WorldWideScience

Sample records for activities carbonic anhydrase

  1. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    Science.gov (United States)

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review.

  2. Bioindication potential of carbonic anhydrase activity in anemones and corals.

    Science.gov (United States)

    Gilbert, A L; Guzmán, H M

    2001-09-01

    Activity levels of carbonic anhydrase (CA) were assessed in anemones Condylactis gigantea and Stichodactyla helianthus with laboratory exposures to copper, nickel, lead, and vanadium, and also in animals collected from polluted vs pristine field sites. CA activity was found to be decreased with increase in metal concentration and also in animals collected from the polluted field site. Preliminary assessments to adapt the CA assay for use in the widespread coral Montastraea cavernosa show decreased CA activity in specimens from the polluted field site and provide an avenue for future research aimed at more thoroughly describing coral CA activity for potential application in bioindication.

  3. Genetics Home Reference: carbonic anhydrase VA deficiency

    Science.gov (United States)

    ... hyperammonemia due to carbonic anhydrase VA deficiency hyperammonemic encephalopathy due to carbonic anhydrase VA deficiency mitochondrial carbonic anhydrase va deficiency Related Information How are ...

  4. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  5. Catecholamine-induced vasoconstriction is sensitive to carbonic anhydrase I activation

    Directory of Open Access Journals (Sweden)

    Puscas I.

    2001-01-01

    Full Text Available We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors, so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.

  6. In vivo effects of radioactive properties of Tl-201 on human carbonic anhydrase activity

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat

    2017-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. The most useful radioisotope, Tl-201, decays by electron capture, emitting Hg X-rays ( 70-80 keV), and photons of 135 and 167 keV in 10% total abundance. Therefore, it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium 201 nuclear cardiac stress tests. In the present study, In vivo inhibitory effect of Tl-201 (Thallium-201) on human erythrocyte carbonic anhydrase (CA) activity were investigated.

  7. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  8. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants: a new approach to estimating in vivo carbonic anhydrase activity

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, J.A.M.; Summons, R.; Roeske, C.A.; Comins, H.N.; O' Leary, M.H.

    1984-01-01

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with TC YO2, then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the ( TC) malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance or by mass spectrometry. Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum, 40 for Kalanchoee daigremontiana, and 100 or greater for Bryophyllum tubiflorum, Kalanchoee serrata, and Kalanchoae tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. 37 references, 2 figures, 8 tables.

  9. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides.

    Science.gov (United States)

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-04-01

    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  10. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter.

    Science.gov (United States)

    Becker, Holger M; Deitmer, Joachim W

    2007-05-04

    Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.

  11. Carbonic anhydrase in calcified endoskeleton: novel activity in biocalcification in alcyonarian.

    Science.gov (United States)

    Rahman, M Azizur; Oomori, Tamotsu; Uehara, Tsuyoshi

    2008-01-01

    Carbonic anhydrase (CA) is a key enzyme in the chemical reaction of living organisms and has been found to be associated with calcification in a number of invertebrates including calcareous sponges, but until now no direct evidence has been advanced to show CA activity in alcyonarian corals. However, it is essential to understand the role of CA in the process of biocalcification in alcyonarian. Here we describe the novel activity of CA and its relationship to the formation of calcified hard tissues in alcyonarian coral, Lobophytum crassum. We find that two CA proteins, which were partially purified by electro-elution treatment, can control the morphology of CaCO(3) crystals and one of them is potentially involved in the process of biocalcification. Previously, we isolated CA from the total extract of alcyonarian, and further, we report here a single protein, which has both calcium-binding and CA activities and is responsible for CaCO(3) nucleation and crystal growth. This matrix protein inhibited the precipitation of CaCO(3) from a saturated solution containing CaCl(2) and NaHCO(3), indicating that it can act as a negative regulator for calcification in the sclerites of alcyonarians. The effect of an inhibitor on the enzyme activity was also examined. These findings strongly support the idea that carbonic anhydrase domain in alcyonarian is involved in the calcification process. Our observations strongly suggest that the matrix protein in alcyonarian coral is not only a structural protein but also a catalyst.

  12. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Energy Technology Data Exchange (ETDEWEB)

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  13. Synthesis, characterization and carbonic anhydrase inhibitory activity of novel benzothiazole derivatives.

    Science.gov (United States)

    Küçükbay, F Zehra; Buğday, Nesrin; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-protected amino acids were reacted with substituted benzothiazoles to give the corresponding N-protected amino acid-benzothiazole conjugates (60-89%). Their structures were confirmed by proton nuclear magnetic resonance ((1)H NMR), carbon-13 nuclear magnetic resonance ((13)C NMR), IR and elemental analysis. Their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activities were determined against two cytosolic human isoforms (hCA I and hCA II), one membrane-associated (hCA IV) and one transmembrane (hCA XII) enzyme by a stopped-flow CO2 hydrase assay method. The new compounds showed rather weak, micromolar inhibitory activity against most of these enzymes.

  14. Synthesis, carbonic anhydrase inhibition and cytotoxic activity of novel chromone-based sulfonamide derivatives.

    Science.gov (United States)

    Awadallah, Fadi M; El-Waei, Tamer A; Hanna, Mona M; Abbas, Safinaz E; Ceruso, Mariangela; Oz, Beyza Ecem; Guler, Ozen Ozensoy; Supuran, Claudiu T

    2015-01-01

    Four series of sulfonamides incorporating chromone moieties were synthesized and assessed for their cytotoxic activity against MCF-7 and A-549 cell lines, considering the fact that some of these tumors overexpress isoforms of carbonic anhydrase (CA, EC 4.2.1.1) which is inhibited by sulfonamides. Most new sulfonamides showed weak inhibitory activity against the offtarget, cytosolic isoforms hCA I, II but effectively inhibited the tumor-associated hCA IX and XII. The most active compounds featured a primary SO2NH2 group and were active in the low micromolar range against MCF-7 and A-549 cell lines. Compound 4a showed IC50 of 0.72 and 0.50 μM against MCF-7 and A-549 cell lines, respectively, and was further evaluated for its proapoptotic activity which proved enhanced in both tumor types. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Regulation of Chloroplastic Carbonic Anhydrase 1

    Science.gov (United States)

    Porter, Michael A.; Grodzinski, Bernard

    1983-01-01

    It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory. PMID:16663052

  16. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  17. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  18. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T.; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  19. Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX

    NARCIS (Netherlands)

    Murri-Plesko, M.T.; Hulikova, A.; Oosterwijk, E.; Scott, A.M.; Zortea, A.; Harris, A.L.; Ritter, G.; Old, L.; Bauer, S.; Swietach, P.; Renner, C.

    2011-01-01

    Carbonic anhydrase IX (CAIX) is a hypoxia-induced, membrane-tethered enzyme that is highly expressed in many cancers. It catalyses the hydration of CO(2) to HCO(3)(-) and H(+), and the reverse dehydration reaction. Recent studies have shown an important role for CAIX in pH regulation and it has been

  20. The Cellular Physiology of Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Breton S

    2001-07-01

    Full Text Available Carbonic anhydrases are zinc metalloenzymes that catalyze the reversible hydration of CO(2 to form HCO(3(- and protons according to the following reaction: CO(2 + H(2O = H(2CO(3 = HCO(3(- + H(+. The first reaction is catalyzed by carbonic anhydrase and the second reaction occurs instantaneously. The carbonic anhydrase (CA gene family includes ten enzymatically active members, which are major players in many physiological processes, including renal and male reproductive tract acidification, bone resorption, respiration, gluconeogenesis, signal transduction, and formation of gastric acid. The newly identified CA IX (previously called MN and CA XII are related to cell proliferation and oncogenesis. Carbonic anhydrase isozymes have different kinetic properties and they are present in various tissues and in various cell compartments. CA I, II, III and VII are cytoplasmic, CA V is mitochondrial, and CA VI is present in salivary secretions. CA IV, IX, XII and XIV are membrane proteins: CA IV is a glycosyl-phosphatidylinositol-anchored protein, and CA IX, XII and XIV are transmembrane proteins. The present work will focus on the roles of CA II and CA IV in transepithelial proton secretion and bicarbonate reabsorption processes. The localization of these isoforms in selected epithelia that are involved in net acid/base transport, such as kidney proximal tubules and collecting ducts, and tubules from the male reproductive tract will be reviewed.

  1. Carbonic anhydrase inhibitors with dual-tail moieties to match the hydrophobic and hydrophilic halves of the carbonic anhydrase active site.

    Science.gov (United States)

    Tanpure, Rajendra P; Ren, Bin; Peat, Thomas S; Bornaghi, Laurent F; Vullo, Daniela; Supuran, Claudiu T; Poulsen, Sally-Ann

    2015-02-12

    We present a new approach to carbonic anhydrase II (CA II) inhibitor design that enables close interrogation of the regions of the CA active site where there is the greatest variability in amino acid residues among the different CA isozymes. By appending dual tail groups onto the par excellence CA inhibitor acetazolamide, compounds that may interact with the distinct hydrophobic and hydrophilic halves of the CA II active site were prepared. The dual-tail combinations selected included (i) two hydrophobic moieties, (ii) two hydrophilic moieties, and (iii) one hydrophobic and one hydrophilic moiety. The CA enzyme inhibition profile as well as the protein X-ray crystal structure of compound 3, comprising one hydrophobic and one hydrophilic tail moiety, in complex with CA II is described. This novel dual-tail approach has provided an enhanced opportunity to more fully exploit interactions with the CA active site by enabling these molecules to interact with the distinct halves of the active site. In addition to the dual-tail compounds, a corresponding set of single-tail derivatives was synthesized, enabling a comparative analysis of the single-tail versus dual-tail compound CA inhibition profile.

  2. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported.

  3. A DFT-Based QSARs Study of Acetazolamide/Sulfanilamide Derivatives with Carbonic Anhydrase (CA-II Isozyme Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Oral Oltulu

    2007-02-01

    Full Text Available This study presents Quantitative Structure Activity Relationships (QSAR studyon a pool of 18 bio-active sulfonamide compounds which includes five acetazolamidederivatives, eight sulfanilamide derivatives and five clinically used sulfonamides moleculesas drugs namely acetazolamide, methazolamide, dichlorophenamide, ethoxolamide anddorzolamide. For all the compounds, initial geometry optimizations were carried out with amolecular mechanics (MM method using the MM force fields. The lowest energyconformations of the compounds obtained by the MM method were further optimized by theDensity Functional Theory (DFT method by employing Becke’s three-parameter hybridfunctional (B3LYP and 6-31G (d basis set. Molecular descriptors, dipole moment,electronegativity, total energy at 0 K, entropy at 298 K, HOMO and LUMO energiesobtained from DFT calculations provide valuable information and have a significant role inthe assessment of carbonic anhydrase (CA-II inhibitory activity of the compounds. By usingthe multiple linear regression technique several QSAR models have been drown up with thehelp these calculated descriptors and carbonic anhydrase (CA-II inhibitory data of themolecules. Among the obtained QSAR models presented in the study, statistically the mostsignificant one is a five parameters linear equation with the squared correlation coefficient R2 values of ca. 0.94 and the squared cross-validated correlation coefficient R2CV values of ca. 0.85. The results were discussed in the light of the main factors that influence theinhibitory activity of the carbonic anhydrase (CA-II isozyme.

  4. Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity.

    OpenAIRE

    2008-01-01

    Abstract Background Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are...

  5. Purification, enzymatic activity and inhibitor discovery for recombinant human carbonic anhydrase XIV.

    Science.gov (United States)

    Juozapaitienė, Vaida; Bartkutė, Brigita; Michailovienė, Vilma; Zakšauskas, Audrius; Baranauskienė, Lina; Satkūnė, Sandra; Matulis, Daumantas

    2016-12-20

    Human carbonic anhydrase XIV (CA XIV), a transmembrane protein, highly expressed in the central nervous system, is difficult to recombinantly express and purify in large scale for the measurements of inhibitor binding and drug design. CA XIV belongs to the family of twelve catalytically active CA isoforms in the human body. Disorders in the expression of CA XIV cause serious diseases and CA XIV has been described as a possible drug target for the treatment of epilepsy, some retinopathies, and skin tumors. In this study, the effect of different promoters, E. coli strains, and the length of recombinant CA XIV protein construct were analyzed for the production CA XIV in large scale by using affinity purification. Active site titration by inhibitors and the isothermal titration calorimery revealed over 96% purity of the protein. Enzymatic activity of the purified CA XIV was determined by following the CO2 hydration using the stopped-flow technique. Several inhibitors were discovered that exhibited selectivity towards CA XIV over other CA isoforms and could be developed as drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII.

    Science.gov (United States)

    Ignatova, Lyudmila K; Rudenko, Natalia N; Mudrik, Vilen A; Fedorchuk, Tat'yana P; Ivanov, Boris N

    2011-12-01

    The procedure of isolating the thylakoids and the thylakoid membrane fragments enriched with either photosystem I or photosystem II (PSI- and PSII-membranes) from Arabidopsis thaliana leaves was developed. It differed from the one used with pea and spinach in durations of detergent treatment and centrifugation, and in concentrations of detergent and Mg(2+) in the media. Both the thylakoid and the fragments preserved carbonic anhydrase (CA) activities. Using nondenaturing electrophoresis followed by detection of CA activity in the gel stained with bromo thymol blue, one low molecular mass carrier of CA activity was found in the PSI-membranes, and two carriers, a low molecular mass one and a high molecular mass one, were found in the PSII-membranes. The proteins in the PSII-membranes differed in their sensitivity to acetazolamide (AA), a specific CA inhibitor. AA at 5 × 10(-7) M inhibited the CA activity of the high molecular mass protein but stimulated the activity of the low molecular mass carrier in the PSII-membranes. At the same concentration, AA moderately inhibited, by 30%, the CA activity of PSI-membranes. CA activity of the PSII-membranes was almost completely suppressed by the lipophilic CA inhibitor, ethoxyzolamide at 10(-9) M, whereas CA activity of the PSI-membranes was inhibited by this inhibitor even at 5 × 10(-7) M just the same as for AA. The observed distribution of CA activity in the thylakoid membranes from A. thaliana was close to the one found in the membranes of pea, evidencing the general pattern of CA activity in the thylakoid membranes of C3-plants.

  7. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Amaya Blanco-Rivero

    Full Text Available BACKGROUND: Cah3 is the only carbonic anhydrase (CA isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO(2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO(2 conditions. RESULTS/CONCLUSIONS: In the present work we demonstrate that after transfer to low CO(2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO(2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO(2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO(2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO(2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. SIGNIFICANCE: This is the first report of a CA being post

  8. Structural basis of the oxidative activation of the carboxysomal [gamma]-carbonic anhydrase, CcmM

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Kerry L.; Castel, Stephane E.; de Araujo, Charlotte; Espie, George S.; Kimber, Matthew S. (Guelph); (Toronto)

    2010-04-26

    Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO{sub 2} by carbonic anhydrase (CA) prior to fixation. Paradoxically, many {beta}-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal {beta}-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to {gamma}-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA - the first catalytically active bacterial {gamma}-CA reported. The 2.0 {angstrom} structure of CcmM209 reveals a trimeric, left-handed {beta}-helix structure that closely resembles Cam, except that residues 198-207 form a third {alpha}-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 {angstrom} structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the {beta}-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.

  9. Role of Carbonic Anhydrase as an Activator in Carbonate Rock Dissolution and Its Implication for Atmospheric CO2 Sink

    Institute of Scientific and Technical Information of China (English)

    刘再华

    2001-01-01

    The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.``

  10. Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms.

    Science.gov (United States)

    Rudenko, Natalia N; Ignatova, Lyudmila K; Ivanov, Boris N

    2007-01-01

    Carbonic anhydrase (CA) activity of pea thylakoids, thylakoid membranes enriched with photosystem I (PSI-membranes), or photosystem II (PSII-membranes) as well as both supernatant and pellet after precipitation of thylakoids treated with detergent Triton X-100 were studied. CA activity of thylakoids in the presence of varying concentrations of Triton X-100 had two maxima, at Triton/chlorophyll (triton/Chl) ratios of 0.3 and 1.0. CA activities of PSI-membranes and PSII-membranes had only one maximum each, at Triton/Chl ratio 0.3 or 1.0, respectively. Two CAs with characteristics of the membrane-bound proteins and one CA with characteristics of the soluble proteins were found in the medium after thylakoids were incubated with Triton. One of the first two CAs had mobility in PAAG after native electrophoresis the same as that of CA residing in PSI-membranes, and the other CA had mobility the same as the mobility of CA residing in PSII-membranes, but the latter was different from CA situated in PSII core-complex (Ignatova et al. 2006 Biochemistry (Moscow) 71:525-532). The properties of the "soluble" CA removed from thylakoids were different from the properties of the known soluble CAs of plant cell: apparent molecular mass was about 262 kD and it was three orders more sensitive to the specific CA inhibitor, ethoxyzolamide, than soluble stromal CA. The data are discussed as indicating the presence of, at least, four CAs in pea thylakoids.

  11. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  12. Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats

    DEFF Research Database (Denmark)

    Nielsen, Mette Benedicte Olaf; Cvek, Katarina; Dahlborn, Kristina

    2010-01-01

    During the normal course of lactation, mammary metabolic activity and blood flow are closely correlated. Six lactating goats were used in this experiment to test the hypothesis that the capillary network and the capillary enzyme, carbonic anhydrase (CA; EC 4.2.1.1) are important regulatory factors...... involved in the coordination of mammary blood flow (MBF) and metabolic activity. Milk vein blood velocity was determined as a measure of MBF, and fine needle mammary biopsies were obtained at different time points during lactation and by the end of a 14-d bovine somatotropin (BST) treatment initiated 3...... months post partum. In mammary sections, CA activity was determined histochemically and alveolar and capillary structures by image analyses upon azure blue staining. In early lactation, alveoli were large and surrounded by many small capillaries with high CA activity. As lactation progressed, capillaries...

  13. In folio study of carbonic anhydrase and Rubisco activities in higher C{sub 3} plants using {sup 18}O and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, G.; Despax, V.; Dimon, B.; Rumeau, D.; Tourneux, C.

    1994-12-31

    This document studies the effects of a mild water stress and carbonic anhydrase activity by ethoxyzolamide (EZA) on the diffusion of CO{sub 2} in leaves, by {sup 18}O labelling of O{sub 2} and of CO{sub 2} associated to mass spectrometry. (A.B.). 5 refs., 2 figs.

  14. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  15. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties.

    Science.gov (United States)

    Genis, Caroli; Sippel, Katherine H; Case, Nicolette; Cao, Wengang; Avvaru, Balendu Sankara; Tartaglia, Lawrence J; Govindasamy, Lakshmanan; Tu, Chingkuang; Agbandje-McKenna, Mavis; Silverman, David N; Rosser, Charles J; McKenna, Robert

    2009-02-17

    Recently, a convincing body of evidence has accumulated suggesting that the overexpression of carbonic anhydrase isozyme IX (CA IX) in some cancers contributes to the acidification of the extracellular matrix, which in turn promotes the growth and metastasis of the tumor. These observations have made CA IX an attractive drug target for the selective treatment of certain cancers. Currently, there is no available X-ray crystal structure of CA IX, and this lack of availability has hampered the rational design of selective CA IX inhibitors. In light of these observations and on the basis of structural alignment homology, using the crystal structure of carbonic anhydrase II (CA II) and the sequence of CA IX, a double mutant of CA II with Ala65 replaced by Ser and Asn67 replaced by Gln has been constructed to resemble the active site of CA IX. This CA IX mimic has been characterized kinetically using (18)O-exchange and structurally using X-ray crystallography, alone and in complex with five CA sulfonamide-based inhibitors (acetazolamide, benzolamide, chlorzolamide, ethoxzolamide, and methazolamide), and compared to CA II. This structural information has been evaluated by both inhibition studies and in vitro cytotoxicity assays and shows a correlated structure-activity relationship. Kinetic and structural studies of CA II and CA IX mimic reveal chlorzolamide to be a more potent inhibitor of CA IX, inducing an active-site conformational change upon binding. Additionally, chlorzolamide appears to be cytotoxic to prostate cancer cells. This preliminary study demonstrates that the CA IX mimic may provide a useful model to design more isozyme-specific CA IX inhibitors, which may lead to development of new therapeutic treatments of some cancers.

  16. Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators.

    Science.gov (United States)

    Saada, Mohamed-Chiheb; Vullo, Daniela; Montero, Jean-Louis; Scozzafava, Andrea; Supuran, Claudiu T; Winum, Jean-Yves

    2014-09-01

    Mono- and di-halogenated histamines, l-histidine methyl ester derivatives and carnosine derivatives incorporating chlorine, bromine and iodine were prepared and investigated as activators of five carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the transmembrane hCA XII and XIV. All of them were activated in a diverse manner by the investigated compounds, with a distinct activation profile.

  17. Impacts of Elevated CO2 Concentration on Biochemical Composition,Carbonic Anhydrase, and Nitrate Reductase Activity of Freshwater Green Algae

    Institute of Scientific and Technical Information of China (English)

    Jian-Rong XIA; Kun-Shan GAO

    2005-01-01

    To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.

  18. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    Science.gov (United States)

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  19. Captopril/enalapril inhibit promiscuous esterase activity of carbonic anhydrase at micromolar concentrations: An in vitro study.

    Science.gov (United States)

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Adibi, Hadi; Khodarahmi, Reza

    2017-03-01

    The inhibitory activity of captopril, a thiol-containing competitive inhibitor of the angiotensin-converting enzyme, ACE, against esterase activity of carbonic anhydrase, CA was investigated. This small molecule, as well as enalapril, was selected in order to represents both thiol and carboxylate, as two well-known metal binding functional groups of metalloprotein inhibitors. Since captopril, has also been observed to inhibit other metalloenzymes such as tyrosinase and metallo-beta lactamase through binding to the catalytic metal ions and regarding CA as a zinc-containing metallo-enzyme, in the current study, we set out to determine whether captopril/enalapril inhibit CA esterase activity of the purified human CA II or not? Then, we revealed the inhibitors' potencies (IC50, Ki and Kdiss values) and also mode of inhibition. Our results also showed that enalapril is more potent CA inhibitor than captopril. Since enalapril represents no sulfhydryl moiety, thus carboxylate group may have a determinant role in inhibiting of CA esterase activity, the conclusion confirmed by molecular docking studies. Additionally, since CA inhibitory potencies of captopril/enalapril were much lower than those of classic sulfonamide drugs, the findings of the current study may explain why these drugs exhibit no effective CA inhibition at the concentrations reached in vivo and also may shed light on the way of generating new class of inhibitors that will discriminately inhibit various CA isoforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Carbonic anhydrase activity in the vas deferens of the cotton leafworm - Spodoptera littoralis (Lepidoptera: Noctuidae) controlled by circadian clock.

    Science.gov (United States)

    Kotwica, J; Ciuk, M A; Joachimiak, E; Rowinski, S; Cymborowski, B; Bebas, P

    2006-11-01

    The male reproductive tract of Lepidoptera is an ideal model for the study of the physiological role of peripheral clocks in insects. The latter are significant in the generation and coordination of rhythmic phenomena which facilitate the initial stages of sperm capacitation. This process requires the maintenance of pH in the upper vas deferens (UVD) aided by, among others, H+-ATPase. Our aim was to determine the potential involvement of carbonic anhydrase (CA) in this process, an enzyme tasked with generating protons subsequently utilized by H+-ATPase to acidify the UVD milieu in S. littoralis, during the time when the lumen of this organ is filled with sperm. We attempted to answer the question whether CA activity can be controlled by the biological oscillator present in the male reproductive tract of the cotton leafworm. Using PAGE zymography, the presence of CA was demonstrated in the UVD wall, but not in the luminal fluid nor in the sperm. Using histochemistry, it was shown that CA is active in the UVD epithelium, and that this activity varies throughout the day and is most likely controlled by an endogenous biological clock. Conversely, the application of CA inhibitors, acetazolamide and sodium thiocyanate, in conjunction with an analysis of H+-ATPase activity in the acidification the UVD environment shows that CA most likely does not play a direct role in the regulation of the pH in this organ.

  1. Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis.

    Science.gov (United States)

    Osborn, Hannah L; Alonso-Cantabrana, Hugo; Sharwood, Robert E; Covshoff, Sarah; Evans, John R; Furbank, Robert T; von Caemmerer, Susanne

    2017-01-01

    In C4 species, the major β-carbonic anhydrase (β-CA) localized in the mesophyll cytosol catalyses the hydration of CO2 to HCO3(-), which phosphoenolpyruvate carboxylase uses in the first step of C4 photosynthesis. To address the role of CA in C4 photosynthesis, we generated transgenic Setaria viridis depleted in β-CA. Independent lines were identified with as little as 13% of wild-type CA. No photosynthetic defect was observed in the transformed lines at ambient CO2 partial pressure (pCO2). At low pCO2, a strong correlation between CO2 assimilation rates and CA hydration rates was observed. C(18)O(16)O isotope discrimination was used to estimate the mesophyll conductance to CO2 diffusion from the intercellular air space to the mesophyll cytosol (gm) in control plants, which allowed us to calculate CA activities in the mesophyll cytosol (Cm). This revealed a strong relationship between the initial slope of the response of the CO2 assimilation rate to cytosolic pCO2 (ACm) and cytosolic CA activity. However, the relationship between the initial slope of the response of CO2 assimilation to intercellular pCO2 (ACi) and cytosolic CA activity was curvilinear. This indicated that in S. viridis, mesophyll conductance may be a contributing limiting factor alongside CA activity to CO2 assimilation rates at low pCO2.

  2. Epidermal carbonic anhydrase activity and exoskeletal metal content during the molting cycle of the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Calhoun, Stacy; Zou, Enmin

    2016-03-01

    During the crustacean molting cycle, the exoskeleton is first mineralized in postmolt and intermolt and then presumably demineralized in premolt in order for epidermal retraction to occur. The mineralization process calls for divalent metal ions, such as Ca(2+) and Mg(2+) , and bicarbonate ions whereas protons are necessary for dissolution of carbonate salts. Carbonic anhydrase (CA) has been suggested to be involved in exoskeletal mineralization by providing bicarbonate ions through catalyzing the reaction of carbon dioxide hydration. However, results of earlier studies on the role of epidermal CA in metal incorporation in crustacean exoskeleton are not consistent. This study was aimed to provide further evidence to support the notion that epidermal CA is involved in exoskeletal mineralization using the blue crab, Callinectes sapidus (Rathbun 1896), as the model crustacean. Significant increases first in calcium and magnesium then in manganese post-ecdysis indicate significant metal deposition during postmolt and intermolt. Significant positive correlation between calcium or magnesium content and epidermal CA activity in postmolt and intermolt constitutes evidence that CA is involved in the mineralization of the crustacean exoskeleton. Additionally, we proposed a hypothetical model to describe the role of epidermal CA in both mineralization and demineralization of the exoskeleton based on the results of epidermal CA activity and exoskeletal metal content during the molting cycle. Furthermore, we found that the pattern of epidermal CA activity during the molting cycle of C. sapidus is similar to that of ecdysteroids reported for the same species, suggesting that epidermal CA activity may be under control of the molting hormones. © 2016 Wiley Periodicals, Inc.

  3. Inhibitory Effect of Furosemide on Carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    CUI Jianli; ZHAO Tongjin; JIANG Yan; ZHOU Haimeng

    2006-01-01

    This study investigated the inhibitory effect of a high efficiency diuretic, furosemide, on carbonic anhydrase (CA). First, comparing the inhibitory effect of acetazolamide, a low efficiency diuretic, on CA, shows that furosemide or acetazolamide can quickly make CA inactive when its concentration is close to the enzyme concentration, different from the usual inhibitory kinetics in which the concentration of the inhibitor is far higher than the enzyme concentration. Secondly, the reaction of the enzyme indicates that the inhibitory effect of furosemide or acetazolamide on carbonic anhydrase is quickly reversible. Finally, the degree of the inhibitory effect of furosemide and of acetazolamide on CA are compared. The results show that furosemide inhibits CA less than acetazolamide.

  4. Non-Classical Inhibition of Carbonic Anhydrase

    Science.gov (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  5. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Barker, Harlan; Tolvanen, Martti E E; Ortutay, Csaba; Parkkila, Seppo

    2014-01-21

    Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species. Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver. We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations. These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in

  6. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S. Z., E-mail: zfisher@lanl.gov; Kovalevsky, A. Y. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Domsic, J. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Mustyakimov, M. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Silverman, D. N. [Department of Pharmacology and Therapeutics, PO Box 100267, University of Florida, Gainesville, FL 32610 (United States); McKenna, R. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Langan, P. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  7. Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and caries in primary dentition.

    Science.gov (United States)

    Frasseto, F; Parisotto, T M; Peres, R C R; Marques, M R; Line, S R P; Nobre Dos Santos, M

    2012-01-01

    This study aimed to determine the activity of carbonic anhydrase isoenzyme VI (CAVI) in the saliva of preschool children with caries and to investigate the relationship between caries and salivary CAVI activity, salivary flow rate and biofilm pH before and after a 20% sucrose rinse. Thirty preschool children aged 45.3-80.3 months were divided into two groups: a caries-free group and a caries group. Clinical examinations were conducted by one examiner (κ = 0.95) according to WHO criteria (dmfs) and early caries lesions. From each subject, CAVI activity, salivary flow rate and plaque pH were determined before and after a sucrose rinse. The results were submitted to Wilcoxon, Mann-Whitney and Spearman correlation tests (α = 0.05). The results showed that prerinse CAVI activity and its variation were higher in the saliva from caries children than from caries-free children. No difference was found between the two groups in postrinse salivary CAVI activity. After rinsing, biofilm pH differences were lower in both groups (p = 0.0012 and p = 0.0037 for the caries and caries-free groups, respectively). Also, after the sucrose rinse, salivary flow rate significantly increased in caries and caries-free groups (p = 0.0003, p = 0.0037). The variation of salivary CAVI activity was negatively correlated with caries (r = -0.501, p = 0.005). Child's age showed a positive correlation with caries (r = 0.456, p = 0.011). These results suggest that variation of salivary CAVI activity and child's age are associated with dental caries in preschool children.

  8. Carbonic anhydrase inhibitors developed through 'click tailing'.

    Science.gov (United States)

    Lopez, Marie; Salmon, Adam J; Supuran, Claudiu T; Poulsen, Sally-Ann

    2010-01-01

    In recent years there has been renewed activity in the literature concerning the 1,3-dipolar cycloaddition reaction (1,3-DCR) of organic azides (R-N₃) with alkynes (R'-C≡CH) to form 1,2,3-triazoles, i.e. the Huisgen synthesis. The use of catalytic Cu(I) leads to a dramatic rate enhancement (up to 10(7)-fold) and exclusive synthesis of the 1,4-disubstituted 1,2,3-triazole product. The reaction, now referred to as the copper-catalyzed azide-alkyne cycloaddition (CuAAC), meets the stringent criteria of a click-reaction in that it is modular, wide in scope, high yielding, has no byproducts, operates in water at ambient temperature, product purification is simple and the starting materials are readily available. The 1,3-DCR reaction has rapidly become the premier click chemistry reaction with applications spanning modern chemistry disciplines, including medicinal chemistry. Recently the 'tail' approach initiative for the development of carbonic anhydrase inhibitors (CAIs) has been combined with the synthetic versatility of click chemistry. This has proven a powerful combination leading to the synthesis of CAIs with useful biopharmaceutical properties and activities. This review will discuss complementary and contrasting applications that have utilized 'click tailing' for the development of CAIs. Applications encompass i) medicinal chemistry and drug discovery; ii) radiopharmaceutical development of positron emission topography (PET) chemical probes; and iii) in situ click chemistry.

  9. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  10. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    Directory of Open Access Journals (Sweden)

    S.Petchimuthu

    2013-09-01

    Full Text Available Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ has a poor solubility and penetration power (BCS Class IV, various studies mentioned in the review indicate that it is possible to successfully formulate topically effective ACZ by using:(i High concentration of the drug, (ii Surfactant gel preparations of ACZ, (iii ACZ loaded into liposomes, (iv Cyclodextrins to increase the solubility and hence bioavailability of ACZ, and Viscolyzers and other polymers either alone or in combination with cyclodextrins. With the advent of newer topical carbonic anhydrase inhibitors (CAIs like dorzolamide and brinzolamide, a localized effect with fewer side effects is expected.But whenever absorbed systemically, a similar range of adverse effects (attributable to sulphonamides may occur upon use. Furthermore, oral ACZ is reported to be more physiologically effective than 2% dorzolamide hydrochloridead ministered topically, even though in isolated tissues dorzolamide appears to be the most active as it shows the lowest IC50 values for CA-II and CA-IV. Hence, there exists considerable scope for the development of more/equally effective and inexpensive topically effective formulations of ACZ. The use of various formulation technologies discussed in this review can provide a fresh impetus to research in this area.

  11. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases

    Science.gov (United States)

    Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.

    2017-01-01

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  12. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases.

    Science.gov (United States)

    Dixon, Daniel P; Van Ekeris, Leslie; Linser, Paul J

    2017-02-21

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  13. MODELLING THE INHIBITORY ACTIVITY ON CARBONIC ANHYDRASE IV OF SUBSTITUTED THIADIAZOLE - AND THIADIAZOLINE - DISULFONAMIDES: INTEGRATION OF STRUCTURE INFORMATION

    Directory of Open Access Journals (Sweden)

    Sorana Daniela Bolboaca

    2006-07-01

    Full Text Available ABSTRACT:Purpose: To analyze the relationships between inhibitory activities on carbonic anhydrase IV and structures of substituted 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamide through integration of compounds complex structure information by the use of Molecular Descriptors Family.Method: A number of forty compounds were used to generate and compute the molecular descriptors family and to build structure-activity relationships models. The obtained multi-varied models (the models with two, respectively with four descriptors were validated by computing the cross-validation leave-one-out score (r2cv-loo, and analyzed through assessment of the squared correlation coefficients (r2, and the models stability (r2 - r2cv-loo. The estimation abilities of the multi-varied MDF-SAR model with four descriptors were analyzed in training and test sets.Results: Analysis of the obtained models shows that the best results was obtained by the multi-varied model with four molecular descriptors (r2 = 0.920. The prediction abilities of this model is sustained by the cross validation leave-one-out score (r2cv-loo = 0.903, the model stability (r2 - r2cv-loo = 0.017, and the results on training versus test analysis (no significant differences between correlation coefficients in training and test sets, p > 0.05. The multi-varied model which used four descriptors proved to render higher value of correlation coefficient comparing with previous reported models (p 0.05. El modelo multivariante que utilizó cuatro descriptores mostró un valor más alto del coeficiente de correlación en comparación con los modelos divulgados anteriormente (p < 0.01.Conclusión: El modelo multivariante con cuatro descriptores es sólido y fiable e indica que la actividad de la inhibición en la carboanhidrasa IV producida por las sufonamidas sustituidas del 1,3,4-tiadiazol- y de la 1,3,4-tiadiazolina- dependen de la naturaleza de la geometría y de la topología del compuesto

  14. Carbonic Anhydrases and Their Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Robert McKenna

    2013-08-01

    Full Text Available The carbonic anhydrases (CAs are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II has a catalytic efficiency of 108 M−1 s−1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.

  15. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    Science.gov (United States)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  16. Effect the some heavy metals on carbonic anhydrase enzymes activities from non-tumour and tumour human stomach

    OpenAIRE

    2015-01-01

    In this study, in vitro effects of certain heavy metals on the human carbonic anhydrase enzyme were examined. Inhibitory effects of metal ions ( Pb2+, Cu2+, Fe2+,Cr2+, Al3+, Ni2+, Mn2+, Cd2+, Zn2+, and Mg2+) were observed in tumour and non-tumour tissue. IC50 values were calculated for metals. The Cu2+, Zn2+, Ni2+, Cd2+ and Mg2+ IC50 values of tumour tissue were calculated as 0.034mM, 0.426mM, 0.597mM, 0.878mM and 2.52mM respectively. The Cu2+, Zn2+, Ni2+, Cd2+ and Mg2+  IC50 values of non-tu...

  17. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    Science.gov (United States)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  18. Prediction of activity of carbonic anhydrase inhibitor drugs based on QSAR studies

    Directory of Open Access Journals (Sweden)

    N. Darzi

    2015-06-01

    Full Text Available A quantitative structure-activity relationship (QSAR model, based on three quantum chemical descriptors obtained from the benzene sulphonamide derivatives using the density functional theory (DFT method. Then this developed model was used to predict the benzene sulphonamide binding constant. The QSAR model has correlation coefficient R of 0.901 and the standard error of 0.646. Also, the predictive power of this model was further examined by leave-7-out cross validation procedure which the obtained statistical parameters were: Q2= 0.991 and SPRESS= 0.4686 that giving a good enough predictive power. The selected descriptorsare: molecular weight (MW, absolute hardness (AH, HOMO energy (HOMO, respectively.

  19. Polyamines and α-Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Andrea Scozzafava

    2016-12-01

    Full Text Available Natural products represent a straightforward source for molecular structures bearing a vast array of chemical features and potentially useful for biomedical purposes. Recent examples of this type include the discovery of the coumarins and the polyamine natural products as atypical chemotypes for the inhibition of the metalloenzymes carbonic anhydrases (CAs; EC 4.2.2.1. CA enzymes are established pharmacological targets for important pathologies, which, among others, include glaucoma, hypoxic tumors, and central nervous system (CNS-affecting diseases. Moreover, they are expressed in many bacteria, fungi and helminths which are the etiological agents of the majority of infectious diseases. In this context, natural products represent the ideal source of new and selective druggable CA modulators for biomedical purposes. Herein we report the state of the art on polyamines of natural origin as well as of synthetic derivatives as inhibitors of human CAs.

  20. Carbonic Anhydrase and Metalloderivatives: A Bioinorganic Chemistry Study

    Science.gov (United States)

    McQuate, Robert S.

    1977-01-01

    Discusses selected bioinorganic aspects of carbonic anhydrase and describes experiments that will reinforce the students' understanding of the presence and essential role that metal ions have in some biological systems. (SL)

  1. Density functional theory study of proton transfer in carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lidong; XIE Daiqian

    2005-01-01

    Proton transfer in carbonic anhydrase II has been studied at the B3LYP/6-31G(D) level. The active site model consists of the zinc ion, four histidine residues, two threonine residues, and three water molecules. Our calculations showed that the proton of the zinc-bound water molecule could be transferred to the nearest water molecule and an intermediate containing H3O+ is then formed. The intermediate is only 1.3 kJ·mol-1 above the reactant complex, whereas the barrier height for the proton transfer is about 8.1 kJ·mol-1.

  2. Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against α-, β-, γ- and η-class enzymes.

    Science.gov (United States)

    Carta, Fabrizio; Osman, Sameh M; Vullo, Daniela; AlOthman, Zeid; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

    2015-11-01

    Four generations of poly(amidoamine) (PAMAM) dendrimers incorporating benzenesulfonamide moieties were investigated as inhibitors of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ- and η-classes which are present in pathogenic bacteria, fungi or protozoa. The following bacterial, fungal and protozoan organisms were included in the study: Vibrio cholerae, Trypanosoma cruzi, Leishmania donovani chagasi, Porphyromonas gingivalis, Cryptococcus neoformans, Candida glabrata, and Plasmodium falciparum. The eight pathozymes present in these organisms were efficiently inhibited by the four generations PAMAM-sulfonamide dendrimers, but multivalency effects were highly variable among the different enzyme classes. The Vibrio enzyme VchCA was best inhibited by the G3 dendrimer incorporating 32 sulfamoyl moieties. The Trypanosoma enzyme TcCA on the other hand was best inhibited by the first generation dendrimer G0 (with 4 sulfamoyl groups), whereas for other enzymes the optimal inhibitory power was observed for the G1 or G2 dendrimers, with 8 and 16 sulfonamide functionalities. This study thus proves that the multivalency may be highly relevant for enzyme inhibition for some but not all CAs from pathogenic organisms. On the other hand, some dendrimers investigated here showed a better inhibitory power compared to acetazolamide for enzymes from widespread pathogens, such as the η-CA from Plasmodium falciparum. Overall, the main conclusion is that this class of molecules may lead to important developments in the field of anti-infective CA inhibitors.

