorio; Walsh, Martin J.; Taneja, Reshma

    2012-01-01

    Skeletal muscle cells have served as a paradigm for understanding mechanisms leading to cellular differentiation. The proliferation and differentiation of muscle precursor cells require the concerted activity of myogenic regulatory factors including MyoD. In addition, chromatin modifiers mediate dynamic modifications of histone tails that are vital to reprogramming cells toward terminal differentiation. Here, we provide evidence for a unique dimension to epigenetic regulation of skeletal myog...

  15. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J;

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle epinep...... studies have shown that HSL is present in skeletal muscle cells and is stimulated in parallel with glycogen phosphorylase by both epinephrine and contractions. HSL adapts differently to training in muscle compared with adipose tissue....

  16. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Stefan M. Pasiakos

    2012-07-01

    Full Text Available A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  17. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D;

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  18. Oxidative stress (glutathionylation and Na,K-ATPase activity in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available Changes in ion distribution across skeletal muscle membranes during muscle activity affect excitability and may impair force development. These changes are counteracted by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for skeletal muscle function. The present study investigated the presence of oxidative stress (glutathionylation on the Na,K-ATPase in rat skeletal muscle membranes.Immunoprecipitation with an anti-glutathione antibody and subsequent immunodetection of Na,K-ATPase protein subunits demonstrated 9.0±1.3% and 4.1±1.0% glutathionylation of the α isoforms in oxidative and glycolytic skeletal muscle, respectively. In oxidative muscle, 20.0±6.1% of the β1 units were glutathionylated, whereas 14.8±2.8% of the β2-subunits appear to be glutathionylated in glycolytic muscle. Treatment with the reducing agent dithiothreitol (DTT, 1 mM increased the in vitro maximal Na,K-ATPase activity by 19% (P<0.05 in membranes from glycolytic muscle. Oxidized glutathione (GSSG, 0-10 mM increased the in vitro glutathionylation level detected with antibodies, and decreased the in vitro maximal Na,K-ATPase activity in a dose-dependent manner, and with a larger effect in oxidative compared to glycolytic skeletal muscle.This study demonstrates the existence of basal glutathionylation of both the α and the β units of rat skeletal muscle Na,K-ATPase. In addition, the study suggests a negative correlation between glutathionylation levels and maximal Na,K-ATPase activity.Glutathionylation likely contributes to the complex regulation of Na,K-ATPase function in skeletal muscle. Especially, glutathionylation induced by oxidative stress may have a role in Na,K-ATPase regulation during prolonged muscle activity.

  19. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  20. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin

    no single compound can explain exercise hyperemia and indicates that any condition associated with reduced oxygen delivery needs to be investigated independently. Physical activity can attenuate or even counteract the effects of essential hypertension and aging on vascular function and exercise...... importance. The present work provides new insight in to vasodilator interactions important for exercise hyperemia and sheds light on mechanisms important for vascular function and regulation of skeletal muscle blood flow in essential hypertension (high blood pressure) and aging and identifies mechanisms by...... which physical activity affects the function of the vascular network. Conclusion The vasodilators ATP and adenosine stimulate the nitric oxide and prostanoid systems in skeletal muscle. These vasodilator interactions may, at least in part, explain the central role of nitric oxide and prostanoids in the...

  1. Ca2+ Regulation of Rabbit Skeletal Muscle Thin Filament Sliding: Role of Cross-Bridge Number

    OpenAIRE

    Liang, Bo; Chen, Ying; Wang, Chien-Kao; Luo, Zhaoxiong; Regnier, Michael; Gordon, Albert M.; Chase, P. Bryant

    2003-01-01

    We investigated how strong cross-bridge number affects sliding speed of regulated Ca2+-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca2+. Second, we varied the number of Ca2+-activatable troponin complexes at maximal Ca2+ using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient i...

  2. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Jensen, Thomas Elbenhardt; Kleinert, Maximilian; Mouatt, Joshua Roger; Maarbjerg, Stine Just; Jeppesen, Jacob Fuglsbjerg; Prats Gavalda, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik

    2013-01-01

    contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and......In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates...

  3. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...... sensitivity. Consequently, enhanced fat oxidation might be beneficial in counteracting lipid accumulation. Exercise is the most effective way to increase fat oxidation, because it increases metabolic rate. Lipid metabolism can also be altered by dietary manipulations. Thus, a fat rich diet leads to increased...... potential for fat oxidation by increasing the content of several of the proteins in the fat oxidative pathway. The regulation of both exercise and diet induced lipid oxidation will be discussed in this review....

  4. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard;

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...

  5. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

    OpenAIRE

    Dyar, Kenneth A.; Stefano Ciciliot; Guidantonio Malagoli Tagliazucchi; Giorgia Pallafacchina; Jana Tothova; Carla Argentini; Lisa Agatea; Reimar Abraham; Miika Ahdesmäki; Mattia Forcato; Silvio Bicciato; Stefano Schiaffino; Bert Blaauw

    2015-01-01

    Objective: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. Methods: We compared the circadian transcriptomes of two mouse hindlimb muscles wi...

  6. Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo*

    OpenAIRE

    Lee-Young, Robert S; Griffee, Susan R.; Lynes, Sara E.; Bracy, Deanna P.; Julio E Ayala; McGuinness, Owen P.; Wasserman, David H.

    2009-01-01

    AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, w...

  7. Myogenin Regulates Exercise Capacity and Skeletal Muscle Metabolism in the Adult Mouse

    OpenAIRE

    Flynn, Jesse M.; Eric Meadows; Marta Fiorotto; Klein, William H.

    2010-01-01

    Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were ana...

  8. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose......Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid...

  9. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian;

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (p<0.01) lipidation of LC3 (∼50 %) and the LC3-II/LC3-I ratio (∼60 %) indicating that content of autophagosomes decreases with exercise in human muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p<0.01) the LC3-II/LC3-I...

  10. Neural control of glutamine synthetase activity in rat skeletal muscles.

    Science.gov (United States)

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  11. LXRß is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux

    NARCIS (Netherlands)

    Hessvik, N.P.; Boekschoten, M.V.; Baltzersen, M.A.; Kersten, A.H.; Xu, X.; Andersen, H.E.; Rustan, A.C.; Thoresen, G.H.

    2010-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXR and LXRß subtypes in skelet

  12. Sympathetic Activation Induces Skeletal Fgf23 Expression in a Circadian Rhythm-dependent Manner*

    Science.gov (United States)

    Kawai, Masanobu; Kinoshita, Saori; Shimba, Shigeki; Ozono, Keiichi; Michigami, Toshimi

    2014-01-01

    The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism. PMID:24302726

  13. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2+2a) phosphorylation

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Birk, Jesper Bratz; Richter, Erik; Ribel-Madsen, Rasmus; Pehmøller, Christian; Hansen, Bo Falck; Beck-Nielsen, Henning; Hirshman, Michael F; Goodyear, Laurie J; Vaag, Allan; Poulsen, Pernille; Wojtaszewski, Jørgen

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. We previously demonstrated that phosphorylation of Threonine-308 on Akt (pAkt-...

  14. Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    2015-01-01

    Full Text Available Calcium (Ca2+ plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance.

  15. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik; Jensen, Thomas Elbenhardt

    2015-01-01

    Alternatives to the canonical insulin signaling pathway for glucose transport are muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle and passive stretch has been shown to increase muscle glucose transport. However, the signaling mechanism...... regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1 was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport but its role in stretch......-stimulated glucose transport and signaling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in...

  16. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58.

    Science.gov (United States)

    Badin, Pierre-Marie; Loubière, Camille; Coonen, Maarten; Louche, Katie; Tavernier, Geneviève; Bourlier, Virginie; Mairal, Aline; Rustan, Arild C; Smith, Steven R; Langin, Dominique; Moro, Cedric

    2012-05-01

    We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle. PMID:22383684

  17. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58[S

    Science.gov (United States)

    Badin, Pierre-Marie; Loubière, Camille; Coonen, Maarten; Louche, Katie; Tavernier, Geneviève; Bourlier, Virginie; Mairal, Aline; Rustan, Arild C.; Smith, Steven R.; Langin, Dominique; Moro, Cedric

    2012-01-01

    We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (−77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle. PMID:22383684

  18. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  19. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    OpenAIRE

    Yan, Zhen; Okutsu, Mitsuharu; Akhtar, Yasir N.; Lira, Vitor A.

    2010-01-01

    Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive changes are the basis for the improvement of physical performance and other health benefits. This review focuses on recent findings in genetic...

  20. Highly active gauze-supported skeletal nickel catalysts

    OpenAIRE

    Fow, Kam Loon; Ganapathi, Murugan; Stassen, Ivo; Fransaer, Jan; Binnemans, Koen; De Vos, Dirk E.

    2013-01-01

    Gauze-supported skeletal nickel catalysts were prepared by electrodeposition of Ni–Zn alloys from an acetamide–DMSO2–NiCl2–ZnCl2 quaternary melt, followed by chemical or electrochemical leaching of zinc from the alloys. The activity and selectivity of the structured RANEY® nickel surpass those of commercial RANEY® nickel in the hydrogenation of acetophenone.

  1. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease.

    Science.gov (United States)

    Simionescu-Bankston, Adriana; Kumar, Ashok

    2016-08-01

    Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function. PMID:27377406

  2. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    Science.gov (United States)

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  3. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Directory of Open Access Journals (Sweden)

    Burant Charles F

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE, might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise or late recovery (24 h post-exercise time point. Muscle transcription profiles were compared in the resting state between men (n = 6 and women (n = 8, and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females. A logistic regression-based method (LRpath, following Bayesian moderated t-statistic (IMBT, was used to test gene functional groups and biological pathways enriched with differentially expressed genes. Results This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females

  4. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall;

    2002-01-01

    and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin A...

  5. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  6. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass

    OpenAIRE

    Craig A Goodman; Hornberger, Troy A.

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mas...

  7. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.

    Science.gov (United States)

    Goodman, Craig A; Hornberger, Troy A

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mass. Fortunately, our knowledge is rapidly advancing, and in this review, we will summarize recent studies that have expanded our understanding of the roles that Smad signaling and the synthesis of phosphatidic acid play in the regulation of skeletal muscle mass. PMID:24765525

  8. Insights into the molecular mechanism of glucose metabolism regulation under stress in chicken skeletal muscle tissues

    OpenAIRE

    Liu, Wuyi; Zhao, Jingpeng

    2014-01-01

    As substantial progress has been achieved in modern poultry production with large-scale and intensive feeding and farming in recent years, stress becomes a vital factor affecting chicken growth, development, and production yield, especially the quality and quantity of skeletal muscle mass. The review was aimed to outline and understand the stress-related genetic regulatory mechanism, which significantly affects glucose metabolism regulation in chicken skeletal muscle tissues. Progress in curr...

  9. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content...... expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review will...... discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  10. Protein kinase C {alpha} activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle

    DEFF Research Database (Denmark)

    Thomassen, Martin; Rose, Adam John; Jensen, Thomas Elbenhardt;

    2011-01-01

    Exercise induced phosphorylation of FXYD1 is a potential important regulator of Na(+), K(+) pump activity. It was investigated if skeletal muscle contractions induce phosphorylation of FXYD1 and if Protein Kinase C a (PKCa) activity is a prerequisite for this possible mechanism. In part 1, human ...

  11. A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression

    OpenAIRE

    Delling, Ulrike; Tureckova, Jolana; Lim, Hae W.; De Windt, Leon J.; Rotwein, Peter; Molkentin, Jeffery D

    2000-01-01

    The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte different...

  12. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models.

    Science.gov (United States)

    Yakar, Shoshana; Isaksson, Olle

    2016-06-01

    The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis. PMID:26432542

  13. Unraveling the complexities of SIRT1-mediated mitochondrial regulation in skeletal muscle

    OpenAIRE

    Philp, Andrew; Schenk, Simon

    2013-01-01

    SIRT1 is a purported central regulator of skeletal muscle mitochondrial biogenesis. Herein we discuss our recent work utilizing conditional mouse models, which highlight the complexities of SIRT1 biology in vivo, and question its role in regulating mitochondrial function and mitochondrial adaptions to endurance exercise. Further, we discuss the possible contribution of proposed SIRT1 substrates to muscle mitochondrial biogenesis.

  14. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  15. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperemic response remains unexplained. It is plausible...

  16. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

    Science.gov (United States)

    Woldt, Estelle; Sebti, Yasmine; Solt, Laura A.; Duhem, Christian; Lancel, Steve; Eeckhoute, Jérôme; Hesselink, Matthijs K.C.; Paquet, Charlotte; Delhaye, Stéphane; Shin, Youseung; Kamenecka, Theodore M.; Schaart, Gert; Lefebvre, Philippe; Nevière, Rémi; Burris, Thomas P.; Schrauwen, Patrick; Staels, Bart; Duez, Hélène

    2013-01-01

    The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function. PMID:23852339

  17. MicroRNAs in skeletal muscle and their regulation with exercise, ageing and disease

    Directory of Open Access Journals (Sweden)

    Evelyn eZacharewicz

    2013-09-01

    Full Text Available Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs, resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.

  18. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism.

    Science.gov (United States)

    Gordon, Bradley S; Steiner, Jennifer L; Williamson, David L; Lang, Charles H; Kimball, Scot R

    2016-07-01

    Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions. PMID:27189933

  19. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    important. Furthermore, it appears that the pro-angiogeinc factors, eNOS, MMP9, Ang2, and Tie-2 and the angiostatic factors, TIMP-1 and TSP-1 play an important part in modulation the angiogenic response to acute exercise and training in human skeletal muscle thus determining if capillary growth occurs or...... VEGF vesicles being a mechanism for regulating VEGF secretion in response to exercise. Furthermore, the exercise-induced increase in VEGF secretion was shown to be mediated in part through adenosine which is released during contraction, and its receptor A2B which activates the MAPK pathway and in part...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the...

  20. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    Science.gov (United States)

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling. PMID:27267062

  1. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  2. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  3. Decreased phosphofructokinase activity in skeletal muscle of diabetic rats.

    Science.gov (United States)

    Bauer, B A; Younathan, E S

    1984-01-01

    The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators. PMID:6237837

  4. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells.

    Science.gov (United States)

    Lee, Wei-Hwa; Lin, Ren-Jye; Lin, Shyr-Yi; Chen, Yu-Chien; Lin, Hsiu-Ming; Liang, Yu-Chih

    2011-12-28

    AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. Activation of AMPK in skeletal muscles, the liver, and adipose tissues results in a favorable metabolic milieu for preventing and treating type 2 diabetes, i.e., decreased levels of circulating glucose, plasma lipids, and ectopic fat accumulation and enhanced insulin sensitivity. Osthole was extracted from a Chinese herbal medicine, and we found that it had glucose lowering activity in our previous study. However, the detailed glucose lowering mechanisms of osthole are still unclear. In this study, we used skeletal muscle cells to examine the underlying molecular mechanisms of osthole's glucose lowering activity. A Western blot analysis revealed that osthole significantly induced phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). Next, we found that osthole significantly increased the level of translocation of glucose transporter 4 (GLUT4) to plasma membranes and glucose uptake in a dose-dependent manner. Osthole-induced glucose uptake was reversed by treatment with Compound C, an AMPK inhibitor, suggesting that osthole-induced glucose uptake was mediated in an AMPK-dependent manner. The increase in the AMP:ATP ratio was involved in osthole's activation of AMPK. Finally, we found that osthole counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that the increase in the AMP:ATP ratio by osthole triggered activation of the AMPK signaling pathway and led to increases in plasma membrane GLUT4 content and glucose uptake level. Therefore, osthole might have potential as an antidiabetic agent for treating diabetes. PMID:22098542

  5. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle.

    OpenAIRE

    Amirouche, Adel; Durieux, Anne-Cécile; Banzet, Sébastien; Koulmann, Nathalie; Bonnefoy, Régis; Mouret, Catherine; Bigard, Xavier; Peinnequin, André; Freyssenet, Damien

    2009-01-01

    Myostatin, a member of the TGF-beta family, has been identified as a master regulator of embryonic myogenesis and early postnatal skeletal muscle growth. However, cumulative evidence also suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression and that myostatin may contribute to muscle mass loss in adulthood. Two major branches of the Akt pathway are relevant for the regulation of skeletal muscle mass, the Akt/mammalian target of rapamycin ...

  6. Implementation of skeletal muscle model with advanced activation control

    Directory of Open Access Journals (Sweden)

    Kocková H.

    2009-12-01

    Full Text Available The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the implemented composite model (involving the matrix, passive and active fibers is used to perform the isometric, concentric and excentric muscle contraction simulations.

  7. Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle

    OpenAIRE

    Sako, Hiroaki; Yada, Koichi; Suzuki, Katsuhiko

    2016-01-01

    Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of ...

  8. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1

    International Nuclear Information System (INIS)

    The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector

  9. Skeletal muscle sarcolemma in malignant hyperthermia: evidence for a defect in calcium regulation.

    Science.gov (United States)

    Mickelson, J R; Ross, J A; Hyslop, R J; Gallant, E M; Louis, C F

    1987-03-12

    Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may

  10. Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells.

    Science.gov (United States)

    Jensen, L; Schjerling, P; Hellsten, Y

    2004-01-01

    The role of muscle contraction, prostanoids, nitric oxide and adenosine in the regulation of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endothelial cell proliferative compounds in skeletal muscle cell cultures was examined. VEGF and bFGF mRNA, protein release as well as the proliferative effect of extracellular medium was determined in non-stimulated and electro-stimulated rat and human skeletal muscle cells. In rat skeletal muscle cells these aspects were also determined after treatment with inhibitors and/or donors of nitric oxide (NO), prostanoids and adenosine. Electro-stimulation caused an elevation in the VEGF and bFGF mRNA levels of rat muscle cells by 33% and 43% (P < 0.05), respectively, and in human muscle cells VEGF mRNA was elevated by 24%. Medium from electro-stimulated human, but not rat muscle cells induced a 126% higher (P < 0.05) endothelial cell proliferation than medium from non-stimulated cells. Cyclooxygenase inhibition of rat muscle cells induced a 172% increase (P < 0.05) in VEGF mRNA and a 104% increase in the basal VEGF release. Treatment with the NO donor SNAP (0.5 microM) decreased (P < 0.05) VEGF and bFGF mRNA by 42 and 38%, respectively. Medium from SNAP treated muscle cells induced a 45% lower (P < 0.05) proliferation of endothelial cells than control medium. Adenosine enhanced the basal VEGF release from muscle cells by 75% compared to control. The present data demonstrate that contractile activity, NO, adenosine and products of cyclooxygenase regulate the expression of VEGF and bFGF mRNA in skeletal muscle cells and that contractile activity and NO regulate endothelial cell proliferative compounds in muscle extracellular fluid. PMID:15609080

  11. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  12. Regulation of skeletal muscle blood flow during exercise in ageing humans.

    Science.gov (United States)

    Hearon, Christopher M; Dinenno, Frank A

    2016-04-15

    The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium-derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age-associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium-derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin-1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. 'functional sympatholysis'), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium-dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age-associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium-dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887

  13. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  14. The regulation of autophagy during exercise in skeletal muscle.

    Science.gov (United States)

    Vainshtein, Anna; Hood, David A

    2016-03-15

    The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal level of autophagy is constantly ongoing in cells and tissues, ensuring cellular clearance and energy homeostasis. This pathway can be further induced, as a survival mechanism, by cellular perturbations, such as energetic imbalance and oxidative stress. During exercise, a biphasic autophagy response is mobilized, leading to both an acute induction and a long-term potentiation of the process. Posttranslational modifications arising from upstream signaling cascades induce an acute autophagic response during a single bout of exercise by mobilizing core autophagy machinery. A transcriptional program involving the regulators Forkhead box O, transcription factor EB, p53, and peroxisome proliferator coactivator-1α is also induced to fuel sustained increases in autophagic capacity. Autophagy has also been documented to mediate chronic exercise-induced metabolic benefits, and animal models in which autophagy is perturbed do not adapt to exercise to the same extent. In this review, we discuss recent developments in the field of autophagy and exercise. We specifically highlight the molecular mechanisms activated during acute exercise that lead to a prolonged adaptive response. PMID:26679612

  15. TBC1D1 Regulates Insulin- and Contraction-Induced Glucose Transport in Mouse Skeletal Muscle

    OpenAIRE

    Toyoda, Taro; Yu, Haiyan; Fujii, Nobuharu; Hirshman, Michael F.; An, Ding Jeff; Goodyear, Laurie Joy; Taylor, Eric B.

    2010-01-01

    OBJECTIVE: TBC1D1 is a member of the TBC1 Rab-GTPase family of proteins and is highly expressed in skeletal muscle. Insulin and contraction increase TBC1D1 phosphorylation on phospho-Akt substrate motifs (PASs), but the function of TBC1D1 in muscle is not known. Genetic linkage analyses show a TBC1D1 R125W missense variant confers risk for severe obesity in humans. The objective of this study was to determine whether TBC1D1 regulates glucose transport in skeletal muscle. RESEARCH DESIGN AND M...

  16. AP-2α suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    International Nuclear Information System (INIS)

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2α is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2α binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2α-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2α interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2α is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  17. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.

    Science.gov (United States)

    Abramovici, Hanan; Hogan, Angela B; Obagi, Christopher; Topham, Matthew K; Gee, Stephen H

    2003-11-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis. PMID:14551255

  18. Adiponectin Increases Skeletal Muscle Mitochondrial Biogenesis by Suppressing Mitogen-Activated Protein Kinase Phosphatase-1

    OpenAIRE

    Qiao, Liping; Kinney, Brice; Yoo, Hyung sun; Lee, Bonggi; Schaack, Jerome; Shao, Jianhua

    2012-01-01

    Adiponectin enhances mitochondrial biogenesis and oxidative metabolism in skeletal muscle. This study aimed to investigate the underlying mechanisms through which adiponectin induces mitochondrial biogenesis in skeletal muscle. Mitochondrial contents, expression, and activation status of p38 mitogen-activated protein kinase (MAPK) and PPARγ coactivator 1α (PGC-1α) were compared between skeletal muscle samples from adiponectin gene knockout, adiponectin-reconstituted, and control mice. Adenovi...

  19. Conservation of Skeletal Regulators in the Fish Model Medaka (Oryzias latipes)

    Science.gov (United States)

    Wagner, T.; Renn, J.; Koester, R.; Goerlich, R.; Schartl, M.; Winkler, C.

    Small aquarium fish species, like the well known zebrafish (Danio rerio) and the related Medaka (Oryzias latipes) represent vertebrate models that offer many advantages to study biomineralization in vivo. These fish produce large numbers of completely transparent embryos, thus allowing real-time analysis of skeletal development in living specimens. Using the calcium-binding fluorochrome Calcein and confocal laser scanning microscopy in Medaka, we followed the formation of calcified bone from day 6 of embryonic development until day 20 post hatching. To establish fish as models for human bone disease, we furthermore isolated 11 genes in medaka, the orthologs of which are known to be important regulators of osteoblast, osteoclast and chondrocyte formation in human. We show that these genes are highly conserved between fish and mammals in both sequence and expression pattern. This includes osteonectin, the major non-collagenous component of the mammalian bone matrix. Medaka osteonectin is expressed in osteoblasts and chondrocytes, e.g. in the developing vertebrae. For functional characterization of all these skeletal factors, they are ectopically expressed after gene transfer into fish embryos and their effect on bone formation is analyzed by Calcein staining in developing fish in vivo. Alternatively, the activity of these factors can be blocked by antisense oligonucleotide mediated gene knock-down. In addition, the Medaka offers the unique opportunity to study biomineralization processes in fish in vitro by using embryonic stem (ES) cells. In an approach to study calcification events at the cellular level, candidate genes will be ectopically expressed in these ES cells, thereby driving differentiation of stem cells into the osteoblast lineage. Acknowledgement: This work is supported by the German Aerospace Center (DLR) (50 WB 0152) and the European Space Agency (AO-LS-99-MAP-LSS-003).

  20. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  1. Molecular regulation of skeletal muscle myosin heavy chain isoforms

    OpenAIRE

    Brown, David M.

    2015-01-01

    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  2. Lower physical activity is associated with fat infiltration within skeletal muscle in young girls

    Science.gov (United States)

    Fat infiltration within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Lower physical activity may be a risk factor for greater fat infiltration within skeletal muscle, although whether lower physical activity is associated with fat infiltrati...

  3. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten; Nordsborg, Nikolai Baastrup; Bangsbo, Jens

    2014-01-01

    P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle....