  3. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  4. Hemolymph and gill carbonic anhydrase are more sensitive to aquatic contamination than mantle carbonic anhydrase in the mangrove oyster Crassostrea rhizophorae.

    Science.gov (United States)

    Dos Santos, Matheus Barbosa; Monteiro Neto, Ignácio Evaristo; de Souza Melo, Sarah Rachel Candido; Amado, Enelise Marcelle

    2017-09-06

    Carbonic anhydrase (CA) is a ubiquitous metalloenzyme of great importance in several physiological processes. Due to its physiological importance and sensitivity to various pollutants, CA activity has been used as biomarker of aquatic contamination. Considering that in bivalves the sensitivity of CA to pollutants seems to be tissue-specific, we proposed here to analyze CA activity of hemolymph, gill and mantle of Crassostrea rhizophorae collected in two tropical Brazilian estuaries with different levels of anthropogenic impact, in dry and rainy season. We found increased carbonic anhydrase activity in hemolymph, gill and mantle of oysters collected in the Paraíba Estuary (a site of high anthropogenic impact) when compared to oysters from Mamanguape Estuary (inserted in an area of environmental preservation), especially in the rainy season. CA of hemolymph and gill were more sensitive than mantle CA to aquatic contamination. This study enhances the suitability of carbonic anhydrase activity for field biomarker applications with bivalves and brings new and relevant information on hemolymph carbonic anhydrase activity as biomarker of aquatic contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evolution of carbonic anhydrase in C4 plants.

    Science.gov (United States)

    Ludwig, Martha

    2016-06-01

    During the evolution of C4 photosynthesis, the intracellular location with most carbonic anhydrase (CA) activity has changed. In Flaveria, the loss of the sequence encoding a chloroplast transit peptide from an ancestral C3 CA ortholog confined the C4 isoform to the mesophyll cell cytosol. Recent studies indicate that sequence elements and histone modifications controlling the expression of C4-associated CAs were likely present in the C3 ancestral chromatin, enabling the evolution of the C4 pathway. Almost complete abolishment of maize CA activity yields no obvious phenotype at ambient CO2 levels. This contrasts with results for Flaveria CA mutants, and has opened discussion on the role of CA in the C4 carbon concentrating mechanism.

  6. Azobenzene-based inhibitors of human carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Leander Simon Runtsch

    2015-07-01

    Full Text Available Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII. Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant Ki. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with Ki = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.

  7. Carbonic anhydrase from Apis mellifera: purification and inhibition by pesticides.

    Science.gov (United States)

    Soydan, Ercan; Güler, Ahmet; Bıyık, Selim; Şentürk, Murat; Supuran, Claudiu T; Ekinci, Deniz

    2017-12-01

    Carbonic anhydrase (CA) enzymes have been shown to play an important role in ion transport and in pH regulation in several organisms. Despite this information and the wealth of knowledge regarding the significance of CA enzymes, few studies have been reported about bee CA enzymes and the hazardous effects of chemicals. Using Apis mellifera as a model, this study aimed to determine the risk of pesticides on Apis mellifera Carbonic anhydrase enzyme (Am CA). CA was initially purified from Apis mellifera spermatheca for the first time in the literature. The enzyme was purified with an overall purification of ∼35-fold with a molecular weight of ∼32 kDa. The enzyme was then exposed to pesticides, including tebuconazole, propoxur, carbaryl, carbofuran, simazine and atrazine. The six pesticides dose-dependently inhibited in vitro AmCA activity at low micromolar concentrations. IC50 values for the pesticides were 0.0030, 0.0321, 0.0031, 0.0087, 0.0273 and 0.0165 μM, respectively. The AmCA inhibition mechanism of these compounds is unknown at this moment.

  8. Building reactive copper centers in human carbonic anhydrase II.

    Science.gov (United States)

    Song, He; Weitz, Andrew C; Hendrich, Michael P; Lewis, Edwin A; Emerson, Joseph P

    2013-08-01

    Reengineering metalloproteins to generate new biologically relevant metal centers is an effective a way to test our understanding of the structural and mechanistic features that steer chemical transformations in biological systems. Here, we report thermodynamic data characterizing the formation of two type-2 copper sites in carbonic anhydrase and experimental evidence showing one of these new, copper centers has characteristics similar to a variety of well-characterized copper centers in synthetic models and enzymatic systems. Human carbonic anhydrase II is known to bind two Cu(2+) ions; these binding events were explored using modern isothermal titration calorimetry techniques that have become a proven method to accurately measure metal-binding thermodynamic parameters. The two Cu(2+)-binding events have different affinities (K a approximately 5 × 10(12) and 1 × 10(10)), and both are enthalpically driven processes. Reconstituting these Cu(2+) sites under a range of conditions has allowed us to assign the Cu(2+)-binding event to the three-histidine, native, metal-binding site. Our initial efforts to characterize these Cu(2+) sites have yielded data that show distinctive (and noncoupled) EPR signals associated with each copper-binding site and that this reconstituted enzyme can activate hydrogen peroxide to catalyze the oxidation of 2-aminophenol.

  9. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  10. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    OpenAIRE

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C.; Silverman, D.; Anderson, P. M.; Fuchs, J A

    1993-01-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloto...

  11. Kinetics of absorption of carbon dioxide in aqueous MDEA solutions with carbonic anhydrase at 298 K

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J. M. C.; Derks, Peter W. J.; Fradette, Sylvie; Versteeg, Geert F.

    In present work the absorption of carbon dioxide in aqueous N-methyldiethanolamine (MDEA) solutions with and without the enzyme carbonic anhydrase has been studied in a stirred cell at 298 K, with MDEA concentrations ranging from 0.5 to 4 kmol m(-3) and carbonic anhydrase concentrations ranging from

  12. Carbonic Anhydrase: In the Driver's Seat for Bicarbonate Transport

    Directory of Open Access Journals (Sweden)

    Sterling D

    2001-07-01

    Full Text Available Carbonic anhydrases are a widely expressed family of enzymes that catalyze the reversible reaction: CO(2 + H(2O = HCO(3(- + H(+. These enzymes therefore both produce HCO(3(- for transport across membranes and consume HCO(3(- that has been transported across membranes. Thus these enzymes could be expected to have a key role in driving the transport of HCO(3(- across cells and epithelial layers. Plasma membrane anion exchange proteins (AE transport chloride and bicarbonate across most mammalian membranes in a one-for-one exchange reaction and act as a model for our understanding of HCO(3(- transport processes. Recently it was shown that AE1, found in erythrocytes and kidney, binds carbonic anhydrase II (CAII via the cytosolic C-terminal tail of AE1. To examine the physiological consequences of the interaction between CAII and AE1, we characterized Cl(-/HCO(3(- exchange activity in transfected HEK293 cells. Treatment of AE1-transfected cells with acetazolamide, a CAII inhibitor, almost fully inhibited anion exchange activity, indicating that endogenous CAII activity is essential for transport. Further experiments to examine the role of the AE1/CAII interaction will include measurements of the transport activity of AE1 following mutation of the CAII binding site. In a second approach a functionally inactive CA mutant, V143Y, will be co-expressed with AE1 in HEK293 cells. Since over expression of V143Y CAII would displace endogenous wild-type CAII from AE1, a loss of transport activity would be observed if binding to the AE1 C-terminus is required for transport.

  13. Carbonic anhydrase mimics for enhanced CO2 absorption in an amine-based capture solvent.

    Science.gov (United States)

    Kelsey, Rachael A; Miller, David A; Parkin, Sean R; Liu, Kun; Remias, Joe E; Yang, Yue; Lightstone, Felice C; Liu, Kunlei; Lippert, Cameron A; Odom, Susan A

    2016-01-07

    Two new small-molecule enzyme mimics of carbonic anhydrase were prepared and characterized. These complexes contain the salen-like ligand bis(hydroxyphenyl)phenanthroline. This ligand is similar to the salen-type ligands previously incorporated into carbonic anhydrase mimics but contains no hydrolyzable imine groups and therefore serves as a promising ligand scaffold for the synthesis of a more robust CO2 hydration catalyst. These homogeneous catalysts were investigated for CO2 hydration in concentrated primary amine solutions through which a dilute CO2 (14%) fluid stream was flowed and showed exceptional activity for increased CO2 absorption rates.

  14. Characterization of human carbonic anhydrase III from skeletal muscle.

    Science.gov (United States)

    Carter, N; Jeffery, S; Shiels, A; Edwards, Y; Tipler, T; Hopkinson, D A

    1979-10-01

    A third form of human carbonic anhydrase (CA III), found at high concentrations in skeletal muscle, has been purified and characterized. This isozyme shows relatively poor hydratase and esterase activities compared to the red cell isozymes, CA I and CA II, but is similar to these isozymes in subunit structure (monomer) and molecular size (28,000). CA III is liable to posttranslational modification by thiol group interaction. Monomeric secondary isozymes, sensitive to beta-mercaptoethanol, are found in both crude and purified material and can be generated in vitro by the addition of thiol reagents. Active dimeric isozymes, generated apparently by the formation of intermolecular disulfide bridges, also occur but account for only a small proportion of the total protein and appear only when the concentration of CA III is particularly high.

  15. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus.

    Science.gov (United States)

    Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio

    2017-05-15

    Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate ((C18),) a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves.

    Science.gov (United States)

    Lazova, Galia N; Naidenova, Tsveta; Velinova, Katya

    2004-03-01

    The enzyme carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes the reversible conversion of CO2 to HCO3- and has been shown to be involved in photosynthesis. The enzyme has been shown in animals, plants, eubacteria and viruses, but similar reports on the evidence for CA activity in tree plants does not be appear to be available. In the preliminary analyses of the work, the CA activity in leaf extracts from the tree species Paulownia tomentosa Steud. (introduced in Bulgaria) is described. A connection between CA activity and the rate of photosynthetic CO2 fixation is shown. In the second portion of the work, the effect of 10(-4) mol/L and 10(-2) mol/L dimethylsulfoxide (DMSO) on the zinc accumulation in leaves is demonstrated. It is suggested that CA activity is an indicator of the level of physiologically active zinc in leaves of P. tomentosa Steud. A connection between the process of zinc accumulation in leaves and the activity of the enzymes CA and glycolate oxidase (GO) (EC 1.1.3.1) is established.

  17. Generation of nitric oxide from nitrite by carbonic anhydrase

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank B;

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... in the reaction induces vasodilation in aortic rings. This reaction occurs under normoxic and hypoxic conditions and in various tissues at physiological levels of CA and nitrite. Furthermore, two specific inhibitors of the CO2 hydration, dorzolamide and acetazolamide, increase the CA-catalyzed production...... of vasoactive NO from nitrite. This enhancing effect may explain the known vasodilating effects of these drugs and indicates that CO2 and nitrite bind differently to the enzyme active site. Kinetic analyses show a higher reaction rate at high pH, suggesting that anionic nitrite participates more effectively...

  18. Natural Product Polyamines That Inhibit Human Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Rohan A. Davis

    2014-01-01

    Full Text Available Natural product compound collections have proven an effective way to access chemical diversity and recent findings have identified phenolic, coumarin, and polyamine natural products as atypical chemotypes that inhibit carbonic anhydrases (CAs. CA enzymes are implicated as targets of variable drug therapeutic classes and the discovery of selective, drug-like CA inhibitors is essential. Just two natural product polyamines, spermine and spermidine, have until now been investigated as CA inhibitors. In this study, five more complex natural product polyamines 1–5, derived from either marine sponge or fungi, were considered for inhibition of six different human CA isozymes of interest in therapeutic drug development. All compounds share a simple polyamine core fragment, either spermine or spermidine, yet display substantially different structure activity relationships for CA inhibition. Notably, polyamines 1–5 were submicromolar inhibitors of the cancer drug target CA IX, this is more potent than either spermine or spermidine.

  19. Synthesis, characterization, antibacterial activities and carbonic anhydrase enzyme inhibitor effects of new arylsulfonylhydrazone and their Ni(II), Co(II) complexes

    Science.gov (United States)

    Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma

    2010-01-01

    Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.

  20. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiongwen; GAO Kunshan

    2003-01-01

    The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (Caext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 μmol·m-2·s-1) or high (210 μmol·m-2·s-1) irradiance. The changes in CO2 concentrations (4-31 μmol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. Caext was detected in the cells grown at 4 μmol/L CO2 but not at 31 and 12 μmol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of Caext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher Caext activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

  1. Carbonic anhydrase III protects osteocytes from oxidative stress.

    Science.gov (United States)

    Shi, Chao; Uda, Yuhei; Dedic, Christopher; Azab, Ehab; Sun, Ningyuan; Hussein, Amira I; Petty, Christopher A; Fulzele, Keertik; Mitterberger-Vogt, Maria C; Zwerschke, Werner; Pereira, Renata; Wang, Kunzheng; Pajevic, Paola Divieti

    2017-09-19

    Osteocytes are master orchestrators of bone remodeling; they control osteoblast and osteoclast activities both directly via cell-to-cell communication and indirectly via secreted factors, and they are the main postnatal source of sclerostin and RANKL (receptor activator of NF-kB ligand), two regulators of osteoblast and osteoclast function. Despite progress in understanding osteocyte biology and function, much remains to be elucidated. Recently developed osteocytic cell lines-together with new genome editing tools-has allowed a closer look at the biology and molecular makeup of these cells. By using single-cell cloning, we identified genes that are associated with high Sost/sclerostin expression and analyzed their regulation and function. Unbiased transcriptome analysis of high vs. low Sost/sclerostin-expressing cells identified known and novel genes. Dmp1 (dentin matrix protein 1), Dkk1 (Dickkopf WNT signaling pathway inhibitor 1), and Phex were among the most up-regulated known genes, whereas Srpx2, Cd200, and carbonic anhydrase III (CAIII) were identified as novel markers of differentiated osteocytes. Aspn, Enpp2, Robo2, Nov, and Serpina3g were among the transcripts that were most significantly suppressed in high-Sost cells. Considering that CAII was recently identified as being regulated by Sost/sclerostin and capable of controlling mineral homeostasis, we focused our attention on CAIII. Here, we report that CAIII is highly expressed in osteocytes, is regulated by parathyroid hormone both in vitro and in vivo, and protects osteocytes from oxidative stress.-Shi, C., Uda, Y., Dedic, C., Azab, E., Sun, N., Hussein, A. I., Petty, C. A., Fulzele, K., Mitterberger-Vogt, M. C., Zwerschke, W., Pereira, R., Wang, K., Divieti Pajevic, P. Carbonic anhydrase III protects osteocytes from oxidative stress. © FASEB.

  2. Association between dental-oral health in young adults and salivary glutathione, lipid peroxidation and sialic acid levels and carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    L.K. Öztürk

    2008-11-01

    Full Text Available The aim of the present study was to evaluate the relationship between salivary oxidative stress and dental-oral health. Healthy young adults, matched for gender and age, with (N = 21, 10 men, mean age: 20.3 ± 1 years and without (N = 16, 8 men, mean age: 21.2 ± 1.8 years caries were included in this study. The World Health Organization (WHO caries diagnostic criteria were used for determining the decayed, missing, filled teeth (DMFT index. The oral hygiene and gingival status were assessed using the simplified oral hygiene index and gingival index, respectively. Unstimulated salivary total protein, glutathione (GSH, lipid peroxidation and total sialic acid levels, carbonic anhydrase activity, and salivary buffering capacity were determined by standard methods. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Simplified oral hygiene index and gingival index were not significantly different between groups but DMFT scores were significant (P < 0.01. Only, GSH values were significantly different (P < 0.05 between groups (2.2 and 1.6 mg/g protein in young adults without caries and with caries, respectively. There was a significant negative correlation between DMFT and GSH (r = -0.391; P < 0.05; Pearson's correlation coefficient. Our results suggest that there is an association between caries history and salivary GSH levels.

  3. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.

    Science.gov (United States)

    Kozliak, E I; Guilloton, M B; Gerami-Nejad, M; Fuchs, J A; Anderson, P M

    1994-09-01

    Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.

  4. Structure and Metal Exchange in the Cadmium Carbonic anhydrase of Marine Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Xu,Y.; Feng, l.; Jeffrey, P.; Shi, Y.; Morel, F.

    2008-01-01

    Carbonic anhydrase, a zinc enzyme found in organisms from all kingdoms, catalyses the reversible hydration of carbon dioxide and is used for inorganic carbon acquisition by phytoplankton. In the oceans, where zinc is nearly depleted, diatoms use cadmium as a catalytic metal atom in cadmium carbonic anhydrase (CDCA). Here we report the crystal structures of CDCA in four distinct forms: cadmium-bound, zinc-bound, metal-free and acetate-bound. Despite lack of sequence homology, CDCA is a structural mimic of a functional {beta}-carbonic anhydrase dimer, with striking similarity in the spatial organization of the active site residues. CDCA readily exchanges cadmium and zinc at its active site--an apparently unique adaptation to oceanic life that is explained by a stable opening of the metal coordinating site in the absence of metal. Given the central role of diatoms in exporting carbon to the deep sea, their use of cadmium in an enzyme critical for carbon acquisition establishes a remarkable link between the global cycles of cadmium and carbon.

  5. Kinetics of Formation of Cobalt(II)- and Nickel(II) Carbonic Anhydrase.

    Science.gov (United States)

    McQuate, Robert S.; Reardon, John E.

    1978-01-01

    Discusses the kinetic behavior associated with the interaction of metal ions with apocarbonic anhydrase, focusing on the formation of two metallocarbonic anhydrase--the biochemically active Co(II) and the inactive Ni(II)derivatives. (GA)

  6. The role of carbonic anhydrase in hepatic glucose production.

    Science.gov (United States)

    Ismail, Ibrahim Salihu

    2016-12-14

    Considerable efforts are being made daily to discover novel therapeutic targets to better understand the mechanism for designing drugs in treating diabetes. Inhibition of hepatic gluconeogenesis by metformin remains the first line of oral therapy for managing type 2 diabetes. The link between rise in blood lactate level and reduction of hepatic glucose production with metformin usage remains to be determined. Carbonic anhydrase is proposed to be the link connecting blood lactate accumulation and inhibition of hepatic gluconeogenesis and thus could serve as a new therapeutic target for reducing hepatic glucose production. Understanding the link between rise in blood lactate level and the role of carbonic anhydrase in lactate uptake will be essential towards the development of a promising new antidiabetic medication.

  7. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    Science.gov (United States)

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C; Silverman, D; Anderson, P M; Fuchs, J A

    1993-03-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and

  8. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    Science.gov (United States)

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  9. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.P.

    1987-05-01

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded K/sub i/ values of approx. 15 ..mu..M; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an /sup 18/O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo and in vitro in the study of membrane-associated CA.

  10. Pilot absorption experiments with carbonic anhydrase enhanced MDEA

    DEFF Research Database (Denmark)

    Gladis, Arne; F. Lomholdt, Niels; Fosbøl, Philip Loldrup

    2017-01-01

    -methyl-diethanolamine (MDEA) solvent, with and without the enzyme carbonic anhydrase (CA). The absorption experiments were performed at atmospheric pressure and agas phase carbon dioxide mole fraction of 0.13. During experiments liquid samples were withdrawn at each meter of column height and the solvent loading...... was determined by both a density method and the BaCl2 method. After the solvent was loaded to equilibrium it was heated up and reintroduced into the column, where CO2 was stripped off using air as stripping gas. The addition of CA increased the mass transfer significantly in all experiments. Lower absorption...

  11. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides

    Directory of Open Access Journals (Sweden)

    Mariana Vieira Tomazett

    Full Text Available Abstract Carbonic anhydrases (CA belong to the family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the present work, we characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3, and CA4. In the presence of CO2, there was not a significant increase in fungal ca1, ca2 and ca4 gene expression. The ca1 transcript was induced during the mycelium-to-yeast transition, while ca2 and ca4 gene expression was much higher in yeast cells, when compared to mycelium and mycelium-to-yeast transition. The ca1 transcript was induced in yeast cells recovered directly from liver and spleen of infected mice, while transcripts for ca2 and ca4 were down-regulated. Recombinant CA1 (rCA1 and CA4 (rCA4, with 33 kDa and 32 kDa respectively, were obtained from bacteria. The enzymes rCA1 (β-class and rCA4 (α-class were characterized regarding pH, temperature, ions and amino acids addition influence. Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes were dramatically inhibited by Hg+2 and activated by Zn+2, while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all in L configuration, arginine, lysine, tryptophan and histidine enhanced residual activity of rCA1 and rCA4.

  12. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    HUANG Huo-Qiang; PAN Xu-Lin; JI Chang-Jiu; ZENG Guang-Zhi; JIANG Li-Hua; FU Xiang; LIU Ji-Kai; HAO Xiao-Jiang; ZHANG Ying-Jun; TAN Ning-Hua

    2009-01-01

    Carbonic anhydrase Ⅱ (CAⅡ) is an Important enzyme complex with Zn2+, which is involved in many physiological and pathological processes, such as calcification, glaucoma and tumorigenicity. In order to search for novel inhibitors of CA Ⅱ, inhibition assay of carbonic anhydrase Ⅱ was performed, by which seven natural phenolic compounds, including four phenolics (grifolln, 4-O-methyl-grifolic acid, grifolic acid, and isovanillic acid) and three flavones (eriodictyol, quercetin and puerin A), showed in-hibitory activities against CAⅡ with IC50s in the range of 6.37-71.73 μmol/L. Grifolic acid is the most active one with IC50 of 6.37 μmol/L. These seven phenolic compounds were proved to be novel natural carbonic anhydrase Ⅱ inhibitors, which were obtained in flexible docking study with GOLD 3.0 soft-ware. Results indicated that the aliphatic chain and polar groups of hydroxyl and carboxyl are impor-tant to their inhibitory activities, providing a new insight into study on CA Ⅱ potent inhibitors.

  13. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbonic anhydrase Ⅱ (CAⅡ) is an important enzyme complex with Zn2+,which is involved in many physiological and pathological processes, such as calcification, glaucoma and tumorigenicity. In order to search for novel inhibitors of CAⅡ, inhibition assay of carbonic anhydrase Ⅱ was performed, by which seven natural phenolic compounds, including four phenolics (grifolin, 4-O-methyl-grifolic acid, grifolic acid, and isovanillic acid) and three flavones (eriodictyol, quercetin and puerin A), showed in-hibitory activities against CAⅡ with IC50s in the range of 6.37-71.73 μmol/L. Grifolic acid is the most active one with IC50 of 6.37 μmol/L. These seven phenolic compounds were proved to be novel natural carbonic anhydrase Ⅱ inhibitors, which were obtained in flexible docking study with GOLD 3.0 soft-ware. Results indicated that the aliphatic chain and polar groups of hydroxyl and carboxyl are impor-tant to their inhibitory activities, providing a new insight into study on CA Ⅱ potent inhibitors.

  14. Unfolding intermediates of the mutant His-107-Tyr of human carbonic anhydrase II

    Indian Academy of Sciences (India)

    SRABANI TARAPHDER; PUSPITA HALDER; TANMOY KUMAR PAUL; SATYAJIT KHATUA

    2017-07-01

    The mutant His-107-Tyr of human carbonic anhydrase II (HCA II) is highly unstable and has long been linked to a misfolding disease known as carbonic anhydrase deficiency syndrome (CADS). High temperature unfolding trajectories of the mutant are obtained from classical molecular dynamics simulationsand analyzed in a multi-dimensional property space.When projected along a reaction coordinate these trajectories yield four distinguishable sets of structures that map qualitatively to folding intermediates of this mutant postulated earlier from experiments.We present in this article a detailed analysis of representative structures and proton transfer activity of these intermediates. It is also suggested that under suitable experimental conditions, these intermediates may be distinguished using circular dichroism (CD) spectroscopy.

  15. Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Hann, Zachary S; Cohen, Seth M

    2013-11-01

    An ever-increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, zinc(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design of new therapeutics targeting metalloproteins.

  16. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Directory of Open Access Journals (Sweden)

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  17. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture.......To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  18. A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey

    Science.gov (United States)

    Ferreira-Martins, D.; McCormick, Stephen; Campos, A.; Lopes-Marques, M.; Osorio, H.; Coimbra, J.; Castro, L.F.C.; Wilson, Jonthan M

    2016-01-01

    Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.

  19. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO2/HCO3(-) fluctuations.

    Science.gov (United States)

    Rasmussen, Jacob K; Boedtkjer, Ebbe

    2017-01-01

    The CO2/HCO3(-) buffer minimizes pH changes in response to acid-base loads, HCO3(-) provides substrate for Na(+),HCO3(-)-cotransporters and Cl(-)/HCO3(-)-exchangers, and H(+) and HCO3(-) modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3(-) buffer. Switching from CO2/HCO3(-)-free to CO2/HCO3(-)-containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3(-) uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na(+),HCO3(-)-cotransport and Na(+)/H(+)-exchange activity after NH4(+)-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3(-)-free conditions but absent when the buffer capacity and apparent H(+) mobility increase in the presence of CO2/HCO3(-) even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3(-) minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and

  20. The archetype gamma-class carbonic anhydrase (Cam) contains iron when synthesized in vivo.

    Science.gov (United States)

    Macauley, Sheridan R; Zimmerman, Sabrina A; Apolinario, Ethel E; Evilia, Caryn; Hou, Ya-Ming; Ferry, James G; Sowers, Kevin R

    2009-02-10

    A recombinant protein overproduction system was developed in Methanosarcina acetivorans to facilitate biochemical characterization of oxygen-sensitive metalloenzymes from strictly anaerobic species in the Archaea domain. The system was used to overproduce the archetype of the independently evolved gamma-class carbonic anhydrase. The overproduced enzyme was oxygen sensitive and had full incorporation of iron instead of zinc observed when overproduced in Escherichia coli. This, the first report of in vivo iron incorporation for any carbonic anhydrase, supports the need to reevaluate the role of iron in all classes of carbonic anhydrases derived from anaerobic environments.

  1. Carbonic anhydrase in Escherichia coli. A product of the cyn operon.

    Science.gov (United States)

    Guilloton, M B; Korte, J J; Lamblin, A F; Fuchs, J A; Anderson, P M

    1992-02-25

    The product of the cynT gene of the cyn operon in Escherichia coli has been identified as a carbonic anhydrase. The cyn operon also includes the gene cynS, encoding the enzyme cyanase. Cyanase catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The carbonic anhydrase was isolated from an Escherichia coli strain overexpressing the cynT gene and characterized. The purified enzyme was shown to contain 1 Zn2+/subunit (24 kDa) and was found to behave as an oligomer in solution; the presence of bicarbonate resulted in partial dissociation of the oligomeric enzyme. The kinetic properties of the enzyme are similar to those of carbonic anhydrases from other species, including inhibition by sulfonamides and cyanate. The amino acid sequence shows a high degree of identity with the sequences of two plant carbonic anhydrases. but not with animal and algal carbonic anhydrases. Since carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate diffuses out of the cell faster than it would be hydrated to bicarbonate, the apparent function of the induced carbonic anhydrase is to catalyze hydration of carbon dioxide and thus prevent depletion of cellular bicarbonate.

  2. The L-arginine/NO pathway, homoarginine, and nitrite-dependent renal carbonic anhydrase activity in young people with type 1 diabetes mellitus.

    Science.gov (United States)

    Carmann, Christina; Lilienthal, Eggert; Weigt-Usinger, Katharina; Schmidt-Choudhury, Anjona; Hörster, Irina; Kayacelebi, Arslan Arinc; Beckmann, Bibiana; Chobanyan-Jürgens, Kristine; Tsikas, Dimitrios; Lücke, Thomas

    2015-09-01

    High circulating levels of asymmetric dimethylarginine (ADMA) and low circulating levels of homoarginine (hArg) are known cardiovascular risk factors in adults. While in adults with type 1 diabetes mellitus (T1DM) circulating ADMA is significantly elevated, in children and adolescents the reported ADMA data are contradictory. In 102 children with T1DM and 95 healthy controls (HC) serving as controls, we investigated the L-arginine (Arg)/nitric oxide (NO) pathway. Children with T1DM were divided into two groups, i.e., in children with newly diagnosed diabetes mellitus [T1DM-ND; n = 10; age, 8.8 (4.4-11.2) years; HbA1c, 13 (8.9-13.9) %] and in those with long-term treatment [T1DM-T; n = 92; age, 12.5 (10.5-15.4) years; HbA1c, 8.0 (7.2-8.6) %]. The age of the HC was 11.3 (8-13.3) years. Amino acids and NO metabolites of the Arg/NO pathway, creatinine and the oxidative stress biomarker malondialdehyde (MDA) were measured by GC-MS or GC-MS/MS. Plasma hArg, ADMA and the hArg/ADMA molar ratio did not differ between the T1DM and HC groups. There was a significant difference between T1DM-T and HC with regard to plasma nitrite [0.53 (0.48-0.61) vs 2.05 (0.86-2.36) µM, P 86-2.36) µM, P < 0.0001]. Plasma MDA did not differ between the groups. The urinary nitrate-to-nitrite molar ratio (UNOXR), a measure of nitrite-dependent renal carbonic anhydrase (CA) activity, was higher in T1DM-T [1173 (738-1481), P < 0.0001] and T1DM-ND [1341 (1117-1615), P = 0.0007] compared to HC [540 (324-962)], but did not differ between T1DM-T and T1DM-ND (P = 0.272). The lower nitrite excretion in the children with T1DM may indicate enhanced renal CA-dependent nitrite reabsorption compared with healthy children. Yet, lower plasma nitrite concentration in the T1DM patients may have also contributed to the higher UNOXR. Patients' age correlated positively with plasma hArg and hArg/ADMA and urinary DMA/ADMA. Plasma ADMA and urinary ADMA, DMA, nitrite and nitrate correlated negatively with age of the

  3. Quantification of carbonic anhydrase gene expression in ventricle of hypertrophic and failing human heart

    Directory of Open Access Journals (Sweden)

    Alvarez Bernardo V

    2013-01-01

    Full Text Available Abstract Background Carbonic anhydrase enzymes (CA catalyze the reversible hydration of carbon dioxide to bicarbonate in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway characteristic of hearts as they fail. In particular, Na+/H+ exchange (NHE activation is pro-hypertrophic and CA activity activates NHE. Recently Cardrase (6-ethoxyzolamide, a CA inhibitor, was found to prevent and revert agonist-stimulated cardiac hypertrophy (CH in cultured cardiomyocytes. Our goal thus was to determine whether hypertrophied human hearts have altered expression of CA isoforms. Methods We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing cardiac surgery (CS, n = 14, or heart transplantation (HT, n = 13. CS patients presented mild/moderate concentric left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions were ~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. Results Expression of atrial and brain natriuretic peptide (ANP and BNP were markers of CH. Hypertrophic ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately two-fold in hypertrophic/dilated ventricles. Conclusions These results, combined with in vitro data that CA inhibition prevents and reverts CH, suggest that increased carbonic anhydrase expression is a prognostic molecular marker of cardiac

  4. Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours

    Institute of Scientific and Technical Information of China (English)

    Antti J. Kivel(a); Jyrki Kivel(a); Juha Saarnio; Seppo Parkkila

    2005-01-01

    Carbonic anhydrases (CAs) catalyse the hydration of CO2to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membranebound isoenzymes Ⅸ and Ⅻ have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.

  5. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  6. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  7. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    Science.gov (United States)

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety.

  8. Extremely low-frequency electromagnetic fields affect lipid-linked carbonic anhydrase.

    Science.gov (United States)

    Ravera, Silvia; Pepe, Isidoro Mario; Calzia, Daniela; Morelli, Alessandro; Panfoli, Isabella

    2011-06-01

    In the last years, the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the activity of different enzymes were investigated. Only the membrane-anchored enzymes did decrease their activity, up to 50%. In this work, the effect of ELF-EMF on bovine lung membrane carbonic anhydrase (CA) were studied. Carbonic anhydrases are a family of 14 zinc-containing isozymes catalyzing the reversible reaction: CO(2)+H(2)O = HCO(3)(- )+H(+). CA differ in catalytic activity and subcellular localization. CA IV, IX, XII, XIV, and XV are membrane bound. In particular, CA IV, which is expressed in the lung, is glycosyl phosphatidyl inositol-linked to the membrane, therefore it was a candidate to inhibition by ELF-EMF. Exposure to the membranes to a field of 75 Hz frequency and different amplitudes caused CA activity to a reproducible decrease in enzymatic activity by 17% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. When the source of enzyme was solubilized with Triton, the field lost its effect on CA enzymatic activity, suggesting a crucial role of the membrane, as well as of the particular linkage of the enzyme to it, in determining the conditions for CA inactivation. Results are discussed in terms of the possible physiologic effects of CA inhibition in target organs.

  9. Novel transcripts of carbonic anhydrase II in mouse and human testis.

    Science.gov (United States)

    Mezquita, P; Mezquita, C; Mezquita, J

    1999-03-01

    Intracellular and extracellular sources of bicarbonate are essential for sperm motility, sperm binding to the zona pellucida and the acrosome reaction. Carbonic anhydrase II, catalysing the synthesis of bicarbonate within spermatozoa, must play a significant role in these mechanisms. We report here the expression of carbonic anhydrase II during mouse spermatogenesis and the primary structure of testicular transcripts coding for carbonic anhydrase II isolated from adult mouse and human testes. The mouse carbonic anhydrase II (Car2) mRNA displays a 5' untranslated region (UTR) larger than the corresponding somatic sequence. The additional 5' sequence contains the 'TATA box' used in somatic tissues and other promoter sequences, suggesting the use of testis-specific promoters further upstream with read-through of downstream promoters. The 3'UTR of the Car2 mRNA is shorter in mature testicular cells than in somatic cells. Polysomal gradient analysis of carbonic anhydrase II transcripts isolated from adult mouse testis and kidney revealed different translation potential: most of the testicular transcripts were present in the non-polysomal fractions, whereas a considerable fraction of kidney transcripts were polysome-associated. These results suggest that specific transcriptional and post-transcriptional mechanisms regulate the expression of carbonic anhydrase II during mammalian spermatogenesis.

  10. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-07-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.

  11. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization

    OpenAIRE

    Le Roy, Nathalie; Jackson, Daniel J.; Marie, Benjamin; Ramos-Silva, Paula; Marin, Frédéric

    2014-01-01

    The carbonic anhydrase (CA; EC 4.2.1.1) superfamily is a class of ubiquitous metallo-enzymes that catalyse the reversible hydration of carbon dioxide. The ?-CA family, present in all metazoan clades, is a key enzyme involved in a wide range of physiological functions including pH regulation, respiration, photosynthesis, and biocalcification. This paper reviews the evolution of the ?-CA family, with an emphasis on metazoan ?-CA members involved in biocalcification. Phylogenetic analyses reveal...

  12. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    DEFF Research Database (Denmark)

    Pedersen, D B; Eysteinsson, T; Stefánsson, E

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  13. Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies.

    Science.gov (United States)

    Imran, Syahrul; Taha, Muhammad; Ismail, Nor Hadiani; Fayyaz, Sharmeen; Khan, Khalid Mohammed; Choudhary, Muhammad Iqbal

    2016-10-01

    In this study, 45 bisindolylmethanes having sulfonamide moiety had been synthesized through 3 steps. In vitro assay for inhibition of carbonic anhydrase showed that some of the compounds having sulfonamide moiety are capable of inhibiting carbonic anhydrase II. Bisindoles having halogens at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. The results obtained from in vitro inhibitory activity were subjected through 3D QSAR and docking studies to identify important features contributing to the activity and further improve the structure. Pharmacophore studies suggest that bisindolylmethane moiety is contributing significantly towards the inhibition activity. Docking studies showed that compounds having nitro substituent (5g and 5i) were found to be able interact with Zn(2+) ion, Thr199, His94, His96, and His119, which interferes with the ZnOHThr199Glu106 hydrogen bond network. Bulky nitro substituent at ortho position for compound 5g prevents the compound from interacting with other residues like Thr199 and Thr200. Methyl substituent at ortho position for Compound 5i induces less steric hindrance effect, thus allowing second oxygen atom of sulfonamide to interact with Thr199 (2.51Å). Hydrogen bonding between NH on indole ring with Glu69 might have increased stability of ligand-receptor complex. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes.

    Science.gov (United States)

    Arabaci, Betul; Gulcin, Ilhami; Alwasel, Saleh

    2014-07-10

    Carbonic anhydrase (CA, EC 4.2.1.1) is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2) and water (H2O) into a proton (H+) and bicarbonate (HCO3-) ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II.

  15. Capsaicin: A Potent Inhibitor of Carbonic Anhydrase Isoenzymes

    Directory of Open Access Journals (Sweden)

    Betul Arabaci

    2014-07-01

    Full Text Available Carbonic anhydrase (CA, EC 4.2.1.1 is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2 and water (H2O into a proton (H+ and bicarbonate (HCO3– ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II.

  16. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae) : A comparison with other marine algae using the isotopic disequilibrium technique

    NARCIS (Netherlands)

    Elzenga, JTM; Prins, HBA; Stefels, J

    2000-01-01

    The utilization of inorganic carbon species by the marine microalga Phaeocystis globasa (Prymnesiophyceae) and several other algal species from different taxa, was investigated by determining the time course of C-14 incorporation in isotopic disequilibrium experiments. From these kinetic data, concl

  17. Carbonic anhydrase isozymes Ⅸ and Ⅻ in gastric tumors

    Institute of Scientific and Technical Information of China (English)

    Mari Leppilampi; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivel(a); Silvia Pastorekov(a); Jaromir Pastorek; Abdul Waheed; William S. Sly; Seppo Parkkila

    2003-01-01

    AIM: To systematically study the expression of carbonic anhydrase (CA) isowmes Ⅸ and Ⅻ in gastric tumors.METHODS: We analyzed a representative series of specimens from non-neoplastic gastric mucosa and from various dysplastic and neoplastic gastric lesions for the expression of CA IX and XII. Immunohistochemical staining was performed using isozyme-specific antibodies and biotinstreptavidin complex method.RESULTS: CA IX was highly expressed in the normal gastric mucosa and remained positive in many gastric tumors. In adenomas, CA IX expression significantly decreased towards the high grade dysplasia. However, the expression resumed back to the normal level in well differentiated adenocarcinomas,while it again declined in carcinomas with less differentiation.In comparison, CA Ⅻ showed no or weak immunoreaction in the normal gastric mucosa and was slightly increased in tumors.CONCLUSION: These results demonstrate that CA Ⅸexpression is sustained in several types of gastric tumors.The variations observed in the CA Ⅸ levels support the concept that gastric adenomas and carcinomas are distinct entities and do not represent progressive steps of a single pathway.

  18. Molecular evolution and selection pressure in alpha-class carbonic anhydrase family members.

    Science.gov (United States)

    McDevitt, Meghan E; Lambert, Lisa A

    2011-12-01

    Carbonic anhydrases (CA) are ubiquitous, and their involvement in diseases such as hypertension, diabetes, and glaucoma is well known. Most members of this family of metalloenzymes convert carbon dioxide to bicarbonate with the help of a Zn(2+) cofactor. While the expression patterns and kinetic activities of many of these isozymes have been studied, little is known about the differences in the conservation patterns of individual residues. To better understand the molecular evolution of the CA gene family, we created multiple sequence alignments and analyzed the selection pressure (dN/dS ratios) on surface and active site residues in 248 mammalian sequences of the 14 known family members. Using the values found for amino acids of known functional importance (i.e. the three histidines that bind the zinc cofactor) as our baseline, we were able to identify other regions of possible structural and functional importance. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Carbonic Anhydrases Function in Anther Cell Differentiation Downstream of the Receptor-Like Kinase EMS1.

    Science.gov (United States)

    Huang, Jian; Li, Zhiyong; Biener, Gabriel; Xiong, Erhui; Malik, Shikha; Eaton, Nathan; Zhao, Catherine Z; Raicu, Valerica; Kong, Hongzhi; Zhao, Dazhong

    2017-06-01

    Plants extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control a wide range of growth and developmental processes as well as defense responses. To date, only a few direct downstream effectors for LRR-RLKs have been identified. We previously showed that the LRR-RLK EMS1 (EXCESS MICROSPOROCYTES1) and its ligand TPD1 (TAPETUM DETERMINANT1) are required for the differentiation of somatic tapetal cells and reproductive microsporocytes during early anther development in Arabidopsis thaliana Here, we report the identification of β-carbonic anhydrases (βCAs) as the direct downstream targets of EMS1. EMS1 biochemically interacts with βCA proteins. Loss of function of βCA genes caused defective tapetal cell differentiation, while overexpression of βCA1 led to the formation of extra tapetal cells. EMS1 phosphorylates βCA1 at four sites, resulting in increased βCA1 activity. Furthermore, phosphorylation-blocking mutations impaired the function of βCA1 in tapetal cell differentiation; however, a phosphorylation mimic mutation promoted the formation of tapetal cells. βCAs are also involved in pH regulation in tapetal cells. Our findings highlight the role of βCA in controlling cell differentiation and provide insights into the posttranslational modification of carbonic anhydrases via receptor-like kinase-mediated phosphorylation. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Sheena A. M. Francis

    2016-12-01

    Full Text Available The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increased modestly in longer exposures, and affected larvae showed attenuated responses to probing without overt tremors, hyperexcitation, or convulsions. Acetazolamide and dichlorphenamide were toxic to adults when applied topically, but were of low potency and had an incomplete effect (<50% at 300 ng/mosquito even after injection. Dichlorphenamide was also the most toxic compound when fed to adult mosquitoes, and they displayed loss of posture and occasionally prolonged fluttering of the wings. Co-exposure with 500 ng of the synergist piperonyl butoxide (PBO increased the toxicity of dichlorphenamide ca. two-fold in feeding assays, indicating that low toxicity was not related to oxidative metabolism. Dichlorphenamide showed mild depolarizing and nerve discharge actions on insect neuromuscular and central nervous systems, respectively. These effects were increased in low buffer salines, indicating they were apparently related to loss of pH control in these tissues. Overall, sulfonamides displayed weak insecticidal properties on Aedes aegypti and are weak lead compounds.

  1. Complexes with biologically active ligands. Part 11. Synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercapto-1,2,4-triazole derivatives.

    Science.gov (United States)

    Scozzafava, A; Cavazza, C; Supuran, C T; Saramet, I; Briganti, F; Banciu, M D

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma.

  2. Complexes With Biologically Active Ligands. Part 111. Synthesis and Carbonic Anhydrase Inhibitory Activity of Metal Complexes of 4,5-Disubstituted-3-Mercapto-1,2,4-Triazole Derivatives

    Science.gov (United States)

    Scozzafava, Andrea; Cavazza, Christine; Saramet, Ioana; Briganti, Fabrizio; Banciu, Mircea D.

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma. PMID:18475819

  3. Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes

    Science.gov (United States)

    Özbek, Neslihan; Alyar, Saliha; Memmi, Burcu Koçak; Gündüzalp, Ayla Balaban; Bahçeci, Zafer; Alyar, Hamit

    2017-01-01

    2-Hydroxyacetophenone-N-methyl p-toluenesulfonylhydrazone (afptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Co(II), Pd(II), Pt(II) complexes were synthesized for the first time. Synthesized compounds were characterized by spectroscopic methods (FT-IR, 1Hsbnd 13C NMR, LC-MS, UV-vis), magnetic susceptibility and conductivity measurements. 1H and 13C shielding tensors for crystal structure of ligand were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The antibacterial activities of synthesized compounds were studied against some Gram positive and Gram negative bacteria by using microdilution and disc diffusion methods. In vitro enzyme inhibitory effects of the compounds were measured by UV-vis spectrophotometer. The enzyme activities against human carbonic anhydrase II (hCA II) were evaluated as IC50 (the half maximal inhibitory concentration) values. It was found that afptsmh and its metal complexes have inhibitory effects on hCA II isoenzyme. General esterase activities were determined using alpha and beta naphtyl acetate substrates (α- and β-NAs) of Drosophila melanogaster (D. melanogaster). Activity results show that afptsmh does not strongly affect the bacteria strains and also shows poor inhibitory activity against hCAII isoenzyme whereas all complexes posses higher biological activities.

  4. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  5. Carbonic Anhydrase Enhanced Carbon Capture: Kinetic Measurements and Pilot Plant Trials

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: MEA (a primary amine), AMP (a sterically hindered primary amine), MDEA (a tertiary amine) and K2CO3 a carbonate salt solution were tested...... in concentrations from 5 to 50 wt%. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined in a temperature range from 298 to 328 K and benchmarked to a 30 wt% MEA solution. The study reveals that the addition of the enzyme carbonic...

  6. Research progress of carbon dioxide capture by using carbonic anhydrase%碳酸酐酶用于二氧化碳捕集的研究进展

    Institute of Scientific and Technical Information of China (English)

    王静

    2012-01-01

    碳酸酐酶(CA)可以加速捕集化石燃料燃烧产生的二氧化碳,从而降低CO2的排放量.主要介绍了CA的来源、活性、稳定性及作用.分析了使用新型生物方法对二氧化碳进行捕集和储存的优缺点,并对下一步的工作进行了展望.%It has been demonstrated that carbonic anhydrase has the potential of accelerating of carbon dioxide capture from fossil fuel and reduce the discharge of carbon dioxide. The source, activity, stability and functions of carbonic anhydrase are mainly presented. In addition, the advantages and disadvantages of using new biological for carbon dioxide capture and storage are discussed and analyzed, and the further study is prospected.

  7. Variable involvement of the perivascular retinal tissue in carbonic anhydrase inhibitor induced relaxation of porcine retinal arterioles in vitro

    DEFF Research Database (Denmark)

    Kehler, Anne Katrine; Holmgaard, Kim; Hessellund, Anders;

    2007-01-01

    PURPOSE: Inhibition of carbonic anhydrase in the eye is an important treatment modality for reducing the intraocular pressure in glaucoma. However, evidence suggests that carbonic anhydrase inhibition also exerts a relaxing effect on the vessels in the optic nerve, and it has been suggested...

  8. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with secondary sulfonamides incorporating benzothiazole scaffolds.

    Science.gov (United States)

    Petrou, Anthi; Geronikaki, Athina; Terzi, Emine; Guler, Ozen Ozensoy; Tuccinardi, Tiziano; Supuran, Claudiu T

    2016-12-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of benzothiazole-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I and hCA II and the transmembrane hCA IX and hCA XII. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting hCA IX and hCA XII over the off-target ones hCA I and hCA II. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.

  9. Inhibition of carbonic anhydrase II by thioxolone: a mechanistic and structural study.

    Science.gov (United States)

    Barrese, Albert A; Genis, Caroli; Fisher, S Zoe; Orwenyo, Jared N; Kumara, Mudalige Thilak; Dutta, Subodh K; Phillips, Eric; Kiddle, James J; Tu, Chingkuang; Silverman, David N; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; McKenna, Robert; Tripp, Brian C

    2008-03-11

    This paper examines the functional mechanism of thioxolone, a compound recently identified as a weak inhibitor of human carbonic anhydrase II by Iyer et al. (2006) J. Biomol. Screening 11, 782-791 . Thioxolone lacks sulfonamide, sulfamate, or hydroxamate functional groups that are typically found in therapeutic carbonic anhydrase (CA) inhibitors, such as acetazolamide. Analytical chemistry and biochemical methods were used to investigate the fate of thioxolone upon binding to CA II, including Michaelis-Menten kinetics of 4-nitrophenyl acetate esterase cleavage, liquid chromatography-mass spectrometry (LC-MS), oxygen-18 isotope exchange studies, and X-ray crystallography. Thioxolone is proposed to be a prodrug inhibitor that is cleaved via a CA II zinc-hydroxide mechanism known to catalyze the hydrolysis of esters. When thioxolone binds in the active site of CA II, it is cleaved and forms 4-mercaptobenzene-1,3-diol via the intermediate S-(2,4-thiophenyl)hydrogen thiocarbonate. The esterase cleavage product binds to the zinc active site via the thiol group and is therefore the active CA inhibitor, while the intermediate is located at the rim of the active-site cavity. The time-dependence of this inhibition reaction was investigated in detail. Because this type of prodrug inhibitor mechanism depends on cleavage of ester bonds, this class of inhibitors may have advantages over sulfonamides in determining isozyme specificity. A preliminary structure-activity relationship study with a series of structural analogues of thioxolone yielded similar estimates of inhibition constants for most compounds, although two compounds with bromine groups at the C1 carbon of thioxolone were not inhibitory, suggesting a possible steric effect.

  10. Ultrastructural changes in the membrane system of isolated chloroplasts of spinach under the influence of carbonic anhydrase inhibitors AA and EA

    Directory of Open Access Journals (Sweden)

    Marina V. Vodka

    2013-04-01

    Full Text Available The effects of carbonic anhydrase inhibitors (АА and EA on the membrane system of isolated chloroplasts of spinach were investigated. Under the influence of AA the considerable alterations in granal structure occurred, the thickness of the granal thylakoids increased by 36% and the interspace between thylakoids by 10% comparable with the control. As a result of EA treatment, the thickness of granal thylakoids enhanced by 31% and the interspace between thylakoids increased by 8% in comparison to the control. It was shown that structure of the granal system of the chloroplast was more sensitive to AA than EA. The data obtained can indicate a decrease in the activity of the thylakoid carbonic anhydrase, inhibition of electron transport and photosynthetic process as a whole in the presence of carbonic anhydrase inhibitors (AA and EA.

  11. Virtual screening of combinatorial library of novel benzenesulfonamides on mycobacterial carbonic anhydrase II

    Directory of Open Access Journals (Sweden)

    Dikant F.

    2016-12-01

    Full Text Available Combinatorial library of novel benzenesulfonamides was docked (Schrodinger Glide into mycobacterial carbonic anhydrase (mtCA II and human (hCA II isoforms with an aim to find drug candidates with selective activity on mtCA II. The predicted selectivity was calculated based on optimized MM-GBSA free energies for ligand enzyme interactions. Selectivity, LogP (o/w and interaction energy were used to calculate the selection index which determined the subset of best scoring molecules selected for further evaluation. Structure-activity relationship was found for fragment subsets, showing us the possible way regarding how to influence lipophilicity without affecting ligand-enzyme binding properties.

  12. The synthesis of novel pyrazole-3,4-dicarboxamides bearing 5-amino-1,3,4-thiadiazole-2-sulfonamide moiety with effective inhibitory activity against the isoforms of human cytosolic carbonic anhydrase I and II.

    Science.gov (United States)

    Mert, Samet; Alım, Zuhal; İşgör, Mehmet Mustafa; Beydemir, Şükrü; Kasımoğulları, Rahmi

    2016-10-01

    A series of 1-(3-substituted-phenyl)-5-phenyl-N(3),N(4)-bis(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-1H-pyrazole-3,4-dicarboxamides (4-15) were synthesized. The structures of these pyrazole-sulfonamides were confirmed by FT-IR, (1)H NMR, (13)C NMR and elemental analysis methods. Human cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes (hCA I and II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of newly synthesized derivatives (4-15) were investigated in vitro on esterase activities of these isozymes. The Ki values were determined as 0.119-3.999μM for hCA I and 0.084-0.878μM for hCA II. The results showed that the compound 6 for hCA I and the compound 11 for hCA II had the highest inhibitory effect. Beside that, the compound 8 had the lowest inhibition effect on both isozymes.

  13. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  14. Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma.

    Science.gov (United States)

    Steele, Rebecca M; Benedini, Francesca; Biondi, Stefano; Borghi, Valentina; Carzaniga, Laura; Impagnatiello, Francesco; Miglietta, Daniela; Chong, Wesley K M; Rajapakse, Ranjan; Cecchi, Alessandro; Temperini, Claudia; Supuran, Claudiu T

    2009-12-01

    Novel bi-functional compounds with a nitric oxide (NO)-releasing moiety bound to a dorzolamide scaffold were investigated. Several compounds were synthesized and their activity as selective carbonic anhydrase inhibitors (CAI) evaluated in vitro on recombinant hCA type I, II and IV enzyme isoforms where they showed different degrees of potency and selectivity to hCA II. A high resolution X-ray crystal structure for the CA II adduct with 8 confirmed the high affinity of this class of compounds for the enzyme. Compounds 4, 6, and 8 showed highly potent and efficacious NO-mediated properties as assessed by their vascular relaxant effect on methoxamine-precontracted rabbit aortic rings. Finally, compounds 4 and 6 exerted potent intraocular pressure (IOP) lowering effects in vivo in normotensive rabbits thereby anticipating their potential for the treatment of hypertensive glaucoma.

  15. Carbonic anhydrase inhibitors: synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties.

    Science.gov (United States)

    Sethi, Kalyan K; Verma, Saurabh M; Tanç, Muhammet; Purper, Gaultier; Calafato, Gaetan; Carta, Fabrizio; Supuran, Claudiu T

    2014-03-01

    A series of 4 and 5 nitro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 1-8) was synthesized by reaction of benzenesulfonamide derivatives with 4 and 3-nitrophthalic anhydrides. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated hCA IX and XII. Most of the novel compounds were medium potency-weak hCA I inhibitors (Kis in the range of 295-10,000 nM), but were more effective hCA II inhibitors (Kis of 1.7-887 nM). The tumor-associated hCA IX was also inhibited, with Kis in the micromolar range, whereas against hCA XII the inhibition constants were in the range of 90-3,746 nM. The structure-activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking studies was performed in order to rationalize the activities reported and binding mode to different hCA as inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. (The Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria (Australia))

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  17. Changes of Carbonic Anhydrase Activities in Tomato Leaves under Drought Stress%干旱胁迫下番茄叶片碳酸酐酶活性的变化

    Institute of Scientific and Technical Information of China (English)

    孙卫红; 吴秋霞; 温新宇; 何华纲; 吴沿友; 丁佳俊; 封丽娜

    2015-01-01

    Carbonic anhydrase (CA) catalyzes the reversible hydration of CO2, and it is an important photosyn-thetic enzyme which take part in the CO2 conduction and get into the carboxylation site. The CA activity has a great effect on photosynthesis and water use efifciency. In order to study the effect of expression of CA gene on the plant photosynthesis and plant water potential in tomato (Lycopersicon esculentum), the expression of cytoso-lic CA gene in tomato leaves under drought stress were determined by Northern blotting. And the CA enzyme ac-tivity, photosynthetic rate and water potential in tomato leaves under drought stress were also determined. The re-sults showed that the expression of cytosolic CA gene in tomato leaves was induced by drought stress. With the time of drought stress, the CA activity increased and then fell, and the changes were basically similar to that of CA gene expression. Net photosynthetic rate and water potential of tomato leaves decreased with the degree of drought and the treatment time. However, the CA activity, net photosynthetic rate and water potential changed slightly with the soil relative water content of 75%. The results indicated that there was a certain corresponding relationship be-tween the changes of water potential and photosynthetic rate in tomato leaves and the change of CA activity.%碳酸酐酶(carbonic anhydrase, CA)催化CO2的可逆水合反应,是参与CO2传导而进入羧化位点的重要光合酶,其活性高低对植物水分利用及光合作用有较大影响。为了研究干旱胁迫下番茄CA表达活性变化对植株光合作用及水分利用的影响,本文利用Northern杂交检测番茄叶片的胞质CA基因在干旱胁迫下的表达;测定干旱胁迫下番茄叶片CA活性、光合速率和叶片水势变化。结果表明,番茄叶片胞质CA基因受干旱胁迫诱导;CA活性随着干旱胁迫时间延长而发生由低至高再回落的变化,且变化规律基本与CA基因相似。番

  18. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    Energy Technology Data Exchange (ETDEWEB)

    Weiwei, Zhang [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China); Hu, Renming, E-mail: taylorzww@gmail.com [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China)

    2009-12-18

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  19. Nitric Oxide Donors and Selective Carbonic Anhydrase Inhibitors: A Dual Pharmacological Approach for the Treatment of Glaucoma, Cancer and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Simone Carradori

    2015-03-01

    Full Text Available Due to the recognized biological role of nitric oxide (NO donating derivatives and of selective inhibitors of specific human carbonic anhydrase isoforms (CA, EC 4.2.1.1, promising compounds having an aromatic/heterocyclic primary sulfonamide and functionalized with NO-releasing moieties have been designed. These bifunctional agents have been tested in vitro and in vivo to assess their dual pharmacological activity. According to the encouraging results they could be proposed for the treatment of angle-open glaucoma, cancer regression and osteoporosis, in which both NO and CA activities are involved.

  20. Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer.

    Science.gov (United States)

    Ambrosio, Maria Raffaella; Di Serio, Claudia; Danza, Giovanna; Rocca, Bruno Jim; Ginori, Alessandro; Prudovsky, Igor; Marchionni, Niccolò; Del Vecchio, Maria Teresa; Tarantini, Francesca

    2016-05-25

    Carbonic anhydrase IX is a member of α-carbonic anhydrases that is preferentially expressed in solid tumors. It enables bicarbonate transport across the plasma membrane, neutralizing intracellular pH and conferring to cancer cells a survival advantage in hypoxic/acidic microenvironments. Overexpression of carbonic anhydrase IX in cancer tissues is regulated by hypoxia inducible factor 1α - mediated transcription and the enzyme is considered a marker of tumor hypoxia and poor outcome. The role of carbonic anhydrase IX in prostate cancer has not been fully clarified and controversy has arisen on whether this enzyme is overexpressed in hypoxic prostate cancer tissues. We analyzed the expression of carbonic anhydrase IX and hypoxia inducible factor 1α in two prostate cancer cell lines, LNCaP and PC-3, and in 110 cancer biopsies, by western blotting and immunocyto/histochemistry. In LNCaP and PC-3 cells, carbonic anhydrase IX was mostly cytoplasmic/nuclear, with very limited membrane localization. Nuclear staining became stronger under hypoxia. When we analyzed carbonic anhydrase IX expression in human prostate cancer biopsies, we found that protein staining positively correlated with hypoxia inducible factor 1α and with Gleason pattern and score, as well as with the novel grading system proposed by the International Society of Urological Pathology for prostate cancer. Once more, carbonic anhydrase IX was mainly cytoplasmic in low grade carcinomas, whereas in high grade tumors was strongly expressed in the nucleus of the neoplastic cell. An association between carbonic anhydrase IX expression level and the main clinic-pathological features involved in prostate cancer aggressiveness was identified. There was a statistically significant association between carbonic anhydrase IX and hypoxia inducible factor 1α in prostate cancer tissues, that identifies the enzyme as a reliable marker of tumor hypoxia. In addition, carbonic anhydrase IX expression positively

  1. The role of carbonic anhydrase in C4 photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Anthony [Life Sciences Research Foundation, Baltimore, MD (United States)

    2015-10-01

    Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C4 photosynthesis, the hydration of CO2 into bicarbonate, and is potentially rate limiting in C4 grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.

  2. Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite.

    Science.gov (United States)

    Chobanyan-Jürgens, Kristine; Schwarz, Alexandra; Böhmer, Anke; Beckmann, Bibiana; Gutzki, Frank-Mathias; Michaelsen, Jan T; Stichtenoth, Dirk O; Tsikas, Dimitrios

    2012-02-15

    Nitrite (ONO(-)) exerts nitric oxide (NO)-related biological actions and its concentration in the circulation may be of particular importance. Nitrite is excreted in the urine. Hence, the kidney may play an important role in nitrite/NO homeostasis in the vasculature. We investigated a possible involvement of renal carbonic anhydrases (CAs) in endogenous nitrite reabsorption in the proximal tubule. The potent CA inhibitor acetazolamide was administered orally to six healthy volunteers (5 mg/kg) and nitrite was measured in spot urine samples before and after administration. Acetazolamide increased abruptly nitrite excretion in the urine, strongly suggesting that renal CAs are involved in nitrite reabsorption in healthy humans. Additional in vitro experiments support our hypothesis that nitrite reacts with CO(2), analogous to the reaction of peroxynitrite (ONOO(-)) with CO(2), to form acid-labile nitrito carbonate [ONOC(O)O(-)]. We assume that this reaction is catalyzed by CAs and that nitrito carbonate represents the nitrite form that is actively transported into the kidney. The significance of nitrite reabsorption in the kidney and the underlying mechanisms, notably a direct involvement of CAs in the reaction between nitrite and CO(2), remain to be elucidated.

  3. Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer†

    Science.gov (United States)

    Fisher, S. Zoë; Kovalevsky, Andrey Y.; Domsic, John F.; Mustyakimov, Marat; McKenna, Robert; Silverman, David N.; Langan, Paul A.

    2010-01-01

    Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H–D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 Å resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D2O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented. PMID:20025241

  4. Neutron structure of human carbonic anhydrase II: implications for proton transfer.

    Science.gov (United States)

    Fisher, S Zoë; Kovalevsky, Andrey Y; Domsic, John F; Mustyakimov, Marat; McKenna, Robert; Silverman, David N; Langan, Paul A

    2010-01-26

    Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H-D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 A resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D(2)O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented.

  5. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates

    Directory of Open Access Journals (Sweden)

    Niederhauser Barbara

    2010-07-01

    Full Text Available Abstract Background The β-carbonic anhydrase (CA, EC 4.2.1.1 enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. Results The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM and more potently by sulfamide (KI of 0.15 mM. Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM. Conclusions The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.

  7. Extra and intracelular activities of carbonic anhydrase of the marine microalga Tetraselmis gracilis (Chlorophyta Atividade extra e intracelular da Anidrase Carbônica na microalga marinha Tetraselmis gracilis (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Marilda Rigobello-Masini

    2003-07-01

    Full Text Available The activities of extra and intracellular carbonic anhydrases (CA were studied in the microalgae Tetraselmis gracilis (Kylin Butcher (Chlorophyta, Prasinophyceae growing in laboratory cultivation. During ten days of batch cultivation, daily determinations of pH, cell number, enzymatic activity, and total dissolved inorganic carbon (DIC, as well as its main species, CO2 and HCO3-, were performed. Enzymatic activity increased as the growing cell population depleted inorganic carbon from the medium. Carbon dioxide concentration decreased quickly, especially in the third day of cultivation, when a significant increase of the intracellular enzymatic activity was observed. Bicarbonate concentration had its largest decrease in the cultivation medium in the fourth day, when the activity of the extracellular enzyme had its largest increase, suggesting its use by the alga through CA activity. After the fourth cultivation day, half of the cultures were aerated with CO2-free atmospheric air, which caused an increase in the total and external activity of the enzyme, although, in this condition, the stationary growth phase began earlier than in cultures aerated with atmospheric air. The pH of the media was measured daily, increasing from the first to the fourth day, and remaining almost constant until the end of the cultivation. Algal material transferred to the dark lost all enzymatic activity.As atividades da Anidrase Carbônica (AC extra e intracelular foram estudadas na microalga marinha Tetraselmis gracilis (Kylin Butcher (Chlorophyta, Prasinophyceae crescendo em cultivos laboratoriais. Durante dez dias de cultivo, determinações diárias do pH, número de células, atividades enzimáticas, carbono inorgânico total dissolvido (CID e suas principais espécies CO2 e HCO3- foram feitas. A atividade enzimática aumentou na medida em que a população celular em crescimento retirava carbono inorgânico do meio de cultivo. A concentração de dióxido de

  8. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans.

    Science.gov (United States)

    Ores, Joana da Costa; Amarante, Marina Campos Assumpção de; Kalil, Susana Juliano

    2016-11-01

    The aim of this work was to study the co-production of the carbonic anhydrase, C-phycocyanin and allophycocyanin during cyanobacteria growth. Spirulina sp. LEB 18 demonstrated a high potential for simultaneously obtaining the three products, achieving a carbonic anhydrase (CA) productivity of 0.97U/L/d and the highest C-phycocyanin (PC, 5.9μg/mL/d) and allophycocyanin (APC, 4.3μg/mL/d) productivities. In the extraction study, high extraction yields were obtained from Spirulina using an ultrasonic homogenizer (CA: 25.5U/g; PC: 90mg/g; APC: 70mg/g). From the same biomass, it was possible to obtain three biomolecules that present high industrial value.

  9. Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan β-Lactam Derivatives

    Directory of Open Access Journals (Sweden)

    Hayriye Genç

    2016-10-01

    Full Text Available β-Lactams are pharmacologically important compounds because of their various biological uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human carbonic anhydrase I and II (hCA I, and II and acetylcholinesterase (AChE. The results reveal that β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k were 0.44–6.29 nM against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings indicate that β-lactams (2a–k inhibit both carbonic anhydrases (CA isoenzymes and AChE at low nanomolar concentrations.

  10. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains.

    Science.gov (United States)

    Andersson, Marlene; Chen, Gefei; Otikovs, Martins; Landreh, Michael; Nordling, Kerstin; Kronqvist, Nina; Westermark, Per; Jörnvall, Hans; Knight, Stefan; Ridderstråle, Yvonne; Holm, Lena; Meng, Qing; Jaudzems, Kristaps; Chesler, Mitchell; Johansson, Jan; Rising, Anna

    2014-08-01

    Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive β-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.

  11. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains.

    Directory of Open Access Journals (Sweden)

    Marlene Andersson

    2014-08-01

    Full Text Available Spider silk fibers are produced from soluble proteins (spidroins under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive β-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2 in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.

  12. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies.

    Science.gov (United States)

    Karataş, Mert Olgun; Uslu, Harun; Sarı, Suat; Alagöz, Mehmet Abdullah; Karakurt, Arzu; Alıcı, Bülent; Bilen, Cigdem; Yavuz, Emre; Gencer, Nahit; Arslan, Oktay

    2016-10-01

    Among many others, coumarin derivatives are known to show human carbonic anhydrase (hCA) inhibitory activity. Since hCA inhibition is one of the underlying mechanisms that account for the activities of some antiepileptic drugs (AEDs), hCA inhibitors are expected to have anti-seizure properties. There are also several studies reporting compounds with an imidazole and/or benzimidazole moiety which exert these pharmacological properties. In this study, we prepared fifteen novel coumarin-bearing imidazolium and benzimidazolium chloride, nine novel benzoxazinone-bearing imidazolium and benzimidazolium chloride derivatives and evaluated their hCA inhibitory activities and along with fourteen previously synthesized derivatives we scanned their anticonvulsant effects. As all compounds inhibited purified hCA isoforms I and II, some of them also proved protective against Maximal electroshock seizure (MES) and ScMet induced seizures in mice. Molecular docking studies with selected coumarin derivatives have revealed that these compounds bind to the active pocket of the enzyme in a similar fashion to that previously described for coumarin derivatives.

  13. Interaction of anions with a newly characterized alpha carbonic anhydrase from Halomonas sp.

    Science.gov (United States)

    Orhan, Furkan; Şentürk, Murat; Supuran, Claudiu T

    2016-12-01

    The inhibition and characterization of the α-class carbonic anhydrase (CA, EC 4.2.1.1) from the Halomonas sp. are reported for the first time. The enzyme was purified 91-fold with a yield of 39%, and a specific activity of 600 U/mg proteins was obtained. It has an optimum pH at 7.5, an optimum ionic strength at 20 mM and an optimum temperature at 20 °C. The following anions, SCN(-), Br(-), Cl(-), I(-), [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] showed inhibitory effects on the hydratase activity of the enzyme. Sulfate, sulfide, azide, nitrate, nitrite and iodide exhibited the strongest inhibitory activity, in the micromolar range (KI-s of 5.5-15.5 µM). SCN(-), Br(-), Cl(-), [Formula: see text] were moderate inhibitors, whereas other anions showed only weak activities. Our findings indicate that these anions inhibit the Halomonas sp. CA (HmCA) enzyme in a similar manner to other α-CAs from mammals investigated earlier, but the susceptibility to various anions differs significantly between the Halomonas sp. and other organism CAs.

  14. Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes.

    Science.gov (United States)

    Vinoba, Mari; Bhagiyalakshmi, Margandan; Grace, Andrews Nirmala; Kim, Dae Hoon; Yoon, Yeoil; Nam, Sung Chan; Baek, Il Hyun; Jeong, Soon Kwan

    2013-05-09

    The rate of carbon dioxide (CO2) absorption by monoethanol amine (MEA), diethanol amine (DEA), N-methyl-2,2'-iminodiethanol (MDEA), and 2-amino-2-methyl 1-propanol (AMP) solutions was found to be enhanced by the addition of bovine carbonic anhydrase (CA), has been investigated using a vapor-liquid equilibrium (VLE) device. The enthalpy (-ΔHabs) of CO2 absorption and the absorption capacities of aqueous amines were measured in the presence and/or absence of CA enzyme via differential reaction calorimeter (DRC). The reaction temperature (ΔT) under adiabatic conditions was determined based on the DRC analysis. Bicarbonate and carbamate species formation mechanisms were elucidated by (1)H and (13)C NMR spectral analysis. The overall CO2 absorption rate (flux) and rate constant (kapp) followed the order MEA > DEA > AMP > MDEA in the absence or presence of CA. Hydration of CO2 by MDEA in the presence of CA directly produced bicarbonate, whereas AMP produced unstable carbamate intermediate, then underwent hydrolytic reaction and converted to bicarbonate. The MDEA > AMP > DEA > MEA reverse ordering of the enhanced CO2 flux and kapp in the presence of CA was due to bicarbonate formation by the tertiary and sterically hindered amines. Thus, CA increased the rate of CO2 absorption by MDEA by a factor of 3 relative to the rate of absorption by MDEA alone. The thermal effects suggested that CA yielded a higher activity at 40 °C.

  15. Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells.

    Science.gov (United States)

    Nasu, Kentaro; Yamaguchi, Kazunori; Takanashi, Tomoka; Tamai, Keiichi; Sato, Ikuro; Ine, Shoji; Sasaki, Osamu; Satoh, Kennichi; Tanaka, Nobuyuki; Tanaka, Yuetsu; Fukushima, Takuya; Harigae, Hideo; Sugamura, Kazuo

    2017-03-01

    Carbonic anhydrase IX (CA9) is a membrane-associated carbonic anhydrase that regulates cellular pH, is upregulated in various solid tumors, and is considered to be a therapeutic target. Here, we describe the essential role of CA9 in the tumorigenicity of cells derived from human adult T-cell leukemia/lymphoma (ATL). We previously established the highly tumorigenic ST1-N6 subline from the ATL-derived ST1 cell line by serial xenotransplantation in NOG mice. In the present study, we first show that CA9 expression is strongly enhanced in ST1-N6 cells. We then sorted ST1 cells by high or low CA9 expression and established ST1-CA9(high) and ST1-CA9(low) sublines. ST1-CA9(high) cells, like ST1-N6 cells, were more strongly tumorigenic than ST1-CA9(low) or parental ST1 cells when injected into NOG mice. Knockdown of CA9 with shRNAs suppressed the ability of ST1-CA9(high) cells to initiate tumors, and the tumorigenicity of ST1 cells was significantly enhanced by introducing wild-type CA9 or a CA9 mutant with deletion of an intracytoplasmic domain. However, a CA9 with point mutations in the catalytic site did not increase the tumorigenicity of ST1 cells. Furthermore, we detected a small population of CA9(+) CD25(+) cells in lymph nodes of ATL patients. These findings suggest that CA9, and particularly its carbonic anhydrase activity, promotes the tumorigenicity of ATL-derived cells and may be involved in malignant development of lymphoma-type ATL. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. New aromatic/heteroaromatic propanesulfonylhydrazone compounds: Synthesis, physical properties and inhibition studies against carbonic anhydrase II (CAII) enzyme

    Science.gov (United States)

    Özmen Özdemir, Ümmühan; Altuntaş, Ayşegül; Gündüzalp, Ayla Balaban; Arslan, Fatma; Hamurcu, Fatma

    2014-07-01

    Some new aromatic/heteroaromatic propanesulfonylhydrazone derivatives (1-8) were synthesized and characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, LC/MS techniques. The geometry optimizations and spectral calculations were performed by using DFT/B3LYP/6-311G(d,p) basis set in Gaussian 09 program. The inhibition activities of the synthesized compounds on carbonic anhydrase II (CAII) isoenzyme have been investigated by comparing IC50 values. Acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide) AAZ, a clinically used in CAII inhibition has also been investigated as standard inhibitor. The best aromatic/heteroaromatic propanesulfonylhydrazone inhibitors of this isoform were o-aminobenzaldehydepropanesulfonylhydrazone (1) and thiophenecarboxyaldehyde propanesulfonylhydrazone (5) having the same IC50 (0.55 mM) value. The molecular descriptors for propanesulfonylhydrazones were obtained to develop structure activity relationship (SAR) model between experimental IC50 values and the molecular descriptors calculated by PM3-based SAR models in Hyperchem 8, respectively. The obtained models confirm the good carbonic anhydrase II (CAII) inhibition activity of the propanesulfonylhydrazone derivatives. The selected descriptors are sensitive both to the imine (CHdbnd N) and NH2 groups that are responsible from higher activities of (1) and (5) in their series.

  17. Role of carbonic anhydrase in bone resorption induced by 1,25 dihydroxyvitamin D3 in vitro

    Science.gov (United States)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The calvaria of 5-to-6-day-old mice treated with 1 x 10 to the -8th M of 1,25(OH)2D3 in vitro for 48 hours are examined in order to study the function of carbonic anhydrase in bone resorption. Calcium concentrations in the culture were measured to assess bone resorption. It is observed that 1,25(OH)2D3 effectively stimulates bone resorption in vitro and the resorption is dose-dependent. The effects of azetazolamide on 1,25(OH)2D3-induced bone resorption are investigated. The data reveal that 1,25(OH)2D3-induced calcium release is associated with an increase in the carbonic anhydrase activity of bone, and bone alkaline phosphatase activity is decreased and acid phosphatase activity is increased in response to 1,25(OH)2D3. A two-fold mechanism for 1,25(OH)2D3-induced bone resorption is proposed; the first mechanism is an indirect activation of osteoclasts and the second involves an interaction between hormone and osteoclast precursors.

  18. Allosteric reversion of Haemophilus influenzae β-carbonic anhydrase via a proline shift.

    Science.gov (United States)

    Hoffmann, Katherine M; Million-Perez, H Rachael; Merkhofer, Richard; Nicholson, Hilary; Rowlett, Roger S

    2015-01-20

    Haemophilus influenzae β-carbonic anhydrase (HICA) has been reverse-engineered in the allosteric site region to resemble the nonallosteric Pisum sativum enzyme in order to identify critical features of allostery and intersusbunit communication. Three variants (W39V/G41A, P48S/A49P, and W39V/G41A/P48S/A49P) were identified, through a comparison with a crystal structure of nonallosteric P. sativum β-carbonic anhydrase (PSCA, PDB 1EKJ ), to potentially revert HICA to a nonallosteric enzyme. The W39V/G41A and P48S/A49P mutations decreased the apparent kcat/Km proton dependence from 4 to 2 and 1, respectively, increasing the overall maximal kcat/Km to 16 ± 2 μM(-1) s(-1) (380% of wild type) and 17 ± 3 μM(-1) s(-1) (405% of wild type). The pKa values of the metal-bound water molecule based on the pH-rate profile kinetics (8.32 ± 0.04 for W39V/G41A and 8.3 ± 0.1 for P48S/A49P) were also slightly higher than that for the wild-type enzyme (7.74 ± 0.04). The P48S/A49P variant has lost all pH-rate cooperativity. The W39V/G41A/P48S/A49P variant's kinetics were unusual and were fit with a log-linear function with a slope 0.9 ± 0.2. The crystal structure of the W39V/G41A variant revealed an active site very similar to the T-state wild-type oligomer with bicarbonate trapped in the escort site. By contrast, the X-ray crystal structure of a proline shift variant (P48S/A49P) reveals that it has adopted an active site conformation nearly identical to that of nonallosteric β-carbonic anhydrase (R-state) for one chain, including a tight association with the dimer-exchanged N-terminal helices; the second chain in the asymmetric unit is associated in a biologically relevant oligomer, but it adopts a T-state conformation that is not capped by dimer-exchanged N-terminal helices. The hybrid R/T nature of HICA P48S/A49P structurally recapitulates the interruption of pH-rate cooperativity observed for this variant. Comparison of the conformations of the R and T chains of P48S/A49P

  19. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  20. [Carbonic anhydrase of blue-green alga Spirulina platensis].

    Science.gov (United States)

    Komarova, Iu M; Terekhova, I V; Doman, N G; Al'bitskaia, O N

    1976-01-01

    Carboanhydrase (carbonate-hydroliase EC 4.2.1.1.) is found in the extract of Spirulina platensis cells. A linear dependency of the enzyme activity on the protein concentration; pH optimum is found to be 8.0. Specific activity of carboanhydrase is 3 muM/min-mg of protein under the concentration of CO2 of 4-10(-3) M, appearing Michelis constant being 4.9-10(-3) M. The enzyme was stabilized with 10 mM of cisteine, its activity was inhibited by 50% with sulphanylamide (1-10(-5) M), acetazolamide (8--10(-7) M) and Cl- ions (5-10(-2) M). The activity of carboanhydrase, as well as the rate of NaH14CO3 fixation, depended on the pH value of cultural medium.

  1. Influence of pesticide exposure on carbonic anhydrase II from sheep stomach.

    Science.gov (United States)

    Kılınç, Namık; İşgör, Mehmet Mustafa; Şengül, Bülent; Beydemir, Şükrü

    2015-09-01

    Carbonic anhydrase (CA) is a widely distributed enzyme and has a crucial role in the cells, tissues and organs of living organisms. It is found that CA-II is one of the most abundant CA isoenzymes in the gastrointestinal system. It plays an important role in the gastric acid secretion in stomach. In this study, we purified CA-II isoenzyme from sheep stomach with a 615.2 purification fold, 78% purification yield and 5562.02 specific activity. Moreover, the in vitro effects of some commonly used pesticides including chlorpyrifos, cypermethrin, dichlorvos, glyphosate isopropylamine and lambda cyhalomethrin on the enzyme activity were investigated. Of these compounds, glyphosate isopropylamine and dichlorvos showed an inhibition on CA-II esterase activity. They have IC50 values of 0.155 µM and 2.690 µM and Ki values of 0.329 µM and 3.654 µM, respectively. Both glyphosate isopropylamine and dichlorvos inhibited CA-II isoenzyme in a noncompetitive manner.

  2. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  3. Molecular and biochemical analysis of the beta class carbonic anhydrases in Caenorhabditis elegans.

    Science.gov (United States)

    Fasseas, Michael K; Tsikou, Daniela; Flemetakis, Emmanouil; Katinakis, Panagiotis

    2010-07-01

    The beta class of the carbonic anhydrase (CA) enzyme family has been found in plants, yeast, bacteria and algae, but not in animals. Also, little is known concerning the CAs of C. elegans. Genes possibly encoding beta-CAs were revealed by in silico analysis of the C. elegans genome. Amino acid sequence and 3D structure analysis revealed a resemblance to both plant and cab-type beta-CAs. Temporal expression patterns of the two genes, as well as changes in expression levels under different atmospheric conditions (stress) were analyzed by real-time RT-PCR. Recombinant enzymes, expressed in E. coli were used for in vitro measurement of CA activity, while a yeast complementation experiment was performed in order to assess their ability to complement the function of S. crevisieae beta-CA (NCE103) in vivo. RNAi by feeding was performed on wild-type populations that were then examined for a visible phenotype under normal or various stress conditions (pH, CO(2)/O(2)). Two genes possibly encoding beta-CAs were revealed (bca-1 and y116a8c.28). Their products contain elements of both plant and cab-type CAs. Both assays showed that Y116a8c.28 is an active CA. Both genes showed significant levels of transcript accumulation during development, while they also responded to the stress conditions. No visible phenotype was scored under normal or stress conditions.