  4. Conditional Activation of Akt in Adult Skeletal Muscle Induces Rapid Hypertrophy

    OpenAIRE

    Lai, Ka-Man V.; Gonzalez, Michael; Poueymirou, William T.; Kline, William O.; Na, Erqian; Zlotchenko, Elizabeth; Stitt, Trevor N.; Economides, Aris N.; Yancopoulos, George D.; Glass, David J.

    2004-01-01

    Skeletal muscle atrophy is a severe morbidity caused by a variety of conditions, including cachexia, cancer, AIDS, prolonged bedrest, and diabetes. One strategy in the treatment of atrophy is to induce the pathways normally leading to skeletal muscle hypertrophy. The pathways that are sufficient to induce hypertrophy in skeletal muscle have been the subject of some controversy. We describe here the use of a novel method to produce a transgenic mouse in which a constitutively active form of Ak...

  5. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    Science.gov (United States)

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  6. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W;

    2011-01-01

    R-26a, and miR-451, from the weighted cumulative context ranking methodology, indicated that miRNA changes in the low responders may be compensatory, reflecting a failure to "activate" growth and remodeling genes. We report, for the first time, that RT-induced hypertrophy in human skeletal muscle...

  7. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy.

    Directory of Open Access Journals (Sweden)

    Charlotte Suetta

    Full Text Available Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2-4 days of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days and a ~10% decrease in myofiber size (4 days. Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days of immobilization. In contrast, Akt phosphorylation was unchanged in old muscle after 2 days and increased after 4 days of immobilization. Further, an age-specific down-regulation of MuRF-1 and Atrogin-1 expression levels was observed following 2 weeks of immobilization, along with a slowing atrophy response in aged skeletal muscle. Neither the immediate loss of muscle mass, nor the subsequent age-differentiated signaling responses could be explained by changes in inflammatory mediators, apoptosis markers or autophagy indicators. Collectively, these findings indicate that the time-course and regulation of human skeletal muscle atrophy is age dependent, leading to an attenuated loss in aging skeletal muscle when exposed to longer periods of immobility-induced disuse.

  8. In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone

    OpenAIRE

    Clément, Karine; Viguerie, Nathalie; Diehn, Maximilian; Alizadeh, Ash; Barbe, Pierre; Thalamas, Claire; Storey, John D.; Brown, Patrick O; Barsh, Greg S.; Langin, Dominique

    2002-01-01

    Thyroid hormones are key regulators of metabolism that modulate transcription via nuclear receptors. Hyperthyroidism is associated with increased metabolic rate, protein breakdown, and weight loss. Although the molecular actions of thyroid hormones have been studied thoroughly, their pleiotropic effects are mediated by complex changes in expression of an unknown number of target genes. Here, we measured patterns of skeletal muscle gene expression in five healthy men treated for 14 days with 7...

  9. Regulation of Nutrient Metabolism in Equine Skeletal Muscle and Adipose Tissue

    OpenAIRE

    Suagee, Jessica Kanekakenre

    2010-01-01

    Glucose and lipid metabolism are dysregulated in obese horses. Altered glucose metabolism is evidenced by the development of insulin resistance and increased fasting plasma insulin concentrations (hyperinsulinemia) while altered lipid metabolism is evidenced by increased plasma lipid concentrations. Obesity in horses also increases the risk of the painful hoof disease, laminitis. Three experiments were performed to investigate the regulation of nutrient metabolism in skeletal muscle and adip...

  10. Diacylglycerol Kinase-ζ Localization in Skeletal Muscle Is Regulated by Phosphorylation and Interaction with Syntrophins

    OpenAIRE

    Abramovici, Hanan; Hogan, Angela B.; Obagi, Christopher; Topham, Matthew K.; Gee, Stephen H.

    2003-01-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-ζ (DGK-ζ), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-ζ form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-ζ MARCKS domain. DGK-ζ mutants that do not ...

  11. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    OpenAIRE

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2007-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidativ...

  12. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    OpenAIRE

    Suryawan, Agus; Davis, Teresa A.

    2014-01-01

    Background The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) e...

  13. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    International Nuclear Information System (INIS)

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erbβΔE in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erbβΔE expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erbβ siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erbβ expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erbβ was recruited to the Srebp-1c promoter. Moreover, Rev-erbβ trans-activated the Srebp-1c promoter, in contrast, Rev-erbβ efficiently repressed the Rev-erbα promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erbβ; and (ii) increased Rev-erbβ and Srebp-1c mRNA expression. These data suggest that Rev-erbβ has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  14. Skeletal muscle interleukin-6 regulates metabolic factors in iWAT during HFD and exercise training

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Bertholdt, Lærke; Joensen, Ella;

    2015-01-01

    OBJECTIVE: To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. METHODS: Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6(loxP/loxP) (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in...... combination with exercise training (HFD ExTr) for 16 weeks. RESULTS: Total fat mass increased (P < 0.05) in both genotypes with HFD. However, HFD IL-6 MKO mice had lower (P < 0.05) inguinal adipose tissue (iWAT) mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP...... activated protein kinase (AMPK)(Thr172) phosphorylation, and fatty acid synthase (FAS) mRNA content were lower (P < 0.05) in IL-6 MKO than Floxed mice on Chow. In addition, iWAT AMPK(Thr172) and hormone-sensitive lipase (HSL)(Ser565) phosphorylation as well as perilipin protein content was higher (P < 0...

  15. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes.

    Science.gov (United States)

    Laughlin, M Harold

    2016-01-01

    This manuscript summarizes and discusses adaptations of skeletal muscle vasculature induced by physical activity and applies this understanding to benefits of exercise in prevention and treatment of type 2 diabetes (T2D). Arteriolar trees of skeletal muscle are heterogeneous. Exercise training increases capillary exchange and blood flow capacities. The distribution of vascular adaptation to different types of exercise training are influenced by muscle fiber type composition and fiber recruitment patterns that produce different modes of exercise. Thus training-induced adaptations in vascular structure and vascular control in skeletal muscle are not homogeneously distributed throughout skeletal muscle or along the arteriolar tree within a muscle. Results summarized indicate that similar principles apply to vascular adaptation in skeletal muscle in T2D. It is concluded that exercise training-induced changes in vascular gene expression differ along the arteriolar tree and by skeletal muscle fiber type composition. Results suggest that it is unlikely that hemodynamic forces are the only exercise-induced signals mediating the regulation of vascular gene expression. In patients with T2D, exercise training is perhaps the most effective treatment of the many related symptoms. Training-induced changes in the vasculature and in insulin signaling in the muscle fibers and vasculature augment glucose and insulin delivery as well as glucose uptake. If these adaptations occur in a sufficient amount of muscle mass, exposure to hyperglycemia and hyperinsulinemia will decrease along with the risk of microvascular complications throughout the body. It is postulated that exercise sessions in programs of sufficient duration, that engage as much skeletal muscle mass as possible, and that recruit as many muscle fibers within each muscle as possible will produce the greatest benefit. The added benefit of combined resistance and aerobic training programs and of high-intensity exercise

  16. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Thiele, Maja; Hillig, Thore;

    2006-01-01

    5'AMP-activated protein kinase (AMPK) is an energy sensor activated by perturbed cellular energy status such as during muscle contraction. Activated AMPK is thought to regulate several key metabolic pathways. We used sex comparison to investigate whether AMPK signalling in skeletal muscle regulat...

  17. Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α.

    Science.gov (United States)

    Kanda, Atsushi; Ishijima, Tomoko; Shinozaki, Fumika; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Nakai, Yuji; Abe, Keiko; Kawahata, Keiko; Ikegami, Shuji

    2014-06-28

    We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague-Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate-amino acid diet or a carbohydrate-WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, 'regulation of ATPase activity' and 'immune response'. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α. PMID:24598469

  18. Post-Meal Responses of Elongation Factor 2 (eEF2) and Adenosine Monophosphate-Activated Protein Kinase (AMPK) to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    OpenAIRE

    Layman, Donald K; Anthony, Tracy G.; Garlick, Peter J.; Wilson, Gabriel J; Moulton, Christopher J

    2012-01-01

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements ...

  19. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    Science.gov (United States)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  20. Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation.

    Science.gov (United States)

    Naimi, Madina; Tsakiridis, Theodoros; Stamatatos, Theocharis C; Alexandropoulos, Dimitris I; Tsiani, Evangelia

    2015-04-01

    Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation. PMID:25794239

  1. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    vanadate (NaVO3) on glucose transporter (GLUT4) intrinsic activity (V(max) = intrinsic activity x [GLUT4 protein]) was studied in muscle plasma membrane giant vesicles. Giant vesicles (average diameter 7.6 microns) were produced by collagenase treatment of rat skeletal muscle. The vesicles were incubated......) 55% and 60%, respectively, compared with control. The plasma membrane GLUT4 protein content was not changed in response to vanadate. It is concluded that vanadate decreased glucose transport per GLUT4 (intrinsic activity). This finding suggests that regulation of glucose transport in skeletal muscle......Maximally effective concentrations of vanadate (a phosphotyrosine phosphatase inhibitor) increase glucose transport in muscle less than maximal insulin stimulation. This might be due to vanadate-induced decreased intrinsic activity of GLUT4 accompanying GLUT4 translocation. Thus, the effect of...

  2. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  3. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    Although many effects of both acute and chronic hypoxia on the circulation are well characterized, the distribution and regulation of blood flow (BF) heterogeneity in skeletal muscle during systemic hypoxia is not well understood in humans. We measured muscle BF within the thigh muscles of nine...... to curtail BF increments in areas other than working skeletal muscles, but this effect is not potentiated in moderate systemic hypoxia during small muscle mass exercise....... healthy young men using positron emission tomography during one-leg dynamic knee extension exercise in normoxia and moderate physiological systemic hypoxia (14% O(2) corresponding to approximately 3,400 m of altitude) without and with local adenosine receptor inhibition with femoral artery infusion...

  4. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen;

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  5. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23 Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shimoda

    Full Text Available Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23 is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.

  6. Bioelectrochemical control mechanism with variable——frequency regulation for skeletal muscle contraction——Biomechanics of skeletal muscle based on the working mechanism of myosin motors (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    YIN YueHong; CHEN Xing

    2012-01-01

    This paper presents a bioelectrochemical model for the activation of action potentials on sarcolemma and variation of Ca2+ concentration in sarcomeres of skeletal muscle fibers.The control mechanism of muscle contraction generated by collective motion of molecular motors is elucidated from the perspective of variable-frequency regulation,and action potential with variable frequency is proposed as the control signal to directly regulate Ca2+ concentration and indirectly control isomctric tension.Furthermore,the transfer function between stimulation frequency and Ca2+ concentration is deduced,and the frequency domain properties of muscle contraction are analyzed.Moreover the conception of "electro-muscular time constant" is defined to denote the minimum delay time from electric stimulation to muscle contraction.Finally,the experimental research aiming at the relation between tension and stimulation frequency of action potential is implemented to verify the proposed variable-frequency control mechanism,whose effectiveness is proved by good consistence between experimental and theoretical results.

  7. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    DEFF Research Database (Denmark)

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus;

    2013-01-01

    receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation of......-18 into skeletal muscle activated AMPK and concomitantly inhibited high fat diet-induced weight gain. In summary IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis....

  8. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    Science.gov (United States)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We

  9. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  10. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

    OpenAIRE

    Aronson, D; Violan, M A; Dufresne, S D; Zangen, D; FIELDING, R.A.; Goodyear, L J

    1997-01-01

    Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pat...

  11. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation

    OpenAIRE

    Sotiropoulos, Athanassia; Ohanna, Mickaël; Kedzia, Cécile; Menon, Ram K.; Kopchick, John J.; Kelly, Paul A; Pende, Mario

    2006-01-01

    Growth hormone (GH) participates in the postnatal regulation of skeletal muscle growth, although the mechanism of action is unclear. Here we show that the mass of skeletal muscles lacking GH receptors is reduced because of a decrease in myofiber size with normal myofiber number. GH signaling controls the size of the differentiated myotubes in a cell-autonomous manner while having no effect on size, proliferation, and differentiation of the myoblast precursor cells. The GH hypertrophic action ...

  12. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions.

    Science.gov (United States)

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Sanoudou, Despina

    2015-07-15

    Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds. PMID:25936993

  13. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair.

    Science.gov (United States)

    Deng, Yujie; Wu, Ailing; Li, Pikshan; Li, Gang; Qin, Ling; Song, Hai; Mak, Kinglun Kingston

    2016-03-01

    Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration. PMID:26923596

  14. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair

    Directory of Open Access Journals (Sweden)

    Yujie Deng

    2016-03-01

    Full Text Available Hippo signaling controls organ size and tissue regeneration in many organs, but its roles in chondrocyte differentiation and bone repair remain elusive. Here, we demonstrate that Yap1, an effector of Hippo pathway inhibits skeletal development, postnatal growth, and bone repair. We show that Yap1 regulates chondrocyte differentiation at multiple steps in which it promotes early chondrocyte proliferation but inhibits subsequent chondrocyte maturation both in vitro and in vivo. Mechanistically, we find that Yap1 requires Teads binding for direct regulation of Sox6 expression to promote chondrocyte proliferation. In contrast, Yap1 inhibits chondrocyte maturation by suppression of Col10a1 expression through interaction with Runx2. In addition, Yap1 also governs the initiation of fracture repair by inhibition of cartilaginous callus tissue formation. Taken together, our work provides insights into the mechanism by which Yap1 regulates endochondral ossification, which may help the development of therapeutic treatment for bone regeneration.

  15. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren; Mikkelsen, Ulla R; Dideriksen, Kasper J; Agergaard, Jakob; Kreiner, Frederik; Pott, Frank C; Schjerling, Peter; Kjaer, Michael

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  16. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. PMID:26902174

  17. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise

    Directory of Open Access Journals (Sweden)

    Jørgen eJensen

    2011-12-01

    Full Text Available Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (~500 g and the liver (~100 g. Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycaemic clamp, 70-90 % of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70 % of maximal oxygen uptake (VO2max and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favour glycogen repletion and preparation for new fight or flight events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channelled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type

  18. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Si Young Cho

    Full Text Available Although Artemisia iwayomogi (AI has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1 and pyruvate dehydrogenase kinase isozyme 4 (PDK4, and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity.

  19. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression.

    Science.gov (United States)

    Goljanek-Whysall, Katarzyna; Iwanejko, Lesley A; Vasilaki, Aphrodite; Pekovic-Vaughan, Vanja; McDonagh, Brian

    2016-08-01

    Ageing is associated with a progressive loss of skeletal muscle mass, quality and function-sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia. PMID:27215643

  20. Regulation of dihydropyridine receptor gene expression in mouse skeletal muscles by stretch and disuse.

    Science.gov (United States)

    Radzyukevich, Tatiana L; Heiny, Judith A

    2004-11-01

    This study examined dihydropyridine receptor (DHPR) gene expression in mouse skeletal muscles during physiological adaptations to disuse. Disuse was produced by three in vivo models-denervation, tenotomy, and immobilization-and DHPR alpha1s mRNA was measured by quantitative Northern blot. After 14-day simultaneous denervation of the soleus (Sol), tibialis anterior (TA), extensor digitorum longus (EDL), and gastrocnemius (Gastr) muscles by sciatic nerve section, DHPR mRNA increased preferentially in the Sol and TA (+1.6-fold), whereas it increased in the EDL (+1.6-fold) and TA (+1.8-fold) after selective denervation of these muscles by peroneal nerve section. It declined in all muscles (-1.3- to -2.6-fold) after 14-day tenotomy, which preserves nerve input but removes mechanical tension. Atrophy was comparable in denervated and tenotomized muscles. These results suggest that factor(s) in addition to inactivity per se, muscle phenotype, or associated atrophy can regulate DHPR gene expression. To test the contribution of passive tension to this regulation, we subjected the same muscles to disuse by limb immobilization in a maximally dorsiflexed position. DHPR alpha1s mRNA increased in the stretched muscles (Sol, +2.3-fold; Gastr, +1.5-fold) and decreased in the shortened muscles (TA, -1.4-fold; EDL, -1.3-fold). The effect of stretch was confirmed in vitro. DHPR protein did not change significantly after 4-day immobilization, suggesting that additional levels of regulation may exist. These results demonstrate that DHPR alpha1s gene expression is regulated as an integral part of the adaptive response of skeletal muscles to disuse in both slow- and fast-twitch muscles and identify passive tension as an important signal for its regulation in vivo. PMID:15294855

  1. Intracellular MMP-2 Activity in Skeletal Muscle is Associated with Type II Fibers

    OpenAIRE

    Hadler-Olsen, Elin Synnøve; Solli, Ann Iren; Hafstad, Anne Dragøy; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2014-01-01

    Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme implicated in motility, differentiation, and regeneration of skeletal muscle fibers through processing of extracellular substrates. Although MMP-2 has been found to be localized intracellularly in cardiomyocytes where the enzyme is thought to contribute to post-ischemic loss of contractility, little is known about intracellular MMP-2 activity in skeletal muscle fibers. In the present study we demonstrate intracellular MMP-2 in normal ...

  2. Evaluation of skeletal muscle satellite cell activity in rodent models depicting muscle hypertrophy and atrophy

    OpenAIRE

    Sidique, Idris L.

    2013-01-01

    Satellite cells are muscle-specific progenitor cells involved in the routine maintenance of skeletal muscle homeostasis, growth and regeneration. They are activated by various stimuli (myotrauma, growth factors etc), undergo rounds of proliferation as skeletal muscle myoblasts, to differentiate and fuse with each other to generate new myotubes or onto existing myofibres to augment growth or repair damaged fibres. Satellite cells contribute to hypertrophy by facilitating nuclear addition, whic...

  3. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena;

    2014-01-01

    Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant sys...... underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG....... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included....... Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal...

  4. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte; Hansen, Torben; Pedersen, Oluf; Groop, Leif; Vaag, Allan; Poulsen, Pernille

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle......-32 years) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was...... low, and FTO expression was not influenced by FTO rs9939609 genotype. FTO mRNA expression in skeletal muscle was regulated by age and sex, whereas age and BMI were predictors of adipose tissue FTO mRNA expression. FTO mRNA expression in adipose tissue was associated with an atherogenic lipid profile...

  5. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients.

    Directory of Open Access Journals (Sweden)

    Jakob G Jespersen

    Full Text Available BACKGROUND: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR, glycogen synthase kinase 3β (GSK3β and forkhead box O (FoxO pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU patients compared with healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, and muscle ring finger protein 1 (MuRF1; and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1, FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p<0.05 between insulin infusion dose and phosphorylated Akt was demonstrated. CONCLUSIONS/SIGNIFICANCE: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.

  6. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Institute of Scientific and Technical Information of China (English)

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  7. Post-Meal Responses of Elongation Factor 2 (eEF2 and Adenosine Monophosphate-Activated Protein Kinase (AMPK to Leucine and Carbohydrate Supplements for Regulating Protein Synthesis Duration and Energy Homeostasis in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Donald K. Layman

    2012-11-01

    Full Text Available Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2. This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0 or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270, 80:40:40 mg leucine, isoleucine, and valine (Leu80, 2.63 g carbohydrates (CHO2.6, 1 g carbohydrates (CHO1.0, or water (Sham control. Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0, but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to

  8. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Georgi Z Genchev

    Full Text Available The interaction between calcium and the regulatory site(s of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N(2-OE(12/N(9-OE(12 in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.

  9. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. PMID:26186946

  10. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation.

    Science.gov (United States)

    Schwalm, Céline; Jamart, Cécile; Benoit, Nicolas; Naslain, Damien; Prémont, Christophe; Prévet, Jérémy; Van Thienen, Ruud; Deldicque, Louise; Francaux, Marc

    2015-08-01

    In humans, nutrient deprivation and extreme endurance exercise both activate autophagy. We hypothesized that cumulating fasting and cycling exercise would potentiate activation of autophagy in skeletal muscle. Well-trained athletes were divided into control (n = 8), low-intensity (LI, n = 8), and high-intensity (HI, n = 7) exercise groups and submitted to fed and fasting sessions. Muscle biopsy samples were obtained from the vastus lateralis before, at the end, and 1 h after a 2 h LI or HI bout of exercise. Phosphorylation of ULK1(Ser317) was higher after exercise (P diet. PMID:25957282

  11. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  12. Effects of exercise training on regulation of skeletal muscle glucose metabolism in elderly men

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Olesen, Jesper; Gliemann, Lasse;

    2015-01-01

    dehydrogenase (PDH)-E1α, PDK2 protein, and glycogen content in skeletal muscle. Furthermore, in response to glucose, GS activity was increased and the dephosphorylation of GS site 2 + 2a and 3a was enhanced after the training intervention. The glucose-mediated insulin stimulation of TBC1D4 Thr(642...... glucose tolerance test (OGTT) and a muscle biopsy was obtained from the vastus lateralis before and 45 minutes into the OGTT. Blood samples were collected before and up to 120 minutes after glucose intake. RESULTS: Exercise training increased Hexokinase II, GLUT4, Akt2, glycogen synthase (GS), pyruvate...

  13. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.

    1993-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  14. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation.

    Science.gov (United States)

    Fusi, Luca; Huang, Zhe; Irving, Malcolm

    2015-08-18

    In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads. PMID:26287630

  15. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  16. Dchs1–Fat4 regulation of polarized cell behaviours during skeletal morphogenesis

    OpenAIRE

    Mao, Yaopan; Kuta, Anna; Crespo-Enriquez, Ivan; Whiting, Danielle; Martin, Tina; Mulvaney, Joanna; Irvine, Kenneth D.; Francis-West, Philippa

    2016-01-01

    Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1-Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes...

  17. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  18. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Donsmark, Morten; Thiele, Maja; Vistisen, Bodil; Stewart, Greg; Vissing, Kristian; Schjerling, Peter; Hardie, D. Grahame; Galbo, Henrik; Kiens, Bente

    2006-01-01

    significantly (r = 0.72, P = 0.001). Muscle HSL mRNA (80%, P = 0.11) and protein content (50%, P < 0.05) were higher in women than in men. HSL total activity increased during exercise (47%, P < 0.05) but did not differ between sexes. Accordingly, HSL specific activity (HSL activity per HSL protein content......Women have been shown to use more intramuscular triacylglycerol (IMTG) during exercise than men. To investigate whether this could be due to sex-specific regulation of hormone-sensitive lipase (HSL) and to use sex comparison as a model to gain further insight into HSL regulation, nine women and...... than in women during the end of the exercise bout (P < 0.05). We conclude that, although HSL expression and Ser(659) phosphorylation in skeletal muscle during exercise is sex specific, total muscle HSL activity measured in vitro was similar between sexes. The higher basal IMTG content in women compared...

  19. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of 125I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I50's for WGA-purified IR from rat fat and liver were 10 times the I50 for muscle IR. The I50 for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 900C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle

  20. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  1. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail;

    2013-01-01

    Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here......, we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates...

  2. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore;

    2005-01-01

    Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H-CHO) ...

  3. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  4. Does regulation of skeletal muscle function involve circulating microRNAs?

    Directory of Open Access Journals (Sweden)

    Wataru eAoi

    2014-02-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs involved in posttranscriptional gene regulation. Recently, growing evidence has shown that miRNAs are taken in by intracellular exosomes, secreted into circulation, and taken up by other cells. Circulating levels of several miRNAs are changed in diseases such as cancer, diabetes, and cardiovascular diseases; therefore, they are suggested to regulate functions of the recipient cells by modulating protein expression. Circulating miRNAs (c-miRNAs may also modulate skeletal muscle function in physiological and pathological conditions. It has been suggested that acute and chronic exercise transiently or adaptively changes the level of c-miRNAs, thus posttranscriptionally regulating proteins associated with energy metabolism, myogenesis, and angiogenesis. Circulating levels of several miRNAs that are enriched in muscle are altered in muscle disorders and may be involved in their development and progression. In addition, such c-miRNAs may be useful as biomarkers to determine various interactions between tissues and also to reflect athletic performance, physical fatigue, incidence risk, and development of diseases.

  5. A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle.

    Science.gov (United States)

    Nattrass, G S; Cafe, L M; McIntyre, B L; Gardner, G E; McGilchrist, P; Robinson, D L; Wang, Y H; Pethick, D W; Greenwood, P L

    2014-02-01

    The objective of this study was to investigate whether single nucleotide polymorphisms (SNP) in the calpain 1 (CAPN1), calpain 3 (CAPN3) and calpastatin (CAST) genes, which have been shown to be associated with shear force and tenderness differences in the skeletal muscle of cattle, contribute to phenotypic variation in muscle tenderness by modulating the transcriptional activity of their respective gene. The mRNA expression of the calpain and CAST genes was assessed in the longissimus lumborum muscle (LLM) of cattle from two herds located in distinct production zones on the east (New South Wales, NSW) and west (Western Australia, WA) of Australia. The cattle in the herds were mainly Brahman cattle (Bos indicus) with smaller populations of Angus cattle (Bos taurus). There were 191 steers in the WA herd and 107 steers and 106 heifers in the NSW herd. These herds were established by choosing cattle from the diverse population which had different single nucleotide polymorphism (SNP) genotypes at the CAPN1, CAPN3 and CAST loci. Using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the transcriptional activities of the CAPN1 and the CAST genes, but not the CAPN3 gene, were found to differ between favorable, positively associated with tenderness, and unfavorable, negatively associated with tenderness, allelic variants of these genes. These findings suggest that the muscle shear force and consumer taste panel differences in tenderness explained by the CAPN1 and CAST gene markers are a consequence of alterations in their mRNA levels, which may ultimately influence the protein activity of these genes, thereby altering the rate and(or) the extent of postmortem proteolysis in skeletal muscle. Of particular importance were the significantly lower type II and type III CAST 5' splice variant mRNA levels that were detected in the LLM muscle of Brahman and Angus cattle with 2 favourable alleles of the CAST:c.2832A > G polymorphism. Moreover, a reduction in

  6. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity

    Science.gov (United States)

    Bey, Lionel; Akunuri, Nagabhavani; Zhao, Po; Hoffman, Eric P.; Hamilton, Deborah G.; Hamilton, Marc T.

    2003-01-01

    Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.

  7. Studies on the regulation of human skeletal muscle lipolysis in vivo

    OpenAIRE

    Quisth, Veronica

    2004-01-01

    Intramuscular triglyceride deposits are a significant energy source, and are considered to be of importance in the pathogenesis of skeletal muscle insulin resistance. In contrast to adipose tissue, the lipolytic process in skeletal muscle is not well characterised. Lipolysis in adipose tissue is stimulated by catecholamines, suppressed by insulin and is known to vary between different regions. The aim of this thesis was to study skeletal muscle lipolysis by determining w...

  8. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria;

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  9. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle

    NARCIS (Netherlands)

    Schmitz, J. P. J.; Groenendaal, W.; Wessels, B.; Wiseman, R. W.; Hilbers, P. A. J.; Nicolay, K.; Prompers, J. J.; Jeneson, J. A. L.; van Riel, N. A. W.

    2013-01-01

    Schmitz JP, Groenendaal W, Wessels B, Wiseman RW, Hilbers PA, Nicolay K, Prompers JJ, Jeneson JA, van Riel NA. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol 304: C180-C193, 2013. First published October 31, 2012; d

  10. Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle.

    Science.gov (United States)

    Zhang, Peixiang; Verity, M Anthony; Reue, Karen

    2014-08-01

    LPIN1 encodes lipin-1, a phosphatidic acid phosphatase (PAP) enzyme that catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerol. Homozygous LPIN1 gene mutations cause severe rhabdomyolysis, and heterozygous LPIN1 missense mutations may promote statin-induced myopathy. We demonstrate that lipin-1-related myopathy in the mouse is associated with a blockade in autophagic flux and accumulation of aberrant mitochondria. Lipin-1 PAP activity is required for maturation of autolysosomes, through its activation of the protein kinase D (PKD)-Vps34 phosphatidylinositol 3-kinase signaling cascade. Statin treatment also reduces PKD activation and autophagic flux, which are compounded by diminished mammalian target of rapamycin (mTOR) abundance in lipin-1-haploinsufficent and -deficient muscle. Lipin-1 restoration in skeletal muscle prevents myonecrosis and statin toxicity in vivo, and activated PKD rescues autophagic flux in lipin-1-deficient cells. Our findings identify lipin-1 PAP activity as a component of the macroautophagy pathway and define the basis for lipin-1-related myopathies. PMID:24930972

  11. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats.

    Science.gov (United States)

    Gilbert, Anna; Wyczalkowska-Tomasik, Aleksandra; Zendzian-Piotrowska, Malgorzata; Czarkowska-Paczek, Bozena

    2016-01-01

    Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10) and trained (n=10; 6 weeks of endurance training with increasing load) groups. Gene expression was evaluated via qRT-PCR. Elastin content was measured via enzyme-linked immunosorbent assay and enzyme activity was measured fluorometrically. Elastin content was significantly higher in skeletal (P=0.0014) and heart muscle (P=0.000022) from trained rats versus untrained rats, but not in the aorta. Although mRNA levels in skeletal muscle did not differ between groups, the activities of elastase (P=0.0434), cathepsin K (P=0.0343) and plasmin (P=0.000046) were higher in trained rats. The levels of cathepsin K (P=0.0288) and plasminogen (P=0.0005) mRNA were higher in heart muscle from trained rats, but enzyme activity was not. Enzyme activity in the aorta did not differ between groups. Increased elastin content in muscles may result in better adaption to exercise, as may remodeling of the extracellular matrix in skeletal muscle. PMID:27069251

  12. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats

    Directory of Open Access Journals (Sweden)

    Anna Gilbert

    2016-05-01

    Full Text Available Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10 and trained (n=10; 6 weeks of endurance training with increasing load groups. Gene expression was evaluated via qRT-PCR. Elastin content was measured via enzyme-linked immunosorbent assay and enzyme activity was measured fluorometrically. Elastin content was significantly higher in skeletal (P=0.0014 and heart muscle (P=0.000022 from trained rats versus untrained rats, but not in the aorta. Although mRNA levels in skeletal muscle did not differ between groups, the activities of elastase (P=0.0434, cathepsin K (P=0.0343 and plasmin (P=0.000046 were higher in trained rats. The levels of cathepsin K (P=0.0288 and plasminogen (P=0.0005 mRNA were higher in heart muscle from trained rats, but enzyme activity was not. Enzyme activity in the aorta did not differ between groups. Increased elastin content in muscles may result in better adaption to exercise, as may remodeling of the extracellular matrix in skeletal muscle.

  13. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the stria...

  14. Regulation of myostatin activity and muscle growth

    OpenAIRE

    Lee, Se-Jin; McPherron, Alexandra C.

    2001-01-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may have applications for promoting muscle growth, we investigated the regulation of myostatin signaling. Myostatin protein purified from mammalian cells consisted of a noncovalently held complex of the N-terminal propeptide and a disulfide-linked dimer of C-terminal fragments. The purified C-terminal myostatin dimer was capable of...

  15. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    Science.gov (United States)

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  16. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice.

    Directory of Open Access Journals (Sweden)

    Adeel Safdar

    Full Text Available MicroRNAs (miRNAs are evolutionarily conserved small non-coding RNA species involved in post-transcriptional gene regulation. In vitro studies have identified a small number of skeletal muscle-specific miRNAs which play a crucial role in myoblast proliferation and differentiation. In skeletal muscle, an acute bout of endurance exercise results in the up-regulation of transcriptional networks that regulate mitochondrial biogenesis, glucose and fatty acid metabolism, and skeletal muscle remodelling. The purpose of this study was to assess the expressional profile of targeted miRNA species following an acute bout of endurance exercise and to determine relationships with previously established endurance exercise responsive transcriptional networks. C57Bl/6J wild-type male mice (N = 7/group were randomly assigned to either sedentary or forced-endurance exercise (treadmill run @ 15 m/min for 90 min group. The endurance exercise group was sacrificed three hours following a single bout of exercise. The expression of miR- 181, 1, 133, 23, and 107, all of which have been predicted to regulate transcription factors and co-activators involved in the adaptive response to exercise, was measured in quadriceps femoris muscle. Endurance exercise significantly increased the expression of miR-181, miR-1, and miR-107 by 37%, 40%, and 56%, respectively, and reduced miR-23 expression by 84% (Pregulator of PGC-1alpha was consistent with increased expression of PGC-1alpha mRNA and protein along with several downstream targets of PGC-1alpha including ALAS, CS, and cytochrome c mRNA. PDK4 protein content remains unaltered despite an increase in its putative negative regulator, miR-107, and PDK4 mRNA expression. mRNA expression of miRNA processing machinery (Drosha, Dicer, and DGCR8 remained unchanged. We conclude that miRNA-mediated post

  17. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  18. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...

  19. Quantitative and Qualitative Changes in the Skeletal Muscle Acetylcholinesterase Activity of Oreochromis niloticus Exposed to Methylparathion

    OpenAIRE

    Elena Catap; Glorina Pocsidio

    1994-01-01

    Spectrophotometric assays and histochemical tests for acetylcholinesterase activity in the epaxial skeletal muscle of maturing Oreochromis niloticus after in-vivo exposure to 0.10 mg/L methylparathion showed significant inhibition of the enzyme by the pesticide. The assays manifested enzyme inhibition, after 48 and 96 hours of exposure, of 43.19% and 56.62%, respectively. These results were confirmed by the occurrences of decreased sites of acetylcholinesterase activity in the muscle fibers a...

  20. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases

    OpenAIRE

    Russell, Alan J.; Hartman, James J.; Hinken, Aaron C; Muci, Alexander R; Kawas, Raja; Driscoll, Lena; Godinez, Guillermo; Lee, Kenneth H; Marquez, David; Browne, William F; Chen, Michael M.; Clarke, David; Collibee, Scott E; Garard, Marc; Hansen, Richard

    2012-01-01

    Limited neuromuscular input results in muscle weakness in neuromuscular disease either because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission 1 . We developed a small molecule fast skeletal troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neuromuscular input is diminished secondary to a neuromuscular disease. Binding selectively to the ...

  1. Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats

    OpenAIRE

    Mizuno, Masaki; Murphy, Megan N.; Mitchell, Jere H.; Smith, Scott A.

    2011-01-01

    In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR), with important contributions from its metaboreflex and mechanoreflex components. However, the mechanisms driving the abnormal blood pressure response to EPR activation are largely unknown. Recent evidence in humans suggests that the muscle metaboreflex partially...

  2. CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury

    OpenAIRE

    Rahman, M. Mamunur; Ghosh, Mallika; Subramani, Jaganathan; Fong, Guo-Hua; Carlson, Morgan E.; Shapiro, Linda H.

    2014-01-01

    CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured ...

  3. Assessment of satellite cell number and activity status in human skeletal muscle biopsies

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Kjær, Michael; Charifi, Nadia;

    2009-01-01

    improved when more fibers were included. Second, we report that small differences in counting satellite cells using CD56 and Pax7 antibodies can be attributed to the different staining profiles. Third, we provide support for the use of Ki67 in evaluating the proportion of active satellite cells. We......The primary aim of our study was to validate the assessment of myonuclear and satellite cell number in biopsies from human skeletal muscle. We found that 25 type I and 25 type II fibers are sufficient to estimate the mean number of myonuclei per fiber. In contrast, the assessment of satellite cells...... observed very few (up to 1.3%) active satellite cells in healthy adult skeletal muscle at rest, but they increased significantly (up to 7-fold) following muscle activity. This study provides valuable tools to assess the behavior of satellite cells, both in pathological conditions and in response to...

  4. Early Activation of Rat Skeletal Muscle IL-6/STAT1/STAT3 Dependent Gene Expression in Resistance Exercise Linked to Hypertrophy

    OpenAIRE

    BEGUE, Gwénaëlle; Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Candau, Robin

    2013-01-01

    Cytokine interleukin-6 (IL-6) is an essential regulator of satellite cell-mediated hypertrophic muscle growth through the transcription factor signal transducer and activator of transcription 3 (STAT3). The importance of this pathway linked to the modulation of myogenic regulatory factors expression in rat skeletal muscle undergoing hypertrophy following resistance exercise, has not been investigated. In this study, the phosphorylation and nuclear localization of STAT3, together with IL-6/STA...

  5. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  6. Identification and Validation of Novel Contraction-Regulated Myokines Released from Primary Human Skeletal Muscle Cells

    OpenAIRE

    Raschke, Silja; Eckardt, Kristin; Holven, Kirsten Bjørklund; Jensen, Jørgen; Eckel, Jürgen

    2013-01-01

    Proteins secreted by skeletal muscle, so called myokines, have been shown to affect muscle physiology and additionally exert systemic effects on other tissues and organs. Although recent profiling studies have identified numerous myokines, the amount of overlap from these studies indicates that the secretome of skeletal muscle is still incompletely characterized. One limitation of the models used is the lack of contraction, a central characteristic of muscle cells. Here we aimed to ...

  7. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease

    OpenAIRE

    AaronPaulRussell

    2013-01-01

    Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and i...

  8. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

    OpenAIRE

    Woldt, Estelle; Sebti, Yasmine; Solt, Laura A.; Duhem, Christian; Lancel, Steve; Eeckhoute, Jérôme; Matthijs K. C. Hesselink; Paquet, Charlotte; Delhaye, Stéphane; Shin, Youseung; Kamenecka, Theodore M.; Schaart, Gert; Lefebvre, Philippe; Nevière, Rémi; Burris, Thomas P.

    2013-01-01

    The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitu...

  9. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte;

    2005-01-01

    and rest (n=6+5), or recombinant human IL-6 infusion (rhIL-6) or saline infusion (n=6+6). We further obtained skeletal muscle samples from IL-6 knockout (KO) mice and wild-type C57/BL-6 mice in response to a 1-h bout of exercise. In exercising human skeletal muscle, IL-6 receptor mRNA increased...

  10. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling

    OpenAIRE

    Drummond, Micah J.; Dreyer, Hans C.; Fry, Christopher S.; Glynn, Erin L.; Rasmussen, Blake B.

    2009-01-01

    In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids fo...

  11. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.

    OpenAIRE

    Kida, Y; Esposito-Del Puente, A; Bogardus, C; Mott, D M

    1990-01-01

    Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatas...

  12. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats

    OpenAIRE

    Anna Gilbert; Aleksandra Wyczalkowska-Tomasik; Malgorzata Zendzian-Piotrowska; Bozena Czarkowska-Paczek

    2016-01-01

    Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10) and trained (n=10; 6 weeks of endurance training with increasing load) groups. Gene exp...

  13. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease.

    Science.gov (United States)

    Dahlmans, Dennis; Houzelle, Alexandre; Schrauwen, Patrick; Hoeks, Joris

    2016-06-01

    The western dietary habits and sedentary lifestyle largely contributes to the growing epidemic of obesity. Mitochondria are at the front line of cellular energy homoeostasis and are implicated in the pathophysiology of obesity and obesity-related metabolic disease. In recent years, novel aspects in the regulation of mitochondrial metabolism, such as mitochondrial dynamics, mitochondrial protein quality control and post-transcriptional regulation of genes coding for mitochondrial proteins, have emerged. In this review, we discuss the recent findings concerning the dysregulation of these processes in skeletal muscle in obesogenic conditions. PMID:27129097

  14. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... despite the lower relative workload. Interestingly, exercise did not affect nuclear respiratory factor 1 (NRF-1) mRNA, a gene induced by PGC-1a in cell culture. HKII, mitochondrial transcription factor A, peroxisome proliferator activated receptor a, and calcineurin Aa and Aß mRNA were elevated (˜2- to 6...

  15. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction

    OpenAIRE

    Sakamoto, Kei; McCarthy, Afshan; Smith, Darrin; Green, Kevin A.; Grahame Hardie, D.; Ashworth, Alan; Dario R. Alessi

    2005-01-01

    Recent studies indicate that the LKB1 tumour suppressor protein kinase is the major ‘upstream' activator of the energy sensor AMP-activated protein kinase (AMPK). We have used mice in which LKB1 is expressed at only ∼10% of the normal levels in muscle and most other tissues, or that lack LKB1 entirely in skeletal muscle. Muscle expressing only 10% of the normal level of LKB1 had significantly reduced phosphorylation and activation of AMPKα2. In LKB1-lacking muscle, the basal activity of the A...

  16. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    Science.gov (United States)

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  17. Increased nitric oxide synthase activity and Hsp90 association in skeletal muscle following chronic exercise

    OpenAIRE

    Harris, M. Brennan; Mitchell, Brett M.; Sood, Sarika G.; Webb, R. Clinton; Venema, Richard C.

    2008-01-01

    Exercise training results in dynamic changes in skeletal muscle blood flow and metabolism. Nitric oxide (NO) influences blood flow, oxidative stress, and glucose metabolism. Hsp90 interacts directly with nitric oxide synthases (NOS), increasing NOS activity and altering the balance of superoxide versus NO production. In addition, Hsp90 expression increases in various tissues following exercise. Therefore, we tested the hypothesis that exercise training increases Hsp90 expression as well as Hs...

  18. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  19. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  20. Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase

    Directory of Open Access Journals (Sweden)

    James A. Loehr

    2015-01-01

    Full Text Available Elevated concentrations of sphingomyelinase (SMase have been detected in a variety of diseases. SMase has been shown to increase muscle derived oxidants and decrease skeletal muscle force; however, the sub-cellular site of oxidant production has not been elucidated. Using redox sensitive biosensors targeted to the mitochondria and NADPH oxidase (Nox2, we demonstrate that SMase increased Nox2-dependent ROS and had no effect on mitochondrial ROS. Pharmacological inhibition and genetic knockdown of Nox2 activity prevented SMase induced ROS production and provided protection against decreased force production. In contrast, genetic overexpression of superoxide dismutase within the mitochondria did not prevent increased ROS production and offered no protection against decreased muscle function in response to SMase. Our study shows that SMase induced ROS production occurs in specific sub-cellular regions of skeletal muscle; however, the increased ROS does not completely account for the decrease in muscle function.

  1. Skeletal Benefits of Pre-Menarcheal Gymnastics Are Retained After Activity Cessation

    Science.gov (United States)

    Scerpella, Tamara A.; Dowthwaite, Jodi N.; Gero, Nicole M.; Kanaley, Jill A.; Ploutz-Snyder, Robert J.

    2015-01-01

    Mechanical loading during childhood and adolescence may yield skeletal benefits that persist beyond activity cessation and menarche. At 1 year pre- and 2 years post-menarche, non-dominant forearm areal bone mineral density (aBMD), bone mineral content (BMC) and projected area (area) were compared in gymnasts (n=9), ex-gymnasts (n=8) and non-gymnasts (n=13). At both observations, gymnasts and ex-gymnasts had higher forearm aBMD, BMC and area than non-gymnasts. gymnasts had higher post-menarcheal means than ex-gymnasts for all three parameters. Childhood mechanical loading yields skeletal advantages that persist at least 24 months after loading cessation and menarche. Continued post-menarcheal loading yields additional benefit. PMID:20332537

  2. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity

    DEFF Research Database (Denmark)

    Hansen, Jeanette; Conley, Lene; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo

    2012-01-01

    Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of...... associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also...... unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins...

  3. Altering the redox state of skeletal muscle by glutathione depletion increases the exercise-activation of PGC-1α.

    Science.gov (United States)

    Strobel, Natalie A; Matsumoto, Aya; Peake, Jonathan M; Marsh, Susan A; Peternelj, Tina-Tinkara; Briskey, David; Fassett, Robert G; Coombes, Jeff S; Wadley, Glenn D

    2014-12-01

    We investigated the relationship between markers of mitochondrial biogenesis, cell signaling, and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats + DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h after exercise; and (6) exercise rats + DEM euthanized 4 h after exercise. Exercising animals ran on the treadmill at a 10% gradient at 20 m/min for the first 30 min. The speed was then increased every 10 min by 1.6 m/min until exhaustion. There was a reduction in total glutathione in the skeletal muscle of DEM treated animals compared to the control animals (P exercise (P Exercising animals given DEM showed a significantly greater increase in peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) mRNA compared to the control animals that were exercised (P exercise, PGC-1α gene expression was augmented. These findings further highlight the important role of exercise induced oxidative stress in the regulation of mitochondrial biogenesis. PMID:25538148

  4. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    Science.gov (United States)

    Swarnkar, Gaurav; Zhang, Kaihua; Mbalaviele, Gabriel; Long, Fanxin; Abu-Amer, Yousef

    2014-01-01

    Pathologic conditions impair bone homeostasis. The transcription factor NF-κB regulates bone homeostasis and is central to bone pathologies. Whereas contribution of NF-κB to heightened osteoclast activity is well-documented, the mechanisms underlying NF-κB impact on chondrocytes and osteoblasts are scarce. In this study, we examined the effect of constitutively active IKK2 (IKK2ca) on chondrogenic and osteogenic differentiation. We show that retroviral IKK2ca but not GFP, IKK2WT, or the inactive IKK2 forms IKK2KM and IKK2SSAA, strongly suppressed osteogenesis and chondrogenesis, in vitro. In order to explore the effect of constitutive NF-κB activation on bone formation in vivo, we activated this pathway in a conditional fashion. Specifically, we crossed the R26StopIKK2ca mice with mice carrying the Col2-cre in order to express IKK2ca in osteoblasts and chondrocytes. Both chondrocytes and osteoblasts derived from Col2Cre/IKK2ca expressed IKK2ca. Mice were born alive yet died shortly thereafter. Histologically, newborn Col2Cre+/RosaIKK2ca heterozygotes (Cre+IKK2ca_w/f (het)) and homozygotes (Cre+IKK2ca_f/f (KI)) showed smaller skeleton, deformed vertebrate and reduced or missing digit ossification. The width of neural arches, as well as ossification in vertebral bodies of Cre+IKK2ca_w/f and Cre+IKK2ca_f/f, was reduced or diminished. H&E staining of proximal tibia from new born pups revealed that Cre+IKK2ca_f/f displayed disorganized hypertrophic zones within the smaller epiphysis. Micro-CT analysis indicated that 4-wk old Cre+IKK2ca_w/f has abnormal trabecular bone in proximal tibia compared to WT littermates. Mechanistically, ex-vivo experiments showed that expression of differentiation markers in calvarial osteoblasts derived from newborn IKK2ca knock-in mice was diminished compared to WT-derived cells. In situ hybridization studies demonstrated that the hypertrophic chondrocyte marker type-X collagen, the pre-hypertrophic chondrocyte markers Indian hedgehog

  5. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    Directory of Open Access Journals (Sweden)

    Gaurav Swarnkar

    Full Text Available Pathologic conditions impair bone homeostasis. The transcription factor NF-κB regulates bone homeostasis and is central to bone pathologies. Whereas contribution of NF-κB to heightened osteoclast activity is well-documented, the mechanisms underlying NF-κB impact on chondrocytes and osteoblasts are scarce. In this study, we examined the effect of constitutively active IKK2 (IKK2ca on chondrogenic and osteogenic differentiation. We show that retroviral IKK2ca but not GFP, IKK2WT, or the inactive IKK2 forms IKK2KM and IKK2SSAA, strongly suppressed osteogenesis and chondrogenesis, in vitro. In order to explore the effect of constitutive NF-κB activation on bone formation in vivo, we activated this pathway in a conditional fashion. Specifically, we crossed the R26StopIKK2ca mice with mice carrying the Col2-cre in order to express IKK2ca in osteoblasts and chondrocytes. Both chondrocytes and osteoblasts derived from Col2Cre/IKK2ca expressed IKK2ca. Mice were born alive yet died shortly thereafter. Histologically, newborn Col2Cre+/RosaIKK2ca heterozygotes (Cre+IKK2ca_w/f (het and homozygotes (Cre+IKK2ca_f/f (KI showed smaller skeleton, deformed vertebrate and reduced or missing digit ossification. The width of neural arches, as well as ossification in vertebral bodies of Cre+IKK2ca_w/f and Cre+IKK2ca_f/f, was reduced or diminished. H&E staining of proximal tibia from new born pups revealed that Cre+IKK2ca_f/f displayed disorganized hypertrophic zones within the smaller epiphysis. Micro-CT analysis indicated that 4-wk old Cre+IKK2ca_w/f has abnormal trabecular bone in proximal tibia compared to WT littermates. Mechanistically, ex-vivo experiments showed that expression of differentiation markers in calvarial osteoblasts derived from newborn IKK2ca knock-in mice was diminished compared to WT-derived cells. In situ hybridization studies demonstrated that the hypertrophic chondrocyte marker type-X collagen, the pre-hypertrophic chondrocyte markers

  6. Metabolic and mitogenic transduction cascades in skeletal muscle : Implications for exercise effects on glucose metabolism and gene regulation

    OpenAIRE

    Yu, Mei

    2003-01-01

    Level of physical activity is linked to improved glucose homeostasis. The molecular signaling mechanisms by which insulin and exercise/muscle contractions lead to increased glucose transport and metabolism and gene expression have not been completely elucidated. The overall aim of this thesis was to identify novel regulatory mechanisms governing exercisesensitive signaling pathways to glucose metabolism and gene transcription in skeletal muscle. Components of the insulin (IR...