  4. Molecular and biochemical analysis of the α class carbonic anhydrases in Caenorhabditis elegans.

    Science.gov (United States)

    Fasseas, Michael K; Tsikou, Daniela; Flemetakis, Emmanouil; Katinakis, Panagiotis

    2011-03-01

    In this study, in silico analysis of the Caenorhabditis elegans genome revealed six genes (cah-1, cah-2, cah-3, cah-4, cah-5, and cah-6) possibly encoding α class CAs (carbonic anhydrase). Real-time RT-PCR analysis revealed the temporal expression pattern of each gene, as well as changes in expression levels under different atmospheric conditions (stress). Cah-3 and cah-4 showed the highest levels of transcript accumulation, while most genes responded to the stress conditions. Yeast complementation showed that cah-3 was able to complement the function of Saccharomyces cerevisiae CA (NCE103) in vivo. Recombinant CAH-3, CAH-4a and CAH-5 enzymes, expressed in Escherichia coli were used for in vitro measurement of CA activity. However, in vitro activity was only detectable for CAH-4a. RNAi by feeding was performed on wild-type C. elegans for all genes. The worms were examined for a visible phenotype under normal and stress conditions (pH, CO(2)/O(2)). Silencing cah-3 and cah-4 may reduce the life-span of the worms (at 22 °C).

  5. Evaluation of impacted Brazilian estuaries using the native oyster Crassostrea rhizophorae: Branchial carbonic anhydrase as a biomarker.

    Science.gov (United States)

    Azevedo-Linhares, Maristela; Freire, Carolina A

    2015-12-01

    In this study, we investigated the use of branchial carbonic anhydrase activity in a sessile filter feeding species, the oyster Crassostrea rhizophorae, as a biomarker. The oysters were collected in three human impacted Brazilian estuaries, following a crescent latitudinal gradient: in Pernambuco state (Itamaracá), in Espírito Santo state (Piraquê), and in Paraná state (Paranaguá), in August/2003 (Winter in the southern hemisphere) and February/2004 (Summer). Three sites were chosen in each estuary for oyster sampling: Reference (R), Contaminated 1 (C1, close to industrial/harbor contamination), and Contaminated 2 (C2, near to sewage discharges). Comparing to values in oysters sampled in reference sites, there was apparent inhibition in carbonic anhydrase activity (CAA) in gills of oysters from C1 of Itamaracá and from C2 of Piraquê, both cases in Summer. On the other hand, increased CAA was noted in C2 oysters of Itamaracá in winter, and of Paranaguá, in both seasons. Branchial CAA in C. rhizophorae was thus very responsive to coastal contamination. Data are consistent with its usefulness as a supporting biomarker for inexpensive and rapid analysis in the assessment of estuaries using a sessile osmoconformer species, but preferably allied to other biomarkers and with knowledge on the suite of contaminants present. Copyright © 2015. Published by Elsevier Inc.

  6. Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy.

    Science.gov (United States)

    Giacomotto, Jean; Pertl, Cordula; Borrel, Caroline; Walter, Maggie C; Bulst, Stefanie; Johnsen, Bob; Baillie, David L; Lochmüller, Hanns; Thirion, Christian; Ségalat, Laurent

    2009-11-01

    Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.

  7. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: a novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant.

    Science.gov (United States)

    Bian, Yuzhu; Rong, Zhixia; Chang, Thomas Ming Swi

    2011-06-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA) is a therapeutic antioxidant that also transports both oxygen and carbon dioxide. This is formed by crosslinking Hb with SOD, CAT, and CA using glutaraldehyde. Crosslinking stroma free Hb from red blood cell (rbc) reduces CA activity to 55%. Addition of more CA resulted in a preparation with the same CA activity as RBC. PolyHb in the complex acts as a buffer to prevent large pH changes as carbon dioxide is converted to carbonic acid. We then prepare and optimize a novel PolyHb-SOD-CAT-CA, a therapeutic antioxidant that also transports both oxygen and carbon dioxide.

  8. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...... and benchmarked to a 30 wt% MEA solution. The study reveals that the addition of the enzyme carbonic anhydrase (CA) dramatically increases the liquid side mass transfer coefficient for MDEA, and K2CO3; AMP has a moderate increase whereas MEA was unchanged. The results confirm that just bicarbonate forming systems...

  9. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    Science.gov (United States)

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  10. Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive organs

    Directory of Open Access Journals (Sweden)

    Tomas Eija

    2004-10-01

    Full Text Available Abstract Background Carbonic anhydrase (CA classically catalyses the reversible hydration of dissolved CO2 to form bicarbonate ions and protons. The twelve active CA isozymes are thought to regulate a variety of cellular functions including several processes in the reproductive systems. Methods The present study was designed to investigate the expression of transmembrane CAs, CA IX and XII, in the mouse uterus, ovary and placenta. The expression of CA IX and XII was examined by immunoperoxidase staining method and western blotting. CA II and XIII served as positive controls since they are known to be present in the mouse reproductive tract. Results The data of our study indicated that CA XII is expressed in the mouse endometrium. Only very faint signal was observed in the corpus luteum of the ovary and the placenta remained mainly negative. CA IX showed weak reaction in the endometrial epithelium, while it was completely absent in the ovary and placenta. Conclusion The conservation of CA XII expression in both mouse and human endometrium suggests a role for this isozyme in reproductive physiology.

  11. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration.

    Science.gov (United States)

    Yang, Zhenglin; Alvarez, Bernardo V; Chakarova, Christina; Jiang, Li; Karan, Goutam; Frederick, Jeanne M; Zhao, Yu; Sauvé, Yves; Li, Xi; Zrenner, Eberhart; Wissinger, Bernd; Hollander, Anneke I Den; Katz, Bradley; Baehr, Wolfgang; Cremers, Frans P; Casey, Joseph R; Bhattacharya, Shomi S; Zhang, Kang

    2005-01-15

    Retina and retinal pigment epithelium (RPE) belong to the metabolically most active tissues in the human body. Efficient removal of acid load from retina and RPE is a critical function mediated by the choriocapillaris. However, the mechanism by which pH homeostasis is maintained is largely unknown. Here, we show that a functional complex of carbonic anhydrase 4 (CA4) and Na+/bicarbonate co-transporter 1 (NBC1) is specifically expressed in the choriocapillaris and that missense mutations in CA4 linked to autosomal dominant rod-cone dystrophy disrupt NBC1-mediated HCO3- transport. Our results identify a novel pathogenic pathway in which a defect in a functional complex involved in maintaining pH balances, but not expressed in retina or RPE, leads to photoreceptor degeneration. The importance of a functional CA4 for survival of photoreceptors implies that CA inhibitors, which are widely used as medications, particularly in the treatment of glaucoma, may have long-term adverse effects on vision.

  12. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization.

    Science.gov (United States)

    Fei, Xiaoyao; Chen, Shaoyun; Liu, Dai; Huang, Chunjie; Zhang, Yongchun

    2016-09-01

    Two functionalized SBA-15 [amine-functionalized SBA-15 (AFS) and epoxy-functionalized SBA-15 (GFS)] with different types of functional groups were synthesized by a hydrothermal process and post functionalized with 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), respectively. They were used for the immobilization of carbonic anhydrase (CA). The physicochemical properties of the functionalized SBA-15 were characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption, (13)C, (29)Si solid-state nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). Before and after CA was immobilized on AFS and GFS, the effects of temperature and pH value on the enzyme activity, storage stability, and reusability were investigated using para-nitrophenyl acetate (p-NPA) assay. CA/GFS showed a better performance with respect to storage stability and reusability than CA/AFS. Moreover, the amount of CaCO3 precipitated over CA/AFS was less than that precipitated over CA/GFS, which was almost equal to that precipitated over the free CA. The results indicate that the epoxy group is a more suitable functional group for covalent bonding with CA than the amino group, and GFS is a promising support for CA immobilization.

  13. Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII.

    Science.gov (United States)

    Ibrahim, Hany S; Abou-Seri, Sahar M; Tanc, Muhammet; Elaasser, Mahmoud M; Abdel-Aziz, Hatem A; Supuran, Claudiu T

    2015-10-20

    New series of benzenesulfonamide derivatives incorporating pyrazole and isatin moieties were prepared using celecoxib as lead molecule. Biological evaluation of the target compounds was performed against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more precisely against the human isoforms hCA I, II (cytosolic), IX and XII (transmembrane, tumor-associated enzymes). Most of the tested compounds efficiently inhibited hCA I, II and IX, with KIs of 2.5-102 nM, being more effective than the reference drug acetazolamide. Compounds 11e, 11f, 16e and 16f were found to inhibit hCA XII with Ki of 3.7, 6.5, 5.4 and 7.2 nM, respectively. Compounds 11e and 16e, with 5-NO2 substitution on the isatin ring, were found to be selective inhibitors of hCA IX and hCA XII. Docking studies revealed that the NO2 group of both compounds participate in interactions with Asp132 within the hCA IX active site, and with residues Lys67 and Asp130 in hCA XII, respectively.

  14. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  15. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.

    Science.gov (United States)

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-09-01

    Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy.

  16. Functional characterization of neuroendocrine regulation of branchial carbonic anhydrase induction in the euryhaline crab Callinectes sapidus.

    Science.gov (United States)

    Mitchell, Reed T; Henry, Raymond P

    2014-12-01

    Carbonic anhydrase (CA) plays an essential role as a provider of counterions for Na(+)/H(+) and Cl(-)/HCO3 (-) exchange in branchial ionic uptake processes in euryhaline crustaceans. CA activity and gene expression are low in crabs acclimated to full-strength seawater, with transfer to low salinity resulting in large-scale inductions of mRNA and subsequent enzyme activity in the posterior ion-regulating gills (e.g., G7). In the green crab Carcinus maenas, CA has been shown to be under inhibitory neuroendocrine control by a putative hormone in the x-organ-sinus gland complex (XOSG), located in the eyestalk. This study characterizes the neuroendocrine regulation of CA induction in the blue crab Callinectes sapidus, a commonly used experimental organism for crustacean osmoregulation. In crabs acclimated to full-strength seawater, eyestalk ligation (ESL) triggered a 1.8- and 100-fold increase in CA activity and mRNA, respectively. Re-injection with eyestalk homogenates abolished increases in CA activity and fractionally reduced CA gene expression. ESL also enhanced CA induction by 33% after 96 h in crabs transferred to 15 ppt salinity. Injection of eyestalk homogenates into intact crabs transferred from 35 to 15 ppt diminished by 43% the CA induction stimulated by low salinity. These results point to the presence of a repressor hormone in the eyestalk. Separate injections of medullary tissue (MT) and sinus gland (SG), two components of the eyestalk, reduced salinity-stimulated CA activity by 22% and 49%, suggesting that the putative repressor is localized to the SG. Crabs injected with SG extract harvested from crabs acclimated to 5 ppt showed no decrease in CA activity, demonstrating that the hormone is down-regulated at low salinity. Our results show the presence in the XOSG of an inhibitory compound that regulates salinity-stimulated CA induction. © 2014 Marine Biological Laboratory.

  17. Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii

    Directory of Open Access Journals (Sweden)

    Vincenzo Alterio

    2015-03-01

    Full Text Available The Carbon Concentration Mechanism (CCM allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.

  18. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Directory of Open Access Journals (Sweden)

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  19. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design.

    Science.gov (United States)

    Sippel, Katherine H; Robbins, Arthur H; Domsic, John; Genis, Caroli; Agbandje-McKenna, Mavis; McKenna, Robert

    2009-10-01

    The crystal structure of human carbonic anhydrase II (CA II) complexed with the inhibitor acetazolamide (AZM) has been determined at 1.1 A resolution and refined to an R(cryst) of 11.2% and an R(free) of 14.7%. As observed in previous CA II-inhibitor complexes, AZM binds directly to the zinc and makes several key interactions with active-site residues. The high-resolution data also showed a glycerol molecule adjacent to the AZM in the active site and two additional AZMs that are adventitiously bound on the surface of the enzyme. The co-binding of AZM and glycerol in the active site demonstrate that given an appropriate ring orientation and substituents, an isozyme-specific CA inhibitor may be developed.

  20. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.

    Science.gov (United States)

    Watson, Stuart K; Han, Zhenlin; Su, Wei Wen; Deshusses, Marc A; Kan, Eunsung

    2016-12-01

    The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.

  1. The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis

    OpenAIRE

    Mahon, Brian P.; Bhatt, Avni; Socorro, Lilien; Driscoll, Jenna M.; Okoh, Cynthia; Lomelino, Carrie L.; Mboge, Mam Y.; Kurian, Justin J.; Tu, Chingkuang; Agbandje-McKenna, Mavis; Frost, Susan C; McKenna, Robert

    2016-01-01

    Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical prop...

  2. 4-Amino-substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Kęstutis Rutkauskas

    2014-10-01

    Full Text Available A series of N-aryl-β-alanine derivatives and diazobenzenesulfonamides containing aliphatic rings were designed, synthesized, and their binding to carbonic anhydrases (CA I, II, VI, VII, XII, and XIII was studied by the fluorescent thermal shift assay and isothermal titration calorimetry. The results showed that 4-substituted diazobenzenesulfonamides were more potent CA binders than N-aryl-β-alanine derivatives. Most of the N-aryl-β-alanine derivatives showed better affinity for CA II while diazobenzenesulfonamides possessed nanomolar affinities towards CA I isozyme. X-ray crystallographic structures showed the modes of binding of both compound groups.

  3. Carbonic Anhydrase as Pollution Biomarker: An Ancient Enzyme with a New Use

    Directory of Open Access Journals (Sweden)

    Trifone Schettino

    2012-11-01

    Full Text Available The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO2 and HCO3−. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.

  4. Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX inhibitors.

    Science.gov (United States)

    Mahon, Brian P; Hendon, Alex M; Driscoll, Jenna M; Rankin, Gregory M; Poulsen, Sally-Ann; Supuran, Claudiu T; McKenna, Robert

    2015-02-15

    Carbonic anhydrase IX (CA IX) is a key modulator of aggressive tumor behavior and a prognostic marker and target for several cancers. Saccharin (SAC) based compounds may provide an avenue to overcome CA isoform specificity, as they display both nanomolar affinity and preferential binding, for CA IX compared to CA II (>50-fold for SAC and >1000-fold when SAC is conjugated to a carbohydrate moiety). The X-ray crystal structures of SAC and a SAC-carbohydrate conjugate bound to a CA IX-mimic are presented and compared to CA II. The structures provide substantial new insight into the mechanism of SAC selective CA isoform inhibition.

  5. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    An α-carbonic anhydrases (CAs, EC 4.2.1.1) was recently discovered, cloned and characterized in the genome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, a neglected but widespread tropical disease. Inhibition of this α-CAs (TcCA) with anions, sulfonamides, sulfamates, thiols and hydroxamates has been investigated in detail, with several low nanomolar in vitro inhibitors. Although the sulfonamides were the best in vitro inhibitors, they showed no ex vivo anti-T. cruzi activity, due to poor penetration. However, some thiols and hydroxamates acting as low nanomolar TcCA inhibitors also showed significant antitrypanosomal ex vivo activity, making this enzyme an attractive yet underexplored drug target for the management of Chagas disease.

  6. A class of sulfonamides with strong inhibitory action against the α-carbonic anhydrase from Trypanosoma cruzi.

    Science.gov (United States)

    Güzel-Akdemir, Özlen; Akdemir, Atilla; Pan, Peiwen; Vermelho, Alane B; Parkkila, Seppo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2013-07-25

    Trypanosoma cruzi, the causative agent of Chagas disease, encodes for an α-carbonic anhydrase (CA, EC 4.2.1.1) possessing high catalytic activity (TcCA) which was recently characterized (Pan et al. J. Med. Chem. 2013, 56, 1761-1771). A new class of sulfonamides possessing low nanomolar/subnanomolar TcCA inhibitory activity is described here. Aromatic/heterocyclic sulfonamides incorporating halogeno/methoxyphenacetamido tails inhibited TcCA with KIs in the range of 0.5-12.5 nM, being less effective against the human off-target isoforms hCA I and II. A homology model of TcCA helped us to rationalize the excellent inhibition profile of these compounds against the protozoan enzyme, a putative new antitrypanosoma drug target. These compounds were ineffective antitrypanosomal agents in vivo due to penetrability problems of these highly polar molecules that possess sulfonamide moieties.

  7. Effect of pH and light on population growth and activity of extracellular carbonic anhydrase in two species of dinoflagellates%pH及光照对两种赤潮甲藻种群生长和胞外碳酸酐酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    戴芳芳; 周成旭; 严小军

    2011-01-01

    研究了pH和光照强度对两种赤潮甲藻(Prorocentrum donghaiense和Karlodinium micrum)的种群生长及其胞外碳酸酐酶(CA)活性的影响.结果表明,pH7.5、光照强度30 μmol/(m2.s)是两种微藻的最适种群生长条件,在种群生长的最适pH和光照强度下,胞外CA活性最大.最适培养条件下,两种甲藻胞外碳酸酐酶活性随着种群生长周期而变化,指数生长期至平台期CA酶活增加,平台期至衰退期CA酶活降低,平台期胞外CA活性最大.%The effects of pH and light intensity on population growth and extracellular carbonic anhydrase ( CA) activity in two species of dinoflagellates (Prorocenlnim donghaieme and Karlodinium micrum) were studied. The results show that pH 7. 5 and 30μmol/( m2 · s) irradiance which triggered the optimum population growth, were the conditions that favored the highest activity of extracellular CA in the two dinoflagellates. Under the optimum cultivation conditions,the extracellular carbonic anhydrase activity in the two dinoflagellates varies with the population growth phases. CA activities were increased from exponential phase to the stationary phase and decreased form stationary phase to the decline phase. The highest extracellular CA activity occurred at the stationary phase. The significance of the population growth related CA activity in population dynamics of the two dinoflagellates was also discussed.

  8. Interactive Effect of GA3, N and P Ameliorate Growth, Seed and Fibre Yield by Enhancing Photosynthetic Capacity and Carbonic Anhydrase Activity of Linseed:A Dual Purpose Crop

    Institute of Scientific and Technical Information of China (English)

    Mohammad N Khan; Firoz Mohammad

    2013-01-01

    Linseed (Linum usitatissimum L.) is an important dual-purpose, industrial crop. Its seeds are used for the extraction of oil and stem for fibres. However, the production of linseed is not going parallel with the increasing demand of its products. The present work was carried out with an aim to find out whether exogenous application of gibberellic acid (GA3) with or without graded levels of nitrogen (N) and phosphorus (P) could improve the performance of three linseed genotypes Parvati, Shekhar and Shubhra together with minimizing the costly fertilizer input and losses. Four combinations of N and P, viz., 0 mg N+0 mg P kg-1 soil (N0P0), N13.4P4.46, N26.8P8.94 and N40.2P13.4 were constituted. Half dose of each combination was applied basally at the time of sowing and remaining half dose was given at 40 d after sowing (DAS) as foliar spray along with 10-6 mol L-1 GA3. Prior to sowing, the seeds of each linseed genotype were grouped in to two, one group of seeds was soaked in 0 mol L-1 GA3 (control) and the other group was soaked in 10-6 M GA3 solution, each for 8 hours. Treatments were comprised of (i) 0 mol L-1 GA3+N0P0 (T0, control), (ii) 10-6 mol L-1 GA3+N13.4P4.46 (T1), (iii) 10-6 mol L-1 GA3+N26.8P8.94 (T2) and (iv) 10-6 mol L-1 GA3+N40.2P13.4 (T3). The crop performance was assessed in terms of growth, physiological and biochemical parameters at 60 and 75 DAS and yield attributes at harvest (175 DAS). The results showed a parallel increase in most of the parameters with increasing levels of N and P. However, application of 10-6 mol L-1 GA3 in association with N26.8P8.94 proved best, it enhanced seed yield, oil yield and fibre yield by 83.3, 97.3 and 78.7%, respectively accompanied with increase in net photosynthetic rate, carbonic anhydrase activity and dry matter accumulation. Among the genotypes tested, Shubhra performed best, while Parvati the least for most of the parameters studied. Thus, combined application of 10-6 mol L-1 GA3 plus N26.8P8.94 proved best

  9. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    Science.gov (United States)

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.

  10. Importance of tryptophan nitration of carbonic anhydrase III for the morbidity of atopic dermatitis.

    Science.gov (United States)

    Kawasaki, Hiroaki; Tominaga, Mitsutoshi; Shigenaga, Ayako; Kamo, Atsuko; Kamata, Yayoi; Iizumi, Kyoichi; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji; Yamakura, Fumiyuki

    2014-08-01

    The nitration of proteins results from the vigorous production of reactive nitrogen species in inflammatory disease. We previously reported the proteomic analysis of nitrated tryptophan residues in in vitro model cells for inflammatory diseases using a 6-nitrotryptophan-specific antibody. In this paper, we applied this method to the analysis of a disease model animal and identified the 6-nitrotryptophan-containing proteins in the skin of atopic dermatitis model mice (AD-NC/Nga mice). We found three nitrotryptophan-containing proteins, namely, carbonic anhydrase III (CAIII), α-enolase (α-ENO), and cytoskeletal keratin type II (KTII), and identified the positions of the nitrotryptophan residues in their amino acid sequences: Trp47 and Trp123 in CAIII, Trp365 in α-ENO, and Trp221 in KTII. Among these, the nitration of CAIII was increased not only in the lesional skin of AD-NC/Nga mice but also in the mice that did not present any symptoms. The in vitro nitration of purified CAIII by peroxynitrite reduced its CO2 hydratase activity in a dose-dependent manner. In addition, we found that CAIII was induced during the differentiation of normal human epidermal keratinocytes. Furthermore, we found the presence of CAIII and the formation of 6-nitrotryptophan-containing proteins in both the lesional and the nonlesional sections of the skin of patients with atopic dermatitis through immunohistochemical staining. This study provides the first demonstration of the formation of 6-nitrotryptophan in human tissues and disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  12. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis.

    Science.gov (United States)

    Medina-Puche, Laura; Castelló, María José; Canet, Juan Vicente; Lamilla, Julián; Colombo, María Laura; Tornero, Pablo

    2017-01-01

    The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) and NON RECOGNITION OF BTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.

  13. Biochemistry and physiology of the β class carbonic anhydrase (Cpb) from Clostridium perfringens strain 13.

    Science.gov (United States)

    Kumar, R Siva Sai; Hendrick, William; Correll, Jared B; Patterson, Andrew D; Melville, Stephen B; Ferry, James G

    2013-05-01

    The carbonic anhydrase (Cpb) from Clostridium perfringens strain 13, the only carbonic anhydrase encoded in the genome, was characterized both biochemically and physiologically. Heterologously produced and purified Cpb was shown to belong to the type I subclass of the β class, the first β class enzyme investigated from a strictly anaerobic species of the domain Bacteria. Kinetic analyses revealed a two-step, ping-pong, zinc-hydroxide mechanism of catalysis with Km and kcat/Km values of 3.1 mM CO₂ and 4.8 × 10⁶ s⁻¹ M⁻¹, respectively. Analyses of a cpb deletion mutant of C. perfringens strain HN13 showed that Cpb is strictly required for growth when cultured in semidefined medium and an atmosphere without CO₂. The growth of the mutant was the same as that of the parent wild-type strain when cultured in nutrient-rich media with or without CO₂ in the atmosphere, although elimination of glucose resulted in decreased production of acetate, propionate, and butyrate. The results suggest a role for Cpb in anaplerotic CO₂ fixation reactions by supplying bicarbonate to carboxylases. Potential roles in competitive fitness are discussed.

  14. Zinc Transfer Kinetics of Metallothioneins and Their Fragmentswith Apo-carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    HUANG, Zhong-Xian; LIU, Fang; ZHENG, Qi; YU, Wen-Hao

    2001-01-01

    Tne zinc transfer reactions from Zn7-MT-I, Zn7-MT-Ⅱ, Zn4α fragment (MT-I) and Zn4-α fragment (MT-Ⅱ) to apo-carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer.Zn7-MT-I and Zn7-MT-Ⅱ donate zinc to apo-carbonic anhydrase and de novo constitute it at a comparable efficiency,while Zn7-MT-Ⅱ exhibits a little faster rate. Surprisingiy,Zinc is released from Zn4-α fragment (MT-Ⅱ) with a much faster rate than from Zn4-α fragment (MT-I), whose rate is close to that of Zn7-MT-I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7-MT-Ⅱ in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However,glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc rlease from metallothioneins.

  15. Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase.

    Science.gov (United States)

    Yılmaz, Süleyman; Akbaba, Yusuf; Özgeriş, Bünyamin; Köse, Leyla Polat; Göksu, Süleyman; Gülçin, İlhami; Alwasel, Saleh H; Supuran, Claudiu T

    2016-12-01

    A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209-0.291 nM. On the other hand, tacrine, which is used in the treatment of Alzheimer's disease possessed lower inhibition effect (Ki: 0.398 nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49-5.61 nM for hCA I, and 4.94-7.66 nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33 nM for hCA I and 9.07 nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.

  16. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    Science.gov (United States)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  17. Colocalization of carbonic anhydrase 9 expression and cell proliferation in human head and neck squamous cell carcinoma.

    NARCIS (Netherlands)

    Hoogsteen, I.J.; Marres, H.A.M.; Wijffels, K.I.E.M.; Rijken, P.F.J.W.; Peters, J.P.W.; Hoogen, F.J.A. van den; Oosterwijk, E.; Kogel, A.J. van der; Kaanders, J.H.A.M.

    2005-01-01

    PURPOSE: Tumor cells undergo a variety of biological changes under sustained hypoxic conditions, allowing cells to survive and retain their clonogenic potential. The purpose of this study is to relate the expression of the hypoxia marker carbonic anhydrase 9 (CA9) to the uptake of iododeoxyuridine (

  18. Carbonic Anhydrase Inhibitors for the Treatment of Cystic Macular Lesions in Children With X-Linked Juvenile Retinoschisis

    NARCIS (Netherlands)

    Verbakel, S.K.; Ven, J.P.H. van de; Blanc, L.M.P. le; Groenewoud, J.M.M.; Jong, E.K.; Klevering, B.J.; Hoyng, C.B.

    2016-01-01

    Purpose: Little is known regarding the therapeutic effect of carbonic anhydrase inhibitors (CAIs) in the management of cystic macular lesions in children with X-linked juvenile retinoschisis (XLRS) despite the fact that this disease often manifests during childhood. Therefore, our goal was to determ

  19. Generation of nitric oxide from nitrite by carbonic anhydrase:

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank Bo;

    2009-01-01

    bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced...

  20. H,K-ATPase and carbonic anhydrase response to chronic systemic rat gastric hypoxia

    Directory of Open Access Journals (Sweden)

    Ulfah Lutfiah

    2015-11-01

    Full Text Available Background: Hypoxia may induce gastric ulcer associated with excessive hidrogen chloride (HCl secretion. Synthesis of HCl involves 2 enzymes, H,K-ATPase and carbonic anhydrase (CA. This study aimed to clarify the underlying cause of gastric ulcer in chronic hypoxic condition, by investigating the H,K-ATPase and CA9 response in rats.Methods: This study was an in vivo experiment, to know the relationship between hypoxia to expression of H,K-ATPase and CA9 mRNA, and H,K-ATPase and total CA specific activity of chronic systemic rat gastric hypoxia. The result was compared to control. Data was analyzed by SPSS. If the data distribution was normal and homogeneous, ANOVA and LSD post-hoc test were used. However, if the distribution was not normal and not homogeneous, and still as such after transformation, data was treated in non-parametric using Kruskal-Wallis and Mann Whitney test. Twenty five male Sprague-Dawley rats were divided into 5 groups: rats undergoing hypoxia for 1, 3, 5, and 7 days placed in hypoxia chamber (10% O2, 90% N2, and one control group. Following this treatment, stomach of the rats was extracted and homogenized. Expression of H,K-ATPase and CA9 mRNA was measured using real time RT-PCR. Specific activity of H,K-ATPase was measured using phosphate standard solution, and specific activity of total CA was measured using p-nitrophenol solution.Results: The expression of H,K-ATPase mRNA was higher in the first day (2.159, and drastically lowered from the third to seventh day (0.289; 0.108; 0.062. Specific activities of H,K-ATPase was slightly higher in the first day (0.765, then was lowered in the third (0.685 and fifth day (0.655, and was higher in the seventh day (0.884. The expression of CA9 mRNA was lowered progressively from the first to seventh day (0.84; 0.766; 0.736; 0.343. Specific activities of total CA was low in the first day (0.083, and was higher from the third to seventh day (0.111; 0.136; 0.144.Conclusion: In hypoxia

  1. Update and critical appraisal of combined timolol and carbonic anhydrase inhibitors and the effect on ocular blood flow in glaucoma patients.

    Science.gov (United States)

    Moss, Adam M; Harris, Alon; Siesky, Brent; Rusia, Deepam; Williamson, Kathleen M; Shoshani, Yochai

    2010-04-26

    Topical hypotensive therapy with both timolol and carbonic anhydrase inhibitors has been shown to be efficacious at reducing intraocular pressure. Many prospective studies have also suggested that carbonic anhydrase inhibitors augment ocular blood flow and vascular regulation independent of their hypotensive effects. Although consistent in their findings, these studies must be cautiously interpreted due to the limitations of study design and specific blood flow imaging modalities. The purpose of this review is to appraise and critically evaluate the current body of literature investigating the effects of combined treatment with topical carbonic anhydrase inhibitors and timolol in patients with glaucoma with respect to ocular blood flow, visual function, and optic nerve head structure.

  2. Carbonic anhydrase: a key regulatory and detoxifying enzyme for Karst plants.

    Science.gov (United States)

    Müller, Werner E G; Qiang, Li; Schröder, Heinz C; Hönig, Natalie; Yuan, Daoxian; Grebenjuk, Vlad A; Mussino, Francesca; Giovine, Marco; Wang, Xiaohong

    2014-01-01

    Karstification is a rapid process during which calcidic stones/limestones undergo dissolution with the consequence of a desertification of karst regions. A slow-down of those dissolution processes of Ca-carbonate can be approached by a reforestation program using karst-resistant plants that can resist alkaline pH and higher bicarbonate (HCO₃⁻) concentrations in the soil. Carbonic anhydrases (CA) are enzymes that mediate a rapid and reversible interconversion of CO₂ and HCO₃⁻. In the present study, the steady-state expression of a CA gene, encoding for the plant carbonic anhydrase from the parsley Petroselinum crispum, is monitored. The studies were primarily been performed during germination of the seeds up to the 12/14-day-old embryos. The CA cDNA was cloned. Quantitative polymerase chain reaction (qPCR) analysis revealed that the gene expression level of the P. crispum CA is strongly and significantly affected at more alkaline pH in the growth medium (pH 8.3). This abolishing effect is counteracted both by addition of HCO₃⁻ and by addition of polyphosphate (polyP) to the culture medium. In response to polyP, the increased pH in the vacuoles of the growing plants is normalized. The effect of polyP let us to propose that this polymer acts as a buffer system that facilitates the adjustment of the pH in the cytoplasm. In addition, it is proposed that polyP has the potential to act, especially in the karst, as a fertilizer that allows the karstic plants to cope with the adverse pH and HCO₃⁻ condition in the soil.

  3. Effect of pKa on the kinetics of carbon dioxide absorption in aqueous alkanolamine solutions containing carbonic anhydrase at 298K

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J M C; Fradette, Sylvie; Versteeg, Geert F.

    2015-01-01

    The absorption of carbon dioxide in various aqueous alkanolamine solutions have been studied with and without carbonic anhydrase respectively in a stirred cell reactor at 298K. The examined alkanolamines were: N,N-diethylethanolamine (DEMEA), N,N-dimethylethanolamine (DMMEA), monoethanolamine (MEA),

  4. Expression of the CHOP-inducible carbonic anhydrase CAVI-b is required for BDNF-mediated protection from hypoxia

    OpenAIRE

    Matthews, Tori A.; Abel, Allyssa; Demme, Chris; Sherman, Teresa; Pan, Pei-wen; Halterman, Marc W.; Parkkila, Seppo; Nehrke, Keith

    2013-01-01

    Carbonic anhydrases (CAs) comprise a family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. CAs contribute to a myriad of physiological processes, including pH regulation, anion transport and water balance. To date, 16 known members of the mammalian alpha-CA family have been identified. Given that the catalytic family members share identical reaction chemistry, their physiologic roles are influenced greatly by their tissue and sub-cellular locations. CAVI ...

  5. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  6. Agents described in the Molecular Imaging and Contrast Agent Database for imaging carbonic anhydrase IX expression.

    Science.gov (United States)

    Sneddon, Deborah; Poulsen, Sally-Ann

    2014-10-01

    Carbonic anhydrase IX (CA IX) is selectively expressed in a range of hypoxic tumours and is a validated endogenous hypoxia marker with prognostic significance; hence, CA IX is of great interest as a molecular imaging target in oncology. In this review, we present an overview of the different imaging agents and imaging modalities that have been applied for the in vivo detection of CA IX. The imaging agents reviewed are all entries in the Molecular Imaging and Contrast Agent Database (MICAD) and comprise antibody, antibody fragments and small molecule imaging agents. The effectiveness of these agents for imaging CA IX in vivo gave variable performance; however, a number of agents proved very capable. As molecular imaging has become indispensable in current medical practice we anticipate that the clinical significance of CA IX will see continued development and improvements in imaging agents for targeting this enzyme.

  7. Increased levels of carbonic anhydrase II in the developing Down syndrome brain.

    Science.gov (United States)

    Palminiello, Sonia; Kida, Elizabeth; Kaur, Kulbir; Walus, Marius; Wisniewski, Krystyna E; Wierzba-Bobrowicz, Teresa; Rabe, Ausma; Albertini, Giorgio; Golabek, Adam A

    2008-01-23

    By using a proteomic approach, we found increased levels of carbonic anhydrase II (CA II) in the brain of Ts65Dn mice, a mouse model for Down syndrome (DS). Further immunoblot analyses showed that the levels of CA II are increased not only in the brain of adult Ts65Dn mice but also in the brain of infants and young children with DS. Cellular localization of the enzyme in human brain, predominantly in the oligodendroglia and primitive vessels in fetal brain and in the oligodendroglia and some GABAergic neurons postnatally, was similar in DS subjects and controls. Given the role of CA II in regulation of electrolyte and water balance and pH homeostasis, up-regulation of CA II may reflect a compensatory mechanism mobilized in response to structural/functional abnormalities in the developing DS brain. However, this up-regulation may also have an unfavorable effect by increasing susceptibility to seizures of children with DS.

  8. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.

    Science.gov (United States)

    Fox, Jerome M; Kang, Kyungtae; Sastry, Madhavi; Sherman, Woody; Sankaran, Banumathi; Zwart, Peter H; Whitesides, George M

    2017-03-27

    This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein-ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein-ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microwave assisted synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene skeletons as inhibitors of the carbonic anhydrases isoforms I, II, IV and VII.

    Science.gov (United States)

    Esirden, İbrahim; Tanç, Muhammet; Supuran, Claudiu T; Kaya, Muharrem

    2017-01-01

    The synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene scaffold by using microwave (MW) assisted techniques is reported in this study. These synthesized hybrid compounds were assayed for the inhibition of carbonic anhydrase (CA, EC 4.2.1.1). The inhibitory activities were determined against three cytosolic human isoforms (hCA I, II and VII) and one membrane-associated (hCA IV) isoform. Some of the newly synthesized sulfonamides showed micromolar to nanomolar inhibitory activity against these enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mitochondrial carbonic anhydrase CA VB: Differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles

    OpenAIRE

    Shah, Gul N.; Hewett-Emmett, David; Grubb, Jeffrey H.; Migas, Mary C.; Fleming, Robert E.; Waheed, Abdul; Sly, William S.

    2000-01-01

    A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitoc...

  11. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential.

    Science.gov (United States)

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2011-06-01

    Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn(2+)-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria.

  12. Identification of two carbonic anhydrases in the mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications.

    Science.gov (United States)

    LE Roy, Nathalie; Marie, Benjamin; Gaume, Béatrice; Guichard, Nathalie; Delgado, Sidney; Zanella-Cléon, Isabelle; Becchi, Michel; Auzoux-Bordenave, Stéphanie; Sire, Jean-Yves; Marin, Frédéric

    2012-07-01

    Carbonic anhydrases (CAs) represent a diversified family of metalloenzymes that reversibly catalyze the hydration of carbon dioxide. They are involved in a wide range of functions, among which is the formation of CaCO(3) skeletons in metazoans. In the shell-forming mantle tissues of mollusks, the location of the CA catalytic activity is elusive and gives birth to contradicting views. In the present paper, using the European abalone Haliotis tuberculata, a key model gastropod in biomineralization studies, we identified and characterized two CAs (htCA1 and htCA2) that are specific of the shell-forming mantle tissue. We analyzed them in a phylogenetic context. Combining various approaches, including proteomics, activity tests, and in silico analyses, we showed that htCA1 is secreted but is not incorporated in the organic matrix of the abalone shell and that htCA2 is transmembrane. Together with previous studies dealing with molluskan CAs, our findings suggest two possible modes of action for shell mineralization: the first mode applies to, for example, the bivalves Unio pictorum and Pinctada fucata, and involves a true CA activity in their shell matrix; the second mode corresponds to, for example, the European abalone, and does not include CA activity in the shell matrix. Our work provides new insight on the diversity of the extracellular macromolecular tools used for shell biomineralization study in mollusks.

  13. Update and critical appraisal of combined timolol and carbonic anhydrase inhibitors and the effect on ocular blood flow in glaucoma patients

    Directory of Open Access Journals (Sweden)

    Adam M Moss

    2010-03-01

    Full Text Available Adam M Moss, Alon Harris, Brent Siesky, Deepam Rusia, Kathleen M Williamson, Yochai ShoshaniDepartment of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USAAbstract: Topical hypotensive therapy with both timolol and carbonic anhydrase inhibitors has been shown to be efficacious at reducing intraocular pressure. Many prospective studies have also suggested that carbonic anhydrase inhibitors augment ocular blood flow and vascular regulation independent of their hypotensive effects. Although consistent in their findings, these studies must be cautiously interpreted due to the limitations of study design and specific blood flow imaging modalities. The purpose of this review is to appraise and critically evaluate the current body of literature investigating the effects of combined treatment with topical carbonic anhydrase inhibitors and timolol in patients with glaucoma with respect to ocular blood flow, visual function, and optic nerve head structure.Keywords: ocular blood flow, carbonic anhydrase inhibitor, timolol, glaucoma, visual function, optic nerve head

  14. Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase) in marine macroalgae from southern Spain Efectos de la radiación solar UV sobre la fotosíntesis y actividades enzimáticas (anhidrasa carbónica y nitrato reductasa) en macralgas marinas del sur de España

    OpenAIRE

    Félix L. FIGUEROA; BENJAMÍN VIÑEGLA

    2001-01-01

    The effects of solar ultraviolet (UV) radiation during daily cycles on photosynthesis and two key enzymes involved in carbon incorporation, the carbonic anhydrase, and in inorganic nitrogen reduction, the nitrate reductase, of macroalgae from southern Spain are presented. During daily cycles, photoinhibition in several intertidal macroalgae, expressed as decrease in the effective quantum yield from the morning to noon time, was linearly dependent on the daily integrated irradiance. However, r...