  7. Regulation of protein synthesis in human skeletal muscle : separate and combined effects of exercise and amino acids

    OpenAIRE

    Apró, William

    2014-01-01

    Skeletal muscle is a highly plastic tissue which has the ability to adapt to various forms of external stimuli such as diverse modes of contractile activity. Thus, performance of endurance exercise over several of weeks results in increased oxidative capacity. In contrast, prolonged performance of resistance exercise ultimately results in increased muscle mass. These adaptations are brought about by transient alterations in gene expression and mRNA translation which result...

  8. Regulation of the nuclear hormone receptor nur77 in muscle: Influence of exercise-activated pathways in vitro and obesity in vivo.

    OpenAIRE

    Kanzleiter, Timo; Wilks, Donna; Preston, Elaine; Ye, Jiming; Frangioudakis, Georgia; Cooney, Gregory James

    2009-01-01

    Abstract Regular physical exercise is well known to improve glucose and lipid metabolism in skeletal muscle. However, the transcription factors regulating these adaptive changes are not well characterised. Recently the nuclear orphan receptor nur77 was shown to be induced by exercise and linked to regulation of metabolic gene expression in skeletal muscle. In this study we investigated the regulation of nur77 in muscle by different exercise activated pathways. Nur77 expression was ...

  9. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carsten Juel

    Full Text Available P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle.Membranes purified from rat and human muscles were used in the Na,K-ATPase assay. Incubation with ADP, the stable ADP analogue MeS-ADP and UDP increased the Na+ dependent Na,K-ATPase activity in rat muscle membranes, whereas similar treatments of human muscle membranes lowered the Na,K-ATPase activity. UTP incubation resulted in unchanged Na,K-ATPase activity in humans, but pre-incubation with the antagonist suramin resulted in inhibition with UTP, suggesting that P2Y receptors are involved. The Na,K-ATPase in membranes from both rat and human could be stimulated by protein kinase A and C activation. Thus, protein kinase A and C activation can increase Na,K-ATPase activity in human muscle but not via P2Y receptor stimulation.The inhibitory effects of most purines (with the exception of UTP in human muscle membranes are probably due to mass law inhibition of ATP hydrolysis. This inhibition could be blurred in rat due to receptor mediated activation of the Na,K-ATPase. The different effects could be related to a high density of ADP sensitive P2Y1 and P2Y13 receptors in rat, whereas the UTP sensitive P2Y11 could be more abundant in human. Alternatively, rat could possesses a mechanism for protein-protein interaction between P2Y receptors and the Na,K-ATPase, and this mechanism could be absent in human skeletal muscle (perhaps with the exception of the UTP sensitive P2Y11 receptor.Rat muscle is not a reliable model for purinergic effects on Na,K-ATPase in human skeletal muscle.

  10. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running

    Science.gov (United States)

    Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.

    2000-01-01

    Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.

  11. Klhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5.

    Science.gov (United States)

    Abou-Elhamd, Alaa; Cooper, Oliver; Münsterberg, Andrea

    2009-10-01

    Klhl31 is an orthologue of Drosophila Kelch and belongs to a family of Kelch-like proteins in vertebrates. Members of this family contain multiple protein domains, including an amino-terminal broad complex/tram-track/bric-a-brac (BTB) or poxvirus and zinc finger (POZ) domain, carboxy-terminal Kelch repeats and a central linker region. We show that Klhl31 is highly expressed in the developing heart, the somite myotome and later in differentiated skeletal muscle and the myocardium. In developing somites expression of Klhl31 was initiated in the epaxial domain of the myotome, shortly after the skeletal muscle specific bHLH transcription factor, MyoD, was first expressed. Klhl31 remained expressed in skeletal muscle throughout embryonic and fetal development. Tissue ablations and rescue experiments that regulate myogenesis also govern expression of Klhl31 expression in somites. In particular, axial tissues, neural tube, floor plate and notochord, and surface ectoderm, provide combinatorial cues for myogenesis and the appropriate expression of Klhl31. We show that a combination of myogenic signals, Shh and either Wnt-1 or Wnt-6, are sufficient for Klhl31 expression in the dorsal somite. Furthermore, ectopic expression of Myf-5 led to expression of Klhl31 in the developing neural tube, indicating that Klhl31 is a novel and integral part of vertebrate myogenesis. PMID:19643178

  12. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle.

    Science.gov (United States)

    Fritzen, Andreas Mæchel; Frøsig, Christian; Jeppesen, Jacob; Jensen, Thomas Elbenhardt; Lundsgaard, Anne-Marie; Serup, Annette Karen; Schjerling, Peter; Proud, Chris G; Richter, Erik A; Kiens, Bente

    2016-06-01

    During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (pautophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in LC3 lipidation with either in vivo treadmill exercise or in situ contractions. Collectively, these findings suggest that AMPKα2 is not necessary for induction of LC3 lipidation with fasting and aging. Furthermore, LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging. Moreover, LC3 lipidation seems not to be a universal response to muscle contraction in mice. PMID:26976209

  13. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice.

    Directory of Open Access Journals (Sweden)

    Sheri L Bonar

    Full Text Available The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID. While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3. NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.

  14. Quantitative and Qualitative Changes in the Skeletal Muscle Acetylcholinesterase Activity of Oreochromis niloticus Exposed to Methylparathion

    Directory of Open Access Journals (Sweden)

    Elena Catap

    1994-12-01

    Full Text Available Spectrophotometric assays and histochemical tests for acetylcholinesterase activity in the epaxial skeletal muscle of maturing Oreochromis niloticus after in-vivo exposure to 0.10 mg/L methylparathion showed significant inhibition of the enzyme by the pesticide. The assays manifested enzyme inhibition, after 48 and 96 hours of exposure, of 43.19% and 56.62%, respectively. These results were confirmed by the occurrences of decreased sites of acetylcholinesterase activity in the muscle fibers as exhibited upon performance of histochemical tests.

  15. The role of the pyruvate dehydrogenase complex in the regulation of human skeletal muscle fuel metabolism

    OpenAIRE

    Laithwaite, David

    2009-01-01

    The pyruvate dehydrogenase complex (PDC) is the rate limiting step in the entry of glucose derived pyruvate into the tricarboxylic acid (TCA) cycle. As such it plays an important role in the control of the use of carbohydrate as the source of oxidative energy for skeletal muscle contraction. The first experimental chapter investigates the effect of dichloroacetate pre-treatment during low-intensity (

  16. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    Directory of Open Access Journals (Sweden)

    Harrison Michael

    2012-07-01

    Full Text Available Abstract Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS, it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL responses were evaluated in eight men on the morning after i an inactive control trial (CON, ii exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF, and iii after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL. Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium particle range. VLDL-TG in smaller particles (29–43 nm was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in

  17. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    LENUS (Irish Health Repository)

    Harrison, Michael

    2012-06-06

    AbstractBackgroundMany of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects.MethodsUsing a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL).ResultsThe intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state.ConclusionsThese findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.

  18. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    International Nuclear Information System (INIS)

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Cavβ1a NH2-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Cavβ1a is a gene transcription regulator. • Here, we show that TnT3 interacts with Cavβ1a. • We mapped TnT3 and Cavβ1a interaction domain. • TnT3 facilitates Cavβ1a nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation

  19. Skeletal muscle IL‐6 and regulation of liver metabolism during high‐fat diet and exercise training

    OpenAIRE

    Knudsen, Jakob G.; Joensen, Ella; Bertholdt, Lærke; Jessen, Henrik; van Hauen, Line; Hidalgo, Juan; Pilegaard, Henriette

    2016-01-01

    Abstract Interleukin (IL)‐6 is released from skeletal muscle (SkM) during exercise and has been shown to affect hepatic metabolism. It is, however, unknown whether SkM IL‐6 is involved in the regulation of exercise training‐induced counteraction of changes in carbohydrate and lipid metabolism in the liver in response to high‐fat diet (HFD) feeding. Male SkM‐specific IL‐6 KO (MKO) and Floxed mice were subjected to Chow diet, HFD or HFD combined with exercise training (HFD ExTr) for 16 weeks. H...

  20. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  1. The physiological roles of Sirt1 in skeletal muscle

    OpenAIRE

    Pardo, Patricia S.; Boriek, Aladin M.

    2011-01-01

    Skeletal muscle aging is associated with increased inflammation and oxidative stress, a decrease in the ability to rebuild muscle after injury and in response to exercise. In this perspective, we discuss the mechanisms regulating Sirt1 activity and expression in skeletal muscles, emphasizing their implications in muscle physiology and the impairment of muscle function with age.

  2. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    International Nuclear Information System (INIS)

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 μM cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  3. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    Science.gov (United States)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; Oarada, Motoko; Kishi, Kyoichi; Nikawa, Takeshi

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  4. The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling

    OpenAIRE

    Pérez-Schindler, Joaquín; Summermatter, Serge; Santos, Gesa; Zorzato, Francesco; Handschin, Christoph

    2013-01-01

    Skeletal muscle mass loss and dysfunction have been linked to many diseases. Conversely, resistance exercise, mainly by activating mammalian target of rapamycin complex 1 (mTORC1), promotes skeletal muscle hypertrophy and exerts several therapeutic effects. Moreover, mTORC1, along with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), regulates skeletal muscle metabolism. However, it is unclear whether PGC-1α is required for skeletal muscle adaptations after overload. Here...

  5. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair.

    Science.gov (United States)

    Georgy, S R; Pagel, C N; Ghasem-Zadeh, A; Zebaze, R M D; Pike, R N; Sims, N A; Mackie, E J

    2012-03-01

    Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2

  6. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle

    OpenAIRE

    Fillmore, Natasha; Jacobs, Daniel L.; Mills, David B.; Winder, William W.; Hancock, Chad R.

    2010-01-01

    Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMP-activated protein kinase (AMPK), calcium, and circulating free fatty acids (FFAs). Chronic treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR), a chemical activator of AMPK, or increasing circulating FFAs with a high-fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high-fat feeding ...

  7. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    International Nuclear Information System (INIS)

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7CreER and Mtorflox/flox mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7CreER was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes

  8. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Liang, Xinrong; Shan, Tizhong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Jiang, Qinyang [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); College of Animal Science and Technology, Guangxi University, Nanning 530004 (China); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zheng, Rong, E-mail: zhengrong@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-17

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.

  9. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle

    DEFF Research Database (Denmark)

    Yegutkin, G.G.; Gonzalez-Alonso, J.; Rosenmeier, Jaya Birgitte

    2008-01-01

    Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscle in humans, presumably due to the action of vasoactive metabolites (functional sympatholysis). Recently, we demonstrated that infusion of ATP into the arterial circulation of the resting human leg increases...... hyperaemia in conditions of increased sympathetic nerve drive such as exercise or hypoxia Udgivelsesdato: 2008/10/15...... blood flow and concomitantly blunts alpha-adrenergic vasoconstriction in a similar manner to that during moderate exercise. Here we tested the hypothesis that ATP, rather than its dephosphorylated metabolites, induces vasodilatation and sympatholysis in resting skeletal muscle via activation of ATP...... vasodilatory and sympatholytic effects of exogenous ATP in the skeletal muscle vasculature are largely mediated via ATP itself rather than its dephosphorylated metabolites, most likely via binding to endothelial ATP/UTP-selective P2Y(2) receptors. These data are consistent with a role of ATP in skeletal muscle...

  10. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line;

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1a and PGC-1ß (1-4 days) and a ~10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  11. Regulation of skeletal muscle insulin action in relation to dietary fatty acids and gender

    DEFF Research Database (Denmark)

    Høeg, Louise Dalgas

    In the present thesis the aims were 1) to investigate whether insulin sensitivity was different between women and men and whether a lipid load induced insulin resistance to a similar extent in women and men, 2) to determine whether lipid-induced insulin resistance was due to energy surplus or......-body level compared with men. After consuming a hypercaloric fat-rich diet (80 E%) enriched in unsaturated fatty acids for three days, reduced insulin stimulated whole-body (20%) and skeletal muscle glucose uptake (28%) were observed in men compared with a isocaloric control diet. After consuming a fat...... that insulin sensitivity was influenced by quality and chain-length of fatty acids rather than energy surplus per se. The lipid-induced reduction in skeletal muscle insulin sensitivity was observed without changes in the proximal insulin signaling cascade. The lipid-induced decrease in insulin...

  12. Effect of insulin-like factors on glucose transport activity in unweighted rat skeletal muscle

    Science.gov (United States)

    Henriksen, Erik J.; Ritter, Leslie S.

    1993-01-01

    The effect of 3 or 6 days of unweighting on glucose transport activity, as assessed by 2-deoxyglucose uptake, in soleus strips stimulated by maximally effective concentrations of insulin, IGF-I, vanadate, or phospholipase C (PLC) is examined. Progressively increased responses to maximally effective doses of insulin or insulin-like growth factor were observed after 3 and 6 days of unweighting compared with weight matched control strips. Enhanced maximal responses to vanadate (6 days only) and PLC (3 and 6 days) were also observed. The data provide support for the existance of postreceptor binding mechanisms for the increased action of insulin on the glucose transport system in unweighted rat skeletal muscle.

  13. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones

    OpenAIRE

    McHale, Matthew J.; Sarwar, Zaheer U.; Cardenas, Damon P.; Porter, Laurel; Salinas, Anna S.; Michalek, Joel E.; McManus, Linda M.; Shireman, Paula K

    2011-01-01

    Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (...

  14. Lower Physical Activity is Associated with Skeletal Muscle Fat Content in Girls

    OpenAIRE

    Joshua N Farr; Van Loan, Marta D; Lohman, Timothy G.; Going, Scott B.

    2012-01-01

    Fat contained within skeletal muscle is strongly associated with obesity, type 2 diabetes mellitus, and metabolic syndrome. Physical inactivity may be a risk factor for greater fat infiltration within skeletal muscle during growth.

  15. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle

    DEFF Research Database (Denmark)

    Pedersen, Thomas Holm; Riisager, Anders; de Paoli, Frank Vincenzo;

    2016-01-01

    permeability for Cl- ions. Thus, in resting human muscle, ClC-1 Cl- ion channels account for ∼80% of the membrane conductance, and because active Cl- transport is limited in muscle fibers, the equilibrium potential for Cl- lies close to the resting membrane potential. These conditions—high membrane conductance...... and passive distribution—enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in...... the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with...

  16. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, Christopher C; Hoffman, Nolan J;

    2015-01-01

    Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated...... in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1(-/-) mice and...... analyzing body weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise...

  17. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    Directory of Open Access Journals (Sweden)

    Andrea Bonetto

    Full Text Available BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6, and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26-carcinoma cachexia. METHODOLOGY/PRINCIPAL FINDINGS: Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. CONCLUSIONS/SIGNIFICANCE: These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and

  18. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    Science.gov (United States)

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling. PMID:24068326

  19. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.

    Directory of Open Access Journals (Sweden)

    Mian-Bo Huang

    Full Text Available BACKGROUND: The insulin-like growth factor (IGF signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs, has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133. A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. CONCLUSION/SIGNIFICANCE: Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.

  20. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  1. Differential regulation of protein synthesis in skeletal muscle and liver of neonatal pigs by leucine through an mTORC1-dependent pathway.

    Science.gov (United States)

    Suryawan, Agus; Nguyen, Hanh V; Almonaci, Rosemarie D; Davis, Teresa A

    2012-02-28

    Neonatal growth is characterized by a high protein synthesis rate that is largely due to an enhanced sensitivity to the postprandial rise in insulin and amino acids, especially leucine. The mechanism of leucine's action in vivo is not well understood. In this study, we investigated the effect of leucine infusion on protein synthesis in skeletal muscle and liver of neonatal pigs. To evaluate the mode of action of leucine, we used rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) complex-1 (mTORC1). Overnight-fasted 7-day-old piglets were treated with rapamycin for 1 hour and then infused with leucine (400 μmol·kg(-1)·h(-1)) for 1 hour. Leucine infusion increased the rate of protein synthesis, and ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) phosphorylation in gastrocnemius and masseter muscles (P liver. The leucine-induced stimulation of protein synthesis and S6K1 and 4E-BP1 phosphorylation were completely blocked by rapamycin, suggesting that leucine action is by an mTORC1-dependent mechanism. Neither leucine nor rapamycin had any effect on the activation of the upstream mTORC1 regulators, AMP-activated protein kinase and protein kinase B, in skeletal muscle or liver. The activation of eIF2α and elongation factor 2 was not affected by leucine or rapamycin, indicating that these two pathways are not limiting steps of leucine-induced protein synthesis. These results suggest that leucine stimulates muscle protein synthesis in neonatal pigs by inducing the activation of mTORC1 and its downstream pathway leading to mRNA translation. PMID:22675606

  2. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle...... from wild-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P < 0.001). Basal IL-6 release from...

  3. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  4. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

    Science.gov (United States)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima; Fisher-Wellman, Kelsey H; Kleinert, Maximilian; Humphrey, Sean J; Yang, Pengyi; Holliday, Mira; Trefely, Sophie; Fazakerley, Daniel J; Stöckli, Jacqueline; Burchfield, James G; Jensen, Thomas E; Jothi, Raja; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; James, David E

    2015-11-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry. PMID:26437602

  5. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten; Nordsborg, Nikolai Baastrup; Bangsbo, Jens

    2013-01-01

    The present study investigated whether the maximal in vitro Na,K-ATPase activity in human skeletal muscle is changed with exercise and whether it was altered by acute hypoxia. Needle biopsies from 14 subjects were obtained from vastus lateralis before and after 4 min of intense muscle activity. I...

  6. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Science.gov (United States)

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. PMID:27122162

  7. C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis.

    Science.gov (United States)

    Meijome, Tomas E; Baughman, Jenna T; Hooker, R Adam; Cheng, Ying-Hua; Ciovacco, Wendy A; Balamohan, Sanjeev M; Srinivasan, Trishya L; Chitteti, Brahmananda R; Eleniste, Pierre P; Horowitz, Mark C; Srour, Edward F; Bruzzaniti, Angela; Fuchs, Robyn K; Kacena, Melissa A

    2016-04-01

    C-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis. PMID:26375403

  8. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Frøsig, Christian; Jeppesen, Jacob Fuglsbjerg; Jensen, Thomas Elbenhardt; Lundsgaard, Anne-Marie; Serup, Annette Karen Lundbeck; Schjerling, Peter; Proud, Chris G; Richter, Erik; Kiens, Bente

    2016-01-01

    During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various...... tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3.......01) in plasma insulin concentration, a subsequent decrease in muscle mTORC1 signaling and increased (p<0.05) levels of the autophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in...

  9. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Nielsen, Ida Marie Laurent; Kleinert, Maximilian;

    2016-01-01

    Exercise increase skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signaling mechanisms vital for glucose uptake during exercise are not yet fully understood but the GTPase Rac1 is a candi......KO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. This article is protected by copyright. All rights reserved.......Exercise increase skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signaling mechanisms vital for glucose uptake during exercise are not yet fully understood but the GTPase Rac1 is a...... candidate molecule. This study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose (2-DG) at 65% max running capacity was blocked in soleus and decreased by 80 and 60% in...

  10. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau;

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr...

  11. Determination of the chromium content of laboratory rabbit skeletal muscles by neutron activation analysis

    International Nuclear Information System (INIS)

    The chromium content of skeletal muscle of laboratory rabbits has been determined using neutron activation analysis. The procedure for separation of 51 Cr by distillation of chromium oxychloride, described in the literature, has been improved. The arrangements necessary to minimize the chromium blank values are described. The main component of this blank is caused by the residual chromium contamination of the surface of the sample vial; typical values of this component are 0.049 ng Cr (without lyophilization) and 0.12 ng Cr (with lyophilization). The analyses of standard reference materials (SRM) yielded values of the chromium contents that are in agreement (I) with the certified value in the case of NBS Citrus Leaves, and (II) with the latest published value of 9.2+-2.5 ng/g in the case of IAEA animals muscle (H-4). NBS Orchard Leaves was found not to be an appropriate SRM for testing the method. In analyses of samples of thigh muscle of bastard rabbits chromium contents of 6.2-22.9 ng/g (fresh weight basis) were obtained. Comparison of these data with a previously found value of 1.2 ng/g, the literature value <7.1 ng/g and the value 2.5 ng/g for H-4 calculated on fresh weight basis indicated that the chromium contents of mammalian skeletal muscle might lie in a broad range, even for a subspecies. (orig./RB)

  12. Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity

    OpenAIRE

    Radak, Zsolt; Atalay, Mustafa; Jakus, Judit; Boldogh, István; Davies, Kelvin; Goto, Sataro

    2008-01-01

    Exercise has been shown to modify the level/activity of the DNA damage repair enzyme 8-oxoguanine-DNA glycosylase (OGG1) in skeletal muscle. We have studied the impact of regular physical training (8 weeks of swimming) and detraining (8 weeks of rest after an 8-week training session) on the activity of OGG1 in the nucleus and mitochondria as well as its targeting to the mitochondrial matrix in skeletal muscle. Neither exercise training nor detraining altered the overall levels of reactive spe...

  13. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.

    Science.gov (United States)

    Carson, James A; Hardee, Justin P; VanderVeen, Brandon N

    2016-06-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  14. A limited role for PI(3,4,5P3 regulation in controlling skeletal muscle mass in response to resistance exercise.

    Directory of Open Access Journals (Sweden)

    D Lee Hamilton

    Full Text Available BACKGROUND: Since activation of the PI3K/(protein kinase B; PKB/akt pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF I/phosphoinositide 3-kinase (PI3K signalling and whether altering PI(3,4,5P(3 metabolism genetically would increase load induced muscle growth. METHODOLOGY/PRINCIPAL FINDINGS: Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5P(3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN(+/+ = 5.00+/-0.02 mg/g, PTEN(-/- = 5.50+/-0.09 mg/g, and TA (PTEN(+/+ = 1.74+/-0.04 mg/g, PTEN(-/- = 1.89 +/-0.03 muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN(-/- and PTEN(+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes. CONCLUSIONS/SIGNIFICANCE: These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5P(3 levels, play a significant role in adult skeletal muscle growth.

  15. Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria

    Directory of Open Access Journals (Sweden)

    Servais Stéphane

    2010-04-01

    Full Text Available Abstract Background Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle. Results The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase. Conclusion This work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.

  16. Regenerating skeletal muscle in the face of aging and disease.

    Science.gov (United States)

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review. PMID:24879554

  17. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. : AMPK in skeletal musclemetabolic adaptation

    OpenAIRE

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi; Leclerc, Jocelyne; Treebak, Jonas,; Pehmøller, Christian; Sanz, Nieves; Sakakibara, Iori; Saint-Amand, Emmanuelle; Rimbaud, Stéphanie; Maire, Pascal; Marette, André; Ventura-Clapier, Renée; Ferry, Arnaud; Wojtaszewski, Jørgen,

    2014-01-01

    : AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production an...

  18. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse

    Directory of Open Access Journals (Sweden)

    White James P

    2012-07-01

    Full Text Available Abstract Background Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1 determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2 to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia. Methods ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts. Results Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2 protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1 was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression

  19. Skeletal Muscle and Liver Lipidomics and the Regulation of FAT/CD36

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting

    . This peripheral intramyocellular and intrahepatic lipid accumulation is associated with tissue-specific and whole body insulin resistance and, in the case of the liver non-alcoholic fatty liver disease. Studies show that regular exercise can reduce hepatic lipid content and enhance liver health. In high-fat diet...... induced obesity in mice, we observed an increased muscle and liver lipid content, analyzed by mass spectrometry, concomitant with decreased glucose tolerance. We observed that treadmill exercise-training in high-fat fed mice resulted in a reduction in the lipid content in the liver, but not in muscle......, and in improved glucose tolerance. These data provide evidence that exercise-training may be a viable therapeutic intervention to prevent, or at least slow the progression of fatty liver that is associated with nutrient overload. In skeletal muscle, multiple regulatory sites for fatty acid utilization exist...

  20. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease.

    Science.gov (United States)

    Argilés, Josep M; Campos, Nefertiti; Lopez-Pedrosa, José M; Rueda, Ricardo; Rodriguez-Mañas, Leocadio

    2016-09-01

    Skeletal muscle is recognized as vital to physical movement, posture, and breathing. In a less known but critically important role, muscle influences energy and protein metabolism throughout the body. Muscle is a primary site for glucose uptake and storage, and it is also a reservoir of amino acids stored as protein. Amino acids are released when supplies are needed elsewhere in the body. These conditions occur with acute and chronic diseases, which decrease dietary intake while increasing metabolic needs. Such metabolic shifts lead to the muscle loss associated with sarcopenia and cachexia, resulting in a variety of adverse health and economic consequences. With loss of skeletal muscle, protein and energy availability is lowered throughout the body. Muscle loss is associated with delayed recovery from illness, slowed wound healing, reduced resting metabolic rate, physical disability, poorer quality of life, and higher health care costs. These adverse effects can be combatted with exercise and nutrition. Studies suggest dietary protein and leucine or its metabolite β-hydroxy β-methylbutyrate (HMB) can improve muscle function, in turn improving functional performance. Considerable evidence shows that use of high-protein oral nutritional supplements (ONS) can help maintain and rebuild muscle mass and strength. We review muscle structure, function, and role in energy and protein balance. We discuss how disease- and age-related malnutrition hamper muscle accretion, ultimately causing whole-body deterioration. Finally, we describe how specialized nutrition and exercise can restore muscle mass, strength, and function, and ultimately reverse the negative health and economic outcomes associated with muscle loss. PMID:27324808

  1. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type...

  2. The Impact of Streptozotocin-induced Diabetes Mellitus on Cyclic Nucleotide Regulation of Skeletal Muscle Amino Acid Metabolism in the Rat

    OpenAIRE

    Garber, Alan J.

    1980-01-01

    The impact of diabetes on cyclic nucleotide-associated mechanisms regulating skeletal muscle protein and amino acid metabolism was assessed using epitrochlaris preparations from streptozotocin-induced diabetic rats. 1 nM epinephrine inhibited alanine and glutamine release from control preparations, but no inhibition was observed from diabetic preparations with

  3. [Effects of acute hypobaric hypoxia and exhaustive exercise on AMP-activated protein kinase phosphorylation in rat skeletal muscle].

    Science.gov (United States)

    Yang, Tao; Huang, Qing-Yuan; Shan, Fa-Bo; Guan, Li-Bin; Cai, Ming-Chun

    2012-04-25

    The present study was aimed to explore the changes of phosphorylated AMP-activated protein kinase (pAMPK) level in skeletal muscle after exposure to acute hypobaric hypoxia and exhaustive exercise. Thirty-two male Sprague-Dawley (SD) rats were randomly divided into sea level and high altitude groups. The rats in high altitude group were submitted to simulated 5 000 m of high altitude in a hypobaric chamber for 24 h, and sea level group was maintained at normal conditions. All the rats were subjected to exhaustive swimming exercise. The exhaustion time was recorded. Before and after the exercise, blood lactate and glycogen content in skeletal muscle were determined; AMPK and pAMPK levels in skeletal muscle were detected by Western blot. The results showed that the exhaustion time was significantly decreased after exposure to high altitude. At the moment of exhaustion, high altitude group had lower blood lactate concentration and higher surplus glycogen content in gastrocnemius compared with sea level group. Exhaustive exercise significantly increased the pAMPK/AMPK ratio in rat skeletal muscles from both sea level and high altitude groups. However, high altitude group showed lower pAMPK/AMPK ratio after exhaustion compared to sea level group. These results suggest that, after exposure to acute hypobaric hypoxia, the decrement in exercise capacity may not be due to running out of glycogen, accumulation of lactate or disturbance in energy status in skeletal muscle. PMID:22513470

  4. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    OpenAIRE

    Kunihiro Sakuma; Akihiko Yamaguchi

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, e...

  5. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  6. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian;

    2005-01-01

    Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... subunit isoforms is susceptible to moderate strength training, which may influence metabolism and improve energy homeostasis in trained muscle....

  7. PGC-1{alpha} increases PDH content but does not change acute PDH regulation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Adser, Helle; Jakobsen, Anne Hviid; Pedersen, Per Amstrup; Hardie, David Grahame; Wojtaszewski, Jørgen; Pilegaard, Henriette

    2010-01-01

    The aim was to test if the transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)1alpha regulates the content of pyruvate dehydrogenase (PDH)-E1alpha and influences PDH activity through regulation of PDK4 expression and subsequently PDH phosphorylati...

  8. Regulation of MAP Kinase–Directed Mitogenic and Protein Kinase B–Mediated Signaling by Cannabinoid Receptor Type 1 in Skeletal Muscle Cells

    OpenAIRE

    Lipina, Christopher; Stretton, Clare; Hastings, Simon; Hundal, Jonathan S.; Mackie, Ken; Irving, Andrew J.; Harinder S Hundal

    2009-01-01

    OBJECTIVE The endogenous cannabinoid (or endocannabinoid) system (ECS) is part of a central neuromodulatory system thought to play a key role in the regulation of feeding behavior and energy balance. However, increasing evidence suggests that modulation of the ECS may also act to regulate peripheral mechanisms involved in these processes, including lipogenesis in adipose tissue and liver, insulin release from pancreatic β-cells, and glucose uptake into skeletal muscle. It was recently shown t...

  9. Effect of static magnetic field and/or cadmium in the antioxidant enzymes activity in rat heart and skeletal muscle.

    Science.gov (United States)

    Amara, Salem; Garrel, Catherine; Favier, Alain; Ben Rhouma, Khémais; Sakly, Mohsen; Abdelmelek, Hafedh

    2009-12-01

    Currently, environmental and industrial pollution along with increase and causes multiple stress conditions, the combined exposure to magnetic field and other toxic agents is recognised as an important research area, with a view to better protecting human health against their probable unfavourable effects. In the present study, we investigated the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and the malondialdehyde (MDA) concentration in rat skeletal and cardiac muscles. The exposure of rats to SMF (128 mT, 1 h/day during 30 consecutive days) decreased the activities of glutathione peroxidase (GPx) and the superoxide dismutase (CuZn-SOD) in heart muscle. Sub-chronic exposure to SMF increased the MDA concentration in rat cardiac muscle. Cd treatment (CdCl2, 40 mg/l, per os) during 4 weeks decreased the activities of catalase (CAT) in skeletal muscle and the CuZn-SOD in the heart. Moreover, Cd administration increased MDA concentration in the both structures. The combined effect of SMF (128 mT, 1 h/day during 30 consecutive days) and Cd (40 mg/l, per os) disrupt the antioxidant enzymes activity in rat skeletal and cardiac muscles. Moreover, we noted a huge increase in MDA concentration in the heart and skeletal muscle compared to control group. Thus it is possible that the SMF- and/or Cd-induced depletion of antioxidant enzymes activity in muscle tissues might, like the enhanced lipid peroxidation, importantly contribute to oxidative damage. The combined effect of SMF and Cd altered significantly the antioxidant enzymatic capacity and induced lipid peroxidation in both skeletal and cardiac muscle. PMID:20097964

  10. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise.

    Science.gov (United States)

    Kochan, R G; Lamb, D R; Lutz, S A; Perrill, C V; Reimann, E M; Schlender, K K

    1979-06-01

    We investigated the role of glycogen synthase in supranormal resynthesis (supercompensation) of skeletal muscle glycogen after exhaustive exercise. Six healthy men exercised 60 min by cycling with one leg at 75% VO2max, recovered 3 days on a low-carbohydrate diet, exercised again, and recovered 4 days on high-carbohydrate diet. Glycogen and glycogen synthase activities at several glucose-6-phosphate (G6P) concentrations were measured in biopsy samples of m. vastus lateralis. Dietary alterations alone did not affect glycogen, whereas exercise depleted glycogen stores. After the second exercise bout, glycogen returned to normal within 24 h and reached supercompensated levels by 48 h of recovery. Glycogen synthase activation state strikingly increased after exercise in exercised muscle and remained somewhat elevated for the first 48 h of recovery in both muscles. We suggest that 1) forms of glycogen synthase intermediate to I (G6P-independent) and D (G6P-dependent) forms are present in vivo, and 2) glycogen supercompensation can in part be explained by the formation of intermediate forms of glycogen synthase that exhibit relatively low activity ratios, but an increased sensitivity to activation by G6P. PMID:109015

  11. Coptidis Rhizoma Water Extract Stimulates 5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle%Coptidis Rhizoma Water Extract Stimulates5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Xiao Ma; Tatsuro Egawa; Rieko Oshima; Eriko Kurogi; Hiroko Tanabe; Satoshi Tsuda; Tatsuya Hayashi

    2011-01-01

    AIM: Coptidis Rhizoma (CR), the dried rhizomes of Asian herbs (including Coptis chinensis French), has been used to treat diabetes mellitus for thousands of years. We explored the possibility that CR acts directly on skeletal muscle, the major organ responsible for glucose homeostasis, and activates 5'-AMP-activated protein kinase (AMPK), a signaling intermediary leading to metabolic enhancement of skeletal muscle. METHODS: Isolated rat epitrochlearis and soleus muscles were incubated in a buffer containing a CR water extract (CE), and activation of AMPK and related events were examined. RESULTS: In response to CE treatment, phosphorylation of Thr172 at the catalytic α subunit of AMPK, an essential step for full kinase activation, increased in both muscles. Phosphorylation of Ser79 of acetyl CoA carboxylase (ACC), an endogenous substrate of AMPK, increased concotnitantly. Analysis of isoform-specific AMPK activity revealed that CE activated both the α1 and α2 isoforms of the catalytic subunit. Importantly, the maximal effect of CE on AMPK phosphorylation was significantly greater than that of berberine (BBR), indicating that the action of CE is not totally ascribed to BBR. CONCLUSION: We propose that CE is an acute activator of AMPK in both fast- and slow-twitch skeletal muscles.

  12. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    Science.gov (United States)

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-05-22

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates. PMID:24836002

  13. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Directory of Open Access Journals (Sweden)

    Siham Yennek

    2014-05-01

    Full Text Available Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.

  14. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones.

    Science.gov (United States)

    McHale, Matthew J; Sarwar, Zaheer U; Cardenas, Damon P; Porter, Laurel; Salinas, Anna S; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2012-02-01

    Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury. PMID:22116509

  15. Regulation of nuclear and radiological activities

    International Nuclear Information System (INIS)

    The paper presents a review of the Moldovan regulatory framework regarding nuclear and radiological activities and of the competence of state regulatory authority - the National Agency for the Regulation of Nuclear and Radiological Activities.

  16. A randomised trial of differentiated prednisolone treatment in active rheumatoid arthritis. Clinical benefits and skeletal side effects

    DEFF Research Database (Denmark)

    Hansen, M; Podenphant, J; Florescu, A; Stoltenberg, M; Borch, A; Kluger, E; Sørensen, S F; Hansen, T M

    1999-01-01

    OBJECTIVES: To study benefits and skeletal side effects of carefully monitored prednisolone treatment in patients with active rheumatoid arthritis. METHODS: One hundred and two patients with active rheumatoid arthritis were randomly allocated to treatment with disease modifying anti-inflammatory ......OBJECTIVES: To study benefits and skeletal side effects of carefully monitored prednisolone treatment in patients with active rheumatoid arthritis. METHODS: One hundred and two patients with active rheumatoid arthritis were randomly allocated to treatment with disease modifying anti...... radiological disease progression, although there was a trend towards less progression in Larsen score in the prednisolone group, a matter that was further underlined in an intention to treat analysis. BMD data revealed a significant reduction in spinal BMD in the prednisolone group, whereas prednisolone seemed...

  17. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells

    OpenAIRE

    Lehto, Taavi; Castillo Alvarez, Alejandra; Gauck, Sarah; Gait, Michael J.; Coursindel, Thibault; Matthew J A Wood; Lebleu, Bernard; Boisguerin, Prisca

    2013-01-01

    Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyoc...

  18. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use.

    Science.gov (United States)

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari

    2016-07-01

    Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis. PMID:26895008

  19. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.

    Science.gov (United States)

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  20. Distinct amino acid–sensing mTOR pathways regulate skeletal myogenesis

    OpenAIRE

    Yoon, Mee-Sup; Chen, Jie

    2013-01-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential invol...

  1. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    Full Text Available PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT has only a partial effect in skeletal muscle. In our Pompe mouse model (KO, the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO. The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  2. A truncated Wnt7a retains full biological activity in skeletal muscle

    Science.gov (United States)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  3. REGULATION OF CARDIAC AND SKELETAL MUSCLE PROTEIN SYNTHESIS BY INDIVIDUAL BRANCHED-CHAIN AMINO ACIDS IN NEONATAL PIGS

    Science.gov (United States)

    Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and...

  4. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes.

    Directory of Open Access Journals (Sweden)

    Yung-Ting Kuo

    Full Text Available Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α. No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ, a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w. was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR and led to an increase in the extracellular acidification rate (ECAR, a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic

  5. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: Up-regulation as a result of chronic treatment

    International Nuclear Information System (INIS)

    The effects of acute and chronic treatment with ethanol were studied on the number and activity of tetrodotoxin-sensitive Na-channels in cultured rat skeletal muscle. The number of channels was determined by measurements of specific binding of [3H] saxitoxin (STX) in whole cell preparations. Measurements were also made of the frequency and rate of rise of spontaneously occurring action potentials, which are the physiologic expression of Na-channel density. Acute ethanol (37.5-150 mM), while causing depolarization of membrane potential and blockade of electrical activity, was without effect on specific STX binding. Neither methanol, acetaldehyde nor ethylene glycol had significant effects on these properties when given acutely in the same concentrations as ethanol. Chronic ethanol caused dose-related increases in STX binding and action potential properties with maximal levels being attained after 3 days of treatment at a concentration of 150 mM. On removal of ethanol from the culture medium all properties returned to control levels after 48 hr. Both increased external K+ and tetrodotoxin, which up-regulate Na-channels by reducing cytosolic Ca++, potentiated the ethanol-induced increase in Na-channel density. The increase in STX binding was not associated with changes in affinity of the binding sites for the ligand but was completely prevented by treatment with cycloheximide and actinomycin D. The results demonstrate that ethanol interacts with the cell membrane to induce synthesis of STX-binding sites

  6. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6

    OpenAIRE

    Belizário, José E.; Fontes-Oliveira, Cibely C; Borges, Janaina Padua; Kashiabara, Janete Akemi; Vannier, Edouard

    2016-01-01

    Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount duri...

  7. Activity of hepatic but not skeletal muscle carnitine palmitoyltransferase enzyme is depressed by intravenous glucose infusions in lactating dairy cows.

    Science.gov (United States)

    Al-Trad, B; Wittek, T; Gäbel, G; Fürll, M; Reisberg, K; Aschenbach, J R

    2010-12-01

    A positive energy balance in dairy cows pre-partum may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, which might contribute to disturbances of lipid metabolism post-partum. The purpose of this study was to investigate whether skeletal muscle CPT activity can also be downregulated during positive energy balance. Mid-lactating dairy cows were maintained on intravenous infusion of either saline (control) or glucose solutions that increased linearly over 24 days, remained at the 24-day level until day 28 and were suspended thereafter. Liver and skeletal muscle biopsies, as well as four diurnal blood samples, were taken on days 0, 8, 16, 24, and 32, representing infusion levels equivalent to 0%, 10%, 20%, 30% and 0% of the net energy for lactation (NE(L)) requirement respectively. Glucose infusion increased serum insulin concentrations on day 16 and 24 while plasma glucose levels were increased at only a single time point on day 24. Serum beta-hydroxybutyric acid concentrations decreased between day 8 and 24; whereas changes in non-esterified fatty acids were mostly insignificant. Total lipid contents of liver and skeletal muscle were not affected by treatment. Hepatic CPT activity decreased with glucose infusion (by 35% on day 24) and remained decreased on day 32. Hepatic expression levels of CPT-1A and CPT-2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. In contrast to the liver, no effect of glucose infusion was observed on skeletal muscle CPT activity. We conclude that suppression of CPT activity by positive energy balance appears to be specific for the liver in mid-lactating dairy cows. PMID:20546068

  8. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2015-01-01

    metabolic demand of the exercising muscle is the main driving force for all physiological regulatory processes. It elicits functional hyperemia, increasing the recruitment of capillaries and muscle blood flow resulting in increased NEFA delivery and accessibility to NEFA transporters and LPL. It also......-esterified to IMTAG. Net IMTAG lipolysis occurs; however, the IMTAG contribution to total fat oxidation is rather limited compared to plasma-derived NEFA oxidation, suggesting a complex role and regulation of IMTAG utilization....

  9. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass

    OpenAIRE

    Sakuma, Kunihiro; Yamaguchi, Akihiko

    2012-01-01

    Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein de...

  10. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle

    DEFF Research Database (Denmark)

    Robach, Paul; Cairo, Gaetano; Gelfi, Cecilia;

    2007-01-01

    , mobilizes body iron, and increases hemoglobin concentration. However, contrary to our hypothesis that muscle iron proteins and myoglobin would also be up-regulated during HA, this study shows that HA lowers myoglobin expression by 35% and down-regulates iron-related proteins in skeletal muscle, as evidenced...... increase. This study gives new insights into the changes in iron content and iron-oxygen interactions during enhanced erythropoiesis by simultaneously analyzing blood and muscle samples in humans exposed to 7 to 9 days of high altitude hypoxia (HA). HA up-regulates iron acquisition by erythroid cells...

  11. Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of the skeletal muscle ryanodine receptor ion channel complex

    Directory of Open Access Journals (Sweden)

    Evgeniy V Petrotchenko

    2011-01-01

    Full Text Available Evgeniy V Petrotchenko1,2,4, Naohiro Yamaguchi1,3,4, Daniel A Pasek1, Christoph H Borchers1,2, Gerhard Meissner11Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA; 2University of Victoria, Genome BC Proteomics Centre, Victoria, British Columbia, Canada; 3Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA 4Contributed equally to the workAbstract: The tetrameric skeletal muscle ryanodine receptor ion channel complex (RyR1 contains a large number of free cysteines that are potential targets for redox-active molecules. Here, we report the mass spectrometric analysis of free thiols in RyR1 using the lipophilic, thiol-specific probe monobromobimane (MBB. In the presence of reduced glutathione, MBB labeled 14 cysteines per RyR1 subunit in tryptic peptides in five of five experiments. Forty-six additional MBB-labeled cysteines per RyR1 subunit were detected with lower frequency in tryptic peptides, bringing the total number of MBB-labeled cysteines to 60 per RyR1 subunit. A combination of fluorescence detection and mass spectrometry of RyR1, labeled in the presence of reduced and oxidized glutathione, identified two redox-sensitive cysteines (C1040 and C1303. Regulation of RyR activity by reduced and oxidized glutathione was investigated in skeletal muscle mutant RyR1s in which 18 cysteines were substituted with serine or alanine, using a [3H]ryanodine ligand binding assay. Three single-site RyR1 mutants (C1781S, C2436S, and C2606S and two multisite mutants with five and seven substituted cysteines exhibited a reduced redox response compared with wild-type RyR1. The results suggest that multiple cysteines determine the redox state and activity of RyR1.Keywords: mass spectrometry, mutagenesis, ryanodine receptor, redox modification of cysteines

  12. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    Science.gov (United States)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc

  13. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy

    OpenAIRE

    Ruas, Jorge L.; White, James P.; Rao, Rajesh R.; Kleiner, Sandra; Brannan, Kevin T.; Harrison, Brooke C.; Greene, Nicholas P.; Wu, Jun; Estall, Jennifer L.; Irving, Brian A.; Lanza, Ian R.; Rasbach, Kyle A.; Okutsu, Mitsuharu; Nair, K. Sreekumaran; Yan, Zhen

    2012-01-01

    PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise, but has no effects on muscle strength or hypertrophy. We have identified a novel form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induc...

  14. Expression and insulin-regulated distribution of caveolin in skeletal muscle. Caveolin does not colocalize with GLUT4 in intracellular membranes.

    Science.gov (United States)

    Muñoz, P; Mora, S; Sevilla, L; Kaliman, P; Tomàs, E; Gumà, A; Testar, X; Palacín, M; Zorzano, A

    1996-04-01

    Caveolin is believed to play an important role in sorting processes, vesicular trafficking, transmembrane signaling, and molecular transport across membranes. In this study we have evaluated the expression and distribution of caveolin in skeletal muscle and its interaction with GLUT4 glucose carriers. Caveolin was expressed to substantial levels in muscle and its expression was regulated in muscle; aging and high fat diet enhanced caveolin expression in skeletal muscle and inversely, myogenesis down-regulated caveolin in L6E9 cells. Under fasting conditions, most of caveolin was found in intracellular membranes and the caveolin present in the cell surface was found in both sarcolemma and T-tubules. Insulin administration led to a redistribution of caveolin from intracellular high density membrane fractions to intracellular lighter density fractions and to the cell surface; this pattern of insulin-induced redistribution was different to what was shown by GLUT4. These results suggests that caveolin is a component of an insulin-regulated machinery of vesicular transport in muscle. Quantitative immunoisolation of GLUT4 vesicles obtained from different intracellular GLUT4 populations revealed the absence of caveolin which substantiates the lack of colocalization of intracellular GLUT4 and caveolin. This indicates that caveolin is not involved in intracellular GLUT4 trafficking in skeletal muscle. PMID:8626501

  15. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.

    Science.gov (United States)

    You, Jae-Sung; Lincoln, Hannah C; Kim, Chan-Ran; Frey, John W; Goodman, Craig A; Zhong, Xiao-Ping; Hornberger, Troy A

    2014-01-17

    The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass. PMID:24302719

  16. AMPK Control of Fat Metabolism in Skeletal Muscle

    OpenAIRE

    Thomson, David M.; Winder, William W.

    2009-01-01

    AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK’s role in the muscle is important. It was originally shown to stimulate fatty acid oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review we summarize much of this data, particularly in relation to chan...

  17. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis

    DEFF Research Database (Denmark)

    Li, Lei O; Grevengoed, Trisha J; Paul, David S; Ilkayeva, Olga; Koves, Timothy R; Pascual, Florencia; Newgard, Christopher B; Muoio, Deborah M; Coleman, Rosalind A

    2015-01-01

    -CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60-85% decrease in muscle FA oxidation. Acsl1(M-/-) mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise...

  18. Lipin-1 Regulates Autophagy Clearance and Intersects with Statin Drug Effects in Skeletal Muscle

    OpenAIRE

    Zhang, Peixiang; Verity, M. Anthony; Reue, Karen

    2014-01-01

    LPIN1 encodes lipin-1, a phosphatidic acid phosphatase (PAP) enzyme that catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerol. Homozygous LPIN1 gene mutations cause severe rhabdomyolysis, and heterozygous LPIN1 missense mutations may promote statin-induced myopathy. We demonstrate that lipin-1–related myopathy in the mouse is associated with a blockade in autophagic flux and accumulation of aberrant mitochondria. Lipin-1 PAP activity is required for maturation of autoly...

  19. Role of AMPKα in Skeletal Muscle Glycometabolism Regulation and Adaptation in relation to Sepsis

    OpenAIRE

    Xia Zheng; Mi Xu; Qiang Fang

    2014-01-01

    Background. AMP-activated protein kinase (AMPK) and the translocation of glucose transporter 4 (GLUT4) protein always involve disturbance of carbohydrate metabolism. Objective. To determine whether the change of blood glucose in the early stage of septic rat is associated with the alteration of AMPKα protein expression and GLUT4 protein translocation expression. Methods. Animal models of sepsis were induced by tail vein injection of LPS in Wistar rats. The dynamic values of blood glucose with...

  20. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle

    OpenAIRE

    Hjorth, Marit; Norheim, Frode; Meen, Astri Jeanette; Pourteymour, Shirin; Lee, Sindre; Holen, Torgeir; Jensen, Jørgen; Birkeland, Kåre I; Martinov, Vladimir Nikolkaev; Langleite, Torgrim Mikal; Eckardt, Kristin; Drevon, Christian A.; Kolset, Svein Olav

    2015-01-01

    Remodeling of extracellular matrix (ECM), including regulation of proteoglycans in skeletal muscle can be important for physiological adaptation to exercise. To investigate the effects of acute and long-term exercise on the expression of ECM-related genes and proteoglycans in particular, 26 middle-aged, sedentary men underwent a 12 weeks supervised endurance and strength training intervention and two acute, 45 min bicycle tests (70% VO2max), one at baseline and one after 12 weeks of training....

  1. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  2. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle

    OpenAIRE

    Cooke, Roger

    2011-01-01

    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the “furnace” that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 10...