  15. Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development

    Directory of Open Access Journals (Sweden)

    Lerman Michael I

    2009-03-01

    Full Text Available Abstract Background Transmembrane CAIX and CAXII are members of the alpha carbonic anhydrase (CA family. They play a crucial role in differentiation, proliferation, and pH regulation. Expression of CAIX and CAXII proteins in tumor tissues is primarily induced by hypoxia and this is particularly true for CAIX, which is regulated by the transcription factor, hypoxia inducible factor-1 (HIF-1. Their distributions in normal adult human tissues are restricted to highly specialized cells that are not always hypoxic. The human fetus exists in a relatively hypoxic environment. We examined expression of CAIX, CAXII and HIF-1α in the developing human fetus and postnatal tissues to determine whether expression of CAIX and CAXII is exclusively regulated by HIF-1. Results The co-localization of CAIX and HIF-1α was limited to certain cell types in embryonic and early fetal tissues. Those cells comprised the primitive mesenchyma or involved chondrogenesis and skin development. Transient CAIX expression was limited to immature tissues of mesodermal origin and the skin and ependymal cells. The only tissues that persistently expressed CAIX protein were coelomic epithelium (mesothelium and its remnants, the epithelium of the stomach and biliary tree, glands and crypt cells of duodenum and small intestine, and the cells located at those sites previously identified as harboring adult stem cells in, for example, the skin and large intestine. In many instances co-localization of CAIX and HIF-1α was not evident. CAXII expression is restricted to cells involved in secretion and water absorption such as parietal cells of the stomach, acinar cells of the salivary glands and pancreas, epithelium of the large intestine, and renal tubules. Co-localization of CAXII with CAIX or HIF-1α was not observed. Conclusion The study has showed that: 1 HIF-1α and CAIX expression co- localized in many, but not all, of the embryonic and early fetal tissues; 2 There is no evidence of

  16. Cloning, expression and biochemical characterization of a β-carbonic anhydrase from the soil bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Supuran, Claudiu T; Çanakçı, Sabriye; Osman Beldüz, Ali

    2016-12-01

    A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co(2+) affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20 °C and pH of 8.3: kcat of 4.8 × 10(5) s(-1) and kcat/Km of 5.6 × 10(7) M(-1) × s(-1). This activity was potently inhibited by acetazolamide which showed a KI of 78.9 nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.

  17. Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Li, Ying; Tu, Chingkuang; Wang, Hai; Silverman, David N; Frost, Susan C

    2011-05-06

    Carbonic anhydrase IX (CAIX) is a membrane-bound, tumor-related enzyme whose expression is often considered a marker for hypoxia, an indicator of poor prognosis in the majority of cancer patients, and is associated with acidification of the tumor microenvironment. Here, we describe for the first time the catalytic properties of native CAIX in MDA-MB-231 breast cancer cells that exhibit hypoxia-inducible CAIX expression. Using (18)O exchange measured by membrane inlet mass spectrometry, we determined catalytic activity in membrane ghosts and intact cells. Exofacial carbonic anhydrase activity increases with exposure to hypoxia, an activity which is suppressed by impermeant sulfonamide CA inhibitors. Inhibition by sulfonamide inhibitors is not sensitive to reoxygenation. CAIX activity in intact cells increases in response to reduced pH. Data from membrane ghosts show that the increase in activity at reduced pH is largely due to an increase in the dehydration reaction. In addition, the kinetic constants of CAIX in membrane ghosts are very similar to our previous measurements for purified, recombinant, truncated forms. Hence, the activity of CAIX is not affected by the proteoglycan extension or membrane environment. These activities were measured at a total concentration for all CO(2) species at 25 mm and close to chemical equilibrium, conditions which approximate the physiological extracellular environment. Our data suggest that CAIX is particularly well suited to maintain the extracellular pH at a value that favors the survival fitness of tumor cells.

  18. Evidence for the involvement of carbonic anhydrase and urease in calcium carbonate formation in the gravity-sensing organ of Aplysia californica

    Science.gov (United States)

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.

    1997-01-01

    To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.

  19. Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture.

    Science.gov (United States)

    Russo, Maria Elena; Olivieri, Giuseppe; Capasso, Clemente; De Luca, Viviana; Marzocchella, Antonio; Salatino, Piero; Rossi, Mosè

    2013-09-10

    Biomimetic CO2 capture includes environmentally friendly solutions based on carbonic anhydrase (CA), an enzyme that increases CO2 absorption rate in conventional acid-gas scrubbing processes. The present contribution reports the characterization of a new recombinant carbonic anhydrase, SspCA, isolated from the thermophile bacterium Sulphurhydrogenibium yellowstonense sp. YO3AOP1. The kinetics of SspCA was characterized in terms of first order CO2 hydration rate according to a procedure based on CO2 absorption tests in a stirred cell apparatus. The first order kinetic constant at 25°C was 9.16 × 10(6) L/(mols). An appropriate investigation on SspCA stability was carried out to assess its long-term resistance to high temperatures as in all capture processes based on absorption/vacuum-desorption cycles. Its half-life was 53 and 8 days at 40 °C and 70 °C, respectively.

  20. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism

    OpenAIRE

    Shah, Gul N.; Rubbelke, Timothy S.; Hendin, Joshua; Nguyen, Hien; Waheed, Abdul; Shoemaker, James D.; Sly, William S.

    2013-01-01

    Prior studies with carbonic anhydrase (CA) inhibitors implicated mitochondrial CA in ureagenesis and gluconeogenesis. Subsequent studies identified two mitochondrial CAs. To distinguish the contribution of each enzyme, we studied the effects of targeted disruption of the murine CA genes, called Car5A and Car5B. The Car5A mutation had several deleterious consequences. Car5A null mice were smaller than wild-type littermates and bred poorly. However, on sodium–potassium citrate-supplemented wate...

  1. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    OpenAIRE

    2013-01-01

    The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases (CA) IX and CAXII constitute a robust intracellular pH (pHi)-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibrobla...

  2. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the pathogenic yeast Candida glabrata with anions.

    Science.gov (United States)

    Innocenti, Alessio; Leewattanapasuk, Worraanong; Mühlschlegel, Fritz A; Mastrolorenzo, Antonio; Supuran, Claudiu T

    2009-08-15

    A beta-carbonic anhydrase (CA, EC 4.2.1.1), the protein encoded by the NCE103 gene of Candida glabrata which also present in Candida albicans and Saccharomycescerevisiae, was cloned, purified, characterized kinetically and investigated for its inhibition by a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate and some isosteric species. The enzyme showed significant CO(2) hydrase activity, with a k(cat) of 3.8 x 10(5)s(-1) and k(cat)/K(M) of 4.8 x 10(7)M(-1)s(-1). The Cà glabrata CA (CgCA) was moderately inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 0.60-1.12 mM) but strongly inhibited by bicarbonate, nitrate, nitrite and phenylarsonic acid (K(I)s of 86-98 microM). The other anions investigated showed inhibition constants in the low millimolar range, with the exception of bromide and iodide (K(I)s of 27-42 mM).

  3. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with anions.

    Science.gov (United States)

    Isik, Semra; Kockar, Feray; Arslan, Oktay; Guler, Ozen Ozensoy; Innocenti, Alessio; Supuran, Claudiu T

    2008-12-15

    The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically, and investigated for its inhibition with a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate, and some of its isosteric species. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5) s(-1) and k(cat)/K(m) of 9.8x10(7) M(-1) s(-1). scCA was weakly inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 16.8-55.6 mM) and strongly inhibited by bromide, iodide, and sulfamide (K(I)s of 8.7-10.8 microM). The other investigated anions showed inhibition constants in the low millimolar range.

  4. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    Science.gov (United States)

    Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-07-01

    The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action.

  5. Expression of the CHOP-inducible carbonic anhydrase CAVI-b is required for BDNF-mediated protection from hypoxia.

    Science.gov (United States)

    Matthews, Tori A; Abel, Allyssa; Demme, Chris; Sherman, Teresa; Pan, Pei-wen; Halterman, Marc W; Parkkila, Seppo; Nehrke, Keith

    2014-01-16

    Carbonic anhydrases (CAs) comprise a family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. CAs contribute to a myriad of physiological processes, including pH regulation, anion transport and water balance. To date, 16 known members of the mammalian alpha-CA family have been identified. Given that the catalytic family members share identical reaction chemistry, their physiologic roles are influenced greatly by their tissue and sub-cellular locations. CAVI is the lone secreted CA and exists in both saliva and the gastrointestinal mucosa. An alternative, stress-inducible isoform of CAVI (CAVI-b) has been shown to be expressed from a cryptic promoter that is activated by the CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP). The CAVI-b isoform is not secreted and is currently of unknown physiological function. Here we use neuronal models, including a model derived using Car6 and CHOP gene ablations, to delineate a role for CAVI-b in ischemic protection. Our results demonstrate that CAVI-b expression, which is increased through CHOP-signaling in response to unfolded protein stress, is also increased by oxygen-glucose deprivation (OGD). While enforced expression of CAVI-b is not sufficient to protect against ischemia, CHOP regulation of CAVI-b is necessary for adaptive changes mediated by BDNF that reduce subsequent ischemic damage. These results suggest that CAVI-b comprises a necessary component of a larger adaptive signaling pathway downstream of CHOP.

  6. 1. alpha. ,25-dihydroxyvitamin D sub 3 regulates the expression of carbonic anhydrase II in nonerythroid avian bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Billecocq, A.; Emanuel, J.R.; Levenson, R.; Baron, R. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-08-01

    1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}), the active metabolite of the steroid hormone vitamin D, is a potent regulator of macrophage and osteoclast differentiation. The mature osteoclast, unlike the circulating monocyte or the tissue macrophage, expresses high levels of carbonic anhydrase II (CAII). This enzyme generates protons and bicarbonate from water and carbon dioxide and is involved in bone resorption and acid-base regulation. To test whether 1,25(OH){sub 2}D{sub 3} could induce the differentiation of myelomonocytic precursors toward osteoclasts rather than macrophages, analyzed its effects on the expression of CAII in bone marrow cultures containing precursors common to both cell types. The expression of CAII was markedly increased by 1,25(OH){sub 2}D{sub 3} in a dose-and time-dependent manner. In bone marrow, this increase occurred at the mRNA and protein levels and was detectable as early as 24 hr after stimulation. 1,25(OH){sub 2}D{sub 3} was also found to induce CAII expression in a transformed myelomonocytic avian cell line. These results suggest that 1,25(OH){sub 2}D{sub 3} regulates the level at which myelomonocytic precursors express CAII, an enzyme that is involved in the function of the mature osteoclast.

  7. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    Science.gov (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  8. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.

    Science.gov (United States)

    Achal, Varenyam; Pan, Xiangliang

    2011-03-01

    Urease and carbonic anhydrase (CA) are key enzymes in the chemical reaction of living organisms and have been found to be associated with calcification in a number of microorganisms and invertebrates. Three bacterial strains designated as AP4, AP6, and AP9 were isolated from highly alkaline soil samples using the enrichment culture technique. On the basis of various physiological tests and 16S rRNA sequence analysis, these three bacteria were identified as Bacillus sp., B. megaterium, and B. simplex. Further, these Bacillus species have been characterized for the production of urease and CA in the process of biocalcification. One of the isolates, AP6 produced 553 U/ml of urease and 5.61 EU/ml CA. All the strains were able to produce significant amount of exopolymeric substances and biofilm. Further, efficacy of these strains was tested for calcite production ability and results were correlated with urease and CA. Isolate AP6 precipitated 2.26 mg calcite/cell dry mass (mg). Our observations strongly suggest that it is not only urease but CA also plays an important role in microbially induced calcium carbonate precipitation process. The current work demonstrates that urease and CA producing microbes can be utilized in biocalcification as a sealing agent for filling the gaps or cracks and fissures in constructed facilities and natural formations alike.

  9. How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms.

    Science.gov (United States)

    Tresguerres, Martin; Katz, Sigrid; Rouse, Greg W

    2013-06-22

    Osedax are gutless siboglinid worms that thrive on vertebrate bones lying on the ocean floor, mainly those of whales. The posterior body of female Osedax penetrates into the bone forming extensions known as 'roots', which host heterotrophic symbiotic bacteria in bacteriocytes beneath the epidermis. The Osedax root epithelium presumably absorbs bone collagen and/or lipids, which are metabolized by the symbiotic bacteria that in turn serve for Osedax's nutrition. Here, we show that Osedax roots express extremely high amounts of vacuolar-H(+)-ATPase (VHA), which is located in the apical membrane and in cytoplasmic vesicles of root and ovisac epithelial cells. The enzyme carbonic anhydrase (CA), which catalyses the hydration of CO2 into H(+) and HCO3(-), is also expressed in roots and throughout Osedax body. These results suggest Osedax roots have massive acid-secreting capacity via VHA, fuelled by H(+) derived from the CA-catalysed hydration of CO2 produced by aerobic metabolism. We propose the secreted acid dissolves the bone carbonate matrix to then allow the absorption of bone-derived nutrients across the skin. In an exciting example of convergent evolution, this model for acid secretion is remarkably similar to mammalian osteoclast cells. However, while osteoclasts dissolve bone for repairing and remodelling, the Osedax root epithelium secretes acid to dissolve foreign bone to access nutrients.

  10. Design and simulation of rate-based CO2 capture processes using carbonic anhydrase (CA) applied to biogas

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gaspar, Jozsef; Jacobsen, Bjartur

    2017-01-01

    a potential to create negative emissions using bio-energy carbon capture and storage (BECCS). All sectors are still in the need for applying more sustainable carbon capture and storage (CCS) technologies which result in lower energy consumption while reducing the impact on the environment. Recently several....... The advantage is a noticeably lower regeneration energy compared to primary and secondary amines. As a result the cost for stripping is significantly lower. Reactivated slow tertiary amines are applied in this study with the aim of reducing energy consumption. This is achieved byusing carbonic anhydrase (CA...

  11. Functional role of a putative carbonic anhydrase II-binding domain in the electrogenic Na+ -HCO₃- cotransporter NBCe1 expressed in Xenopus oocytes.

    Science.gov (United States)

    Yamada, Hideomi; Horita, Shoko; Suzuki, Masashi; Fujita, Toshiro; Seki, George

    2011-01-01

    The electrogenic Na+ -HCO₃⁻ cotransporter NBCe1 plays essential roles in the regulation of systemic and/or local pH. Homozygous inactivating mutations in NBCe1 cause proximal renal tubular acidosis associated with ocular abnormalities. We recently showed that defective membrane expression of NBCe1, caused by several mutations such as Delta65bp (S982NfsX4), is also associated with familial migraine. The Delta65bp mutant is quite unique in that it lacks a putative carbonic anhydrase (CA) II-binding domain but still shows an apparently normal transport activity in Xenopus oocytes. In this addendum, we show that the co-expression of CAII together with the wild-type NBCe1 or the Delta65bp mutant does not enhance the NBCe1 activities in oocytes. Moreover, a carbonic anhydrase inhibitor acetazolamide fails to inhibit the wild-type or the Delta65bp activities co-expressed with CAII. These results indicate that a bicarbonate transport metabolon proposed for the interaction between CAII and NBCe1 does not work at least in Xenopus oocytes.

  12. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

    Science.gov (United States)

    Mecinović, Jasmin; Snyder, Phillip W; Mirica, Katherine A; Bai, Serena; Mack, Eric T; Kwant, Richard L; Moustakas, Demetri T; Héroux, Annie; Whitesides, George M

    2011-09-07

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the

  13. Optimization of a novel peptide ligand targeting human carbonic anhydrase IX.

    Directory of Open Access Journals (Sweden)

    Shoaib Rana

    Full Text Available BACKGROUND: Carbonic anhydrase IX (CA IX is a hypoxia-regulated transmembrane protein over-expressed in various types of human cancer. Recently, a new peptide with affinity for human carbonic anhydrase IX (CaIX-P1 was identified using the phage display technology. Aim of the present study is to characterize the binding site in the sequence of CaIX-P1, in order to optimize the binding and metabolic properties and use it for targeting purposes. METHODOLOGY/PRINCIPAL FINDINGS: Various fragments of CaIX-P1 were synthesized on solid support using Fmoc chemistry. Alanine scanning was performed for identification of the amino acids crucial for target binding. Derivatives with increased binding affinity were radiolabeled and in vitro studies were carried out on the CA IX positive human renal cell carcinoma cell line SKRC 52 and the CA IX negative human pancreatic carcinoma cell line BxPC3. Metabolic stability was investigated in cell culture medium and human serum. Organ distribution and planar scintigraphy studies were performed in Balb/c nu/nu mice carrying subcutaneously transplanted SKRC 52 tumors. The results of our studies clearly identified amino acids that are important for target binding. Among various fragments and derivatives the ligand CaIX-P1-4-10 (NHVPLSPy was found to possess increased binding potential in SKRC 52 cells, whereas no binding capacity for BxPC3 cells was observed. Binding of radiolabeled CaIX-P1-4-10 on CA IX positive cells could be inhibited by both the unlabeled and the native CaIX-P1 peptide but not by control peptides. Stability experiments indicated the degradation site in the sequence of CaIX-P1-4-10. Biodistribution studies showed a higher in vivo accumulation in the tumor than in most healthy tissues. CONCLUSIONS: Our data reveal modifications in the sequence of the CA IX affine ligand CaIX-P1 that might be favorable for improvement of target affinity and metabolic stability, which are necessary prior to the use of

  14. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    Science.gov (United States)

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  15. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: a theoretical study of enzyme inhibition.

    Science.gov (United States)

    Sahu, Chandan; Sen, Kaushik; Pakhira, Srimanta; Mondal, Bhaskar; Das, Abhijit K

    2013-08-15

    The binding properties of a series of benzenesulfonamide inhibitors (4-substituted-ureido-benzenesulfonamides, UBSAs) of human carbonic anhydrase II (hCA II) enzyme with active site residues have been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. To account for the important docking interactions between the UBSAs ligand and hCA II enzyme, a molecular docking program AutoDock Vina is used. The molecular docking results obtained by AutoDock Vina revealed that the docked conformer has root mean square deviation value less than 1.50 Å compared to X-ray crystal structures. The inhibitory activity of UBSA ligands against hCA II is found to be in good agreement with the experimental results. The thermodynamic parameters for inhibitor binding show that hydrogen bonding, hydrophilic, and hydrophobic interactions play a major role in explaining the diverse inhibitory range of these derivatives. Additionally, natural bond orbital analysis is performed to characterize the ligand-metal charge transfer stability. The insights gained from this study have great potential to design new hCA-II inhibitor, 4-[3-(1-p-Tolyl-4-trifluoromethyl-1H-pyrazol-3-yl)-ureido]-benzenesulfonamide, which belongs to the family of UBSA inhibitors and shows similar type of inhibitor potency with hCA II. This work also reveals that a QM/MM model and molecular docking method are computationally feasible and accurate for studying substrate-protein inhibition. Copyright © 2013 Wiley Periodicals, Inc.

  16. Characterization and anions inhibition studies of an α-carbonic anhydrase from the teleost fish Dicentrarchus labrax.

    Science.gov (United States)

    Ekinci, Deniz; Ceyhun, Saltuk Buğrahan; Sentürk, Murat; Erdem, Deryanur; Küfrevioğlu, Omer İrfan; Supuran, Claudiu T

    2011-01-15

    Carbonic anhydrase (CA; EC 4.2.1.1) was purified from the gill of the teleost fish Dicentrarchus labrax (European seabass). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The enzyme was purified 84.9-fold with a yield of 58%, and a specific activity of 838.9 U/mg proteins. It has an optimum pH at 8.0; an optimum temperature at 10°C. The kinetic parameters of this enzyme were determined for its esterase activity, with 4-nitrophenyl acetate (NPA) as substrate. The following anions, H₂NSO₃⁻, I⁻, SCN⁻, NO₃⁻, NO₂⁻, N₃⁻, Br⁻, Cl⁻, SO₄²⁻, and F⁻ showed inhibitory effects on the enzyme. Sulfamic acid, iodide, and thiocyanate exhibited the strongest inhibitory action, in the micromolar range (K(i)s of 87-187 μM). NO₃⁻, NO₂⁻ and N₃⁻ were moderate inhibitors, whereas other anions showed only weak actions. All tested anions inhibited the enzyme in a competitive manner. Our findings indicate that these anions inhibit the fish enzyme in a similar manner to other α-CAs from mammals investigated earlier, but the susceptibility to various anions differs significantly between the fish and mammalian CAs.

  17. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Vullo, Daniela; Supuran, Claudiu T; Capasso, Clemente

    2015-11-01

    We report the cloning and catalytic activity of a γ-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the Antarctic cyanobacterium Nostoc commune, NcoCA. The enzyme has a significant catalytic activity for the physiologic reaction, CO2 hydration to bicarbonate and protons, with a k(cat) of 9.5×10(5) s(-1) and a k(cat)/K(m) of 8.3×10(7) M(-1) × s(-1), being the most catalytically efficient γ-CA investigated so far. An anion inhibition study of NcoCA with inorganic/organic anions is also reported here. Fluoride, sulfate, perchlorate and tetrafluoroborate did not inhibit appreciably NcoCA, whereas the other halides, pseudohalides, bicarbonate, nitrate, nitrite and many complex inorganic anions showed inhibition in the millimolar range. The best NcoCA inhibitors detected so far were diethyldithiocarbamate (K(I) of 0.80 mM) as well as sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (K(I)s in the range of 70-90 μM). Since γ-CAs are present in carboxysomes, being involved in photosynthesis, this study may be relevant for a better understanding of such processes in some Antarctic organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of β-class carbonic anhydrase.

    Science.gov (United States)

    Ogawa, Takahiro; Kato, Hiromi; Higashide, Mitsuru; Nishimiya, Mami; Katayama, Yoko

    2016-09-25

    Carbonyl sulfide (COS) is an atmospheric trace gas and one of the sources of stratospheric aerosol contributing to climate change. Although one of the major sinks of COS is soil, the distribution of COS degradation ability among bacteria remains unclear. Seventeen out of 20 named bacteria belonging to Actinomycetales had COS degradation activity at mole fractions of 30 parts per million by volume (ppmv) COS. Dietzia maris NBRC 15801(T) and Mycobacterium sp. THI405 had the activity comparable to a chemolithoautotroph Thiobacillus thioparus THI115 that degrade COS by COS hydrolase for energy production. Among 12 bacteria manifesting rapid degradation at 30 ppmv COS, Dietzia maris NBRC 15801(T) and Streptomyces ambofaciens NBRC 12836(T) degraded ambient COS (∼500 parts per trillion by volume). Geodermatophilus obscurus NBRC 13315(T) and Amycolatopsis orientalis NBRC 12806(T) increased COS concentrations. Moreover, six of eight COS degrading bacteria isolated from soils had partial nucleotide sequences similar to that of the gene encoding clade D of β-class carbonic anhydrase, which included COS hydrolase. These results indicate the potential importance of Actinomycetes in the role of soils as sinks of atmospheric COS.

  19. A High-Resolution Crystal Structure of a Psychrohalophilic α–Carbonic Anhydrase from Photobacterium profundum Reveals a Unique Dimer Interface

    Energy Technology Data Exchange (ETDEWEB)

    Somalinga, Vijayakumar; Buhrman, Greg; Arun, Ashikha; Rose, Robert B.; Grunden, Amy M. (NCSU)

    2016-12-09

    Bacterial α–carbonic anhydrases (α-CA) are zinc containing metalloenzymes that catalyze the rapid interconversion of CO2 to bicarbonate and a proton. We report the first crystal structure of a pyschrohalophilic α–CA from a deep-sea bacterium, Photobacterium profundum. Size exclusion chromatography of the purified P. profundum α–CA (PprCA) reveals that the protein is a heterogeneous mix of monomers and dimers. Furthermore, an “in-gel” carbonic anhydrase activity assay, also known as protonography, revealed two distinct bands corresponding to monomeric and dimeric forms of PprCA that are catalytically active. The crystal structure of PprCA was determined in its native form and reveals a highly conserved “knot-topology” that is characteristic of α–CA’s. Similar to other bacterial α–CA’s, PprCA also crystallized as a dimer. Furthermore, dimer interface analysis revealed the presence of a chloride ion (Cl-) in the interface which is unique to PprCA and has not been observed in any other α–CA’s characterized so far. Molecular dynamics simulation and chloride ion occupancy analysis shows 100% occupancy for the Cl- ion in the dimer interface. Zinc coordinating triple histidine residues, substrate binding hydrophobic patch residues, and the hydrophilic proton wire residues are highly conserved in PprCA and are identical to other well-studied α–CA’s.

  20. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti Nath; Tripathi, Anil K

    2009-10-01

    Carbonic anhydrase (CA; [EC 4.2.1.1]) is a ubiquitous enzyme catalysing the reversible hydration of CO(2) to bicarbonate, a reaction that supports various biochemical and physiological functions. Genome analysis of Azospirillum brasilense, a nonphotosynthetic, nitrogen-fixing, rhizobacterium, revealed an ORF with homology to beta-class carbonic anhydrases (CAs). Biochemical characteristics of the beta-class CA of A. brasilense, analysed after cloning the gene (designated as bca), overexpressing in Escherichia coli and purifying the protein by affinity purification, revealed that the native recombinant enzyme is a homotetramer, inhibited by the known CA inhibitors. CA activity in A. brasilense cell extracts, reverse transcriptase (RT)-PCR and Western blot analyses showed that bca was constitutively expressed under aerobic conditions. Lower beta-galactosidase activity in A. brasilense cells harbouring bca promoter: lacZ fusion during the stationary phase or during growth on 3% CO(2) enriched air or at acidic pH indicated that the transcription of bca was downregulated by the stationary phase, elevated CO(2) levels and acidic pH conditions. These observations were also supported by RT-PCR analysis. Thus, beta-CA in A. brasilense seems to be required for scavenging CO(2) from the ambient air and the requirement of CO(2) hydration seems to be higher for the cultures growing exponentially at neutral to alkaline pH.

  1. Synthesis, characterization and in vitro inhibition of metal complexes of pyrazole based sulfonamide on human erythrocyte carbonic anhydrase isozymes I and II.

    Science.gov (United States)

    Büyükkıdan, Nurgün; Büyükkıdan, Bülent; Bülbül, Metin; Kasımoğulları, Rahmi; Mert, Samet

    2017-12-01

    Sulfonamides represent an important class of biologically active compounds. A sulfonamide possessing carbonic anhydrase (CA) inhibitory properties obtained from a pyrazole based sulfonamide, ethyl 1-(3-nitrophenyl)-5-phenyl-3-((5-sulfamoyl-1,3,4-thiadiazol-2-yl)carbamoyl)-1H-pyrazole-4-carboxylate (1), and its metal complexes with the Ni(II) for (2), Cu(II) for (3) and Zn(II) for (4) have been synthesized. The structures of metal complexes (2-4) were established on the basis of their elemental analysis, (1)H NMR, IR, UV-Vis and MS spectral data. The inhibition of two human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes I and II, with 1 and synthesized complexes (2-4) and acetazolamide (AAZ) as a control compound was investigated in vitro by using the hydratase and esterase assays. The complexes 2, 3 and 4 showed inhibition constant in the range 0.1460-0.3930 µM for hCA-I and 0.0740-0.0980 µM for hCA-II, and they had effective more inhibitory activity on hCA-I and hCA-II than corresponding free ligand 1 and than AAZ.

  2. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    Science.gov (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  3. Genetic polymorphisms in the carbonic anhydrase VI gene and dental caries susceptibility.

    Science.gov (United States)

    Li, Z-Q; Hu, X-P; Zhou, J-Y; Xie, X-D; Zhang, J-M

    2015-06-01

    We investigated the role of 7 single nucleotide polymorphisms in the carbonic anhydrase (CA) VI gene (rs2274328, rs17032907, rs11576766, rs2274333, rs10864376, rs3765964, and rs6680186) and the possible association between these polymorphisms and dental caries susceptibility in a Northwestern Chinese population. We collected samples from 164 high caries experience and 191 very low caries experience and conducted a case-control study according to the number of decayed, missing, and filled teeth index and genotyped the 7 polymorphisms using a 384-well plate format with the Sequenom MassARRAY platform. Individuals carrying the rs17032907 TT genotype were more likely to have an increased risk of dental caries compared with carriers of the C/C genotype in the co-dominant model, with an odds ratio (95% confidence interval) of 2.144 (1.096-4.195). We also found that the haplotype (ACA) (rs2274328, rs17032907 and rs11576766) was associated with a low number of decayed, missing, and filled teeth index with an odds ratio (95% confidence interval) of 0.635 (0.440-0.918). However, we found no association between dental caries susceptibility and the rs2274328, rs11576766, rs2274333, rs10864376, rs3765964, and rs6680186 polymorphisms and other haplotypes. The rs17032907 genetic variant and the haplotype (ACA) of CA VI may be associated with dental caries susceptibility.

  4. Innovative molecular diagnosis of Trichinella species based on β-carbonic anhydrase genomic sequence.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Kuuslahti, Marianne; Näreaho, Anu; Sukura, Antti; Parkkila, Seppo

    2016-03-01

    Trichinellosis is a helminthic infection where different species of Trichinella nematodes are the causative agents. Several molecular assays have been designed to aid diagnostics of trichinellosis. These assays are mostly complex and expensive. The genomes of Trichinella species contain certain parasite-specific genes, which can be detected by polymerase chain reaction (PCR) methods. We selected β-carbonic anhydrase (β-CA) gene as a target, because it is present in many parasites genomes but absent in vertebrates. We developed a novel β-CA gene-based method for detection of Trichinella larvae in biological samples. We first identified a β-CA protein sequence from Trichinella spiralis by bioinformatic tools using β-CAs from Caenorhabditis elegans and Drosophila melanogaster. Thereafter, 16 sets of designed primers were tested to detect β-CA genomic sequences from three species of Trichinella, including T. spiralis, Trichinella pseudospiralis and Trichinella nativa. Among all 16 sets of designed primers, the primer set No. 2 efficiently amplified β-CA genomic sequences from T. spiralis, T. pseudospiralis and T. nativa without any false-positive amplicons from other parasite samples including Toxoplasma gondii, Toxocara cati and Parascaris equorum. This robust and straightforward method could be useful for meat inspection in slaughterhouses, quality control by food authorities and medical laboratories.

  5. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes.

  6. Oxygen Regulation of a Nodule-Located Carbonic Anhydrase in Alfalfa1

    Science.gov (United States)

    Gálvez, Susana; Hirsch, Ann M.; Wycoff, Keith L.; Hunt, Stephen; Layzell, David B.; Kondorosi, Adam; Crespi, Martin

    2000-01-01

    Control of the permeability to oxygen is critical for the function of symbiotic nitrogen fixation in legume nodules. The inner cortex (IC) seems to be a primary site for this regulation. In alfalfa (Medicago sativa) nodules, expression of the Msca1 gene encoding a carbonic anhydrase (CA) was previously found to be restricted to the IC. We have now raised antibodies against recombinant Msca1 protein and used them, together with antibodies raised against potato leaf CA, to demonstrate the presence of two forms of CA in mature nodules. Each antibody recognizes a different CA isoform in nodule tissues. Immunolocalization revealed that leaf-related CAs were localized primarily in the nitrogen-fixing zone, whereas the Msca1 protein was restricted exclusively to the IC region, in indeterminate and determinate nodules. In alfalfa nodules grown at various O2 concentrations, an inverse correlation was observed between the external oxygen pressure and Msca1 protein content in the IC, the site of the putative diffusion barrier. Thus Msca1 is a molecular target of physiological processes occurring in the IC cells involved in gas exchange in the nodule. PMID:11080283

  7. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  8. Antibodies reacting to carbonic anhydrase isozymes (I and II) and albumin in sera from dogs.

    Science.gov (United States)

    Nishita, Toshiho; Miyazaki, Rui; Miyazaki, Takae; Ochiai, Hideharu; Orito, Kensuke

    2016-06-01

    IgGs to carbonic anhydrase isozymes (CA-I and CA-II) and albumin were identified in dog serum. IgG titers were determined in the sera of asymptomatic dogs, and in dogs with atopic dermatitis, diarrhea and/or vomiting, diabetes and/or pancreatitis, kidney disease, hepatic disease, and thyroid gland disease, using ELISA. Low titres of IgG-reactive CA-I, CA-II, BSA, and CSA were found in the sera of healthy beagles. Compared with healthy beagles, there was a significant difference in the titers of antibodies against CA-I in asymptomatic dogs, dogs with diabetes and/or pancreatitis, or thyroid gland disease, or hepatic disease. Compared with healthy beagles, there was a significant difference in the antibody titer of anti-CA-II IgG in asymptomatic dogs and in those with hepatic disease. There was a significant difference in the antibody titer of anti-BSA IgG between healthy beagles and dogs with hepatic disease.

  9. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors.

    Science.gov (United States)

    Krall, Nikolaus; Pretto, Francesca; Decurtins, Willy; Bernardes, Gonçalo J L; Supuran, Claudiu T; Neri, Dario

    2014-04-14

    Antibody-drug conjugates are a very promising class of new anticancer agents, but the use of small-molecule ligands for the targeted delivery of cytotoxic drugs into solid tumors is less well established. Here, we describe the first small-molecule drug conjugates for the treatment of carbonic anhydrase IX expressing solid tumors. Using ligand-dye conjugates we demonstrate that such molecules can preferentially accumulate inside antigen-positive lesions, have fast targeting kinetics and good tumor-penetrating properties, and are easily accessible by total synthesis. A disulfide-linked drug conjugate with the maytansinoid DM1 as the cytotoxic payload and a derivative of acetazolamide as the targeting ligand exhibited a potent antitumor effect in SKRC52 renal cell carcinoma in vivo. It was furthermore superior to sunitinib and sorafenib, both small-molecule standard-of-care drugs for the treatment of kidney cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Screening of a Novel Peptide Targeting the Proteoglycan-Like Region of Human Carbonic Anhydrase IX

    Directory of Open Access Journals (Sweden)

    Shoaib Rana

    2013-11-01

    Full Text Available The extracellular domain of human carbonic anhydrase IX (CA IX is extended by a proteoglycan-like region (PGLR. The aim of the present study was the development of novel molecules with specificity for PGLR, which may be used for tumor targeting and imaging. PGLR was chemically synthesized, and phage display biopanning was performed. The identified ligand PGLR-P1 was labeled with 125I and characterized for target binding and metabolic stability. In vitro characterization included kinetic, competition, and internalization studies on CA IX–positive renal cell carcinoma SKRC 52 cells. The CA IX–negative cell lines HEK293 wt and BxPC3 were used as negative controls. In vitro binding experiments revealed an increasing affinity of 125I-PGLR-P1 to SKRC 52 cells but not to negative control HEK293 wt and BxPC3 cells. Internalization studies indicated an exclusive cell membrane binding. Biodistribution analysis demonstrated a higher accumulation in SKRC 52 tumors than in most normal tissues after perfusion. In vivo blocking led to a significant decrease in tumor uptake. Our findings indicate that PGLR-P1 is a promising lead structure for the development of new peptide-based ligands targeting the PGLR of CA IX and reveal challenges that need to be considered for peptide-related molecular imaging.

  11. Screening of a novel peptide targeting the proteoglycan-like region of human carbonic anhydrase IX.

    Science.gov (United States)

    Rana, Shoaib; Nissen, Felix; Lindner, Thomas; Altmann, Annette; Mier, Walter; Debus, Juergen; Haberkorn, Uwe; Askoxylakis, Vasileios

    2013-01-01

    The extracellular domain of human carbonic anhydrase IX (CA IX) is extended by a proteoglycan-like region (PGLR). The aim of the present study was the development of novel molecules with specificity for PGLR, which may be used for tumor targeting and imaging. PGLR was chemically synthesized, and phage display biopanning was performed. The identified ligand PGLR-P1 was labeled with 125I and characterized for target binding and metabolic stability. In vitro characterization included kinetic, competition, and internalization studies on CA IX-positive renal cell carcinoma SKRC 52 cells. The CA IX-negative cell lines HEK293 wt and BxPC3 were used as negative controls. In vitro binding experiments revealed an increasing affinity of 125I-PGLR-P1 to SKRC 52 cells but not to negative control HEK293 wt and BxPC3 cells. Internalization studies indicated an exclusive cell membrane binding. Biodistribution analysis demonstrated a higher accumulation in SKRC 52 tumors than in most normal tissues after perfusion. In vivo blocking led to a significant decrease in tumor uptake. Our findings indicate that PGLR-P1 is a promising lead structure for the development of new peptide-based ligands targeting the PGLR of CA IX and reveal challenges that need to be considered for peptide-related molecular imaging.

  12. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma

    Science.gov (United States)

    Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408

  13. Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion.

    Science.gov (United States)

    Arechederra, Robert L; Waheed, Abdul; Sly, William S; Supuran, Claudiu T; Minteer, Shelley D

    2013-03-15

    Obesity is quickly becoming an increasing problem in the developed world. One of the major fundamental causes of obesity and diabetes is mitochondria dysfunction due to faulty metabolic pathways which alter the metabolic substrate flux resulting in the development of these diseases. This paper examines the role of mitochondrial carbonic anhydrase (CA) isozymes in the metabolism of pyruvate, acetate, and succinate when specific isozyme inhibitors are present. Using a sensitive electrochemical approach of wired mitochondria to analytically measure metabolic energy conversion, we determine the resulting metabolic difference after addition of an inhibitory compound. We found that certain sulfonamide analogues displayed broad spectrum inhibition of metabolism, where others only had significant effect on some metabolic pathways. Pyruvate metabolism always displayed the most dramatically affected metabolism by the sulfonamides followed by fatty acid metabolism, and then finally succinate metabolism. This allows for the possibility of using designed sulfonamide analogues to target specific mitochondrial CA isozymes in order to subtly shift metabolism and glucogenesis flux to treat obesity and diabetes.

  14. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    Science.gov (United States)

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  15. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.

    Science.gov (United States)

    Zubrienė, Asta; Smirnovienė, Joana; Smirnov, Alexey; Morkūnaitė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Juozapaitienė, Vaida; Norvaišas, Povilas; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2015-10-01

    Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cloning, characterization and sulfonamide inhibition studies of an α-carbonic anhydrase from the living fossil sponge Astrosclera willeyana.

    Science.gov (United States)

    Ohradanova, Anna; Vullo, Daniela; Pastorekova, Silvia; Pastorek, Jaromir; Jackson, Daniel J; Wörheide, Gert; Supuran, Claudiu T

    2012-02-15

    The α-carbonic anhydrase (CA, EC 4.2.1.1) Astrosclerin-3 previously isolated from the living fossil sponge Astrosclera willeyana (Jackson et al., Science 2007, 316, 1893), was cloned, kinetically characterized and investigated for its inhibition properties with sulfonamides and sulfamates. Astrosclerin-3 has a high catalytic activity for the CO(2) hydration reaction to bicarbonate and protons (k(cat) of 9.0×10(5) s(-1) and k(cat)/K(m) of 1.1×10(8) M(-1) × s(-1)), and is inhibited by various aromatic/heterocyclic sulfonamides and sulfamates with inhibition constants in the range of 2.9 nM-8.85 μM. Astrosclerin, and the human isoform CA II, display similar kinetic properties and affinities for sulfonamide inhibitors, despite more than 550 million years of independent evolution. Because Astrosclerin-3 is involved in biocalcification, the inhibitors characterized here may be used to gain insights into such processes in other metazoans.

  17. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties.

    Science.gov (United States)

    Ceruso, Mariangela; Carta, Fabrizio; Osman, Sameh M; Alothman, Zeid; Monti, Simona Maria; Supuran, Claudiu T

    2015-08-01

    A series of new Schiff bases derived from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide containing either a hydrophobic or a hydrophilic tail, have been investigated as inhibitors of three β-carbonic anhydrases (CA, EC 4.2.1.1) from three different microorganisms. Their antifungal, antibacterial and antiprotozoan activities have been determined against the pathogenic fungus Cryptococcus neoformans, the bacterial pathogen Brucella suis and the protozoan parasite Leishmania donovani chagasi, responsible for Leishmaniasis. The results of these inhibition studies show that all three enzymes were efficiently inhibited by the Schiff base sulfonamides with KI values in the nanomolar or submicromolar range, depending on the nature of the tail, coming from the aryl/heteroaryl moiety present in the starting aldehyde employed in the synthesis. Furthermore, the compounds hereby investigated revealed high β-CAs selectivity over the ubiquitous, physiologically relevant and off-target human isoforms (CA I and II) and to be more potent as antifungal and antibacterial than as antiprotozoan potential drugs.

  18. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi.

    Science.gov (United States)

    Alafeefy, Ahmed M; Ceruso, Mariangela; Al-Jaber, Nabila A; Parkkila, Seppo; Vermelho, Alane Beatriz; Supuran, Claudiu T

    2015-01-01

    The protozoan parasite Trypanosoma cruzi is the agent responsible for trypanosomiasis (Chagas disease) in humans and other animals. It has been recently reported that this pathogen encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), denominated TcCA, which was shown to be crucial for its life cycle. Inhibition studies of a class of 4-oxoquinazoline containing a benzensulfonamide moiety and their 4-thioxo bioisosteres against the protozoan enzyme TcCA are described here. Most of 4-oxoquinazoline sulfonamides showed nanomolar TcCA inhibition activity with K(I)s in the same order of magnitude of acetazolamide (AAZ), whereas their thioxo bioisosters showed moderate anti-Trypanosoma CA potency with K(I)s in the micromolar range. The discovery of compounds incorporating a 4-oxoquinazoline ring as a low-nanomolar TcCA inhibitor is quite promising and it may be useful for developing anti-Trypanosoma agents with a novel mechanism of action compared to the clinically used drugs (such as benznidazole, nifurtimox) for which significant resistance and serious adverse effects due to their high-toxicity appeared.

  19. The importance of carbonic anhydrase II in red blood cells during exposure of chicken embryos to CO2.

    Science.gov (United States)

    Everaert, N; Willemsen, H; Hulikova, A; Brown, H; Decuypere, E; Swietach, P; Bruggeman, V

    2010-07-31

    The importance of carbonic anhydrase (CA) during exposure of chicken embryos to CO(2) during the second half of incubation was investigated. The protein abundance and activity of CAII in erythrocytes was significantly higher in CO(2)-exposed embryos compared to normal conditions. Daily injections of acetazolamide (ATZ), an inhibitor of CA, increased blood P(CO2) and decreased blood pH in both control and CO(2)-incubated embryos. ATZ increased blood bicarbonate concentration in embryos exposed to normal atmosphere and in day-12 embryos exposed to high CO(2). The tendency of an increased blood potassium concentration in ATZ-injected embryos under standard atmospheric conditions might indicate that protons were exchanged with intracellular potassium. However, there was no evidence for such an exchange in CO(2)-incubated ATZ-treated embryos. This study shows for the first time that chicken embryos adapt to CO(2) during the second half of incubation by increasing CAII protein expression and function in red blood cells. This response may serve to "buffer" elevated CO(2) levels.

  20. Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives.

    Science.gov (United States)

    Fidan, İsmail; Salmas, Ramin Ekhteiari; Arslan, Mehmet; Şentürk, Murat; Durdagi, Serdar; Ekinci, Deniz; Şentürk, Esra; Coşgun, Sedat; Supuran, Claudiu T

    2015-12-01

    The inhibition of two human cytosolic carbonic anhydrase isozymes I and II, with some novel glycine and phenylalanine sulfonamide derivatives were investigated. Newly synthesized compounds G1-4 and P1-4 showed effective inhibition profiles with KI values in the range of 14.66-315μM for hCA I and of 18.31-143.8μM against hCA II, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico docking studies were applied. Atomistic molecular dynamic simulations were performed for docking poses which utilize to illustrate the inhibition mechanism of used inhibitors into active site of CAII. These sulfonamide containing compounds generally were competitive inhibitors with 4-nitrophenylacetate as substrate. Some investigated compounds here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide, sulfanilamide or mafenide and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.

  1. Design, synthesis and evaluation of (18)F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging.

    Science.gov (United States)

    Zhang, Zhengxing; Lau, Joseph; Zhang, Chengcheng; Colpo, Nadine; Nocentini, Alessio; Supuran, Claudiu T; Bénard, François; Lin, Kuo-Shyan

    2017-12-01

    Carbonic anhydrase IX (CA-IX) is a marker for tumor hypoxia, and its expression is negatively correlated with patient survival. CA-IX represents a potential target for eliminating hypoxic cancers. We synthesized fluorinated cationic sulfonamide inhibitors 1-3 designed to target CA-IX. The binding affinity for CA-IX ranged from 0.22 to 0.96 μM. We evaluated compound 2 as a diagnostic PET imaging agent. Compound 2 was radiolabeled with (18)F in 10 ± 4% decay-corrected radiochemical yield with 85.1 ± 70.3 GBq/μmol specific activity and >98% radiochemical purity. (18)F-labeled 2 was stable in mouse plasma at 37 °C after 1 h incubation. PET/CT imaging was conducted at 1 h post-injection in a human colorectal cancer xenograft model. (18)F-labeled 2 cleared through hepatobiliary and renal pathways. Tumor uptake was approximately 0.41 ± 0.06% ID/g, with a tumor-to-muscle ratio of 1.99 ± 0.25. Subsequently, tumor xenografts were visualized with moderate contrast. This study demonstrates the use of a cationic motif for conferring isoform selectively for CA-IX imaging agents.

  2. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors.

    Science.gov (United States)

    Sedlakova, Olga; Svastova, Eliska; Takacova, Martina; Kopacek, Juraj; Pastorek, Jaromir; Pastorekova, Silvia

    2014-01-08

    Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons, and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX) is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades) and converting intracellular signals to extracellular effects on adhesion, proteolysis, and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia and/or acidosis.

  3. Physiological function, diversity of carbonic anhydrase and its application%碳酸酐酶的生理功能、多样性及其在CO2捕集中的应用

    Institute of Scientific and Technical Information of China (English)

    李春秀; 姜笑辰; 邱勇隽; 许建和

    2013-01-01

    碳酸酐酶(carbonic anhydrase)作为一种活性中心含有锌离子的金属酶,能够可逆催化CO2生成碳酸氢盐的水合反应,该反应在生物体内承担着多样的生理学功能,具有高度的生物学意义.除广泛存在于真核生物以外,该酶在淡水、海水、嗜常温、嗜热、厌氧、好氧、致病、产酸、自养、异养等多种原核微生物中也有广泛的分布,并参与光合作用、呼吸作用和以CO2作为底物的反应,维持生理pH以及离子转运等生理过程.近年来,随着温室效应的日益加剧,生物固定CO2作为该酶的一种全新应用引起了研究者的广泛关注.回顾了碳酸酐酶作为催化剂参与CO2固定过程的历史、现状和最新发现,同时展望了未来应用的趋势.%As a metalloenzyme combining a Zn2+ at its active centers,carbonic anhydrase catalyze reaction between CO2 and H2O reversibly, the reaction can undertakes various physiological functions in organisms. Carbonic anhydrase can exist in the eukaryote, and in diversity of prokaryotes. Evidence for the presence of carbonic anhydrase is obtained for freshwater, marine, mesophilic, thermophilic, aerobic, anaerobic, pathogenic, symbiotic, acetogenic, autotrophic, heterotrophic, and photosynthetic species. In prokaryotes, carbonic anhydrases are involved in various biochemical and physiological processes, including photosynthesis, respiration, ion transport, and CO2 and bicarbonate balance. While anthropogenic CO2 emission has led to adverse impact on climate and has been implicated in global warming, this enzyme has found a new dimension in the field of biomimetic CO2 sequestration. This paper reviews the research advances on carbonic anhydrase-driven processes for CO2 sequestration research and engineering and, suggests the possible future directions in application.

  4. Exclusive localization of carbonic anhydrase in bacteriocytes of the deep-sea clam Calyptogena okutanii with thioautotrophic symbiotic bacteria.

    Science.gov (United States)

    Hongo, Yuki; Nakamura, Yoshimitsu; Shimamura, Shigeru; Takaki, Yoshihiro; Uematsu, Katsuyuki; Toyofuku, Takashi; Hirayama, Hisako; Takai, Ken; Nakazawa, Masatoshi; Maruyama, Tadashi; Yoshida, Takao

    2013-12-01

    Deep-sea Calyptogena clams harbor thioautotrophic intracellular symbiotic bacteria in their gill epithelial cells. The symbiont fixes CO2 to synthesize organic compounds. Carbonic anhydrase (CA) from the host catalyzes the reaction CO2 + H2O ↔ HCO3(-) + H(+), and is assumed to facilitate inorganic carbon (Ci) uptake and transport to the symbiont. However, the localization of CA in gill tissue remains unknown. We therefore analyzed mRNA sequences, proteins and CA activity in Calyptogena okutanii using expression sequence tag, SDS-PAGE and LC-MS/MS. We found that acetazolamide-sensitive soluble CA was abundantly expressed in the gill tissue of C. okutanii, and the enzyme was purified by affinity chromatography. Mouse monoclonal antibodies against the CA of C. okutanii were used in western blot analysis and immunofluorescence staining of the gill tissues of C. okutanii, which showed that CA was exclusively localized in the symbiont-harboring cells (bacteriocytes) in gill epithelial cells. Western blot analysis and measurement of activity showed that CA was abundantly (26-72% of total soluble protein) detected in the gill tissues of not only Calyptogena clams but also deep-sea Bathymodiolus mussels that harbor thioautotrophic or methanotrophic symbiotic bacteria, but was not detected in a non-symbiotic mussel, Mytilus sp. The present study showed that CA is abundant in the gill tissues of deep-sea symbiotic bivalves and specifically localizes in the cytoplasm of bacteriocytes of C. okutanii. This indicates that the Ci supply process to symbionts in the vacuole (symbiosome) in bacteriocytes is essential for symbiosis.

  5. Biochemical characterization of the native α-carbonic anhydrase purified from the mantle of the Mediterranean mussel, Mytilus galloprovincialis.

    Science.gov (United States)

    Perfetto, Rosa; Del Prete, Sonia; Vullo, Daniela; Sansone, Giovanni; Barone, Carmela; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2017-12-01

    A α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mollusk Mytilus galloprovincialis. As in most mollusks, this α-CA is involved in the biomineralization processes leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular weight of 50 kDa, which is roughly two times higher than that of a monomeric α-class enzyme. Thus, Mytilus galloprovincialis α-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis α-CA sequence contained the three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus galloprovincialis α-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat = 4.1 × 10(5) s(-1) and kcat/Km of 3.6 × 10(7) M(-1) × s(-1). The enzyme activity was poorly inhibited by the sulfonamide acetazolamide, with a KI of 380 nM. This study is one of the few describing in detail the biochemical characterization of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes, their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.

  6. Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam.

    Science.gov (United States)

    Migliardini, Fortunato; De Luca, Viviana; Carginale, Vincenzo; Rossi, Mosè; Corbo, Pasquale; Supuran, Claudiu T; Capasso, Clemente

    2014-02-01

    The biomimetic approach represents an interesting strategy for carbon dioxide (CO2) capture, offering advantages over other methods, due to its specificity for CO2 and its eco-compatibility, as it allows concentration of CO2 from other gases, and its conversion to water soluble ions. This approach uses microorganisms capable of fixing CO2 through metabolic pathways or via the use of an enzyme, such as carbonic anhydrase (CA, EC 4.2.1.1). Recently, our group cloned and purified a novel bacterial α-CA, named SspCA, from the thermophilic bacteria, Sulfurihydrogenibium yellowstonense YO3AOP1 living in hot springs at temperatures of up to 110 °C. This enzyme showed an exceptional thermal stability, retaining its high catalytic activity for the CO2 hydration reaction even after being heated at 70 °C for several hours. In the present paper, the SspCA was immobilized within a polyurethane (PU) foam. The immobilized enzyme was found to be catalytically active and showed a long-term stability. A bioreactor containing the "PU-immobilized enzyme" (PU-SspCA) as shredded foam was used for experimental tests aimed to verify the CO2 capture capability in conditions close to those of a power plant application. In this bioreactor, a gas phase, containing CO2, was put into contact with a liquid phase under conditions, where CO2 contained in the gas phase was absorbed and efficiently converted into bicarbonate by the extremo-α-CA.

  7. Gene fusions with human carbonic anhydrase II for efficient expression and rapid single-step recovery of recombinant proteins: expression of the Escherichia coli F1-ATPase epsilon subunit.

    Science.gov (United States)

    Van Heeke, G; Shaw, R; Schnizer, R; Couton, J M; Schuster, S M; Wagner, F W

    1993-08-01

    A new expression vector was constructed which allows the overproduction in Escherichia coli of tripartite proteins consisting of human carbonic anhydrase isozyme II (hCAII), a peptide linker containing an enterokinase cleavage site, and a target protein of interest. Carbonic anhydrase is soluble and stable in E. coli and serves as a highly specific purification tag in the recovery of the fusion protein by a single affinity chromatography step. The enterokinase cleavage site was engineered into the construct to allow accurate and efficient release of the target protein. To demonstrate the practical value of this vector, the E. coli F1-ATPase epsilon subunit was expressed as a fusion with hCAII. After a single purification step, biologically active recombinant E. coli F1-ATPase epsilon subunit was recovered following proteolytic removal of the hCAII moiety.

  8. 小新月菱形藻碳酸酐酶活性和光合作用对高盐度胁迫的响应%Response of carbonic anhydrase activity and photosynthesis to high salinity stress in Nitzschia closterium f.minutissima

    Institute of Scientific and Technical Information of China (English)

    余锦兰; 夏建荣; 邹永东

    2011-01-01

    Salinity is an important ecological factor in the algal growth.Water loss would lead to the increase of salinity in mass culture of fish food diatom, which could affect the algal photosynthesis and inorganic carbon utilization.In this paper, impacts of salinity on the growth, carbonic anhydrase activity, photosynthesis (P-I curve )and chlorophyll a fluorescence parameters in Nitzschia closterium f.minutissima were investigated to explore the photosynthetic mechanism of the diatom under the high salinity.The results showed that the specific growth rate when Nitzschia closterium f.minutissima was grown in high salinity (70)was decreased by 59.2% compared with the normal seawater, but it can maintain the growth to a certain degree in salinity up to 60 - 70, which suggested that Nitzschia closterium f.minutissima had a stronger tolerance to high salinity.The extracellular carbonic anhydrase activity which was measured by an electrometric method was reduced by 66.3%, and Chl.a and Chl.c contents which was determined spectrophotometrically were also decreased by 50.0% and 45.7% in high salinity (70).The extracellular CA activity was inhibited in high salinity environment which showed that capacity of HCO3- catalyzed by extracellular CA into CO2 declined, and high salinity stress can damage the Chl.a/b light harvesting complex (LHCII) and reaction-center complex and affect pigment synthesis.The chlorophyll a fluorescence parameters were measured by saturation pulse, and the maximal efficiency of PS Ⅱ photochemistry ( Fv/Fm ),actual photochemical efficiency of PS Ⅱ (Yield), photochemical quenching co-efficient (qP)decreased,whereas non-photochemical quenching co-efficient (qN)increased when the algae were grown in high salinity.These results showed that the high salinity stress would damage the PS Ⅱ reaction center, inhibit primary reaction of photosynthesis as well as the process of photosynthetic electron transport.The photosynthetic rate in the varied

  9. Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

    Science.gov (United States)

    Reibring, Claes-Göran; El Shahawy, Maha; Hallberg, Kristina; Kannius-Janson, Marie; Nilsson, Jeanette; Parkkila, Seppo; Sly, William S.; Waheed, Abdul; Linde, Anders; Gritli-Linde, Amel

    2014-01-01

    Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for future single or

  10. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Institute of Scientific and Technical Information of China (English)

    CHAI Yurong; LU Yumin; WANG Tianyun; HOU Weihong; XUE Lexun

    2006-01-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficientpromoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase (CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics.Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  11. Expression of carbonic anhydrase IX (CAIX) in malignant mesothelioma. An immunohistochemical and immunocytochemical study.

    Science.gov (United States)

    Capkova, L; Koubkova, L; Kodet, R

    2014-01-01

    Malignant mesothelioma is an aggressive tumor with a poor prognosis. Carbonic anhydrase IX (CAIX) is a membranously located metalloenzyme involved in pH homeostasis with influence on regulation of cell proliferation, oncogenesis and tumor progression. Much attention has been paid recently to carboanhydrases and their inhibitors as they offer an opportunity for both developing novel anticancer drugs, as well as diagnostic and prognostic tools. This study was designed to assess the expression of CAIX in malignant pleural and peritoneal mesotheliomas, their benign counterparts, and in pleural effusions from patients with malignant mesothelioma, metastatic carcinoma or a benign disease. Tissue blocks from 51 malignant mesotheliomas of pleura (47 cases; 41 epithelioid, 2 biphasic, 4 sarcomatoid) and peritoneum (4 cases; all epithelioid), 14 cases with normal or reactive pleural tissue, and 19 cell blocks were analyzed. CAIX expression was determined using immunohistochemistry and its membranous immunoreactivity was semiquantitatively evaluated. Specimens were divided into five subgroups according to the staining pattern and intensity.Overall, 92.2% (47/51) of mesotheliomas expressed CAIX. All epithelioid mesotheliomas showed CAIX positivity, which was predominantly strong and diffuse (73.3%, 33/45). Sarcomatoid mesotheliomas and sarcomatoid areas in biphasic mesotheliomas were negative. A strong diffuse staining was observed in all cases of normal mesothelia. In pleural effusions, CAIX expression was observed in malignant cells as well as in benign mesothelial cells. In conclusion, CAIX is expressed virtually in all mesotheliomas except for sarcomatoid subtype, and in benign mesothelia. There are probably more mechanisms of CAIX overexpression than hypoxia-induced in malignant mesothelioma, with the influence of other tissue specific transcription or growth factors depending on the type of the cell lineage. CAIX immunoreactivity is not a reliable diagnostic marker for

  12. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Sean Carlin

    Full Text Available BACKGROUND: Carbonic anhydrase IX (CAIX is a membrane spanning protein involved in the enzymatic regulation of tumor acid-base balance. CAIX has been shown to be elevated in a number of hypoxic tumor types. The purpose of this study was to determine the efficiency of intact and IgG fragments of cG250 to target CAIX in vivo in a hypoxic tumor model. METHODOLOGY/PRINCIPAL FINDINGS: Conventional biodistribution studies were performed with (111In-DO3A-cG250, (111In-DO3A-F(ab'(2-cG250 and (111In-DO3A-Fab-cG250. Additional ex vivo analysis of the tumor was performed with markers for tumor hypoxia, blood perfusion and endogenous CAIX expression. All four data sets were digitally correlated to determine the optimal agent for determining hypoxia in a HT29 colon cancer xenograft. The HT29 human colorectal tumor xenografts show strong CAIX expression in hypoxic areas of poor blood perfusion. The intact IgG had an initial high focal uptake at the periphery of these hypoxic regions and penetration into the areas of highest CAIX expression over the 7-day study period. The lower molecular weight antibody fragments had a faster uptake into areas of high CAIX expression, but had a much lower absolute uptake at the optimal imaging times. CONCLUSIONS/SIGNIFICANCE: For the clinical detection of hypoxia induced CAIX using cG250 antibody based agents, imaging with the intact IgG at 7 days post injection would allow for the most sensitive and accurate detection of CAIX.

  13. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.

    Science.gov (United States)

    Li, Yan-Ping; Tang, Xiao; Wu, Wei; Xu, Yang; Huang, Zhi-Bing; He, Qing-Hua

    2015-01-01

    Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.

  14. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation.

    Directory of Open Access Journals (Sweden)

    Claes-Göran Reibring

    Full Text Available Carbonic anhydrases (CAs play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for

  15. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation.

    Science.gov (United States)

    Reibring, Claes-Göran; El Shahawy, Maha; Hallberg, Kristina; Kannius-Janson, Marie; Nilsson, Jeanette; Parkkila, Seppo; Sly, William S; Waheed, Abdul; Linde, Anders; Gritli-Linde, Amel

    2014-01-01

    Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for future single or

  16. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  17. Characterization of a Mesorhizobium loti α-Type Carbonic Anhydrase and Its Role in Symbiotic Nitrogen Fixation▿

    OpenAIRE

    2009-01-01

    Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an α-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically character...

  18. A review of the pharmacology of carbonic anhydrase inhibitors for the treatment of glaucoma in dogs and cats.

    Science.gov (United States)

    Maślanka, Tomasz

    2015-03-01

    Glaucoma is a heterogeneous group of disorders usually associated with elevated intraocular pressure (IOP), leading to optic nerve damage, retinal ganglion cell death and irreversible vision loss. Therefore, medications that lower IOP are the mainstay of glaucoma therapy. Carbonic anhydrase inhibitors (CAIs) are some of the principal drugs used in the management of canine and feline glaucoma. This paper summarises current knowledge of the mechanism of action of these agents and their effect on IOP in dogs and cats. It also discusses potential harmful side effects of CAIs and presents current opinions about their role and place in the medical management of glaucoma in small animals.

  19. Comparison of the Sulfonamide Inhibition Profiles of the β- and γ-Carbonic Anhydrases from the Pathogenic Bacterium Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    Daniela Vullo

    2017-03-01

    Full Text Available We have cloned, purified, and characterized a β-carbonic anhydrase (CA, EC 4.2.1.1, BpsCAβ, from the pathogenic bacterium Burkholderia pseudomallei, responsible for the tropical disease melioidosis. The enzyme showed high catalytic activity for the physiologic CO2 hydration reaction to bicarbonate and protons, with the following kinetic parameters: kcat of 1.6 × 105 s−1 and kcat/KM of 3.4 × 107 M−1 s−1. An inhibition study with a panel of 38 sulfonamides and one sulfamate—including 15 compounds that are used clinically—revealed an interesting structure–activity relationship for the interaction of this enzyme with these inhibitors. Many simple sulfonamides and clinically used agents such as topiramate, sulpiride, celecoxib, valdecoxib, and sulthiame were ineffective BpsCAβ inhibitors (KI > 50 µM. Other drugs, such as ethoxzolamide, dorzolamide, brinzolamide, zonisamide, indisulam, and hydrochlorothiazide were moderately potent micromolar inhibitors. The best inhibition was observed with benzene-1,3-disulfonamides—benzolamide and its analogs acetazolamide and methazolamide—which showed KI in the range of 185–745 nM. The inhibition profile of BpsCAβ is very different from that of the γ-class enzyme from the same pathogen, BpsCAγ. Thus, identifying compounds that would effectively interact with both enzymes is relatively challenging. However, benzolamide was one of the best inhibitors of both of these CAs with KI of 653 and 185 nM, respectively, making it an interesting lead compound for the design of more effective agents, which may be useful tools for understanding the pathogenicity of this bacterium.

  20. Characterization of a Mesorhizobium loti α-Type Carbonic Anhydrase and Its Role in Symbiotic Nitrogen Fixation▿

    Science.gov (United States)

    Kalloniati, Chrysanthi; Tsikou, Daniela; Lampiri, Vasiliki; Fotelli, Mariangela N.; Rennenberg, Heinz; Chatzipavlidis, Iordanis; Fasseas, Costas; Katinakis, Panagiotis; Flemetakis, Emmanouil

    2009-01-01

    Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an α-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active α-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and δ13C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH3 protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule δ13C abundance suggest the recycling of at least part of the HCO3− produced by CAA1. PMID:19218391

  1. Characterization of a Mesorhizobium loti alpha-type carbonic anhydrase and its role in symbiotic nitrogen fixation.

    Science.gov (United States)

    Kalloniati, Chrysanthi; Tsikou, Daniela; Lampiri, Vasiliki; Fotelli, Mariangela N; Rennenberg, Heinz; Chatzipavlidis, Iordanis; Fasseas, Costas; Katinakis, Panagiotis; Flemetakis, Emmanouil

    2009-04-01

    Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO(2) to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an alpha-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active alpha-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and delta(13)C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH(3) protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule delta(13)C abundance suggest the recycling of at least part of the HCO(3)(-) produced by CAA1.

  2. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA.

  3. Carbonic Anhydrase and Zinc in Plant Physiology Anhidrasa Carbónica y Zinc en Fisiología Vegetal

    Directory of Open Access Journals (Sweden)

    Dalila Jacqueline Escudero-Almanza

    2012-03-01

    Full Text Available Carbonic anhydrase (CA (EC: 2.4.1.1 catalyzes the rapid conversion of carbon dioxide plus water into a proton and the bicarbonate ion (HCO3- that can be found in prokaryotes and higher organisms; it is represented by four different families. Carbonic anhydrase is a metalloenzyme that requires Zn as a cofactor and is involved in diverse biological processes including pH regulation, CO2 transfer, ionic exchange, respiration, CO2 photosynthetic fixation, and stomatal closure. Therefore, the review includes relevant aspects about CA morphology, oligomerization, and structural differences in the active site. On the other hand, we consider the general characteristics of Zn, its geometry, reactions, and physiology. We then consider the CA catalysis mechanism that is carried out by the metal ion and where Zn acts as a cofactor. Zinc deficiency can inhibit growth and protein synthesis, and there is evidence that it reduces the CA content in some plants, which is a relationship addressed in this review. In leaves, CA represents 20.1% of total soluble protein, while it is the second most abundant in the chloroplast after ribulose 1,5-disphosphate carboxylase/oxygenase (RuBisCO. This facilitates the supply of CO2 to the phosphoenolpyruvate carboxylase in C4 and CAM plants and RuBisCO in C3 plants.La anhidrasa carbónica (CA (EC: 4.2.1.1 cataliza la conversión rápida de dióxido de carbono más agua en un protón y el ion bicarbonato (HCO3-; la cual puede encontrarse en procariotas y en organismos superiores y está representada por cuatro familias distintas. La CA es una metaloenzima que requiere Zn como cofactor y está implicada en diversos procesos biológicos, incluyendo la regulación del pH, la transferencia de CO2, intercambio iónico, la respiración, la fijación fotosintética de CO2, y el cierre estomático. Por lo cual, la revisión incluye aspectos relevantes sobre la morfología de laAC, su oligomerización y diferencias estructurales en el

  4. Effect of high concentration of inert cosolutes on the refolding of an enzyme: carbonic anhydrase B in sucrose and ficoll 70.

    Science.gov (United States)

    Monterroso, Begoña; Minton, Allen P

    2007-11-16

    The kinetics of refolding of carbonic anhydrase II following transfer from a buffer containing 5 m guanidinium chloride to a buffer containing 0.5 m guanidinium chloride were studied by measuring the time-dependent recovery of enzymatic activity. Experiments were carried out in buffer containing concentrations of two "inert" cosolutes, sucrose and Ficoll 70, a sucrose polymer, at concentrations up to 150 g/liter. Data analysis indicates that both cosolutes significantly accelerate the rate of refolding to native or compact near-native conformations, but decrease the fraction of catalytically active enzyme recovered in the limit of long time. According to the simplest model that fits the data, both cosolutes accelerate a competing side reaction yielding inactive compact species. Acceleration of the side reaction by Ficoll is significantly greater than that of sucrose at equal w/v concentrations.

  5. Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Ferraroni, Marta; Del Prete, Sonia; Vullo, Daniela; Capasso, Clemente; Supuran, Claudiu T

    2015-12-01

    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate (hydrogen carbonate) and a proton. CAs have been extensively investigated owing to their involvement in numerous physiological and pathological processes. Currently, CA inhibitors are widely used as antiglaucoma, anticancer and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi and bacteria has emerged as a new research direction. In this article, the cloning and kinetic characterization of the β-CA from Vibrio cholerae (VchCAβ) are reported. The X-ray crystal structure of this new enzyme was solved at 1.9 Å resolution from a crystal that was perfectly merohedrally twinned, revealing a tetrameric type II β-CA with a closed active site in which the zinc is tetrahedrally coordinated to Cys42, Asp44, His98 and Cys101. The substrate bicarbonate was found bound in a noncatalytic binding pocket close to the zinc ion, as reported for a few other β-CAs, such as those from Escherichia coli and Haemophilus influenzae. At pH 8.3, the enzyme showed a significant catalytic activity for the physiological reaction of the hydration of CO2 to bicarbonate and protons, with the following kinetic parameters: a kcat of 3.34 × 10(5) s(-1) and a kcat/Km of 4.1 × 10(7) M(-1) s(-1). The new enzyme, on the other hand, was poorly inhibited by acetazolamide (Ki of 4.5 µM). As this bacterial pathogen encodes at least three CAs, an α-CA, a β-CA and a γ-CA, these enzymes probably play an important role in the life cycle and pathogenicity of Vibrio, and it cannot be excluded that interference with their activity may be exploited therapeutically to obtain antibiotics with a different mechanism of action.

  6. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.

    Science.gov (United States)

    Tachibana, Masaaki; Allen, Andrew E; Kikutani, Sae; Endo, Yuri; Bowler, Chris; Matsuda, Yusuke

    2011-09-01

    It is believed that intracellular carbonic anhydrases (CAs) are essential components of carbon concentrating mechanisms in microalgae. In this study, putative CA-encoding genes were identified in the genome sequences of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Subsequently, the subcellular localizations of the encoded proteins were determined. Nine and thirteen CA sequences were found in the genomes of P. tricornutum and T. pseudonana, respectively. Two of the β-CA genes in P. tricornutum corresponded to ptca1 and ptca2 identified previously. Immunostaining transmission electron microscopy of a PtCA1:YFP fusion expressed in the cells of P. tricornutum clearly showed the localization of PtCA1 within the central part of the pyrenoid structure in the chloroplast. Besides these two β-CA genes, P. tricornutum likely contains five α- and two γ-CA genes, whereas T. pseudonana has three α-, five γ-, four δ-, and one ζ-CA genes. Semi-quantitative reverse transcription PCR performed on mRNA from the two diatoms grown in changing light and CO(2) conditions revealed that levels of six putative α- and γ-CA mRNAs in P. tricornutum did not change between cells grown in air-level CO(2) and 5% CO(2). However, mRNA levels of one putative α-CA gene, CA-VII in P. tricornutum, were reduced in the dark compared to that in the light. In T. pseudonana, mRNA accumulation levels of putative α-CA (CA-1), ζ-CA (CA-3) and δ-CA (CA-7) were analyzed and all levels found to be significantly reduced when cells were grown in 0.16% CO(2). Intercellular localizations of eight putative CAs were analyzed by expressing GFP fusion in P. tricornutum and T. pseudonana. In P. tricornutum, CA-I and II localized in the periplastidial compartment, CA-III, VI, VII were found in the chloroplast endoplasmic reticulum, and CA-VIII was localized in the mitochondria. On the other hand, T. pseudonana CA-1 localized in the stroma and CA-3 was found in the periplasm

  7. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    Science.gov (United States)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  8. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Barker, Harlan; Hytönen, Vesa P; Tolvanen, Martti E E; Parkkila, Seppo

    2014-08-29

    The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates. Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that

  9. Carbonic Anhydrase I Is Recognized by an SOD1 Antibody upon Biotinylation of Human Spinal Cord Extracts

    Directory of Open Access Journals (Sweden)

    Robert Bowser

    2010-10-01

    Full Text Available We recently reported the presence of a novel 32 kDa protein immunoreactive to a copper, zinc superoxide dismutase (SOD1 antibody within the spinal cord of patients with amyotrophic lateral sclerosis (ALS. This unique protein species was generated by biotinylation of spinal cord tissue extracts to detect conformational changes of SOD1 specific to ALS patients. To further characterize this protein, we enriched the protein by column chromatography and determined its protein identity by mass spectrometry. The protein that gave rise to the 32 kDa species upon biotinylation was identified as carbonic anhydrase I (CA I. Biotinylation of CA I from ALS spinal cord resulted in the generation of a novel epitope recognized by the SOD1 antibody. This epitope could also be generated by biotinylation of extracts from cultured cells expressing human CA I. Peptide competition assays identified the amino acid sequence in carbonic anhydrase I responsible for binding the SOD1 antibody. We conclude that chemical modifications used to identify pathogenic protein conformations can lead to the identification of unanticipated proteins that may participate in disease pathogenesis.

  10. The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors.

    Science.gov (United States)

    Alterio, Vincenzo; Pan, Peiwen; Parkkila, Seppo; Buonanno, Martina; Supuran, Claudiu T; Monti, Simona M; De Simone, Giuseppina

    2014-07-01

    Carbonic anhydrase isoform XIV (CA XIV) is the last member of the human (h) CA family discovered so far, being localized in brain, kidneys, colon, small intestine, urinary bladder, liver, and spinal cord. It has recently been described as a possible drug target for treatment of epilepsy, some retinopathies as well as some skin tumors. Human carbonic anhydrase (hCA) XIV is a membrane-associated protein consisting of an N-terminal extracellular domain, a putative transmembrane region, and a small cytoplasmic tail. In this article, we report the expression, purification, and the crystallographic structure of the entire extracellular domain of this enzyme. The analysis of the structure revealed the typical α-CA fold, in which a 10-stranded β-sheet forms the core of the molecule, while the comparison with all the other membrane associated isoforms (hCAs IV, IX, and XII) allowed to identify the diverse oligomeric arrangement and the sequence and structural differences observed in the region 127-136 as the main factors to consider in the design of selective inhibitors for each one of the membrane associated α-CAs.

  11. Microwave-assisted extraction, HPLC analysis, and inhibitory effects on carbonic anhydrase I, II, VA, and VII isoforms of 14 blueberry Italian cultivars.

    Science.gov (United States)

    Mollica, Adriano; Locatelli, Marcello; Macedonio, Giorgia; Carradori, Simone; Sobolev, Anatoly P; De Salvador, Roberto F; Monti, Simona M; Buonanno, Martina; Zengin, Gokhan; Angeli, Andrea; Supuran, Claudiu T

    2016-01-01

    The multi-component fingerprint and the biological evaluation of plant-derived material are indispensable for the pharmaceutical field, in food quality control procedures, and in all plant-based products. We investigated the quantitative content of biologically active compounds (anthocyanins and chlorogenic acid) of microwave-assisted blueberry extracts from 14 different Italian cultivars, using validated high-performance liquid chromatography-photodiode array detector (HPLC-PDA) method and routinely instrument configuration. The carbonic anhydrase (CA, EC 4.2.1.1) inhibition profiles against several pharmacologically relevant CA isoforms of blueberry extracts and some bioactive compounds were also investigated. The various cultivars showed a highly variable content in anthocyanins and chlorogenic acid, and their CA inhibitory effects were also highly variable. Overall these data prove that antioxidant natural products found in blueberries may be useful for designing pharmacological agents in which various CAs are involved, e.g., antiobesity, antitumor, or anticonvulsants agents.

  12. Design and Synthesis of Novel Nonsteroidal Anti-Inflammatory Drugs and Carbonic Anhydrase Inhibitors Hybrids (NSAIDs-CAIs) for the Treatment of Rheumatoid Arthritis.

    Science.gov (United States)

    Bua, Silvia; Di Cesare Mannelli, Lorenzo; Vullo, Daniela; Ghelardini, Carla; Bartolucci, Gianluca; Scozzafava, Andrea; Supuran, Claudiu T; Carta, Fabrizio

    2017-02-09

    We report the synthesis of a series of hybrid compounds incorporating 6- and 7-substituted coumarins (carbonic anhydrase, CA inhibitors) derivatized with clinically used NSAIDs (indomethacin, sulindac, ketoprofen, ibuprofen, diclofenac, ketorolac, etc., cyclooxygenase inhibitors) as agents for the management of rheumatoid arthritis (RA). Most compounds were effective in inhibiting the RA overexpressed hCA IX and XII, with KI values in the low nanomolar-subnanomolar ranges. The antihyperalgesic activity of such compounds was assessed by means of the paw-pressure and incapacitance tests using an in vivo RA model. Among all tested compounds, the 7-coumarine hybrid with ibuprofen showed potent and persistent antihyperalgesic effect up to 60 min after administration.

  13. The impact of Carbonic Anhydrase on the partitioning of leaf and soil CO18O and COS gas exchange across scales

    Science.gov (United States)

    Wingate, L.; Wehr, R. A.; Commane, R.; Ogee, J.; Sauze, J.; Jones, S.; Launois, T.; Wohl, S.; Whelan, M.; Meredith, L. K.; Genty, B.; Gimeno, T.; Kesselmeier, J.; Bosc, A.; Cuntz, M.; Munger, J. W.; Nelson, D. D.; Saleska, S. R.; Wofsy, S. C.; Zahniser, M. S.

    2015-12-01

    Photosynthesis (GPP), the largest CO2 flux to the land surface, is currently estimated with considerable uncertainty at between 100-175 Pg C yr-1. More robust estimates of global GPP could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the oxygen isotopic composition (δ18O) of atmospheric CO2. However, quantifying GPP using these tracers hinges on a better understanding of how soil micro-organisms modify the atmospheric concentrations of CO18O and COS at large scales. In particular, understanding better the role and activity of the enzyme Carbonic Anhydrase (CA) in soil micro-organisms is critical. We present novel datasets and model simulations demonstrating the progress in the collection of multi-tracer field datasets and how a new generation of multi-tracer land surface models can provide valuable constraints on photosynthesis and respiration across scales.

  14. Inhibition of bacterial carbonic anhydrases and zinc proteases: from orphan targets to innovative new antibiotic drugs.

    Science.gov (United States)

    Supuran, C T

    2012-01-01

    Zinc-containing enzymes, such as carbonic anhydrases (CAs) and metalloproteases (MPs) play critical functions in bacteria, being involved in various steps of their life cycle, which are important for survival, colonization, acquisition of nutrients for growth and proliferation, facilitation of dissemination, invasion and pathogenicity. The development of resistance to many classes of clinically used antibiotics emphasizes the need of new antibacterial drug targets to be explored. There is a wealth of data regarding bacterial CAs and zinc MPs present in many pathogenic species, such as Neisseria spp., Helycobacter pylori Escherichia coli, Mycobacterium tuberculosis, Brucella spp., Streptococcus pneumoniae, Salmonella enterica, Haemophilus influenzae, Listeria spp, Vibrio spp., Pseudomonas aeruginosa, Legionella pneumophila, Streptomyces spp., Clostridium spp., Enterococcus spp., etc. Some of these enzymes have been cloned, purified and characterized by crystallographic techniques. However, for the moment, few potent and specific inhibitors for bacterial MPs have been reported except for Clostridium histolyticum collagenase, botulinum and tetanus neurotoxin and anthrax lethal factor, which will be reviewed in this article. Bacteria encode α-,β-, and/or γ-CA families, but up to now only the first two classes have been investigated in some detail in different species. The α-CAs from Neisseria spp. and H. pylori as well as the β-class enzymes from E. coli, H. pylori, M. tuberculosis, Brucella spp., S. pneumoniae, S. enterica and H. influenzae have been cloned and characterized. The catalytic/inhibition mechanisms of these CAs are well understood as X-ray crystal structures are available for some of them, but no adducts of these enzymes with inhibitors have been characterized so far. In vitro and in vivo studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates have been reported. Only for Neisseria spp., H. pylori, B. suis and S

  15. Carbonic Anhydrase II: A Model System for Artificial Copper Center Design, Protein-guided Cycloadditions, Tethering Screenings and Fragment-based Lead Discovery

    OpenAIRE

    Schulze Wischeler, Johannes

    2010-01-01

    In this thesis a variety of quite different fragment-based lead discovery approaches have been applied to the target protein carbonic anhydrase II. The different projects were strongly supported and methodologically tailored towards protein crystallography; a method which is currently emerging as a routine analytical tool. This maturation mainly results from improved radiation sources and enhanced computing power. About 200-250 da...