  3. Glucose ingestion blunts hormone-sensitive lipase activity in contracting human skeletal muscle.

    Science.gov (United States)

    Watt, Matthew J; Krustrup, Peter; Secher, Niels H; Saltin, Bengt; Pedersen, Bente K; Febbraio, Mark A

    2004-01-01

    To examine the effect of attenuated epinephrine and elevated insulin on intramuscular hormone sensitivity lipase activity (HSLa) during exercise, seven men performed 120 min of semirecumbent cycling (60% peak pulmonary oxygen uptake) on two occasions while ingesting either 250 ml of a 6.4% carbohydrate (GLU) or sweet placebo (CON) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analyzed for HSLa. Blood samples were simultaneously obtained from a brachial artery and a femoral vein before and during exercise, and leg blood flow was measured by thermodilution in the femoral vein. Net leg glycerol and lactate release and net leg glucose and free fatty acid (FFA) uptake were calculated from these measures. Insulin and epinephrine were also measured in arterial blood before and throughout exercise. During GLU, insulin was elevated (120 min: CON, 11.4 +/- 2.4, GLU, 35.3 +/- 6.9 pM, P HSLa relative to CON (120 min: CON, 1.71 +/- 0.18, GLU, 1.27 +/- 0.16 mmol.min-1.kg dry mass-1). There were no differences in leg lactate or glycerol release when trials were compared, but leg FFA uptake was lower (120 min: CON, 0.29 +/- 0.06, GLU, 0.82 +/- 0.09 mmol/min) and leg glucose uptake higher (120 min: CON, 3.16 +/- 0.59, GLU, 1.37 +/- 0.37 mmol/min) in GLU compared with CON. These results demonstrate that circulating insulin and epinephrine play a role in HSLa in contracting skeletal muscle. PMID:14506077

  4. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease.

    Science.gov (United States)

    Davignon, Laurianne; Chauveau, Claire; Julien, Cédric; Dill, Corinne; Duband-Goulet, Isabelle; Cabet, Eva; Buendia, Brigitte; Lilienbaum, Alain; Rendu, John; Minot, Marie Christine; Guichet, Agnès; Allamand, Valérie; Vadrot, Nathalie; Fauré, Julien; Odent, Sylvie; Lazaro, Leïla; Leroy, Jean Paul; Marcorelles, Pascale; Dubourg, Odile; Ferreiro, Ana

    2016-04-15

    Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation inTRIP4encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted inTRIP4mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and inTrip4knocked-down C2C12 led to a significant reduction in myotube diameterex vivoandin vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the firstTRIP4mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism. PMID:27008887

  5. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.

    Science.gov (United States)

    Hornberger, T A; Chu, W K; Mak, Y W; Hsiung, J W; Huang, S A; Chien, S

    2006-03-21

    Signaling by the mammalian target of rapamycin (mTOR) has been reported to be necessary for mechanical load-induced growth of skeletal muscle. The mechanisms involved in the mechanical activation of mTOR signaling are not known, but several studies indicate that a unique [phosphotidylinositol-3-kinase (PI3K)- and nutrient-independent] mechanism is involved. In this study, we have demonstrated that a regulatory pathway for mTOR signaling that involves phospholipase D (PLD) and the lipid second messenger phosphatidic acid (PA) plays a critical role in the mechanical activation of mTOR signaling. First, an elevation in PA concentration was sufficient for the activation of mTOR signaling. Second, the isozymes of PLD (PLD1 and PLD2) are localized to the z-band in skeletal muscle (a critical site of mechanical force transmission). Third, mechanical stimulation of skeletal muscle with intermittent passive stretch ex vivo induced PLD activation, PA accumulation, and mTOR signaling. Finally, pharmacological inhibition of PLD blocked the mechanically induced increase in PA and the activation of mTOR signaling. Combined, these results indicate that mechanical stimuli activate mTOR signaling through a PLD-dependent increase in PA. Furthermore, we showed that mTOR signaling was partially resistant to rapamycin in muscles subjected to mechanical stimulation. Because rapamycin and PA compete for binding to the FRB domain on mTOR, these results suggest that mechanical stimuli activate mTOR signaling through an enhanced binding of PA to the FRB domain on mTOR. PMID:16537399

  6. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Philip A.; Duan, Jicheng; Qian, Weijun; Marcinek, David J.

    2015-11-25

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.

  7. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    DEFF Research Database (Denmark)

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi;

    2014-01-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle...... as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal...... muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and...

  8. Influence of a protein hydrolysate from green algae on the activity of some ATPase systems in frog skeletal muscle.

    Science.gov (United States)

    Ivanov, R; Georgieva, B; Naumova, P; Mileva, K; Radicheva, N

    1999-06-01

    The present study investigated the effect of a protein hydrolysate from green algae cultured in the Bulgarian region of Rupy, on the enzyme activity of frog skeletal muscle. The activity of pure Mg(2+)-ATPase, Mg2+,Ca(2+)-ATPase, NaHCO3-stimulated Mg(2+)-ATPase and the latter in the presence of the inhibitors NaSCN and NaN3 in mitochondrial (B-3) and membrane (B-12) fractions were determined before and after treatment with the protein hydrolysate from green algae (30 and 300 micrograms/ml). The differences between ATPase activity of mitochondrial and membrane fractions were described and it was established that in the B-3 fraction, the activity of the NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase were accelerated by increasing concentrations of the algae protein hydrolysate. Irrespective of the different (equal or inverse) dose-dependent effects, the protein hydrolysate stimulated Mg(2+)-ATPase and that inhibited by NaSCN an NaN3 bicarbonate-stimulated Mg(2+)-ATPase activity. In most of the probes, the protein hydrolysate produced some increase in enzyme activity of NaHCO3-stimulated Mg(2+)-ATPase and Ca(2+)-dependent Mg(2+)-ATPase in B-12 fractions. The observed properties of the algae protein hydrolysate suggest that it is capable of stimulating enzyme processes in addition to having some antitoxic effect in skeletal muscle. PMID:10420389

  9. Exercise-Induced VEGF Transcriptional Activation in Brain, Lung and Skeletal Muscle

    OpenAIRE

    Tang, Kechun; Xia, Feng Cheng; Wagner, Peter D.; Breen, Ellen C.

    2009-01-01

    Muscle VEGF expression is upregulated by exercise. Whether this VEGF response is regulated by transcription and/or post-transcriptional mechanisms is unknown. Hypoxia may be responsible: myocyte PO2 falls greatly during exercise and VEGF is a hypoxia-responsive gene. Whether exercise induces VEGF expression in other organs important to acute physical activity is also unknown. To address these questions, we created a VEGF/Luciferase reporter mouse and measured VEGF transcription, mRNA and prot...

  10. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence.

    Science.gov (United States)

    Sanchez-Roige, Sandra; Lalanza, Jaume F; Alvarez-López, María Jesús; Cosín-Tomás, Marta; Griñan-Ferré, Christian; Pallàs, Merce; Kaliman, Perla; Escorihuela, Rosa M

    2014-01-01

    The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR increased body weight and baseline levels of locomotor activity in female mice and improved balance and strength in male mice, compared to sedentary-control mice. WR resulted in key metabolic adaptations in skeletal muscle, associated with an increased activity of the sirtuin 1-AMP-activated protein kinase (AMPK)-PGC-1 alpha axis and changes in vascular endothelial growth factor A (Vegfa), glucose transporter type 4 (Glut4), and Cluster of Differentiation 36 (Cd36) gene expression. Overall, our data indicate that activity, balance, and strength decrease with age and that long-term WR may significantly improve the motor function in a mouse model of senescence in a gender-dependent manner. PMID:25129573

  11. A micromethod for assay of lipoprotein lipase activity in needle biopsy samples of human adipose tissue and skeletal muscle

    International Nuclear Information System (INIS)

    A rapid and simple procedure for assay of lipoprotein lipase (LPL) activity in small amounts of human adipose tissue and skeletal muscle is described and validated. The enzyme is eluted from tissues with heparin and the activity is determined from the eluate by measuring the release of [14C]oleic acid from a gum arabic stabilized emulsion of glycerol-tri[14C]oleate in a Tris-buffer medium containing albumin and pooled normal human serum. Reproducible results are obtained with amounts of tissue ranging from 2 to 25 mg. The Ksub(m) values of the adipose tissue and skeletal muscle LPL for the triolein substrate were 0.74 +- 0.06 and 0.77 +- 0.05 mmol/l, respectively. The standard radioactive triolein emulsion was hydrolyzed by adipose tissue LPL at a rate closely similar to rat VLDL-triglyceride labeled in vivo with [1-14C]palmitic acid, suggesting that the experimental substrate behaved in a similar manner to the natural substrate. The LPL activity was much higher in adipose tissue than in muscle. In adipose tissue the LPL activity was 2-4 times higher in women than in men whereas no sex difference was present in the LPL activity of muscle. (Auth.)

  12. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  13. Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ

    Directory of Open Access Journals (Sweden)

    Takeda Shin'ichi

    2007-06-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are key regulatory molecules in the formation, remodeling and degradation of all extracellular matrix (ECM components in both physiological and pathological processes in various tissues. The aim of this study was to examine the involvement of gelatinase MMP family members, MMP-2 and MMP-9, in dystrophin-deficient skeletal muscle. Towards this aim, we made use of the canine X-linked muscular dystrophy in Japan (CXMDJ model, a suitable animal model for Duchenne muscular dystrophy. Methods We used surgically biopsied tibialis cranialis muscles of normal male dogs (n = 3 and CXMDJ dogs (n = 3 at 4, 5 and 6 months of age. Muscle sections were analyzed by conventional morphological methods and in situ zymography to identify the localization of MMP-2 and MMP-9. MMP-2 and MMP-9 activity was examined by gelatin zymography and the levels of the respective mRNAs in addition to those of regulatory molecules, including MT1-MMP, TIMP-1, TIMP-2, and RECK, were analyzed by semi-quantitative RT-PCR. Results In CXMDJ skeletal muscle, multiple foci of both degenerating and regenerating muscle fibers were associated with gelatinolytic MMP activity derived from MMP-2 and/or MMP-9. In CXMDJ muscle, MMP-9 immunoreactivity localized to degenerated fibers with inflammatory cells. Weak and disconnected immunoreactivity of basal lamina components was seen in MMP-9-immunoreactive necrotic fibers of CXMDJ muscle. Gelatinolytic MMP activity observed in the endomysium of groups of regenerating fibers in CXMDJ did not co-localize with MMP-9 immunoreactivity, suggesting that it was due to the presence of MMP-2. We observed increased activities of pro MMP-2, MMP-2 and pro MMP-9, and levels of the mRNAs encoding MMP-2, MMP-9 and the regulatory molecules, MT1-MMP, TIMP-1, TIMP-2, and RECK in the skeletal muscle of CXMDJ dogs compared to the levels observed in normal controls. Conclusion MMP-2 and MMP-9 are likely involved in the

  14. Molecular regulation of telomerase activity in aging

    Institute of Scientific and Technical Information of China (English)

    Craig Nicholls; He Li; Jian-Qiu Wang; Jun-Ping Liu

    2011-01-01

    The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres),resulting in extended lifespan.This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT),which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy.Underpinning increased cell proliferation,telomerase is also a key factor in facilitating cancer cell immortalization.The review focuses on aspects of hormonal regulations of telomerase,and the intraceilular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels.In addition,the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.

  15. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    OpenAIRE

    Daniel Zeve; Millay, Douglas P.; Jin Seo; Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicat...

  16. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter;

    2014-01-01

    is maintained in the skeletal muscle of patients with uncomplicated type 2 diabetes (T2DM). Subjects [12 T2DM, 9 healthy control subjects (CON)] underwent 8 weeks of physical training. Messenger RNA (mRNA) was measured at baseline, during and after 8 weeks of training. Protein was measured pre- and post...

  17. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence

    OpenAIRE

    Sanchez-Roige, Sandra; Jaume F Lalanza; Alvarez-López, María Jesús; Cosín-Tomás, Marta; Griñan-Ferré, Christian; Pallàs, Merce; Kaliman, Perla; Rosa M. Escorihuela

    2014-01-01

    The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR ...

  18. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle

    OpenAIRE

    Hornberger, T.A.; Chu, W. K.; Mak, Y. W.; Hsiung, J. W.; Huang, S. A.; Chien, S

    2006-01-01

    Signaling by the mammalian target of rapamycin (mTOR) has been reported to be necessary for mechanical load-induced growth of skeletal muscle. The mechanisms involved in the mechanical activation of mTOR signaling are not known, but several studies indicate that a unique [phosphotidylinositol-3-kinase (PI3K)- and nutrient-independent] mechanism is involved. In this study, we have demonstrated that a regulatory pathway for mTOR signaling that involves phospholipase D (PLD) and the lipid second...

  19. Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence

    International Nuclear Information System (INIS)

    To be effective for tissue repair, satellite cells (the stem cells of adult muscle) must survive the initial activation from quiescence. Using an in vitro model of satellite cell activation, we show that erbB1, erbB2 and erbB3, members of the EGF receptor tyrosine kinase family, appear on satellite cells within 6 h of activation. We show that signalling via erbB2 provides an anti-apoptotic survival mechanism for satellite cells during the first 24 h, as they progress to a proliferative state. Inhibition of erbB2 signalling with AG825 reduced satellite cell numbers, concomitant with elevated caspase-8 activation and TUNEL labelling of apoptotic satellite cells. In serum-free conditions, satellite cell apoptosis could be largely prevented by a mixture of erbB1, erbB3 and erbB4 ligand growth factors, but not by neuregulin alone (erbB3/erbB4 ligand). Furthermore, using inhibitors specific to discrete intracellular signalling pathways, we identify MEK as a pro-apoptotic mediator, and the erbB-regulated factor STAT3 as an anti-apoptotic mediator during satellite cell activation. These results implicate erbB2 signalling in the preservation of a full compliment of satellite cells as they activate in the context of a damaged muscle

  20. Regulating the regulators: modulators of transcription factor activity.

    Science.gov (United States)

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  1. Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity.

    Science.gov (United States)

    Zderic, Theodore W; Hamilton, Marc T

    2006-01-01

    Physical inactivity is a risk factor for lipoprotein disorders and the metabolic syndrome. Physical inactivity has a powerful effect on suppressing lipoprotein lipase (LPL) activity in skeletal muscle, the rate-limiting enzyme for hydrolysis of triglyceride (TG)-rich lipoproteins. We tested the ability of several compounds to prevent the decrease in LPL. The present study minimized standing and ordinary light nonexercise movements in rats to compare the effects of inactivity and nonexercise activity thermogenesis (NEAT) on LPL activity. The key new insight was that the typically quick decrease in LPL activity of oxidative muscle caused by physical inactivity was prevented by nicotinic acid (NA), whereas inhibitors of TNF-alpha, inducible nitric oxide synthase, and NF-kappaB had no such effect. NA was administered at a dose known to acutely impede the appearance of plasma TG from the liver and free fatty acids from adipose tissue, and it was effective at intentionally lowering plasma lipid concentrations to the same level in active and inactive groups. As measured from heparin-releasable LPL activity, LPL in the microvasculature of the most oxidative muscles was approximately 90% lower in the inactive group compared with controls, and this suppression was completely blocked by NA. In contrast to inactivity, NA did not raise muscle LPL in ambulatory controls, whereas a large exogenous fat delivery did decrease LPL activity. In vitro control studies revealed that NA did not have a direct effect on skeletal muscle LPL activity. In conclusion, physical inactivity amplifies the ability of plasma lipids to suppress muscle LPL activity. The light ambulatory contractions responsible for NEAT are sufficient for mitigating these deleterious effects. PMID:16195388

  2. PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle

    OpenAIRE

    Yukino Hatazawa; Miki Tadaishi; Yuta Nagaike; Akihito Morita; Yoshihiro Ogawa; Osamu Ezaki; Takako Takai-Igarashi; Yasuyuki Kitaura; Yoshiharu Shimomura; Yasutomi Kamei; Shinji Miura

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellula...

  3. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    OpenAIRE

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss.

  4. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle.

    Science.gov (United States)

    Shelar, Sandeep Balu; Narasimhan, Madhusudhanan; Shanmugam, Gobinath; Litovsky, Silvio Hector; Gounder, Sellamuthu S; Karan, Goutam; Arulvasu, Cinnasamy; Kensler, Thomas W; Hoidal, John R; Darley-Usmar, Victor M; Rajasekaran, Namakkal S

    2016-05-01

    Recently we have reported that age-dependent decline in antioxidant levels accelerated apoptosis and skeletal muscle degeneration. Here, we demonstrate genetic ablation of the master cytoprotective transcription factor, nuclear factor (erythroid-derived-2)-like 2 (Nrf2), aggravates cardiotoxin (CTX)-induced tibialis anterior (TA) muscle damage. Disruption of Nrf2 signaling sustained the CTX-induced burden of reactive oxygen species together with compromised expression of antioxidant genes and proteins. Transcript/protein expression of phenotypic markers of muscle differentiation, namely paired box 7 (satellite cell) and early myogenic differentiation and terminal differentiation (myogenin and myosin heavy chain 2) were increased on d 2 and 4 postinjury but later returned to baseline levels on d 8 and 15 in wild-type (WT) mice. In contrast, these responses were persistently augmented in Nrf2-null mice suggesting that regulation of the regeneration-related signaling mechanisms require Nrf2 for normal functioning. Furthermore, Nrf2-null mice displayed slower regeneration marked by dysregulation of embryonic myosin heavy chain temporal expression. Histologic observations illustrated that Nrf2-null mice displayed smaller, immature TA muscle fibers compared with WT counterparts on d 15 after CTX injury. Improvement in TA muscle morphology and gain in muscle mass evident in the WT mice was not noticeable in the Nrf2-null animals. Taken together these data show that the satellite cell activation, proliferation, and differentiation requires a functional Nrf2 system for effective healing following injury.-Shelar, S. B., Narasimhan, M., Shanmugam, G., Litovsky, S. H., Gounder, S. S., Karan, G., Arulvasu, C., Kensler, T. W., Hoidal, J. R., Darley-Usmar, V. M., Rajasekaran, N. S. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle. PMID:26839378

  5. PGC-1alpha-mediated adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    Lifestyle-related diseases are rapidly increasing at least in part due to less physical activity. The health beneficial effects of regular physical activity include metabolic adaptations in skeletal muscle, which are thought to be elicited by cumulative effects of transient gene responses to each...... involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1alpha transcription and potentially PGC-1alpha activity through post-translational modifications, and concomitant PGC-1alpha-mediated gene regulation is suggested to be an...... underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...

  6. Commission of energy regulation. 2004 activity report

    International Nuclear Information System (INIS)

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  7. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  8. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.

    Directory of Open Access Journals (Sweden)

    Mario Ost

    Full Text Available Transgenic (UCP1-TG mice with ectopic expression of UCP1 in skeletal muscle (SM show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21 from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress

  9. An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes

    OpenAIRE

    Heather Kirk-Ballard; Wang, Zhong Q.; Priyanka Acharya; Zhang, Xian H.; Yongmei Yu; Gail Kilroy; David Ribnicky; Cefalu, William T.; Z Elizabeth Floyd

    2013-01-01

    Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin signaling extends to regulation of the ubiquitin-proteasome system. C2C12 myotubes and the KK-A(y) murine model of type 2 diabetes were use...

  10. Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema

    Directory of Open Access Journals (Sweden)

    Tonon Jair

    2013-01-01

    Full Text Available Abstract Background Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD. Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. Methods We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20 and 40 mg/mL (E40 papain. Results The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p Conclusions Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of oxidative stress in a severity-dependent manner.

  11. Muscle-specific microRNAs in skeletal muscle development.

    Science.gov (United States)

    Horak, Martin; Novak, Jan; Bienertova-Vasku, Julie

    2016-02-01

    Proper muscle function constitutes a precondition for good heath and an active lifestyle during an individual's lifespan and any deviations from normal skeletal muscle development and its functions may lead to numerous health conditions including e.g. myopathies and increased mortality. It is thus not surprising that there is an increasing need for understanding skeletal muscle developmental processes and the associated molecular pathways, especially as such information could find further uses in therapy. The understanding of complex skeletal muscle developmental networks was broadened with the discovery of microRNA (miRNA) molecules. MicroRNAs are evolutionary conserved small non-coding RNAs capable of negatively regulating gene expression on a post-transcriptional level by means of miRNA-mRNA interaction. Several miRNAs expressed exclusively in muscle have been labeled myomiRs. MyomiRs represent an integral part of skeletal muscle development, i.e. playing a significant role during skeletal muscle proliferation, differentiation and regeneration. The purpose of this review is to provide a summary of current knowledge regarding the involvement of myomiRs in the individual phases of myogenesis and other aspects of skeletal muscle biology, along with an up-to-date list of myomiR target genes and their functions in skeletal muscle and miRNA-related therapeutic approaches and future prospects. PMID:26708096

  12. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  13. How sex hormones promote skeletal muscle regeneration.

    Science.gov (United States)

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  14. Src regulates the activity of SIRT2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You Hee [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Kim, Hangun [College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon (Korea, Republic of); Lee, Sung Ho [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Jin, Yun-Hye, E-mail: jinyune@hanmail.net [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of); Lee, Kwang Youl, E-mail: kwanglee@chonnam.ac.kr [College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-25

    Highlights: • Src decreases the protein levels of Sirt2. • Src inhibitor and knockdown of Src increase the protein levels of Sirt2. • Src interacts with and phosphorylates Sirt2. • Src regulate the activity of Sirt2. - Abstract: SIRT2 is a mammalian member of the Sirtuin family of NAD{sup +}-dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation.

  15. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. PMID:27102569

  16. Regulation of nuclear activity in Kazakhstan

    International Nuclear Information System (INIS)

    Major factors, by which the radiation situation in Kazakhstan is formed, are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at the different test sites; mining and milling of commercial minerals accompanied by radioactive substances; using of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting of sovereignty there was started creation of own legislative basis of the country for the field of atomic energy use. It includes laws, regulation and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. Applicable system of state regulation in this area, including the regulatory body in the field of atomic energy use and various ministries, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety regulation in Kazakhstan. (author)

  17. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise

    Science.gov (United States)

    Holloway, Graham P; Bezaire, Veronic; Heigenhauser, George J F; Tandon, Narendra N; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend; Spriet, Lawrence L

    2006-01-01

    Mitochondrial fatty acid transport is a rate-limiting step in long chain fatty acid (LCFA) oxidation. In rat skeletal muscle, the transport of LCFA at the level of mitochondria is regulated by carnitine palmitoyltransferase I (CPTI) activity and the content of malonyl-CoA (M-CoA); however, this relationship is not consistently observed in humans. Recently, fatty acid translocase (FAT)/CD36 was identified on mitochondria isolated from rat and human skeletal muscle and found to be involved in LCFA oxidation. The present study investigated the effects of exercise (120 min of cycling at ∼60% V̇O2peak) on CPTI palmitoyl-CoA and M-CoA kinetics, and on the presence and functional significance of FAT/CD36 on skeletal muscle mitochondria. Whole body fat oxidation rates progressively increased during exercise (P < 0.05), and concomitantly M-CoA inhibition of CPTI was progressively attenuated. Compared to rest, 120 min of cycling reduced (P < 0.05) the inhibition of 0.7, 2, 5 and 10 μm M-CoA by 16%, 21%, 30% and 34%, respectively. Whole body fat oxidation and palmitate oxidation rates in isolated mitochondria progressively increased (P < 0.05) during exercise, and were positively correlated (r = 0.78). Mitochondrial FAT/CD36 protein increased by 63% (P < 0.05) during exercise and was significantly (P < 0.05) correlated with mitochondrial palmitate oxidation rates at all time points (r= 0.41). However, the strongest (P < 0.05) correlation was observed following 120 min of cycling (r= 0.63). Importantly, the addition of sulfo-N-succimidyloleate, a specific inhibitor of FAT/CD36, reduced mitochondrial palmitate oxidation to ∼20%, indicating FAT/CD36 is functionally significant with respect to LCFA oxidation. We hypothesize that exercise-induced increases in fatty acid oxidation occur as a result of an increased ability to transport LCFA into mitochondria. We further suggest that decreased CPTI M-CoA sensitivity and increased mitochondrial FAT/CD36 protein are both

  18. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  19. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  20. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training

    DEFF Research Database (Denmark)

    Alsted, Thomas J; Schweiger, Martina; Nybo, Lars;

    2009-01-01

    ) is not changed. Recently, adipose triglyceride lipase (ATGL) was identified as a TG-specific lipase in various rodent tissues. To investigate whether human skeletal muscle ATGL protein is regulated by endurance exercise training, 10 healthy young men completed 8 wk of supervised endurance exercise...... training. Western blotting analysis on lysates of skeletal muscle biopsy samples revealed that exercise training induced a twofold increase in skeletal muscle ATGL protein content. In contrast to ATGL, expression of comparative gene identification 58 (CGI-58), the activating protein of ATGL, and HSL......Mobilization of fatty acids from stored triacylglycerol (TG) in adipose tissue and skeletal muscle [intramyocellular triacylglycerol (IMTG)] requires activity of lipases. Although exercise training increases the lipolytic capacity of skeletal muscle, the expression of hormone-sensitive lipase (HSL...

  1. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man

    DEFF Research Database (Denmark)

    Savard, G; Strange, S; Kiens, Bente;

    1987-01-01

    Increases in plasma noradrenaline (NA) concentration occur during moderate to heavy exercise in man. This study was undertaken to examine the spillover of NA from both resting and contracting skeletal muscle during exercise. Six male subjects performed one-legged knee-extension so that all...... measurements could be made both in the exercising and in the resting leg. Subjects exercised for 10 min at each of 50% and 100% of the peak performance capacity of the leg. Leg blood flow was measured by thermodilution and blood samples were drawn for the determination of plasma NA and adrenaline, first in the...... resting leg and then in the exercising leg. To calculate NA spillover, the extraction of NA (NAe) or of adrenalin (Ae) is required: NAe was measured by repeating the experiment under constant [3H]NA infusion following a 40-min rest period. During exercise, NA spillover was significantly larger in the...

  2. Regulation of pokemon 1 activity by sumoylation.

    Science.gov (United States)

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1. PMID:17595526

  3. Regulation of polymorphonuclear cell activation by thrombopoietin.

    OpenAIRE

    Brizzi, M F; Battaglia, E.; Rosso, A.; Strippoli, P; Montrucchio, G; Camussi, G.; Pegoraro, L

    1997-01-01

    Thrombopoietin (TPO) regulates early and late stages of platelet formation as well as platelet activation. TPO exerts its effects by binding to the receptor, encoded by the protooncogene c-mpl, that is expressed in a large number of cells of hematopoietic origin. In this study, we evaluated the expression of c-Mpl and the effects of TPO on human polymorphonuclear cells (PMN). We demonstrate that PMN express the TPO receptor c-Mpl and that TPO induces STAT1 tyrosine phosphorylation and the for...

  4. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies

    OpenAIRE

    Li, Yanjun; Dash, Ranjan K; Kim, Jaeyeon; Saidel, Gerald M.; Cabrera, Marco E.

    2008-01-01

    Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates t...

  5. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Pereyra, Andrea S. [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Messi, Maria Laura; Wang, Zhong-Min [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Hereñú, Claudia [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Delbono, Osvaldo, E-mail: odelbono@wakehealth.edu [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States)

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  6. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    International Nuclear Information System (INIS)

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1

  7. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  8. 运动诱导骨骼肌线粒体生成中沉默信息调节因子1的作用**☆%Silent information regulator factor-1 regulates exercise-induced mitochondrial biogenesis in the skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    张国华

    2013-01-01

    BACKGROUND:Silent information regulator factor-1 is an energy metabolism regulator newly received attention in sports science, which playing roles in skeletal exercise-induced muscle mitochondrial biogenesis with other regulatory factors. OBJECTIVE: To review the effect and mechanism of silent information regulator factor-1 on skeletal muscle mitochondrial biogenesis in exercise. METHODS:The PubMed database and Highwire database were retrieved with computer for the articles on exercise, silent information regulator factor-1 and skeletal muscle mitochondrial biogenesis from January 2000 to January 2013 with the key words of“SIRT1, AMPK, PGC-1α, mitochondrial biogenesis, skeletal muscle, exercise”in English. After primary search, the articles about the association between silent information regulator factor-1 and skeletal muscle mitochondrial biogenesis in exercise were selected. Articles on repeated experiment were excluded. RESULTS AND CONCLUSION:Total y 165 relevant articles were selected, and articles on repetitive research were excluded, so finaly 62 articles were included. As a NAD+-depended deacetylase, silent information regulator factor-1 induced skeletal muscle mitochondrial biogenesis by up-regulated peroxisome proliferator-activated receptor coactivator after activated during exercise. The molecular mechanism involved adenosine monophosphate-activated protein kinase and hypoxia-inducible factor 2α. In recent years, the effect of silent information regulator factor-1 on skeletal muscle mitochondrial biogenesis was doubt, the researchers though that silent information regulator factor-1 was not required for exercise-induced muscle mitochondrial biogenesis. Silent information regulator factor-1 plays an important role in exercise-induced muscle mitochondrial biogenesis. But protein and activity detection methods are different in experimental results.%  背景:沉默信息调节因子1是新近受到体育科学领域关注的能量代谢调节

  9. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  10. Regulation of Aicda expression and AID activity.

    Science.gov (United States)

    Zan, Hong; Casali, Paolo

    2013-03-01

    Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced

  11. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  12. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  13. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+ mouse.

    Directory of Open Access Journals (Sweden)

    James P White

    Full Text Available Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+ mouse is not known. Cachexia progression was studied in Apc(Min/+ mice that were either weight stable (WS or had initial (≤5%, intermediate (6-19%, or extreme (≥20% body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172, AMPK activity, and raptor phosphorylation (Ser 792 were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.

  14. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  15. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin.

    Science.gov (United States)

    Jähn, K; Lara-Castillo, N; Brotto, L; Mo, C L; Johnson, M L; Brotto, M; Bonewald, L F

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability. PMID:22972510

  16. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin

    Directory of Open Access Journals (Sweden)

    K Jähn

    2012-09-01

    Full Text Available It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex, a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s that preserve osteocyte viability.

  17. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    Science.gov (United States)

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. PMID:27099349

  18. Endoglin regulates cyclooxygenase-2 expression and activity.

    Science.gov (United States)

    Jerkic, Mirjana; Rivas-Elena, Juan V; Santibanez, Juan F; Prieto, Marta; Rodríguez-Barbero, Alicia; Perez-Barriocanal, Fernando; Pericacho, Miguel; Arévalo, Miguel; Vary, Calvin P H; Letarte, Michelle; Bernabeu, Carmelo; López-Novoa, Jose M

    2006-08-01

    The endoglin heterozygous (Eng(+/-)) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng(+/-) mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E(2) were observed in the Eng(+/-) mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng(+/-) but not in Eng(+/+) mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng(+/+) mice. N(omega)-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-beta1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng(+/-) mice. PMID:16840721

  19. Structural Basis for Plexin Activation and Regulation.

    Science.gov (United States)

    Kong, Youxin; Janssen, Bert J C; Malinauskas, Tomas; Vangoor, Vamshidhar R; Coles, Charlotte H; Kaufmann, Rainer; Ni, Tao; Gilbert, Robert J C; Padilla-Parra, Sergi; Pasterkamp, R Jeroen; Jones, E Yvonne

    2016-08-01

    Class A plexins (PlxnAs) act as semaphorin receptors and control diverse aspects of nervous system development and plasticity, ranging from axon guidance and neuron migration to synaptic organization. PlxnA signaling requires cytoplasmic domain dimerization, but extracellular regulation and activation mechanisms remain unclear. Here we present crystal structures of PlxnA (PlxnA1, PlxnA2, and PlxnA4) full ectodomains. Domains 1-9 form a ring-like conformation from which the C-terminal domain 10 points away. All our PlxnA ectodomain structures show autoinhibitory, intermolecular "head-to-stalk" (domain 1 to domain 4-5) interactions, which are confirmed by biophysical assays, live cell fluorescence microscopy, and cell-based and neuronal growth cone collapse assays. This work reveals a 2-fold role of the PlxnA ectodomains: imposing a pre-signaling autoinhibitory separation for the cytoplasmic domains via intermolecular head-to-stalk interactions and supporting dimerization-based PlxnA activation upon ligand binding. More generally, our data identify a novel molecular mechanism for preventing premature activation of axon guidance receptors. PMID:27397516

  20. Basic principles for regulating nuclear activities

    International Nuclear Information System (INIS)

    The AECB has developed as its mission statement: 'To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment'. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs

  1. Exercise, PGC-1α and metabolic adaptation in skeletal muscle

    OpenAIRE

    Yan, Zhen

    2009-01-01

    Endurance exercise promotes skeletal muscle adaptation, and exercise-induced peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) gene expression may play a pivotal role in the adaptive processes. Recent applications of mouse genetic models and in vivo imaging in exercise studies started to delineate the signaling-transcription pathways that are involved in the regulation of the Pgc-1α gene. These studies revealed the importance of p38 mitogen-activated protein kinase (MAPK)/...

  2. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    Science.gov (United States)

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. PMID:27207521

  3. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    Science.gov (United States)

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress. PMID:16644199

  4. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  5. The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling

    OpenAIRE

    Pérez-Schindler, Joaquín; Summermatter, Serge; Santos, Gesa; Zorzato, Francesco; Handschin, Christoph

    2013-01-01

    Skeletal muscle hypertrophy is mainly induced by growth hormones and mechanical overload and exerts health beneficial effects. The mammalian target of rapamycin complex 1 (mTORC1) and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) are key regulators of skeletal muscle mass and energy metabolism, respectively. Thus, acting in concert, mTORC1 and PGC-1α interplay is thought to regulate skeletal muscle function. Our results indicate that PGC-1α is not required for skele...

  6. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    Science.gov (United States)

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  7. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima;

    2015-01-01

    importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed...

  8. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Gudmundsson, Mikkel; Birk, Jesper Bratz;

    2010-01-01

    Objective: Test the hypothesis that FFA and muscle glycogen modify exercise-induced regulation of PDH in human skeletal muscle through regulation of PDK4 expression. Research Design and Methods: On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative...... lateralis biopsies were obtained before and after exercise. Results: PDK4 protein content was approximately 2.2 and approximately 1.5 fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in CON leg was approximately 2 fold higher in high FFA than in low FFA. In...

  9. The acute effect of neuromuscular activation in resistance exercise on human skeletal muscle with the interpolated twitch technique.

    Science.gov (United States)

    Lee, Dae-Yeon; Yoon, Wan-Young

    2015-09-01

    [Purpose] The purpose of this study was to perform a quantitative assessment of neuromechanical adaptation in skeletal muscles and to propose the scientific underpinnings of the acute effects induced by resistance exercise. [Subjects] The subjects in this study were 11 healthy adult men in their 20s who had no orthopedic history at the time of the study. To examine any signs of resistance exercise-induced changes in the ankle plantar flexor, the subjects were directed to perform a standing barbell calf raise routine. [Methods] Subjects were to carry a load equal to their weights and to perform five sets of ten repetitions. The maximal voluntary isometric contraction torque, resting twitch torque, muscle inhibition, root mean square of muscular activation, contraction time, and half relaxation time were analyzed by synchronizing a dynamometer, an electrical stimulator, and an electromyography system. [Results] The maximal voluntary isometric contraction torque appeared to decline, but the change was not statistically significant. The decline of resting twitch torque, on the other hand, was found to be statistically significant. Muscle inhibition and root mean square of muscular activation were both reduced, but both changes were not statistically significant. Lastly, contraction time and half relaxation time both statistically decreased significantly after resistance exercise. [Conclusion] These results indicate that the acute effects of resistance exercise have a greater impact on the peripheral mechanical system itself, rather than on neurological factors, in terms of the generation of muscle force. PMID:26504316

  10. Identification of a novel transforming growth factor-β (TGF-β6 gene in fish: regulation in skeletal muscle by nutritional state

    Directory of Open Access Journals (Sweden)

    Jakowlew Sonia B

    2010-05-01

    Full Text Available Abstract Background The transforming growth factor-β (TGF-β family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known. Results Here we report the molecular characterization, developmental and tissue expression and regulation by nutritional state of a novel TGF-β gene from a marine fish, the gilthead sea bream Sparus aurata. S. aurata TGF-β6 is encoded by seven exons 361, 164, 133, 111, 181, 154, and 156 bp in length and is translated into a 420-amino acid peptide. The exons are separated by six introns: >643, 415, 93, 1250, 425 and >287 bp in length. Although the gene organization is most similar to mouse and chicken TGF-β2, the deduced amino acid sequence represents a novel TGF-β that is unique to fish that we have named TGF-β6. The molecule has conserved putative functional residues, including a cleavage motif (RXXR and nine cysteine residues that are characteristic of TGF-β. Semi-quantitative analysis of TGF-β6 expression revealed differential expression in various tissues of adult fish with high levels in skin and muscle, very low levels in liver, and moderate levels in other tissues including brain, eye and pituitary. TGF-β6 is expressed in larvae on day of hatching and increases as development progresses. A fasting period of five days of juvenile fish resulted in increased levels of TGF-β6 expression in white skeletal muscle compared to that in fed fish, which was slightly attenuated by one injection of growth hormone. Conclusion Our findings provide valuable insights about genomic information and nutritional regulation of TGF-β6 which will aid the further investigation of the S. aurata TGF-β6 gene in association with muscle growth. The finding of a novel TGF-β6 molecule, unique to fish, will contribute to the understanding of the evolution of the TGF

  11. Tissue transglutaminase (TG2 activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line

    Directory of Open Access Journals (Sweden)

    Xiaoxue Yin

    2012-08-01

    Full Text Available Tissue transglutaminase (type II, TG2 has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14 to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC mRNA, bone morphogenetic protein-2 (BMP-2 and collagen I, significantly high alkaline phosphatase (ALP activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.

  12. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility

    OpenAIRE

    Brotto, Marco A.; Biesiadecki, Brandon J.; Brotto, Leticia S.; Nosek, Thomas M.; Jin, J.-P.

    2005-01-01

    Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isof...

  13. NO-DEPENDENT SIGNALING PATHWAYS IN UNLOADED SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Boris Stivovich Shenkman

    2015-10-01

    Full Text Available The main focus of the current review is the nitric oxide (NO-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.

  14. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained...

  15. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    OpenAIRE

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body sy...

  16. Skeletal mastocytosis.

    OpenAIRE

    Andrew, S M; Freemont, A J

    1993-01-01

    AIMS--To characterise the condition of skeletal mastocytosis, an uncommon cause of apparently "idiopathic" osteoporosis. METHODS--Transiliac crest biopsy specimens submitted over a period of five years were examined for nodular accumulation of mast cells. The cases were reviewed histologically and clinical follow up was obtained from hospital notes. RESULTS--Six cases of mastocytosis occurring in bone biopsy specimens submitted to our department were identified. Four patients presented initia...

  17. SKELETAL MUSCLE SECRETED FACTORS PREVENT GLUCOCORTICOID-INDUCED OSTEOCYTE APOPTOSIS THROUGH ACTIVATION OF B-CATENIN

    OpenAIRE

    Jähn, K; Lara-Castillo, N; Brotto, L.; Mo, C. L.; Johnson, M.L.; Brotto, M.; Bonewald, L. F.

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion ...

  18. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin

    OpenAIRE

    Jähn, K; Lara-Castillo, N; Brotto, L.; CL Mo; ML Johnson; Brotto, M.; LF Bonewald

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion ...

  19. Nutrient and energy sensing in skeletal muscle

    OpenAIRE

    Deshmukh, Atul S.

    2009-01-01

    Nutrient overload and physical inactivity often leads to the development of obesity and type 2 diabetes. Acute over-nutrition can induce insulin resistance, while physical exercise enhances skeletal muscle insulin sensitivity. Like every living cell, skeletal muscle senses nutrient and energy signals and to adjust metabolic flux. This thesis focuses on some of the key nutrient and energy sensing (exercise/contraction-induced) pathways in skeletal muscle that regulate metabol...

  20. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  1. Nuclear Factor of Activated T cells (NFAT): key regulator of cardiac hypertrophy and skeletal muscle adaptation

    NARCIS (Netherlands)

    Bourajjaj, M.

    2008-01-01

    Despite significant progress in the prevention and treatment of cardiovascular diseases, heart failure is still a leading cause of morbidity and mortality in industrial countries. Sustained cardiac hypertrophy, which is defined as an increase in heart size resulting from an increase in cardiomyocyte

  2. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  3. Legislation on and regulation of nuclear activities

    International Nuclear Information System (INIS)

    This work is a compilation of legislative texts and regulations published by the Atomic Energy Commission's Legal Affairs Department (CEA). It provides a comprehensive source of knowledge and information on nuclear energy law. Legislative texts published over the last forty years, are collected and analytically indexed. The publication covers both French regulations and regulations of international organisations such as the International Atomic Energy Agency and Euratom. It is divided into eight different chapters, dealing with regulations relevant to international and national institutions, nuclear installations, third party liability, protection of persons and the environment, etc. A chronological table of the texts of international and national laws is also included in this work. (NEA)

  4. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    Science.gov (United States)

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  5. PGC-1α improves glucose homeostasis in skeletal muscle in an activity-dependent manner

    OpenAIRE

    Summermatter, Serge; Shui, Guanghou; Maag, Daniela; Santos, Gesa; Wenk, Markus R.; Handschin, Christoph

    2013-01-01

    Metabolic disorders are a major burden for public health systems globally. Regular exercise improves metabolic health. Pharmacological targeting of exercise mediators might facilitate physical activity or amplify the effects of exercise. The peroxisome proliferator–activated receptor γ coactivator 1α (PGC-1α) largely mediates musculoskeletal adaptations to exercise, including lipid refueling, and thus constitutes such a putative target. Paradoxically, forced expression of PGC-1α in muscle pro...

  6. Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle

    OpenAIRE

    1993-01-01

    The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potenti...

  7. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity.

    OpenAIRE

    Richard-Bulteau, Hélène; Serrurier, Bernard; Crassous, Brigitte; Banzet, Sébastien; Peinnequin, André; Bigard, Xavier; Koulmann, Nathalie

    2008-01-01

    The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, ...

  8. Impaired insulin activation and dephosphorylation of glycogen synthase in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Højlund, Kurt; Andersen, Nicoline Resen;

    2008-01-01

    CONTEXT: Insulin resistance is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). The molecular mechanisms underlying reduced insulin-mediated glycogen synthesis in skeletal muscle of patients with PCOS have not been established. SUBJECTS AND METHODS: We...... investigated protein content, activity, and phosphorylation of glycogen synthase (GS) and its major upstream inhibitor, GS kinase (GSK)-3 in skeletal muscle biopsies from 24 PCOS patients (before treatment) and 14 matched control subjects and 10 PCOS patients after 16 wk treatment with pioglitazone. All were...... metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry. RESULTS: Reduced insulin-mediated glucose disposal (P < 0.05) was associated with a lower insulin-stimulated GS activity in PCOS patients (P < 0.05), compared with controls. This was, in part, explained by absent insulin...

  9. Syringaresinol induces mitochondrial biogenesis through activation of PPARβ pathway in skeletal muscle cells.

    Science.gov (United States)

    Thach, Trung Thanh; Lee, Chan-Kyu; Park, Hyun Woo; Lee, Sang-Jun; Lee, Sung-Joon

    2016-08-15

    Activation of peroxisome proliferator-activated receptors (PPARs) plays a crucial role in cellular energy metabolism that directly impacts mitochondrial biogenesis. In this study, we demonstrate that syringaresinol, a pharmacological lignan extracted from Panax ginseng berry, moderately binds to and activates PPARβ with KD and EC50 values of 27.62±15.76μM and 18.11±4.77μM, respectively. Subsequently, the expression of peroxisome proliferator-activated receptor γ coactivator-1α together with PPARβ transcriptional targets, mitochondrial carnitine palmitoyltransferase 1 and uncoupling protein 2, was also enhanced in terms of both mRNA and protein levels. The activation of these proteins induced mitochondrial biogenesis by enrichment of mitochondrial replication and density within C2C12 myotubes. Importantly, knockdown of PPARβ reduced the syringaresinol-induced protein expression followed by the significant reduction of mitochondrial biogenesis. Taken together, our results indicate that syringaresinol induces mitochondrial biogenesis by activating PPARβ pathway. PMID:27450788

  10. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways.

    Science.gov (United States)

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-12-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  11. The effect of altered temperature on Ca2(+)-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation

    OpenAIRE

    1990-01-01

    The effect of changes in temperature on the calcium sensitivity of tension development was examined in permeabilized cellular preparations of rat ventricle and rabbit psoas muscle. Maximum force and Ca2+ sensitivity of force development increased with temperature in both muscle types. Cardiac muscle was more sensitive to changes in temperature than skeletal muscle in the range 10-15 degrees C. It was postulated that the level of thin filament activation may be decreased by cooling. To investi...

  12. Changes in the TBARs content and superoxide dismutase, catalase and glutathione peroxidase activities in the lymphoid organs and skeletal muscles of adrenodemedullated rats

    OpenAIRE

    Pereira B.; Costa-Rosa L.F.B.P.; Bechara E.J.H.; Newsholme P.; Curi R.

    1998-01-01

    Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced b...

  13. Role of calmodulin (δ-subunit) in activation of phosphorylase kinase from rabbit skeletal muscles

    International Nuclear Information System (INIS)

    The structure of the inactivated and activated forms of phospholyase kinase was compared. The enzyme was activated by incubation in an alkaline medium (pH 8.5), phosphorylation of the catalytic subunit of cAMP-dependent protein kinase, and limited proteolysis. Hydrophobic chromatography on phenyl-Sepharose and electrophoresis in a polyacrylamide gel density gradient were employed for a comparison of these forms of the enzyme. Activation of the enzyme was accompanied by the separation of a low-molecular-weight component (M/sub r/ about 17,000). The low-molecular-weight protein was obtained in a homogeneous state by chromatography on phenyl-Sepharose. It was established that its properties are similar to those of calmodulin. The presence of calmodulin in preparations of phosphorylase kinase was judged by the activation of the calmodulin-dependent form of phosphodiesterase. The boiled and subtilisin-treated kinase activates phosphodiesterase in much the same way as bovine brain calmodulin. The results obtained suggest that the δ-subunit is a protein inhibitor of the enzyme

  14. Altered Regulation of Contraction-Induced Akt/mTOR/p70S6k Pathway Signaling in Skeletal Muscle of the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Anjaiah Katta

    2009-01-01

    Full Text Available Increased muscle loading results in the phosphorylation of the 70 kDa ribosomal S6 kinase (p70S6k, and this event is strongly correlated with the degree of muscle adaptation following resistance exercise. Whether insulin resistance or the comorbidities associated with this disorder may affect the ability of skeletal muscle to activate p70S6k signaling following an exercise stimulus remains unclear. Here, we compare the contraction-induced activation of p70S6k signaling in the plantaris muscles of lean and insulin resistant obese Zucker rats following a single bout of increased contractile loading. Compared to lean animals, the basal phosphorylation of p70S6k (Thr389; 37.2% and Thr421/Ser424; 101.4%, Akt (Thr308; 25.1%, and mTOR (Ser2448; 63.0% was higher in obese animals. Contraction increased the phosphorylation of p70S6k (Thr389, Akt (Ser473, and mTOR (Ser2448 in both models however the magnitude and kinetics of activation differed between models. These results suggest that contraction-induced activation of p70S6k signaling is altered in the muscle of the insulin resistant obese Zucker rat.

  15. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Science.gov (United States)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  16. Genetic and metabolic effects on skeletal muscle AMPK in young and older twins

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Poulsen, Pernille; Wegner, Lise;

    2009-01-01

    The protein complex AMP-activated protein kinase (AMPK) is believed to play an important role in the regulation of skeletal muscle glucose and lipid metabolism. Defects in the AMPK system might therefore be an important factor in the pathogenesis of type 2 diabetes. We aimed to identify genetic and...... environmental mechanisms involved in the regulation of AMPK expression and activity and to examine the association between AMPK protein levels and activity on one hand, and glucose and fat metabolism on the other hand. We investigated skeletal muscle biopsies from 100 young and 82 older mono- and dizygotic non...... influence. AMPK gamma3 protein expression and activity were negatively related to whole-body glucose uptake through the non-oxidative metabolic pathway, and positively related to phosphorylation of glycogen synthase. In conclusion, our results suggest that skeletal muscle AMPK expression is under minor...

  17. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P < 0.05) elevation in the activity of phosphofructokinase and creatine kinase, implying an enhanced anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves the...

  18. Role of 5'AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Wojtaszewski, Jørgen F. P.

    2008-01-01

    5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first...

  19. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  20. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    Science.gov (United States)

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. PMID:26739770

  1. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues

    OpenAIRE

    Erica L. Scheller; Doucette, Casey R.; Learman, Brian S.; Cawthorn, William P; Khandaker, Shaima; Schell, Benjamin; Wu, Brent; Ding, Shi-Ying; Bredella, Miriam A.; Fazeli, Pouneh K.; Khoury, Basma; Jepsen, Karl J.; Pilch, Paul F.; Klibanski, Anne; ROSEN, CLIFFORD J

    2015-01-01

    Marrow adipose tissue (MAT) accumulates in diverse clinical conditions but remains poorly understood. Here we show region-specific variation in MAT adipocyte development, regulation, size, lipid composition, gene expression, and genetic determinants. Early MAT formation in mice is conserved, while later development is strain dependent. Proximal, but not distal, MAT is lost with 21-day cold exposure. Rat MAT adipocytes from distal sites have an increased proportion of monounsaturated fatty aci...