  16. Effect of tyrosine kinase inhibitor treatment of renal cell carcinoma on the accumulation of carbonic anhydrase IX-specific chimeric monoclonal antibody cG250

    NARCIS (Netherlands)

    Oosterwijk-Wakka, J.C.; Kats-Ugurlu, G.; Leenders, W.P.J.; Kiemeney, L.A.L.M.; Old, L.J.; Mulders, P.F.A.; Oosterwijk, E.

    2011-01-01

    OBJECTIVE: To investigate the effect of three different tyrosine kinase inhibitors (TKIs) on the biodistribution of chimeric monoclonal antibody (mAb) cG250, which identifies carbonic anhydrase IX (CAIX), in nude mice bearing human renal cell carcinoma (RCC) xenografts. TKIs represent the best, but

  17. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

    2014-09-01

    Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.

  18. Rate-based modelling and validation of a pilot absorber using MDEA enhanced with carbonic anhydrase (CA)

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Gladis, Arne; Woodley, John

    2017-01-01

    The great paradox of the 21st century is that we must meet the increasing global demand for energy and products while simultaneously mitigating the climate change. If both these criteria are to be met, carbon capture and storage is an imperative technology for sustainable energy infrastructure...... development. Post-combustion capture is a mature capture technology, however, to make it economically attractive, design of innovative solvents and process optimization is of crucial importance. An example for promising solvent is MDEA enhanced with carbonic anhydrase (CA), due to its fast kinetics and low...... for different L/G ratios, lean CO2 loadings, gas CO2 content and packing height. We show that the developed model is suitable for CO2 capture simulation and optimization using MDEA and MDEA enhanced with CA. Furthermore, we investigate the accuracy of the General Method (GM) enhancement factor model for CO2...

  19. Biochemical and developmental characterization of carbonic anhydrase II from chicken erythrocytes.

    Science.gov (United States)

    Nishita, Toshiho; Tomita, Yuichiro; Imanari, Takao; Ichihara, Nobutsune; Orito, Kensuke; Arishima, Kazuyoshi

    2011-03-07

    Carbonic anhydrase (CA) of the chicken has attracted attention for a long time because it has an important role in the eggshell formation. The developmental profile of CA-II isozyme levels in chicken erythrocytes has not been determined or reported. Furthermore, the relations with CA-II in erythrocyte and egg production are not discussed. In the present study, we isolated CA-II from erythrocytes of chickens and determined age-related changes of CA-II levels in erythrocytes. Chicken CA-II was purified by a combination of column chromatography. The levels of CA-II in the hemolysate of the chicken were determined using the ELISA system in blood samples from 279 female chickens, ages 1 to 93 weeks, 69 male chickens, ages 3 to 59 weeks and 52 weeks female Araucana-chickens. The mean concentration of CA-II in hemolysate from 1-week-old female was 50.8 ± 11.9 mg/g of Hb. The mean levels of CA-II in 25-week-old (188.1 ± 82.6 mg/g of Hb), 31-week-old (193.6 ± 69.7 mg/g of Hb) and 49-week-old (203.8 ± 123.5 mg/g of Hb) female-chickens showed the highest level of CA-II. The levels of CA-II in female WL-chickens significantly decreased at 63 week (139.0 ± 19.3 mg/g of Hb). The levels of CA-II in female WL-chicken did not change from week 63 until week 93.The mean level of CA-II in hemolysate of 3-week-old male WL-chickens was 78.3 ± 20.7 mg/g of Hb. The levels of CA-II in male WL-chickens did not show changes in the week 3 to week 59 timeframe. The mean level of CA-II in 53-week-old female Araucana-chickens was 23.4 ± 1.78 mg/g of Hb. These levels of CA-II were about 11% of those of 49-week-old female WL-chickens. Simple linear regression analysis showed significant associations between the level of CA-II and egg laying rate from 16 week-old at 63 week-old WL-chicken (pchicken erythrocytes were observed. The concentration of CA-II in the erythrocyte of WL-chicken was much higher than that in Araucana-chicken (p<0.01). © 2011 Nishita et al; licensee BioMed Central Ltd.

  20. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase Ⅱ inhibitor-induced hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Su-jong YU; Hyo-suk LEE; Jung-hwan YOON; Jeong-hoon LEE; Sun-jung MYUNG; Eun-sun JANG; Min-sun KWAK; Eun-ju CHO; Ja-june JANG; Yoon-jun KIM

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-Ⅸ (CA-Ⅸ) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-Ⅸ in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients.Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth was assessed using MTS assay. CA-IX expression and apoptotic/kinase signaling were evaluated using immunoblotting. The cells were transfected with CA-Ⅸ-specific siRNA, or treated with its inhibitor 4-(2-aminoethyl) benzenesulfonamide (CAI#1), and/or the hexokinase Ⅱ inhibitor, 3-bromopyruvate (3-BP). A clinic pathological analysis of 69 patients who underwent an HCC resection was performed using a tissue array.Results: Incubation of HCC cells under hypoxia (1% 02, 5% C02, 94% N2) for 36 h significantly increased CA-IX expression level. CAI#1(400 μmol/L) or CA-IX siRNA (100 μmol/L) did not influence HCC cell growth and induce apoptosis. However, CAI#1 or CA-IX siRNA at these concentrations enhanced the apoptosis induced by 3-BP (100 μmol/L). This enhancement was attributed to increased ER stress and JNK activation, as compared with 3-BP alone. Furthermore, a clinic pathological analysis of 69 HCC patients revealed that tumor CA-Ⅸ intensity was inversely related to E-cadherin intensity.Conclusion: Inhibition of hypoxia-induced CA-Ⅸ enhances hexokinase Ⅱ inhibitor-induced HCC apoptosis. Furthermore, CA-IX expres sion profiles may have prognostic implications in HCC patients. Thus, the inhibition of CA-Ⅸ, in combination with a hexokinase Ⅱ inhibitor, may be therapeutically useful in patients with HCCs that are aggressively growing in a hypoxic environment.

  1. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase

    Science.gov (United States)

    Nasir, Irem; Lundqvist, Martin; Cabaleiro-Lago, Celia

    2015-10-01

    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being ``hard'' or ``soft''. However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino

  2. Carbon anhydrase IX specific immune responses in patients with metastatic renal cell carcinoma potentially cured by interleukin-2 based immunotherapy

    DEFF Research Database (Denmark)

    Rasmussen, Susanne; Donskov, Frede; Pedersen, Johannes W

    2013-01-01

    Abstract The majority of clear-cell renal cell carcinomas (ccRCC) show high and homogeneous expression levels of the tumor associated antigen (TAA) carbonic anhydrase IX (CAIX), and treatment with interleukin-2 (IL-2) based immunotherapy can lead to cure in patients with metastatic renal cell...... of disease (NED) following treatment with IL-2 based immunotherapy, and thus potentially cured. Immune reactivity in these patients was compared with samples from patients with dramatic tumor response obtained immediately at the cessation of therapy, samples from patients that experienced progressive disease...... interest in future cancer vaccines, but more studies are needed to elucidate the immunological mechanisms of action in potentially cured patients treated with an immunotherapeutic agent....

  3. Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology.

    Science.gov (United States)

    Papalia, Giuseppe A; Leavitt, Stephanie; Bynum, Maggie A; Katsamba, Phinikoula S; Wilton, Rosemarie; Qiu, Huawei; Steukers, Mieke; Wang, Siming; Bindu, Lakshman; Phogat, Sanjay; Giannetti, Anthony M; Ryan, Thomas E; Pudlak, Victoria A; Matusiewicz, Katarzyna; Michelson, Klaus M; Nowakowski, Agnes; Pham-Baginski, Anh; Brooks, Jonathan; Tieman, Bryan C; Bruce, Barry D; Vaughn, Michael; Baksh, Michael; Cho, Yun Hee; Wit, Mieke De; Smets, Alexandra; Vandersmissen, Johan; Michiels, Lieve; Myszka, David G

    2006-12-01

    In this benchmark study, 26 investigators were asked to characterize the kinetics and affinities of 10 sulfonamide inhibitors binding to the enzyme carbonic anhydrase II using Biacore optical biosensors. A majority of the participants collected data that could be fit to a 1:1 interaction model, but a subset of the data sets obtained from some instruments were of poor quality. The experimental errors in the k(a), k(d), and K(D) parameters determined for each of the compounds averaged 34, 24, and 37%, respectively. As expected, the greatest variation in the reported constants was observed for compounds with exceptionally weak affinity and/or fast association rates. The binding constants determined using the biosensor correlated well with solution-based titration calorimetry measurements. The results of this study provide insight into the challenges, as well as the level of experimental variation, that one would expect to observe when using Biacore technology for small molecule analyses.

  4. Identifying potential selective fluorescent probes for cancer-associated protein carbonic anhydrase IX using a computational approach.

    Science.gov (United States)

    Kamstra, Rhiannon L; Floriano, Wely B

    2014-11-01

    Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates.

  5. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Directory of Open Access Journals (Sweden)

    Jérôme eDoyen

    2013-01-01

    Full Text Available The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases CAIX and CAXII constitute a robust pHi-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX and LS174Tr cells (inducible knock-down for ca9/ca12 were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pHo manipulations and hypoxia (1% O2 exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pHi-regulating capacity of fibroblasts through inhibition of NHE-1 sensitize cells to radiation-induced cell death. Secondly, the pHi-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50% and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pHi regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pHi-regulating carbonic anhydrases as an anti-cancer strategy.

  6. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    Science.gov (United States)

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  7. Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni.

    Science.gov (United States)

    Al-Haideri, Halah; White, Michael A; Kelly, David J

    2016-02-01

    Campylobacter jejuni, the leading cause of human bacterial gastroenteritis, requires low environmental oxygen and high carbon dioxide for optimum growth, but the molecular basis for the carbon dioxide requirement is unclear. One factor may be inefficient conversion of gaseous CO2 to bicarbonate, the required substrate of various carboxylases. Two putative carbonic anhydrases (CAs) are encoded in the genome of C. jejuni strain NCTC 11168 (Cj0229 and Cj0237). Here, we show that the deletion of the cj0237 (canB) gene alone prevents growth in complex media at low (1% v/v) CO2 and significantly reduces the growth rate at high (5% v/v) CO2. In minimal media incubated under high CO2, the canB mutant grew on L-aspartate but not on the key C3 compounds L-serine, pyruvate and L-lactate, showing that CanB is crucial in bicarbonate provision for pyruvate carboxylase-mediated oxaloacetate synthesis. Nevertheless, purified CanB (a dimeric, anion and acetazolamide sensitive, zinc-containing type II beta-class enzyme) hydrates CO2 actively only above pH 8 and with a high Km (∼ 34 mM). At typical cytoplasmic pH values and low CO2, these kinetic properties might limit intracellular bicarbonate availability. Taken together, our data suggest CanB is a major contributor to the capnophilic growth phenotype of C. jejuni.

  8. Effects of denervation on expression of carbonic anhydrase Ⅲ and its phosphatase activity in skeletal muscle of rats%去神经对大鼠骨骼肌碳酸酐酶Ⅲ表达和磷酸酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    黄河; 任惠民

    2011-01-01

    目的 观察去神经对骨骼肌碳酸酐酶Ⅲ(carbonic anhydrase Ⅲ,CAⅢ)表达及其磷酸酶(phosphatase)活性的影响,探讨神经冲动受阻是否为重症肌无力(myasthenia gravis,MG)骨骼肌CAⅢ减少的原因.方法 定向切断支配大鼠趾长伸肌(extensor digitorum longus,EDL)和比目鱼肌(soleus,Sol)的神经纤维,术后第7、14、28和56天用Western blot分析EDL和Sol的CAⅢ水平,用固相膜上原位酶活性染色方法评估CAⅢ的磷酸酶活性.结果 (1)正常侧(即去神经对侧)Sol的CAⅢ水平远高于EDL,并且两者都表现出随时间增加(动物年龄增长)而增加的趋势.去神经后,EDL的CAⅢ水平随时间的延长而逐渐增加;Sol的CAⅢ水平则以14 d为分界先增加后降低.(2)正常侧Sol的CAⅢ的磷酸酶活性[随时间增加(动物年龄增长)呈逐渐增加的趋势]均高于EDL(变化不明显).去神经后,Sol的CAⅢ磷酸酶活性(第14、28、56天分别为14.39±1.93、11.48±1.46、9.04±1.46)明显低于正常侧(22.75±1.80、25.26±3.15、25.82±2.97,t=0.002、0.005、0.002,均P<0.05),EDL的CAⅢ磷酸酶活性与正常侧相比亦是降低,但差异无统计学意义.(3)正常侧EDL和Sol的CAⅢ蛋白表达水平和CAⅢ的磷酸酶活性相一致;去神经后CAⅢ蛋白表达水平和CAⅢ的磷酸酶活性发生了背离,即CAⅢ蛋白表达水平增加,但其磷酸酶活性却降低.结论 去神经所致的神经冲动传递障碍与MG自身抗体所致的神经冲动传递障碍对骨骼肌CAⅢ表达水平的影响不同,MG骨骼肌CAⅢ表达水平减少并非是其自身抗体所致的神经冲动传递障碍造成.%Objective To observe the effects of nerve impulses on the expression of carbonic anhydrase Ⅲ ( CAⅢ ) and its phosphatase activity, and to explore whether or not the cause of CAⅢ expressive decreased in skeletal muscles of myasthenia gravis( MG) is resulted from the obstruction of nerve impulse.Methods The motor nerves of extensor digitorum

  9. 水化层影响酸酐酶内CO2扩散行为的分子动力学模拟%Molecular dynamics simulation for hydration effect on CO2 diffusion in carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    陈功; 卢滇楠; 吴建中; 刘铮

    2015-01-01

    The hydration layer of the enzyme in the bulk gas phase has great effects on its catalytic performance. Molecular dynamics (MD) simulations at all-atom level was applied to investigate the effects of the hydration layer thickness on the diffusion of carbon dioxide molecules into the active site of a carbonic anhydrase enzyme from a bulk gas phase. Based on the distribution of water molecules surrounding the carbonic anhydrase enzyme, the effects of the hydration layer thickness on the protein structure and CO2 transport from the bulk gas phase to the protein active site was studied. The simulation results suggested an optimal hydration layer thickness of 0.7 nm for CO2 diffusion. The CO2 adsorption sites were identified, which compose of the diffusion channel inside the carbonic anhydrase. The MD simulation revealed the open states of these adsorption sites, which may be useful to identify the bottleneck position of the diffusion channel. The molecular insight is helpful for design and optimization of carbonic anhydrase, enabling more efficient CO2 adsorption and conversion.%气相中酶分子表面的水化层对其催化行为具有显著的影响。本文采用全原子分子动力学模拟方法考察了气相体系碳酸酐酶表面的水化层对酶结构以及CO2在酶分子中扩散行为的影响。首先展现了水分子在酶分子及其活性中心周围的分布,研究了水化层厚度对于酶结构以及CO2扩散速率的影响;发现最有利于CO2扩散进入酶分子的水化层厚度为0.7 nm。确认了碳酸酐酶内CO2的吸附位点,通过对其开合状态统计,显示出碳酸酐酶中CO2扩散通道中的瓶颈位置。上述结果对设计和优化碳酸酐酶催化气相体系中CO2的吸附和转化提供了依据和启示。

  10. Common Genetic Denominators for Ca++-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge

    Science.gov (United States)

    Müller, Werner E. G.; Wang, Xiaohong; Grebenjuk, Vlad A.; Korzhev, Michael; Wiens, Matthias; Schloßmacher, Ute; Schröder, Heinz C.

    2012-01-01

    Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl2) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca2+-depletion condition (1 mM CaCl2). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast). PMID:22506035

  11. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.

    Science.gov (United States)

    Müller, Werner E G; Wang, Xiaohong; Grebenjuk, Vlad A; Korzhev, Michael; Wiens, Matthias; Schlossmacher, Ute; Schröder, Heinz C

    2012-01-01

    Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast).

  12. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.

    Directory of Open Access Journals (Sweden)

    Werner E G Müller

    Full Text Available Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC. Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative enzyme carbonic anhydrase and the (putative osteoclast-stimulating factor (OSTF, that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2 show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+-depletion condition (1 mM CaCl(2. Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes to human (osteoclast.

  13. Synchrotron Radiation Provides a Plausible Explanation for the Generation of a Free Radical Adduct of Thioxolone in Mutant Carbonic Anhydrase II.

    Science.gov (United States)

    Sippel, Katherine H; Genis, Caroli; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Kiddle, James J; Tripp, Brian C; McKenna, Robert

    2010-10-07

    Thioxolone acts as a prodrug in the presence of carbonic anhydrase II (CA II), whereby the molecule is cleaved by thioester hydrolysis to the carbonic anhydrase inhibitor, 4-mercaptobenzene-1,3-diol (TH0). Thioxolone was soaked into the proton transfer mutant H64A of CA II in an effort to capture a reaction intermediate via X-ray crystallography. Structure determination of the 1.2 Å resolution data revealed the TH0 had been modified to a 4,4'-disulfanediyldibenzene-1,3-diol, a product of crystallization conditions, and a zinc ligated 2,4-dihydroxybenzenesulfenic acid, most likely induced by radiation damage. Neither ligand was likely a result of an enzymatic mechanism.

  14. The changes in the chloroplast membranes of pea leaves under the influence of carbonic anhydrase inhibitors (ions of copper and zinc

    Directory of Open Access Journals (Sweden)

    M.V. Vodka

    2014-04-01

    Full Text Available Тhe effects of carbonic anhydrase inhibitors, such as ions Cu2+ and Zn2+, on the membrane system of chloroplasts in pea leaves were investigated. After treatment of pea leaves with 250 mM Cu2+ or 400 mM Zn2+ we observed changes in the granal structure and compactness of the thylakoids in granae. It was shown that the thickness of granal thylakoids and the interspace between thylakoids increased comparing to control. Changes of the size and structure of thylakoids and granae in treated leaves may be associated with the enhanced accumulation of CO2 in the membrane. It is suggested that the carbonic anhydrase may also play a structural role in chloroplast granae.

  15. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights ..... Figure 2: Schematic representation of the binding mode of a1 to the ... group at R2. (ortho position) in a1 molecule apparently cause.

  16. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  17. Effects of solar UV radiation on photosynthesis and enzyme activities (carbonic anhydrase and nitrate reductase in marine macroalgae from southern Spain Efectos de la radiación solar UV sobre la fotosíntesis y actividades enzimáticas (anhidrasa carbónica y nitrato reductasa en macralgas marinas del sur de España

    Directory of Open Access Journals (Sweden)

    FÉLIX L. FIGUEROA

    2001-06-01

    Full Text Available The effects of solar ultraviolet (UV radiation during daily cycles on photosynthesis and two key enzymes involved in carbon incorporation, the carbonic anhydrase, and in inorganic nitrogen reduction, the nitrate reductase, of macroalgae from southern Spain are presented. During daily cycles, photoinhibition in several intertidal macroalgae, expressed as decrease in the effective quantum yield from the morning to noon time, was linearly dependent on the daily integrated irradiance. However, recovery, expressed as the increase in the effective quantum yield from noon to the afternoon, presented a different pattern; full recovery was found below daily integrated irradiance of 1.0 x10(4 kJ m-2. However, recovery reached only 50 % at higher irradiances. The existence of daily photoinhibition and full recovery in intertidal algae suggests that photoinhibition is a photoprotective mechanism against high solar radiation as in higher plants, and that patterns of photoinhibition and recovery are affected by accumulative doses. Activities of carbonic anhidrase and nitrate reductase were determined in three marine macroalgae (Plocamium cartilagineum, Ulva rigida and Fucus spiralis under full (PAR + UV-A + UV-B and excluded UV solar radiation (PAR. Under PAR + UV-A + UV-B, peaks of enzyme activity were found in P. cartilagineum during the evening, and accordingly to data previously published for other red macroalgae. This situation was modified by the absence of UV radiation since the increase in the activities was delayed several hours. In the three macroalgae and under full solar radiation, a significant and negative correlation was found only when data from nitrate reductase activity was shifted in time during at least four hours. This correlation is lost in Ulva rigida when UV radiation is excluded. The existence of these daily variations with a negative correlation of both enzyme activities could reflect a complex regulatory link between carbon and

  18. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX.

    Science.gov (United States)

    Pinard, Melissa A; Aggarwal, Mayank; Mahon, Brian P; Tu, Chingkuang; McKenna, Robert

    2015-10-01

    Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.

  19. Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII.

    Science.gov (United States)

    Ibrahim, Diaa A; Lasheen, Deena S; Zaky, Maysoun Y; Ibrahim, Amany W; Vullo, Daniela; Ceruso, Mariangela; Supuran, Claudiu T; Abou El Ella, Dalal A

    2015-08-01

    A series of novel 2-aminobenzothiazole derivatives bearing sulfonamide at position 6 was designed, synthesized and investigated as inhibitors of four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), the cytosolic CA I and II, and the tumor-associated isozymes CA IX and XII. Docking and binding energy studies were carried out to reveal details regarding the favorable interactions between the scaffolds of these new inhibitors and the active sites of the investigated CA isoforms. Most of the novel compounds were acting as highly potent inhibitors of the tumor-associated hCA IX and hCA XII with KIs in the nanomolar range. The ubiquitous and dominant rapid cytosolic isozyme hCA II was also inhibited with KIs ranging from 3.5 to 45.4 nM. The favorable interactions between some of the new compounds and the active site of different CA isoforms were delineated by using molecular docking which may be useful for designing compounds with high affinity and selectivity for some CAs with biomedical applications.

  20. Synthesis of 5-amino-1,3,4-thiadiazole-2-sulphonamide derivatives and their inhibition effects on human carbonic anhydrase isozymes.

    Science.gov (United States)

    Kasımoğulları, Rahmi; Bülbül, Metin; Mert, Samet; Güleryüz, Hülya

    2011-04-01

    In this study, some novel inhibitors were synthesised from the further stage reactions of 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride with 5-amino-1,3,4-thiadiazole-2-sulphonamide 1 (inhibitor 1). They were characterised by elemental and spectral (¹H NMR, ¹³C NMR, IR) analyses. Human carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of inhibitor 1, acetazolamide (2) and the 11 newly synthesised amides (8-18) on the hydratase and esterase activities of these isoenzymes (hCA-I and hCA-II) were studied in vitro. In relation to these activities, the inhibition equilibrium constants (K(i)) were determined. The K(i) values for the new compounds (8-18) were observed to be well below that of the parent compound inhibitor 1 and were also compared to 2 under the same experimental conditions. The comparison of the newly synthesised amides to inhibitor 1 and to 2 indicated that the new derivatives preferentially inhibited hCA-II and were more potent inhibitors of hCA-II than the parent inhibitor 1 and 2.

  1. Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

    Directory of Open Access Journals (Sweden)

    Ian M Sandeman

    2012-03-01

    , p<0.05 indicating a dependence on carbonate. At a pH of 6.5 the skeleton lost weight at a rate of 1.8 mg.h-1.cm-2. The relationship between net calcification and pH (n=2 indicates that wt gain turns to loss at pH 7.4. These experiments confirm that calcification is a two-step process, involving secretion of a layer of organic matrix incorporating carbonic anhydrase to produce an active calcifying surface which uses carbon dioxide rather than carbonate. It is also unlikely that the calcifying surface is in direct contact with seawater. Inorganic deposition or dissolution of the skeleton in exposed dead areas of coral is a different phenomenon and is carbonate related. The wide range in results from this and other studies of calcification rate and carbon dioxide may be explainable in terms of the ratio of “live” to “dead” areas of coral.

  2. Hydrophobic Substituents of the Phenylmethylsulfamide Moiety Can Be Used for the Development of New Selective Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Giuseppina De Simone

    2014-01-01

    Full Text Available A new series of compounds containing a sulfamide moiety as zinc-binding group (ZBG has been synthesized and tested for determining inhibitory properties against four human carbonic anhydrase (hCA isoforms, namely, CAs I, II, IX, and XII. The X-ray structure of the cytosolic dominant isoform hCA II in complex with the best inhibitor of the series has also been determined providing further insights into sulfamide binding mechanism and confirming that such zinc-binding group, if opportunely derivatized, can be usefully exploited for obtaining new potent and selective CAIs. The analysis of the structure also suggests that for drug design purposes the but-2-yn-1-yloxy moiety tail emerges as a very interesting substituent of the phenylmethylsulfamide moiety due to its capability to establish strong van der Waals interactions with a hydrophobic cleft on the hCA II surface, delimited by residues Phe131, Val135, Pro202, and Leu204. Indeed, the complementarity of this tail with the cleft suggests that different substituents could be used to discriminate between isoforms having clefts with different sizes.

  3. Self-healing of Early Age Cracks in Cement-based Materials by Mineralization of Carbonic Anhydrase Microorganism

    Directory of Open Access Journals (Sweden)

    Chunxiang eQian

    2015-11-01

    Full Text Available This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2 and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+.

  4. Inhibition of the alpha- and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions.

    Science.gov (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Supuran, Claudiu T

    2013-04-01

    The gastric pathogen Helicobacter pylori encodes two carbonic anhydrases (CAs, EC 4.2.1.1), an α- and a β-class one, hpαCA and hpβCA, crucial for its survival in the acidic environment from the stomach. Sulfonamides, strong inhibitors of these enzymes, block the growth of the pathogen, in vitro and in vivo. Here we report the inhibition of the two H. pylori CAs with inorganic and complex anions and other molecules interacting with zinc proteins. hpαCA was inhibited in the low micromolar range by diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic acid, and in the submillimolar one by cyanide, cyanate, hydrogen sulfide, divanadate, tellurate, perruthenate, selenocyanide, trithiocarbonate, iminodisulfonate. hpβCA generally showed a stronger inhibition with most of these anions, with several low micromolar and many submillimolar inhibitors detected. These inhibitors may be used as leads for developing anti-H. pylori agents with a diverse mechanism of action compared to clinically used antibiotics.

  5. Carbonic Anhydrase VI Gene Polymorphism rs2274327 Relationship Between Salivary Parameters and Dental-Oral Health Status in Children.

    Science.gov (United States)

    Sengul, Fatih; Kilic, Munevver; Gurbuz, Taskin; Tasdemir, Sener

    2016-08-01

    The aim of this study was to research carbonic anhydrase (CA) VI one single-nucleotide polymorphism (SNP) and its potential association with dental-oral health status (dental caries, Plaque Index (PI) and Gingival Index (GI)) and salivary parameters (salivary buffering capacity, salivary flow rate (SFR)) in children. A total of 178 children were divided into two groups: non-carious (n = 70, 34 boys and 36 girls) and carious (n = 108, 47 boys and 61 girls). The clinical evaluations were performed according to the decayed, missing, and filled teeth (dmft/DMFT) index by a specialist. Clinical parameters including PI, GI, and simplified oral hygiene index (OHI-S) were recorded. Salivary pH (SpH) was measured using pH paper. Blood samples and unstimulated whole saliva were collected, and SFR was calculated. The CA VI rs2274327 polymorphism was determined by a LightSNiP assay on the realtime PCR system. The frequencies of rs2274327 were not significant between groups (p > 0.05). There was a positive correlation between OHI-S and SpH in the carious and non-carious groups (p OHI-S, PI, GI, SFR, and SpH (p > 0.05). CA VI SNP (rs2274327) had no statistically significant association with OHI-S, PI, GI, SFR, and SpH in the children.

  6. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence.

  7. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases.

    Science.gov (United States)

    Zubrienė, Asta; Smirnov, Alexey; Dudutienė, Virginija; Timm, David D; Matulienė, Jurgita; Michailovienė, Vilma; Zakšauskas, Audrius; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2017-01-20

    The goal of rational drug design is to understand structure-thermodynamics correlations in order to predict the chemical structure of a drug that would exhibit excellent affinity and selectivity for a target protein. In this study we explored the contribution of added functionalities of benzenesulfonamide inhibitors to the intrinsic binding affinity, enthalpy, and entropy for recombinant human carbonic anhydrases (CA) CA I, CA II, CA VII, CA IX, CA XII, and CA XIII. The binding enthalpies of compounds possessing similar chemical structures and affinities were found to be very different, spanning a range from -90 to +10 kJ mol(-1) , and are compensated by a similar opposing entropy contribution. The intrinsic parameters of binding were determined by subtracting the linked protonation reactions. The sulfonamide group pKa values of the compounds were measured spectrophotometrically, and the protonation enthalpies were measured by isothermal titration calorimetry (ITC). Herein we describe the development of meta- or ortho-substituted fluorinated benzenesulfonamides toward the highly potent compound 10 h, which exhibits an observed dissociation constant value of 43 pm and an intrinsic dissociation constant value of 1.1 pm toward CA IX, an anticancer target that is highly overexpressed in various tumors. Fluorescence thermal shift assays, ITC, and X-ray crystallography were all applied in this work.

  8. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones.

    Science.gov (United States)

    Sarikaya, Busra; Ceruso, Mariangela; Carta, Fabrizio; Supuran, Claudiu T

    2014-11-01

    A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates.

  9. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease.

    Science.gov (United States)

    Pan, Peiwen; Vermelho, Alane Beatriz; Capaci Rodrigues, Giseli; Scozzafava, Andrea; Tolvanen, Martti E E; Parkkila, Seppo; Capasso, Clemente; Supuran, Claudiu T

    2013-02-28

    An α-carbonic anhydrase (CA, EC 4.2.1.1) has been identified, cloned, and characterized from the unicellular protozoan Trypanosoma cruzi, the causative agent of Chagas disease. The enzyme (TcCA) has a very high catalytic activity for the CO2 hydration reaction, being similar kinetically to the human (h) isoform hCA II, although it is devoid of the His64 proton shuttle. A large number of aromatic/heterocyclic sulfonamides and some 5-mercapto-1,3,4-thiadiazoles were investigated as TcCA inhibitors. The aromatic sulfonamides were weak inhibitors (K(I) values of 192 nM to 84 μM), whereas some heterocyclic compounds inhibited the enzyme with K(I) values in the range 61.6-93.6 nM. The thiols were the most potent in vitro inhibitors (K(I) values of 21.1-79.0 nM), and some of them also inhibited the epimastigotes growth of two T. cruzi strains in vivo.

  10. Chemical and enzymological characterization of an Indonesian variant of human erythrocyte carbonic anhydrase II, CAII Jogjakarta (17 Lys leads to Glu).

    Science.gov (United States)

    Jones, G L; Sofro, A S; Shaw, D C

    1982-10-01

    A new variant of human erythrocyte carbonic anhydrase II (CAII) was discovered in a single heterozygous individual during routine screening of blood samples from the island of Java in Indonesia. The normal and variant components of the heterozygous CAII mixture were resolved by isoelectric focusing following purification by a specific affinity matrix. Specific esterase activities and Michaelis-Menten constants were identical. Only very small differences were noted with respect to inhibition by acetazolamide and chloride. Double diffusion analysis showed the immunological identify of the normal and variant enzymes. The variant CAII was considerably less heat stable than the normal enzyme. The variant was slightly more stable than the normal enzyme upon dialysis against the zinc chelator dipicolinic acid (PDCA), indicating a tighter binding of zinc than the normal enzyme. Analysis of tryptic peptides from the normal and variant enzymes indicated that, in the variant, lysine at position 17 from the N terminus had changed to glutamic acid. The differences in physiochemical properties observed for the normal and variant enzyme are discussed in relation to the possible effects of this substitution on the structure of the CAII molecule.

  11. Bio-sequestration of CO2 Using Carbonic Anhydrase in situ Encapsulated Inside Electrospun Hollow Fibers%静电纺丝制备中空纤维原位固定化碳酸酐酶用于二氧化碳的吸收

    Institute of Scientific and Technical Information of China (English)

    崔建东; 李莹; 姬晓元; 边红杰; 张羽飞; 苏志国; 马光辉; 张松平

    2014-01-01

    Carbonic anhydrase catalyzed bio-sequestration of CO2 to form HCO-3 , followed by trapping as solid CaCO3 is one of the most promising technologies for CO2 capturing. The effects of reaction condition on the CO2 hydration using free carbonic anhydrase were systematically investigated. In order to improve the stability of the enzyme and facility its recycling, the carbonic anhydrase was in situ encapsulated inside hollow fibers via a novel co-axial electrospinning technology. Compared with the free enzyme, the immobilized carbonic an-hydrase showed much improved thermal stability and suffered much reduced inhibitory effects from cation ions, such as Cu2+ and Fe3+. After 11 reuses, the immobilized enzyme retained about 81. 9% of its original activity by comparing the amount of formed CaCO3 precipitation. In the presence of immobilized carbonic anhydrase, both calcite and vaterite CaCO3 solid were formed;while in the absence of enzyme or with free carbonic anhy-drase, only calcite CaCO3 was observed.%考察了游离碳酸酐酶吸收CO2水合体系反应条件,并通过同轴共纺静电纺丝技术制备出中空结构纤维,实现了碳酸酐酶在中空纤维中的原位包埋,提高了酶的稳定性并便于回收和重复利用.实验结果表明,固定化碳酸酐酶的热稳定性显著增强,受Cu2+和Fe3+等金属离子的抑制作用大幅度降低.连续使用11次后所生成的CaCO3沉淀量仍能达到首次使用的81.9%.固定化酶体系生成的CaCO3沉淀包括方解石型和球文石型2种晶形,而无酶和加入游离碳酸酐酶的反应体系则主要生成方解石型CaCO3沉淀.

  12. Carbonic anhydrase 2-like and Na⁺-K⁺-ATPase α gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress.

    Science.gov (United States)

    Yao, Zongli; Lai, Qifang; Hao, Zhuoran; Chen, Ling; Lin, Tingting; Zhou, Kai; Wang, Hui

    2015-12-01

    High carbonate alkalinity is one of the major stress factors for living organisms in saline-alkaline water areas. Acute and chronic effects of carbonate alkalinity on expression of two genes, carbonic anhydrase 2-like (CA2-like) and Na(+)-K(+)-ATPase α subunit (NKA-α) mRNA in medaka (Oryzias latipes) were evaluated to better understand the responses important for coping with a carbonate alkalinity stress. In the acute exposure experiment, the expression of CA2-like and NKA-α mRNA in the gill and kidney of medaka were examined from 0 h to 7 days exposed to 30.4 mM carbonate alkalinity water. Exposure to high carbonate alkalinity resulted in a transitory alkalosis, followed by a transient increase in gill and kidney CA2-like and NKA-α mRNA expression. In the chronic exposure experiment, the expression of these two genes was examined in the gill and kidney at 50 days post-exposure to six different carbonate alkalinity concentrations ranging from 1.5 to 30.4 mM. Gill and kidney CA2-like mRNA levels in 30.4 mM were approximately 10 and 30 times higher than that of the control (1.5 mM), respectively. Less differences were found in NKA-α expression in the 50-days exposure. The results indicate that when transferred to high carbonate alkalinity water, a transitory alkalosis may occur in medaka, followed by compensatory acid-base and ion regulatory responses. Thus, CA2-like and NKA-α are at least two of the important factors that contribute to the regulation of alkalinity stress.

  13. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice.

    Science.gov (United States)

    Renner, Sarah W; Walker, Lauren M; Forsberg, Lawrence J; Sexton, Jonathan Z; Brenman, Jay E

    2017-01-01

    Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.

  14. 呋塞米对碳酸酐酶的抑制效应再研究%Inhibitory effect of furosemide on carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    袁美华; 蒋彦; 杨毅

    2013-01-01

    The inhibitory effect of a high efficient diuretic ,furosemide ,on carbonic anhydrase was investigated in this study .Compared with acetazolamide ,furosemide can quickly make BCAⅡ inactive when its concentration is close to the enzyme concentration . The results show that furosemide is a non-competitive inhibitor of carbonic anhydrase ,the vaules of its IC50 and KI are 0 .759 μM ,0 .51 μM . Acetazolamide is a competitive inhibitor of carbonic anhydrase ,the vaules of its IC5 0 and KI are 0.199μM ,0 .099 μM .%呋塞米是一种高效利尿剂,本实验主要探究其对碳酸酐酶的抑制效应.相比较乙酰唑胺而言,呋塞米在其浓度接近碳酸酐酶浓度时能使该酶基本失活.研究发现,呋塞米对碳酸酐酶的抑制效应表现为非竞争性抑制,其 IC50为0.759μM ,KI 为0.61μM ,乙酰唑胺的 IC50为0.199μM , KI 为0.099μM ,表现为竞争性抑制.

  15. C4 photosynthesis evolution in the transitional grass Neurachne: loss of a carbonic anhydrase chloroplast transit peptide.

    Science.gov (United States)

    Clayton, Harmony; Saladié, Montserrat; Rolland, Vivien; Sharwood, Robert E; Macfarlane, Terry; Ludwig, Martha

    2017-02-02

    Neurachne is the only known grass lineage containing closely related C3, C3-C4 intermediate and C4 species, making it an ideal taxon with which to study the evolution of C4 photosynthesis in the grasses. To begin dissecting the molecular changes that led to the evolution of C4 photosynthesis in this group, the cDNAs encoding four distinct β-carbonic anhydrase (CA) isoforms were characterized from leaf tissue of Neurachne munroi (C4), N. minor (C3-C4), and N. alopecuroidea (C3). Two genes (CA1 and CA2) each encode two different isoforms: CA1a, CA1b, CA2a and CA2b. Transcript analyses found CA1 mRNAs were significantly more abundant than transcripts from the CA2 gene in the leaves of each species examined, comprising approximately 99% of all β-CA transcripts measured. Localization experiments using green fluorescent protein fusion constructs showed that while CA1b is a cytosolic CA in all three species, the CA1a proteins are differentially localized. The N. alopecuroidea and N. minor CA1a isoforms were imported into chloroplasts of Nicotiana benthamiana leaf cells whereas N. munroi CA1a localized to the cytosol. Sequence analysis indicated an 11 amino acid deletion in the N-terminus of N. munroi CA1a relative to the C3 and C3-C4 proteins, suggesting chloroplast targeting of CA1a is the ancestral state, and that loss of a functional chloroplast transit peptide in N. munroi CA1a is associated with the evolution of C4 photosynthesis in Neurachne. Remarkably, this mechanism is homoplastic with evolution of the C4-associated CA in the dicotyledonous Flaveria, although the actual mutations in the two lineages differ.

  16. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism.

    Science.gov (United States)

    Shah, Gul N; Rubbelke, Timothy S; Hendin, Joshua; Nguyen, Hien; Waheed, Abdul; Shoemaker, James D; Sly, William S

    2013-04-30

    Prior studies with carbonic anhydrase (CA) inhibitors implicated mitochondrial CA in ureagenesis and gluconeogenesis. Subsequent studies identified two mitochondrial CAs. To distinguish the contribution of each enzyme, we studied the effects of targeted disruption of the murine CA genes, called Car5A and Car5B. The Car5A mutation had several deleterious consequences. Car5A null mice were smaller than wild-type littermates and bred poorly. However, on sodium-potassium citrate-supplemented water, they produced offspring in expected numbers. Their blood ammonia concentrations were markedly elevated, but their fasting blood sugars were normal. By contrast, Car5B null mice showed normal growth and normal blood ammonia levels. They too had normal fasting blood sugars. Car5A/B double-knockout (DKO) mice showed additional abnormalities. Impaired growth was more severe than for Car5A null mice. Hyperammonemia was even greater as well. Although fertile, DKO animals were produced in less-than-predicted numbers even when supplemented with sodium-potassium citrate in their drinking water. Survival after weaning was also reduced, especially for males. In addition, fasting blood glucose levels for DKO mice were significantly lower than for controls (153 ± 33 vs. 230 ± 24 mg/dL). The enhanced hyperammonemia and lower fasting blood sugar, which are both seen in the DKO mice, indicate that both Car5A and Car5B contribute to both ammonia detoxification (ureagenesis) and regulation of fasting blood sugar (gluconeogenesis). Car5A, which is expressed mainly in liver, clearly has the predominant role in ammonia detoxification. The contribution of Car5B to ureagenesis and gluconeogenesis was evident only on a Car5A null background.