  2. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    OpenAIRE

    Siham Yennek; Mithila Burute; Manuel Théry; Shahragim Tajbakhsh

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  3. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  4. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  5. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells

    OpenAIRE

    Yennek, Siham; Burute, Mithila; Thery, Manuel

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  6. Lactate Dehydrogenase and Citrate Synthase activity in cardiac and skeletal muscle of lowland and highland tinamous

    OpenAIRE

    Aira, Naomi

    2013-01-01

    Tinamous (Tinamidae) have the smallest heart in relation to body mass compared to any other flying bird today (Bishop 1997). This means that heart size is likely to restrict aerobic metabolism. Tinamous inhabit areas from sea level to 4800 m a.s.l., which means that the high altitude living species, Nothoprocta ornata (NO), is exposed to hypoxia. In this study the activity of the two metabolic enzymes Lactate Dehydrogenase (LDH) and Citrate Synthase (CS) was measured and the ratio between the...

  7. Modular regulation analysis of integrative effects of hypoxia on the energetics of contracting skeletal muscle in vivo.

    Science.gov (United States)

    Beuste, Christophe; Miraux, Sylvain; Deschodt-Arsac, Véronique J; Thiaudiere, Eric; Franconi, Jean-Michel; Diolez, Philippe; Arsac, Laurent M

    2009-05-15

    In the exercising muscle, acute reduction in ambient oxygen impairs muscle contraction because of the effects of hypoxia on mitochondrial ATP supply. The less marked impairment reported after long-term exposure to hypoxia points to changes in the regulation of the energetic system of contraction in HC (hypoxic conditioned) animals. This energetic system is conceptually defined here as two modules: the ATP/PCr (phosphocreatine)-producer and the ATP/PCr-consumer connected by energetic intermediates. Modular control analysis that combines top-down control analysis with non-invasive 31P-NMR spectroscopy was used to describe the effects of hypoxia on each module and their adaptation. Modulations of steady levels of ATP turnover (indirectly assessed as force output) and muscle PCr were obtained in HC rats (6 weeks at 10.5% O2) compared with N (normoxic) rats. Modular control and regulation analyses quantified the elasticity to PCr of each module in N and HC rats as well as the direct effect of acute hypoxia on the ATP/PCr-producer module. Similar elasticities in N and HC rats indicate the absence of response to long-term hypoxia in internal regulations of the ATP supply and demand pathways. The less marked impairment of contraction by acute hypoxia in HC rats (-9+/-6% versus -17+/-14% in N rats, Psupply. This points to a positive adaptation to chronic hypoxia. Modular control analysis in vivo may provide powerful tools to find out improved function (alternatively dysfunction) at the system level in conditioned animals. PMID:19228117

  8. Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo

    OpenAIRE

    Lee-Young, Robert S.; Ayala, Julio E.; Hunley, Charles F.; James, Freyja D.; Bracy, Deanna P; Kang, Li; Wasserman, David H.

    2010-01-01

    Endothelial nitric oxide synthase (eNOS) is associated with a number of physiological functions involved in the regulation of metabolism; however, the functional role of eNOS is poorly understood. We tested the hypothesis that eNOS is critical to muscle cell signaling and fuel usage during exercise in vivo, using 16-wk-old catheterized (carotid artery and jugular vein) C57BL/6J mice with wild-type (WT), partial (+/−), or no expression (−/−) of eNOS. Quantitative reductions in eNOS expression ...

  9. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation

    DEFF Research Database (Denmark)

    Eijnde, Bert O.; Derave, Wim; Wojtaszewski, Jørgen;

    2005-01-01

    The effects of leg immobilization and retraining in combination with oral creatine intake on muscle AMP-activated protein kinase (AMPK) protein expression and phosphorylation status were investigated. A double-blind trial was performed in young healthy volunteers (n = 22). A cast immobilized the...... right leg for 2 wk, whereafter the knee-extensor muscles of that leg were retrained for 6 wk. Half of the subjects received creatine monohydrate throughout the study (Cr; from 15 g down to 2.5 g daily), and the others ingested placebo (P; maltodextrin). Before and after immobilization and retraining...... immobilization-induced muscle inactivity for 2 wk does not alter AMPK a1-, a2-, and ß2-subunit expression or a-AMPK phosphorylation status. Furthermore, the present observations indicate that AMPK probably is not implicated in the previously reported beneficial effects of oral creatine supplementation on muscle...

  10. Pannexin 1 channels in skeletal muscles

    Science.gov (United States)

    Cea, Luis A.; Riquelme, Manuel A.; Vargas, Anibal A.; Urrutia, Carolina; Sáez, Juan C.

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca2+ signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles. PMID:24782784

  11. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    International Nuclear Information System (INIS)

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca2+ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting 32P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated 32P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor

  12. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-05-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca/sup 2 +/ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting /sup 32/P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated /sup 32/P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor.

  13. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  14. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells.

    Science.gov (United States)

    Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca; Gatto, Sole; Coutinho Toto, Paula; Albini, Sonia; Ryan, Tammy; Tora, Làszlò; Puri, Pier Lorenzo

    2016-01-01

    Change in the identity of the components of the transcription pre-initiation complex is proposed to control cell type-specific gene expression. Replacement of the canonical TFIID-TBP complex with TRF3/TBP2 was reported to be required for activation of muscle-gene expression. The lack of a developmental phenotype in TBP2 null mice prompted further analysis to determine whether TBP2 deficiency can compromise adult myogenesis. We show here that TBP2 null mice have an intact regeneration potential upon injury and that TBP2 is not expressed in established C2C12 muscle cell or in primary mouse MuSCs. While TFIID subunits and TBP are downregulated during myoblast differentiation, reduced amounts of these proteins form a complex that is detectable on promoters of muscle genes and is essential for their expression. This evidence demonstrates that TBP2 does not replace TBP during muscle differentiation, as previously proposed, with limiting amounts of TFIID-TBP being required to promote muscle-specific gene expression. PMID:26880551

  15. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells

    Science.gov (United States)

    Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca; Gatto, Sole; Coutinho Toto, Paula; Albini, Sonia; Ryan, Tammy; Tora, Làszlò; Puri, Pier Lorenzo

    2016-01-01

    Change in the identity of the components of the transcription pre-initiation complex is proposed to control cell type-specific gene expression. Replacement of the canonical TFIID-TBP complex with TRF3/TBP2 was reported to be required for activation of muscle-gene expression. The lack of a developmental phenotype in TBP2 null mice prompted further analysis to determine whether TBP2 deficiency can compromise adult myogenesis. We show here that TBP2 null mice have an intact regeneration potential upon injury and that TBP2 is not expressed in established C2C12 muscle cell or in primary mouse MuSCs. While TFIID subunits and TBP are downregulated during myoblast differentiation, reduced amounts of these proteins form a complex that is detectable on promoters of muscle genes and is essential for their expression. This evidence demonstrates that TBP2 does not replace TBP during muscle differentiation, as previously proposed, with limiting amounts of TFIID-TBP being required to promote muscle-specific gene expression. DOI: http://dx.doi.org/10.7554/eLife.12534.001 PMID:26880551

  16. Histochemical technique for the demonstration of phosphofructokinase activity in heart and skeletal muscles.

    Science.gov (United States)

    Meijer, A E; Stegehuis, F

    1980-01-01

    A histochemical multi-step technique for the demonstration of phosphofructokinase activity in tissue sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of the non-structurally bound enzyme into the medium during incubation. In the histochemical system the enzyme converts the substrate D-fructose-6-phosphate to D-fructose-1,6-diphosphate, which in turn is hydrolyzed by exogenous and endogenous fructose diphosphate aldolase to dihydroxyacetone phosphate and D-glyceral-dehyde-3-phosphate. The dihydroxyacetone phosphate is reversibly converted into D-glyceraldehyde-3-phosphate by exogenous and endogenous triosephosphate isomerase. Next the D-glyceraldehyde-3-phosphate is oxidized by exogenous and endogenous glyceraldehyde-3-phosphate dehydrogenase into 1,3-diphospho-D-glycerate. Concomitantly the electrons are transported via NAD+, phenazine methosulphate and menadione to nitro-BT. Sodium azide and amytal are incorporated to block electron transfer to the cytochromes. PMID:6446532

  17. Sex Hormones' Regulation of Rodent Physical Activity: A Review

    Directory of Open Access Journals (Sweden)

    J. Timothy Lightfoot

    2008-01-01

    Full Text Available There is a large body of emerging literature suggesting that physical activity is regulated to a varying extent by biological factors. Available animal data strongly suggests that there is a differential regulation of physical activity by sex and that the majority of this differential regulation is mediated by estrogen/testosterone pathways with females in many animal species having higher daily activity levels than males. The purpose of this manuscript is to review the mechanisms by which estrogen and testosterone affect the regulation of daily activity. This review lays the foundation for future investigations in humans as well as discussions about relative disease risk mediated by differential biological regulation of physical activity by sex.

  18. Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective?

    Directory of Open Access Journals (Sweden)

    Subrata Biswas

    Full Text Available Mutations in the cytoplasmic tail (CT of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca(2+ and calmodulin (CaM regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca(2+ and CaM. hNaV1.4F1705I inactivation gating is Ca(2+-sensitive compared to wild type hNaV1.4 which is Ca(2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I eliminates Ca(2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca(2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca(2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca(2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca(2+-sensing apparatus in the CT of NaV1.4.

  19. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  20. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  1. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  2. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Science.gov (United States)

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  3. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: Differential effects on insulin-receptor substrates 1 and 2

    OpenAIRE

    Chibalin, Alexander V; Yu, Mei; Ryder, Jeffrey W.; Song, Xiao Mei; Galuska, Dana; Krook, Anna; Wallberg-Henriksson, Harriet; Juleen R. Zierath

    2000-01-01

    Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen co...

  4. Aging, Physical Activity, and Energy Intake Regulation

    OpenAIRE

    Van Walleghen, Emily Lynn

    2006-01-01

    More than seventy percent of Americans over the age of sixty are classified as overweight or obese, and the future incidence of these conditions is expected to rise. Although it is unclear why older adults are predisposed to weight gain, decreased total energy expenditure may contribute to positive energy balance. It is also possible that age-related impairments in energy intake regulation result in the inability to appropriately adjust food intake to meet energy requirements with advancing a...

  5. Skeletal scintigraphy

    International Nuclear Information System (INIS)

    Skeletal scintigraphy, using phosphates or diphosphonates labeled with technetium 99m, is a sensitive method of detecting bone abnormalities. The most important and most frequent role of bone scanning is evaluating the skeletal areas in patients who have a primary cancer, especially a malignant condition that has a tendency to spread to bone areas. The bone scan is superior to bone radiographs in diagnosing these abnormalities; 15 percent to 25 percent of patients with breast, prostate or lung cancer, who have normal roentgenograms, also have abnormal scintigrams due to metastases. The majority of bone metastases appear as hot spots on the scan and are easily recognized. The incidence of abnormal bone scans in patients with early stages (I and II) of breast cancer varies from 6 percent to 26 percent, but almost invariably those patients with scan abnormalities have a poor prognosis and should be considered for additional therapies. Progression or regression of bony lesions can be defined through scanning, and abnormal areas can be identified for biopsy. The incidence of metastases in solitary scan lesions in patients with known primary tumors varies from 20 percent to 64 percent. Bone scintigraphy shows positive uptake in 95 percent of cases with acute osteomyelitis. Stress fractures and trauma suspected in battered babies can be diagnosed by scanning before there is radiological evidence. The procedure is free from acute or long-term side effects and, except in cases of very young patients, sedation is seldom necessary. Although the test is sensitive, it is not specific and therefore it is difficult to overemphasize the importance of clinical, radiographic, biochemical and scanning correlation in each patient

  6. The Effects of Lactate on Skeletal Muscle

    OpenAIRE

    Willkomm, Lena

    2014-01-01

    Regular exercise and physical activity are cornerstones in the prevention and treatment of numerous chronic conditions, such as type 2 diabetes, coronary heart disease, and age-related sarcopenia. The associated health benefits arise from a number of tissues but due to its high plasticity skeletal muscle plays a pivotal role. The resident stem cells of skeletal muscle tissue, so called Satellite cells (SCs), contribute significantly to skeletal muscle adaptation and hence, maintenance of heal...

  7. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  8. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  9. Experimental Studies of the Molecular Pathways Regulated by Exercise and Resveratrol in Heart, Skeletal Muscle and the Vasculature

    Directory of Open Access Journals (Sweden)

    Vernon W. Dolinsky

    2014-09-01

    Full Text Available Regular exercise contributes to healthy aging and the prevention of chronic disease. Recent research has focused on the development of molecules, such as resveratrol, that activate similar metabolic and stress response pathways as exercise training. In this review, we describe the effects of exercise training and resveratrol on some of the organs and tissues that act in concert to transport oxygen throughout the body. In particular, we focus on animal studies that investigate the molecular signaling pathways induced by these interventions. We also compare and contrast the effects of exercise and resveratrol in diseased states.

  10. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  11. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    Science.gov (United States)

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  12. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  13. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  14. Activity Dependent Regulation of Inhibitory Circuitry

    OpenAIRE

    Sharma, Nikhil

    2015-01-01

    Inhibition controls information flow through a neural circuit by modulating synaptic integration, restricting action potentials, and coordinating the activity of ensembles of neurons. These functions are mediated by a diverse array of inhibitory neuron subtypes that synapse on defined domains of a postsynaptic neuron. Activity-dependent transcription controls inhibitory synapse number and function, but how this transcription program affects the inhibitory inputs that form on di...

  15. Commission for energy regulation - 2012 Activity Report

    International Nuclear Information System (INIS)

    After a presentation of the organisation, role and missions of the French Commission for Energy Regulation (CRE), and of its relationship with other institutional actors, this report describes and comments the action of the CRE in the fields of dialogue and transparency. It presents and comments key figures regarding the electricity and gas retail markets. It reports and comments the European reaction to the cold peak of February 2012 (historical peak for consumption and prices, inquiry on the causes of these price peaks, need of a European market). The next part addresses the relationship between electricity grids and territories (solidarity between electricity grids as the basis of the Europe of energy, evolution of French grids to face new needs and to take regional and local dimensions into account). Another part addresses gas infrastructures which are considered as the cornerstone of a good operation for the French market and for the integration of the European energy market (gas world market in 2012, definition of a target model for the gas market by European regulators, evolution of the French market in compliance with the European target model, new tariffs for the use of natural gas transport networks). The report then addresses the development of renewable energies: actions of CRE (bidding, opinion of tariffs), influence of renewable energy development on electricity prices on gross markets, needed evolution of electricity grids. A last part addresses the issues of energy cost, demand management, and struggle against energy poverty

  16. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery

    DEFF Research Database (Denmark)

    Albers, Peter H; Bojsen-Møller, Kirstine N; Dirksen, Carsten;

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose...... and glycogen synthase activity were enhanced 12 months post-surgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4 and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC as well as insulin-induced changes in phosphorylation of Akt and TBC1D4 were...... enhanced 12 months post-surgery. Adipose tissue from glucose tolerant subjects was the most responsive to RYGB compared to type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin sensitive phenotype of skeletal...

  17. Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome–like skeletal defects induced by Pdk1 or Cbp mutations in mice

    OpenAIRE

    Shim, Jae-Hyuck; Greenblatt, Matthew B.; Singh, Anju; Brady, Nicholas; Hu, Dorothy; Drapp, Rebecca; Ogawa, Wataru; Kasuga, Masato; Noda, Tetsuo; Yang, Sang-Hwa; Lee, Sang-Kyou; Rebel, Vivienne I.; Glimcher, Laurie H.

    2011-01-01

    Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/C...

  18. Altered Skeletal Muscle Phenotypes in Calcineurin Aα and Aβ Gene-Targeted Mice

    OpenAIRE

    Parsons, Stephanie A.; Wilkins, Benjamin J.; Bueno, Orlando F.; Molkentin, Jeffery D

    2003-01-01

    Calcineurin is a calcium-regulated serine-threonine protein phosphatase that controls developmental and inducible biological responses in diverse cell types, in part through activation of the transcription factor nuclear factor of activated T cells (NFAT). In skeletal muscle, calcineurin has been implicated in the regulation of myoblast differentiation, hypertrophy of mature myofibers, and fiber type switching in response to alterations in intracellular calcium concentration. However, conside...

  19. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  20. Changes in skeletal tumor activity on {sup 18}F-choline PET/CT in patients receiving {sup 223}radium radionuclide therapy for metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Kyle S. [Oncology Research Dept. and Hamamatsu/Queen' s PET Imaging Center, The Queen' s Medical Center, Honolulu (United States); Kang, Yu; Kwee, Sandi A. [Dept. of Medical Physics, School of Allied Health Sciences, University of Nevada Las Vegas, Las Vegas (United States)

    2015-06-15

    Radium-223 dichloride is an alpha-emitting radiopharmaceutical shown to prolong survival in patients with castrate-resistant prostate cancer (CRPC) and symptomatic skeletal metastases. This report describes in two patients the acute changes in bone metastatic activity detected by F-18 choline PET/CT imaging midway during treatment with radium-223 dichloride. In addition to visual and standardized uptake value analysis, changes in the whole-body tumor burden were quantified by measuring the difference in net metabolically active tumor volume (MATV) and total lesion activity (TLA) between pre- and mid-treatment PET scans. After the third dose of radium-223 dichloride, near-total disappearance of abnormal skeletal activity was observed in one case (net MATV change from 260.7 to 0.8 cc; net TLA change from 510.7 to 2.1), while a heterogeneous tumor response was observed in the other (net MATV change from 272.2 to 241.3 cc; net TLA change from 987.1 to 779.4). Corresponding normalization and persistent elevation in serum alkaline phosphatase levels were observed in these cases, respectively. Further research is needed to determine the predictive value of serial F-18 choline PET/CT imaging in patients receiving radium-223 dichloride for CRPC.

  1. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  2. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients

    DEFF Research Database (Denmark)

    Brown, Audrey E; Palsgaard, Jane; Borup, Rehannah; Avery, Peter; Gunn, David A; De Meyts, Pierre; Yeaman, Stephen J; Walker, Mark

    2015-01-01

    Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene...... expression during differentiation between diabetic and control muscle cell cultures. Microarray analysis was performed using skeletal muscle cell cultures established from type 2 diabetic patients with a family history of type 2 diabetes and clinical evidence of marked insulin resistance and nondiabetic...... control subjects with no family history of diabetes. Genes and pathways upregulated with differentiation in the diabetic cultures, compared with controls, were identified using Gene Spring and Gene Set Enrichment Analysis. Gene sets upregulated in diabetic myotubes were associated predominantly with...

  3. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway

    DEFF Research Database (Denmark)

    Kase, Eili T; Wensaas, Andreas J; Aas, Vigdis;

    2005-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism and are also involved in glucose metabolism. However, the functional role of LXRs in human skeletal muscle is at present unknown. This study demonstrates that chronic ligand activation of LXRs by a synthetic LXR...

  4. Altering the redox state of skeletal muscle by glutathione depletion increases the exercise‐activation of PGC‐1α

    OpenAIRE

    Strobel, Natalie A.; Matsumoto, Aya; Peake, Jonathan M.; Marsh, Susan A.; Peternelj, Tina‐Tinkara; Briskey, David; Fassett, Robert G.; Coombes, Jeff S.; Wadley, Glenn D.

    2014-01-01

    Abstract We investigated the relationship between markers of mitochondrial biogenesis, cell signaling, and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats + DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h ...

  5. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    OpenAIRE

    Andrea Bonetto; Tufan Aydogdu; Noelia Kunzevitzky; Guttridge, Denis C.; Sawsan Khuri; Koniaris, Leonidas G.; Teresa A Zimmers

    2011-01-01

    BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the i...

  6. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Anne-Marie eLundsgaard

    2014-11-01

    Full Text Available It has become increasingly apparent that substrate metabolism is subject to gender specific regulation, and the aim of this review is to outline the available evidence of molecular gender differences in glucose and lipid metabolism of skeletal muscle. Female sex has been suggested to have a favorable effect on glucose homeostasis, and the available evidence from hyperinsulinemic-euglycemic clamp studies is summarized to delineate whether there is a gender difference in whole body insulin sensitivity and in particular insulin-stimulated glucose uptake of skeletal muscle. Whether an eventual higher insulin sensitivity of female skeletal muscle can be related to gender specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism in men and women. In particular, the molecular machinery for glucose and fatty acid oxidative and storage capacities in skeletal muscle and its implications for substrate utilization during metabolic situations of daily living are discussed, emphasizing their relevance for substrate choice in the fed and fasted state, and during periods of physical activity and recovery. Together, handling of carbohydrate and lipids and regulation of their utilization in skeletal muscle have implications for whole body glucose homeostasis in men and women. 17-β estradiol is the most important female sex hormone, and the identification of estradiol receptors in skeletal muscle has opened for a role in regulation of substrate metabolism. Also, higher levels of circulating adipokines as adiponectin and leptin in women and their implications for muscle metabolism will be considered.

  7. Regulation of nuclear activities in Canada

    International Nuclear Information System (INIS)

    This review was initiated by the OECD Nuclear Energy Agency for its series of analytical studies on nuclear legislation. It looks at the historic background and general overview of the use and handling of nuclear energy; the governmental framework controlling nuclear activities; and the agencies involved in its research and industrial applications. The regulatory power and structure of the Atomic Energy Control Board are highlighted

  8. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  9. Hormonal Regulation of Hepatic Drug Metabolizing Enzyme Activity During Adolescence

    OpenAIRE

    Kennedy, M J

    2008-01-01

    Activities of drug metabolizing enzymes (DME) are known to change throughout the course of physical and sexual maturation with the greatest variability noted during infancy and adolescence. The mechanisms responsible for developmental regulation of DME are currently unknown. However, the hormonal changes of puberty/adolescence provide a theoretical framework for understanding biochemical regulation of DME activity during growth and maturation. Important information regarding potential influen...

  10. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Science.gov (United States)

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  11. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  12. p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    International Nuclear Information System (INIS)

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-κB in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-κB activation during myogenesis, not through down-regulation of degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that stretch-induced NF-κB activation by phosphorylation of p65 NF-κB. Moreover, depletion of p38α using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-κB activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-κB signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The α isoform of p38MAP kinase regulates the transcriptional activation of NF-κB following stimulation with cyclic stretch.

  13. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication.

    Science.gov (United States)

    Mackey, Abigail L; Rasmussen, Lotte K; Kadi, Fawzi; Schjerling, Peter; Helmark, Ida C; Ponsot, Elodie; Aagaard, Per; Durigan, João Luiz Q; Kjaer, Michael

    2016-06-01

    With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared with PLA, IBU was found to augment the proportion of ActiveNotch1(+) satellite cells at 2 d [IBU, 29 ± 3% vs. PLA, 19 ± 2% (means ± sem)], satellite cell content at 7 d [IBU, 0.16 ± 0.01 vs. PLA, 0.12 ± 0.01 (Pax7(+) cells/fiber)], and to expedite muscle repair at 30 d. The PLA group displayed a greater proportion of embryonic myosin(+) fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. PMID:26936358

  14. Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease

    Directory of Open Access Journals (Sweden)

    Erick Omar Hernández-Ochoa

    2016-01-01

    Full Text Available The skeletal muscle Ca2+ release channel, also known as ryanodine receptor type 1 (RyR1, is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca2+ channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca2+, several intracellular compounds (e.g., ATP, and modulatory proteins (e.g., calmodulin. Dominant and recessive mutations in RyR1, as well as acquired channel alterations, are the underlying cause of various skeletal muscle diseases. The aim of this mini review is to summarize several current aspects of RyR1 function, structure, regulation, and to describe the most common diseases caused by hereditary or acquired RyR1 malfunction.

  15. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  16. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.

    Science.gov (United States)

    MacPherson, Rebecca E K; Peters, Sandra J

    2015-07-01

    The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism. PMID:25971423

  17. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  18. Omega-3 Fatty Acids and Skeletal Muscle Health

    OpenAIRE

    Stewart Jeromson; Gallagher, Iain J.; Stuart D. R. Galloway; D. Lee Hamilton

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscl...

  19. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  20. Crocus sativus L. (Saffron) Extract and its Active Constituents (Crocin and Safranal) on Ischemia-Reperfusion in Rat Skeletal Muscle

    OpenAIRE

    Hossein Hosseinzadeh; Mohammad Hadi Modaghegh; Zahra Saffari

    2009-01-01

    Saffron and its constituents have been shown to decrease ischemia-reperfusion (I/R) injury in kidney or brain tissues. In this study, the effects of saffron ethanolic extract and its constituents, crocin and safranal, were evaluated in skeletal muscle during I/R injury. Hind limb ischemia was induced using clamping the common femoral artery and vein. After 2 h ischemia, the clamp of the femoral vessels of animals was taken off and the animal underwent 1h reperfusion. Muscle injuries were eval...