  17. Evidence for an early evolutionary emergence of γ-type carbonic anhydrases as components of mitochondrial respiratory complex I

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2010-06-01

    Full Text Available Abstract Background The complexity of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase has increased considerably relative to the homologous complex in bacteria. Comparative analyses of CI composition in animals, fungi and land plants/green algae suggest that novel components of mitochondrial CI include a set of 18 proteins common to all eukaryotes and a variable number of lineage-specific subunits. In plants and green algae, several purportedly plant-specific proteins homologous to γ-type carbonic anhydrases (γCA have been identified as components of CI. However, relatively little is known about CI composition in the unicellular protists, the characterizations of which are essential to our understanding of CI evolution. Results We have performed a tandem mass spectrometric characterization of CI from the amoeboid protozoon Acanthamoeba castellanii. Among the proteins identified were two γCA homologs, AcCa1 and AcCa2, demonstrating that γCA proteins are not specific to plants/green algae. In fact, through bioinformatics searches we detected γCA homologs in diverse protist lineages, and several of these homologs are predicted to possess N-terminal mitochondrial targeting peptides. Conclusions The detection of γCAs in CI of Acanthamoeba, considered to be a closer relative of animals and fungi than plants, suggests that γCA proteins may have been an ancestral feature of mitochondrial CI, rather than a novel, plant-specific addition. This assertion is supported by the presence of genes encoding γCAs in the nuclear genomes of a wide variety of eukaryotes. Together, these findings emphasize the importance of a phylogenetically broad characterization of CI for elucidating CI evolution in eukaryotes.

  18. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Janine Hallerdei

    Full Text Available We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV-CAIX-CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.

  19. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia.

    Directory of Open Access Journals (Sweden)

    Bagna Bao

    Full Text Available Carbonic anhydrase IX (CA IX is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR fluorescent derivative of the CA IX inhibitor acetazolamide (AZ. The agent (HS680 showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%-70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231, as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6-24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8% atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo, and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.

  20. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    Science.gov (United States)

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  1. Anti-inflammatory and carbonic anhydrase restoring actions of yam powder (Dioscorea spp) contribute to the prevention of cysteamine-induced duodenal ulcer in a rat model.

    Science.gov (United States)

    Park, Jong-Min; Kim, Yoon-Jae; Kim, Ju-Seung; Han, Young-Min; Kangwan, Napapan; Hahm, Ki Baik; Kim, Tae-Sok; Kwon, Oran; Kim, Eun-Hee

    2013-08-01

    Increased acid output, accompanied with a defective defense system, is considered a fundamental pathogenesis of duodenal ulcer (DU). However, relapse of DU occurs despite proton pump inhibitors and H2 receptor antagonists, hence imposing the enforcement of the defense system. Dried powder of the yam tuber (Dioscorea spp) has been used in traditional folk medicine as a nutritional fortification. We hypothesized that dried-yam powder would prevent DU through improvement of anti-inflammatory actions and carbonic anhydrase (CA) activity. Therefore, we investigated the preventive effects of dried-yam powder against the cysteamine-induced DU and elucidated the underlying mechanisms. Duodenal ulcers were induced in Sprague-Dawley rats by intragastric administration of 500 mg/kg cysteamine-HCl. The dried-yam powder was used as a pretreatment before the cysteamine-HCl. The number and size of DU were measured. The expressions of inflammation mediators were checked in duodenal tissues, and the expressions of CAs and malondialdehyde levels were also examined. Cysteamine provoked perforated DU, whereas dried-yam powder significantly prevented DU as much as pantoprazole and significantly reduced the incidence of perforation. The messenger RNA expressions of cyclooxygenase-2 and inducible nitric oxide synthase were remarkably decreased in the yam group compared with the cysteamine group, and the serum levels of proinflammatory cytokines including interleukin-1β, interleukin-6, and tumor necrosis factor were significantly attenuated in the yam group. Cysteamine significantly decreased the expression of CAs, whereas yam treatment significantly preserved the expressions of CA IX, XII, and XIV. In conclusion, dried-yam powder exerts a significant protective effect against cysteamine-induced DU by lowering the activity of inflammatory cytokines and free radicals and restoring the activity of CAs, except in CA IV. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isoforms I and II and transmembrane, tumor-associated isoforms IX and XII with boronic acids.

    Science.gov (United States)

    Winum, Jean-Yves; Innocenti, Alessio; Scozzafava, Andrea; Montero, Jean-Louis; Supuran, Claudiu T

    2009-05-15

    A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a K(I) of 3.7-4.5 microM, whereas the remaining derivatives showed inhibition constants in the range of 6.0-1560 microM for hCA I and of 6.0-1050 microM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (K(I)s of 7.6-12.3 microM) whereas the arylalkenyl and aryl-alkyl derivatives generally showed weaker inhibitory properties (K(I)s of 34-531 microM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)(2) moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.

  3. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties.

    Science.gov (United States)

    Supuran, C T

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC(50) values around 10(-8)M against isozyme CA II, and 10(-7) M against isozyme CAI.

  4. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties

    Science.gov (United States)

    Supuran, Claudiu T.

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC50 values around 10−8M against isozyme CA II, and 10−7 M against isozyme CAI. PMID:18472784

  5. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles.

    Science.gov (United States)

    Shah, G N; Hewett-Emmett, D; Grubb, J H; Migas, M C; Fleming, R E; Waheed, A; Sly, W S

    2000-02-15

    A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitochondria isolated from transfected COS cells. Northern blot analyses of total RNAs from mouse tissues and Western blot analyses of mouse tissue homogenates showed differences in tissue-specific expression between CA VB and CA VA. CA VB was readily detected in most tissues, while CA VA expression was limited to liver, skeletal muscle, and kidney. The human orthologue of murine CA VB was recently reported also. Comparison of the CA domain sequence of human CA VB with that reported here shows that the CA domains of CA VB are much more highly conserved between mouse and human (95% identity) than the CA domains of mouse and human CA VAs (78% identity). Analysis of phylogenetic relationships between these and other available human and mouse CA isozyme sequences revealed that mammalian CA VB evolved much more slowly than CA VA, accepting amino acid substitutions at least 4.5 times more slowly since each evolved from its respective human-mouse ancestral gene around 90 million years ago. Both the differences in tissue distribution and the much greater evolutionary constraints on CA VB sequences suggest that CA VB and CA VA have evolved to assume different physiological roles.

  6. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  7. Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2016-09-01

    Full Text Available Carbonic anhydrases (CAs; EC 4.2.1.1 catalyze the interconversion of CO2 and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM and methazolamide (MZM, a methyl derivative of AZM are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II has been determined to a resolution of 2.2 Å with an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki for both of the drugs against hCA II is similar (∼10 nM. The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.

  8. Identification of putative unfolding intermediates of the mutant His-107-tyr of human carbonic anhydrase II in a multidimensional property space.

    Science.gov (United States)

    Halder, Puspita; Taraphder, Srabani

    2016-06-01

    In this article, we develop an extensive search procedure of the multi-dimensional folding energy landscape of a protein. Our aim is to identify different classes of structures that have different aggregation propensities and catalytic activity. Following earlier studies by Daggett et al. [Jong, D. D.; Riley, R.: Alonso, D.O.: Dagett, V. J. Mol. Biol. 2002, 319, 229], a series of high temperature all-atom classical molecular simulation studies has been carried out to derive a multi-dimensional property space. Dynamical changes in these properties are then monitored by projecting them along a one-dimensional reaction coordinate, dmean . We have focused on the application of this method to partition a wide array of conformations of wild type human carbonic anhydrase II (HCA II) and its unstable mutant His-107-Tyr along dmean by sampling a 35-dimensional property space. The resultant partitioning not only reveals the distribution of conformations corresponding to stable structures of HCA II and its mutant, but also allows the monitoring of several partially unfolded and less stable conformations of the mutant. We have investigated the population of these conformations at different stages of unfolding and collected separate sets of structures that are widely separated in the property space. The dynamical diversity of these sets are examined in terms of the loading of their respective first principal component. The partially unfolded structures thus collected are qualitatively mapped on to the experimentally postulated light molten globule (MGL) and molten globule (MG) intermediates with distinct aggregation propensities and catalytic activities. Proteins 2016; 84:726-743. © 2016 Wiley Periodicals, Inc.

  9. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors.

    Science.gov (United States)

    Maleki, Afshin; Daraei, Hiua; Alaei, Loghman; Faraji, Aram

    2014-01-01

    Four stepwise multiple linear regressions (SMLR) and a genetic algorithm (GA) based multiple linear regressions (MLR), together with artificial neural network (ANN) models, were applied for quantitative structure-activity relationship (QSAR) modeling of dissociation constants (Kd) of 62 arylsulfonamide (ArSA) derivatives as human carbonic anhydrase II (HCA II) inhibitors. The best subsets of molecular descriptors were selected by SMLR and GA-MLR methods. These selected variables were used to generate MLR and ANN models. The predictability power of models was examined by an external test set and cross validation. In addition, some tests were done to examine other aspects of the models. The results show that for certain purposes GA-MLR is better than SMLR and for others, ANN overcomes MLR models.

  10. Purification of chicken carbonic anhydrase isozyme-III (CA-III) and its measurement in White Leghorn chickens.

    Science.gov (United States)

    Nishita, Toshiho; Tomita, Yuichiro; Yorifuji, Daisuke; Orito, Kensuke; Ochiai, Hideharu; Arishima, Kazuyosi

    2011-11-26

    The developmental profile of chicken carbonic anhydrase-III (CA-III) blood levels has not been previously determined or reported. We isolated CA-III from chicken muscle and investigated age-related changes in the levels of CA-III in blood. CA-III was purified from chicken muscle. The levels of CA-III in plasma and erythrocytes from 278 female chickens (aged 1-93 weeks) and 68 male chickens (aged 3-59 weeks) were determined by ELISA. The mean level of CA-III in female chicken erythrocytes (1 week old) was 4.6 μg/g of Hb, and the CA-III level did not change until 16 weeks of age. The level then increased until 63 weeks of age (11.8 μg/g of Hb), decreased to 4.7 μg/g of Hb at 73 weeks of age, and increased again until 93 weeks of age (8.6 μg/g of Hb). The mean level of CA-III in erythrocytes from male chickens (3 weeks old) was 2.4 μg/g of Hb, and this level remained steady until 59 weeks of age. The mean plasma level of CA-III in 1-week-old female chickens was 60 ng/mL, and this level was increased at 3 weeks of age (141 ng/mL) and then remained steady until 80 weeks of age (122 ng/mL). The mean plasma level of CA-III in 3-week-old male chickens was 58 ng/mL, and this level remained steady until 59 weeks of age. We observed both developmental changes and sex differences in CA-III concentrations in White Leghorn (WL) chicken erythrocytes and plasma. Simple linear regression analysis showed a significant association between the erythrocyte CA-III level and egg-laying rate in WL-chickens 16-63 weeks of age (p < 0.01).

  11. Research and application progress of carbonic anhydrase-immobilized technology%碳酸酐酶固定化技术研究与应用进展

    Institute of Scientific and Technical Information of China (English)

    潘富军; 周作明

    2014-01-01

    Currently,the main drawbacks of the most available amine-based processes for post-combustion CO2 are amine degradation and parasitic power loss.A novel Integrated Vacuum Carbonate Absorption Process (IVCAP)was proposed to reduce the energy usage by employing a potassium carbonate aqueous solution as a solvent for CO2 absorption.However,K2 CO3 -based system has a much slower CO2 absorption rate than amine-based system does.Carbonic anhydrase is the most effective known enzyme by far that catalyzes the hydration of CO2 into bicarbonate and a proton.The research and applications of immobilized carbonic anhydrase were reviewed,and the application prospect of IVCAP process improvement for carbon dioxide capture by selecting magnetic carrier material was presented.%目前以有机胺为吸收剂脱除 CO2的化学吸收法多存在氨基易分解、再生能耗高等不足。新型的 IVCAP 工艺采用碳酸钾水溶液吸收 CO2,可大幅节能降耗,但吸收速率较有机胺慢。碳酸酐酶是至今发现的最有效的 CO2水合酶催化剂,将该酶添加至 IVCAP 工艺中,可显著提高 CO2吸收速率。文中综述了固定化碳酸酐酶在碳捕集与封存技术中的研究和应用进展,并对其选用磁性载体材料强化 IVCAP 工艺对 CO2的捕集应用前景进行了展望。

  12. The effect of L-carnitine on carbonic anhydrase level in rats exposed ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... first group made exhaustive swimming exercises at the temperature of 18°C; to the second group L- ... actively transported through the blood-brain barrier and ..... important enzymes in metabolism because they regulate.

  13. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration.

    NARCIS (Netherlands)

    Yang, Z.; Alvarez, B.V.; Chakarova, C.; Jiang, L.; Karan, G.; Frederick, J.M.; Zhao, Y.; Sauve, Y.; Li, X.; Zrenner, E.; Wissinger, B.; Hollander, A.I. den; Katz, B.; Baehr, W.; Cremers, F.P.M.; Casey, J.R.; Bhattacharya, S.S.; Zhang, K.

    2005-01-01

    Retina and retinal pigment epithelium (RPE) belong to the metabolically most active tissues in the human body. Efficient removal of acid load from retina and RPE is a critical function mediated by the choriocapillaris. However, the mechanism by which pH homeostasis is maintained is largely unknown.

  14. Synthesis and biological evaluation of a {sup 99m}Tc-labelled sulfonamide conjugate for in vivo visualization of carbonic anhydrase IX expression in tumor hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Akurathi, Vamsidhar [Laboratory for Radiopharmacy, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); Dubois, Ludwig; Lieuwes, Natasja G. [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, University of Maastricht, 6200 Maastricht (Netherlands); Chitneni, Satish K. [Department of Radiology, Duke University Medical Centre, Durham, NC 27710 (United States); Cleynhens, Bernard J. [Laboratory for Radiopharmacy, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); Vullo, Daniela; Supuran, Claudiu T. [Universita degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, 50019 Sesto Fiorentino, Florence (Italy); Verbruggen, Alfons M. [Laboratory for Radiopharmacy, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); Lambin, Philippe [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, University of Maastricht, 6200 Maastricht (Netherlands); Bormans, Guy M., E-mail: guy.bormans@pharm.kuleuven.b [Laboratory for Radiopharmacy, Katholieke Universiteit Leuven, 3000 Leuven (Belgium)

    2010-07-15

    Introduction: Carbonic anhydrase (CA) IX is a transmembrane protein overexpressed in many frequently occurring tumors associated with tumor hypoxia. Sulfonamides and their bioisosteres are known to inhibit CA IX activity. In this study, 4-(2-aminoethyl)benzenesulfonamide was conjugated to a tridentate ligand, N-2-picolyl-N-acetic acid and labeled with a {sup 99m}Tc(I)-tricarbonyl moiety resulting in [{sup 99m}Tc(CO){sub 3} (L)] (L=N-(pyridin-2-yl-methyl)-N[2-(4-sulfamoylphenyl)-ethyl]aminoethyl acetate) complex, [{sup 99m}Tc]-5. Similarly the corresponding rhenium congener (Re-4) was synthesized. The in vitro CA IX affinity and inhibitory activity of Re-4 were determined and [{sup 99m}Tc]-5 was evaluated as a tracer for in vivo visualisation of CA IX expression. Methods: Evaluation of the in vitro affinity (inhibition constant, K{sub i}) of Re-4 for CA isozymes I, II, IX and XII was carried out by assaying the CA catalyzed CO{sub 2} hydration activity and efficacy studies were performed in HT 29 cell lines expressing CA IX under normoxia or hypoxia. Biodistribution studies of [{sup 99m}Tc]-5 were performed in xenograft mice bearing CA IX expressing tumors. Results: The in vitro affinity of Re-4 for CA IX was 58 nM and CA IX induced acidification of extracellular medium was efficiently reduced (P<.05) in the presence of 1 mM Re-4. Biodistribution studies indicated a maximal tumor uptake of [{sup 99m}Tc]-5 of 0.1% ID/g at 30 min post injection. Conclusion: [{sup 99m}Tc]-5 and its rhenium congener were synthesized and characterized. In vitro studies showed that the rhenium compound has a high affinity for CA IX and effectively inhibits CA IX activity. In vivo studies revealed a limited tracer accumulation in a CA IX expressing tumor but with increasing tumor-to-blood activity ratios as a function of time.

  15. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.

    Science.gov (United States)

    Igamberdiev, Abir U; Roussel, Marc R

    2012-03-01

    Rubisco, the most abundant protein serving as the primary engine generating organic biomass on Earth, is characterized by a low catalytic constant (in higher plants approx. 3s(-1)) and low specificity for CO(2) leading to photorespiration. We analyze here why this enzyme evolved as the main carbon fixation engine. The high concentration of Rubisco exceeding the concentration of its substrate CO(2) by 2-3 orders of magnitude makes application of Michaelis-Menten kinetics invalid and requires alternative kinetic approaches to describe photosynthetic CO(2) assimilation. Efficient operation of Rubisco is supported by a strong flux of CO(2) to the chloroplast stroma provided by fast equilibration of bicarbonate and CO(2) and forwarding the latter to Rubisco reaction centers. The main part of this feedforward mechanism is a thylakoidal carbonic anhydrase associated with photosystem II and pumping CO(2) from the thylakoid lumen in coordination with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. This steady flux of CO(2) limits photosynthesis at saturating CO(2) concentrations. At low ambient CO(2) and correspondingly limited capacity of the bicarbonate pool in the stroma, its depletion at the sites of Rubisco is relieved by utilizing O(2) instead of CO(2), i.e. by photorespiration, a process which supplies CO(2) back to Rubisco and buffers the redox state and energy level in the chloroplast. Thus, the regulation of Rubisco function aims to keep steady non-equilibrium levels of CO(2), NADPH/NADP and ATP/ADP in the chloroplast stroma and to optimize the condition of homeostatic photosynthetic flux of matter and energy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.

    Science.gov (United States)

    Schewe, Bettina; Schmälzlin, Elmar; Walz, Bernd

    2008-03-01

    Blowfly salivary gland cells have a vacuolar-type H(+)-ATPase (V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pH(i)) regulation, and we have localized CA activity by histochemistry. We show: (1) mean pH(i) in salivary gland cells is 7.5+/-0.3 pH units (N=96), higher than that expected from passive H(+) distribution; (2) low 5-HT concentrations (0.3-3 nmol l(-1)) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l(-1), causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pH(i); (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl(-)-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na(+)-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pH(i) regulation and 5-HT-induced outward H(+) pumping does not cause an alkalinization of pH(i) because of cytosolic H(+) accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.

  17. Synthesis and in Vivo Biological Evaluation of (68)Ga-Labeled Carbonic Anhydrase IX Targeting Small Molecules for Positron Emission Tomography.

    Science.gov (United States)

    Sneddon, Deborah; Niemans, Raymon; Bauwens, Matthias; Yaromina, Ala; van Kuijk, Simon J A; Lieuwes, Natasja G; Biemans, Rianne; Pooters, Ivo; Pellegrini, Paul A; Lengkeek, Nigel A; Greguric, Ivan; Tonissen, Kathryn F; Supuran, Claudiu T; Lambin, Philippe; Dubois, Ludwig; Poulsen, Sally-Ann

    2016-07-14

    Tumor hypoxia contributes resistance to chemo- and radiotherapy, while oxygenated tumors are sensitive to these treatments. The indirect detection of hypoxic tumors is possible by targeting carbonic anhydrase IX (CA IX), an enzyme overexpressed in hypoxic tumors, with sulfonamide-based imaging agents. In this study, we present the design and synthesis of novel gallium-radiolabeled small-molecule sulfonamides targeting CA IX. The compounds display favorable in vivo pharmacokinetics and stability. We demonstrate that our lead compound, [(68)Ga]-2, discriminates CA IX-expressing tumors in vivo in a mouse xenograft model using positron emission tomography (PET). This compound shows specific tumor accumulation and low uptake in blood and clears intact to the urine. These findings were reproduced in a second study using PET/computed tomography. Small molecules investigated to date utilizing (68)Ga for preclinical CA IX imaging are scarce, and this is one of the first effective (68)Ga compounds reported for PET imaging of CA IX.

  18. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Pavel Mader

    2014-01-01

    Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.

  19. The screening of RNA aptamers specific for carbonic anhydrase I using the Systematic Evolution of Ligands by an Exponential Enrichment Method (SELEX).

    Science.gov (United States)

    Shrivastava, Garima; Hyodo, Mamoru; Ara, Mst Naznin; Harashima, Hideyoshi

    2014-01-01

    Carbonic anhydrases (CA) or carbonate dehydratases are a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate. CA I is the most abundant protein in the cytosol and has been reported to the partially associated with a number of fatal diseases. A newly established Systematic Evolution of Ligands by EXponential enrichment (SELEX) method referred to as Protein-SELEX was used to select RNA aptamers against the human erythrocyte CA I (CA I) protein. After five rounds of selection and counter selection the specific binding of the 6th cycle in vitro transcribed RNA library to CA I was detected by an Electrophoretic Mobility Shift Assay (EMSA). Three Specific sequences were identified as binding candidates after cloning and sequence analysis and one of the selected CA I specific RNA aptamers, CAapt1, was used to confirm specific binding and the Kd values were determined using an EMSA. The CAapt1 RNA aptamer showed no affinity towards any other protein and in comparison to the "0" cycle library, a significant enrichment was obtained. This methodology permitted us to successfully investigate the ssRNA aptamer CAapt1 for CA I protein.

  20. The enzyme-inhibitor approach to cell-selective labelling. Pt. 1; Sulphonamide inhibitors of carbonic anhydrase as carriers for red cell labelling: in vitro uptake of pIBS by human red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Wyeth, P. (Southampton Univ. (UK))

    1991-01-01

    Red cell carbonic anhydrase is identified as an ideal target in an enzyme-inhibitor approach to radiolabel localisation. Current problems in blood pool labelling could be overcome by using selective sulphonamide inhibitors as carriers. p-Iodobenzenesulphonamide (pIBS) was selected as the choice reagent for red blood cell labelling. Rapid uptake of ({sup 125}I)-pIBS was found in vitro, consistent with passive diffusion across the cell membrane. The intracellular binding could be attributed to interaction with two specific acceptor sites, with dissociation constants of 4.9 +- 1.0 and 0.10+- 0.05 {mu}mol dm{sup -3}, and maximum binding capacities of 166 +- 5 and 19.9 +- 1.0 {mu}mol dm{sup -3}, respectively under the experimental conditions. These data correlate with the two major carbonic anhydrase isozymes; acceptor assignments were confirmed by gel chromatography of the red cell lysate. (author).

  1. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes.

    Science.gov (United States)

    Shah, Gul N; Morofuji, Yoichi; Banks, William A; Price, Tulin O

    2013-10-18

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A Carbonic Anhydrase Serves as an Important Acid-Base Regulator in Pacific Oyster Crassostrea gigas Exposed to Elevated CO2: Implication for Physiological Responses of Mollusk to Ocean Acidification.

    Science.gov (United States)

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Qiu, Limei; Wang, Lingling; Zhang, Anguo; Song, Linsheng

    2017-02-01

    Carbonic anhydrases (CAs) have been demonstrated to play an important role in acid-base regulation in vertebrates. However, the classification and modulatory function of CAs in marine invertebrates, especially their responses to ocean acidification remain largely unknown. Here, a cytosolic α-CA (designated as CgCAII-1) was characterized from Pacific oyster Crassostrea gigas and its molecular activities against CO2 exposure were investigated. CgCAII-1 possessed a conserved CA catalytic domain, with high similarity to invertebrate cytoplasmic or mitochondrial α-CAs. Recombinant CgCAII-1 could convert CO2 to HCO3(-) with calculated activity as 0.54 × 10(3) U/mg, which could be inhibited by acetazolamide (AZ). The mRNA transcripts of CgCAII-1 in muscle, mantle, hepatopancreas, gill, and hemocytes increased significantly after exposure to elevated CO2. CgCAII-1 could interact with the hemocyte membrane proteins and the distribution of CgCAII-1 protein became more concentrated and dense in gill and mantle under CO2 exposure. The intracellular pH (pHi) of hemocytes under CO2 exposure increased significantly (p ocean acidification and participate in acid-base regulation. Such cytoplasmic CA-based physiological regulation mechanism might explain other physiological responses of marine organisms to OA.

  3. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    Science.gov (United States)

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes.

  4. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Nabendu Pore

    2015-06-01

    Full Text Available Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX, monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.

  5. Carbonic anhydrase IX as a specific biomarker for clear cell renal cell carcinoma: comparative study of Western blot and immunohistochemistry and implications for diagnosis.

    Science.gov (United States)

    Giménez-Bachs, José M; Salinas-Sánchez, Antonio S; Serrano-Oviedo, Leticia; Nam-Cha, Syong H; Rubio-Del Campo, Antonio; Sánchez-Prieto, Ricardo

    2012-10-01

    This study aimed to evaluate the usefulness of carbonic anhydrase IX (CA-IX) expression in clear cell renal cell carcinoma (CCRCC) using two different techniques to detect protein expression. An experimental, cross-sectional, analytical study was conducted to analyse proteins in renal tumour and healthy tissue specimens from 38 consecutive patients who underwent nephrectomy for renal cancer. CA-IX protein expression was measured by immunohistochemistry and Western blot analysis and quantified. Statistical analysis was performed with the positive and negative specific agreements and kappa coefficient. The sensitivity and specificity of both techniques were assessed. Statistical tests were conducted to analyse the association between CA-IX expression quantitation and normal prognosis factors (TNM stage and Fuhrman nuclear grade), only in CCRCC. The mean patient age was 65 years, 78.9% of patients were men and 57.9% of tumours were CCRCC. CA-IX protein expression was positive in 63.2% of tumours by immunohistochemistry and in 60.5% by Western blot. Both techniques detected CA-IX expression only in CCRCC and unclassifiable tumours. High concordance indices were observed for CCRCC diagnosis. Western blot and immunohistochemistry had a sensitivity of 95.5% and 100%, respectively; the specificity was 100% in both techniques. CA-IX expression quantitation did not correlate with tumour stage or Fuhrman nuclear grade. Immunochemistry and Western blot techniques can be used to detect abnormal CA-IX protein expression in CCRCC and to support morphology-based diagnostic techniques.

  6. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  7. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease.

    Science.gov (United States)

    Pan, Peiwen; Vermelho, Alane Beatriz; Scozzafava, Andrea; Parkkila, Seppo; Capasso, Clemente; Supuran, Claudiu T

    2013-08-01

    The protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease, encodes an α-class carbonic anhydrase (CA, EC 4.2.1.1), TcCA, which was recently shown to be crucial for its life cycle. Thiols, a class of strong TcCA inhibitors, were also shown to block the growth of the pathogen in vitro. Here we report the inhibition of TcCA by inorganic and complex anions and other molecules interacting with zinc proteins, such as sulfamide, sulfamic acid, phenylboronic/arsonic acids. TcCA was inhibited in the low micromolar range by iodide, cyanate, thiocyanate, hydrogensulfide and trithiocarbonate (KIs in the range of 44-93 μM), but the best inhibitor was diethyldithiocarbamate (KI=5 μM). Sulfamide showed an inhibition constant of 120 μM, but sulfamic acid was much less effective (KI of 10.6 mM). The discovery of diethyldithiocarbamate as a low micromolar TcCA inhibitor may be useful to detect leads for developing anti-Trypanosoma agents with a diverse mechanism of action compared to clinically used drugs (benznidazole, nifurtimox) for which significant resistance emerged.

  8. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Directory of Open Access Journals (Sweden)

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  9. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Vullo, Daniela; Carginale, Vincenzo; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-10-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the CO2 hydration/dehydration reversible reaction: CO2 + H2O ⇄ [Formula: see text] + H(+). Living organisms encode for at least six distinct genetic families of such catalyst, the α-, β-, γ-, δ-, ζ- and η-CAs. The main function of the CAs is to quickly process the CO2 derived by metabolic processes in order to regulate acid-base homeostasis, connected to the production of protons (H(+)) and bicarbonate. Few data are available in the literature on Antarctic CAs and most of the scientific information regards CAs isolated from mammals or prokaryotes (as well as other mesophilic sources). It is of great interest to study the biochemical behavior of such catalysts identified in organism living in the Antarctic sea where temperatures average -1.9 °C all year round. The enzymes isolated from Antarctic organisms represent a useful tool to study the relations among structure, stability and function of proteins in organisms adapted to living at constantly low temperatures. In the present paper, we report in detail the cloning, purification, and physico-chemical properties of NcoCA, a γ-CA isolated from the Antarctic cyanobacterium Nostoc commune. This enzyme showed a higher catalytic efficiency at lower temperatures compared to mesophilic counterparts belonging to α-, β-, γ-classes, as well as a limited stability at moderate temperatures.

  10. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff's bases incorporating sulfonamide, carboxylate and carboxymethyl moieties.

    Science.gov (United States)

    Nasr, Gihane; Cristian, Alina; Barboiu, Mihail; Vullo, Daniella; Winum, Jean-Yves; Supuran, Claudiu T

    2014-05-15

    A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn(2+)-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0-21,400nM against hCA II and of 52-8600nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6nM-5.3μM against hCA II, and of 18.7-251nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications.

  11. The most recently discovered carbonic anhydrase, CA XV, is expressed in the thick ascending limb of Henle and in the collecting ducts of mouse kidney.

    Directory of Open Access Journals (Sweden)

    Sina Saari

    Full Text Available BACKGROUND: Carbonic anhydrases (CAs are key enzymes for physiological pH regulation, including the process of urine acidification. Previous studies have identified seven cytosolic or membrane-bound CA isozymes in the kidney. Recently, we showed by in situ hybridization that the mRNA for the most novel CA isozyme, CA XV, is present in the renal cortex. CA XV is a unique isozyme among mammalian CAs, because it has become a pseudogene in primates even though expressed in several other species. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we raised a polyclonal antibody against recombinant mouse CA XV that was produced in a baculovirus/insect cell expression system, and the antibody was used for immunohistochemical analysis in different mouse tissues. Positive immunoreactions were found only in the kidney, where the enzyme showed a very limited distribution pattern. Parallel immunostaining experiments with several other anti-CA sera indicated that CA XV is mainly expressed in the thick ascending limb of Henle and collecting ducts, and the reactions were most prominent in the cortex and outer medulla. CONCLUSION/SIGNIFICANCE: Although other studies have proposed a role for CA XV in cell proliferation, its tightly limited distribution may point to a specialized function in the regulation of acid-base homeostasis.

  12. Histological structure and distribution of carbonic anhydrase isozymes (CA-I, II, III and VI) in major salivary glands in koalas.

    Science.gov (United States)

    Mizuno, T; McKinnon, A; Ichihara, N; Amasaki, T; Asari, M; Nishita, T; Oishi, M; Soeta, S; Amasaki, H

    2009-11-01

    While the mandibular glands usually consist of only mucous acinar cells or a combination of mucous and serous cells in other species of mammals, those of koalas were serous glands. Rabbit mono-specific polyclonal anti-canine CA-I, II, III or VI antiserum showed cross-reactivity against corresponding koala carbonic anhydrase (CA) isozymes. Although immunohistochemical reactions to CA-I, II and VI in ductal cells were moderate to strong in the tested salivary glands, no reaction or only slight reactions were observed against CA-III. In the sublingual glands, moderate immunohistochemical reactions to CA-I, II and VI were also evident in serous acinar cells and serous demilunes. However, no reactions to the tested isozymes were observed in mucous acinar cells in these glands. With the exception of the histological structure of the mandibular glands, histological features and the distributional profile of CA isozymes of the salivary glands in koalas are relatively close to results obtained from horses.

  13. The selective expression of carbonic anhydrase genes of Aspergillus nidulans in response to changes in mineral nutrition and CO2 concentration.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Dong, Cuiling; Liu, Fanghua

    2016-02-01

    Carbonic anhydrase (CA) plays an important role in the formation and evolution of life. However, to our knowledge, there has been no report on CA isoenzyme function differentiation in fungi. Two different CA gene sequences in Aspergillus nidulans with clear genetic background provide us a favorable basis for studying function differentiation of CA isoenzymes. Heterologously expressed CA1 was used to test its weathering ability on silicate minerals and real-time quantitative PCR was used to detect expression of the CA1 and CA2 genes at different CO2 concentrations and in the presence of different potassium sources. The northern blot method was applied to confirm the result of CA1 gene expression. Heterologously expressed CA1 significantly promoted dissolution of biotite and wollastonite, and CA1 gene expression increased significantly in response to soluble K-deficiency. The northern blot test further showed that CA1 participated in K-feldspar weathering. In addition, the results showed that CA2 was primary involved in adapting to CO2 concentration change. Taken together, A. nidulans can choose different CA to meet their survival needs, which imply that some environmental microbes have evolved different CAs to adapt to changes in CO2 concentration and acquire mineral nutrition so that they can better adapt to environmental changes. Inversely, their adaption may impact mineral weathering and/or CO2 concentration, and even global change.

  14. Mechanistic Explanation of the Weak Carbonic Anhydrase’s Esterase Activity

    Directory of Open Access Journals (Sweden)

    Paolo Piazzetta

    2017-06-01

    Full Text Available In order to elucidate the elementary mechanism of the promiscuous esterase activity of human carbonic anhydrase (h-CA, we present an accurate theoretical investigation on the hydrolysis of fully-acetylated d-glucose functionalized as sulfamate. This h-CA’s inhibitor is of potential relevance in cancer therapy. The study has been performed within the framework of three-layer ONIOM (QM-high:QM’-medium:MM-low hybrid approach. The computations revealed that the hydrolysis process is not energetically favored, in agreement with the observed weak carbonic anhydrase’s esterase activity.

  15. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica).

    Science.gov (United States)

    De Winter, P; Sugden, D; Baggott, G K

    2008-09-01

    1. The gene expression of carbonic anhydrase, a key enzyme for the production of sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CA IX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. 2. Eggs were incubated at 37.6 degrees C, c.60% RH, and turned hourly (90 degrees ) or left unturned. From 48 to 96 h of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96 h was processed identically. 3. Blastoderm CA IV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96 h of incubation. Only very low levels were found in blood. 4. Blastoderm CA II gene expression was greatest at 48 and 54 h of incubation, subsequently declining to much lower levels and unaffected by turning. Blood CA II gene expression was about 25-fold greater than in the blastoderm. 5. The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. 6. It is concluded that only gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84 to 96 h of incubation in embryos of turned eggs.

  17. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes.

    Science.gov (United States)

    Musa-Aziz, Raif; Occhipinti, Rossana; Boron, Walter F

    2014-11-01

    Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3 (-) hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3 (-)/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi ) and pHS relaxations (τpHS ). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3 (-) buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS , indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane.

  18. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015).

    Science.gov (United States)

    Buzás, György M; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Puşcaş used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Puşcaş for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend.

  19. V-H+ -ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Wood, Chris M; Goss, Greg G

    2007-05-01

    We investigated the involvement of carbonic anhydrase (CA) in mediating V-H(+)-ATPase translocation into the basolateral membrane in gills of alkalotic Squalus acanthias. Immunolabeling revealed that CA is localized in the same cells as V-H(+)-ATPase. Blood plasma from dogfish injected with acetazolamide [30 mg/kg at time (t) = 0 and 6 h] and infused with NaHCO(3) for 12 h (1,000 microeq.kg(-1).h(-1)) had significantly higher plasma HCO(3)(-) concentration than fish that were infused with NaHCO(3) alone (28.72 +/- 0.41 vs. 6.57 +/- 2.47 mmol/l, n = 3), whereas blood pH was similar in both treatments (8.03 +/- 0.11 vs. 8.04 +/- 0.11 pH units at t = 12 h). CA inhibition impaired V-H(+)-ATPase translocation into the basolateral membrane, as estimated from immunolabeled gill sections and Western blotting on gill cell membranes (0.24 +/- 0.08 vs. 1.00 +/- 0.28 arbitrary units, n = 3; P < 0.05). We investigated V-H(+)-ATPase translocation during a postfeeding alkalosis ("alkaline tide"). Gill samples were taken 24-26 h after dogfish were fed to satiety in a natural-like feeding regime. Immunolabeled gill sections revealed that V-H(+)-ATPase translocated to the basolateral membrane in the postfed fish. Confirming this result, V-H(+)-ATPase abundance was twofold higher in gill cell membranes of the postfed fish than in fasted fish (n = 4-5; P < 0.05). These results indicate that 1) intracellular H(+) or HCO(3)(-) produced by CA (and not blood pH or HCO(3)(-)) is likely the stimulus that triggers the V-H(+)-ATPase translocation into the basolateral membrane in alkalotic fish and 2) V-H(+)-ATPase translocation is important for enhanced HCO(3)(-) secretion during a naturally occurring postfeeding alkalosis.

  20. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.

    Science.gov (United States)

    Pinter, Tyler B J; Stillman, Martin J

    2015-11-01

    Mammalian metallothioneins (MTs) bind up to seven Zn(2+) using a large number of cysteine residues relative to their small size and can act as zinc-chaperones. In metal-saturated Zn7-MTs, the seven zinc ions are co-ordinated tetrahedrally into two distinct clusters separated by a linker; the N-terminal β-domain [(Zn3Cys9)(3-)] and C-terminal α-domain [(Zn4Cys11)(3-)]. We report on the competitive zinc metalation of apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] in the presence of apo-metallothionein 1A domain fragments to identify domain specific determinants of zinc binding and zinc donation in the intact two-domain Znn-βαMT1A (human metallothionein 1A isoform; n=0-7). The apo-CA is shown to compete effectively only with Zn2-3-βMT and Zn4-αMT. Detailed modelling of the ESI mass spectral data have revealed the zinc-binding affinities of each of the zinc-binding sites in the two isolated fragments. The three calculated equilibrium zinc affinities [log(KF)] of the isolated β-domain were: 12.2, 11.7 and 11.4 and the four isolated α-domain affinities were: 13.5, 13.2, 12.7 and 12.6. These data provide guidance in identification of the location of the strongest-bound and weakest-bound zinc in the intact two-domain Zn7βαMT. The β-domain has the weakest zinc-binding site and this is where zinc ions are donated from in the Zn7-βαMT. The α-domain with the highest affinity binds the first zinc, which we propose leads to an unscrambling of the cysteine ligands from the apo-peptide bundle. We propose that stabilization of the intact Zn6-MT and Zn7-MT, relative to that of the sum of the separated fragments, is due to the availability of additional cysteine ligand orientations (through interdomain interactions) to support the clustered structures.

  1. Are increased salivary carbonic anhydrase VI levels related to the amount of supragingival dental calculus formation and clinical periodontal scores?

    Directory of Open Access Journals (Sweden)

    Taner Arabacı

    2015-06-01

    Conclusion: This study found positive correlations between increased salivary CA VI activity and the amount of supragingival dental calculus; however, further investigations are needed to clarify the exact association between these parameters.

  2. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors

    OpenAIRE

    2014-01-01

    Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive product...

  3. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  4. A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Ostheimer, C.; Bache, M.; Guettler, A.; Vordermark, D. [Martin-Luther-University Halle-Wittenberg, Department of Radiation Oncology, Halle (Saale) (Germany); Kotzsch, M. [Technical University Dresden, Department of Pathology, Dresden (Germany)

    2014-03-15

    Hypoxic radioresistance plays a critical role in the radiotherapy of cancer and adversely impacts prognosis and treatment response. This prospective study investigated the interrelationship and the prognostic significance of several hypoxia-related proteins in non-small cell lung cancer (NSCLC) patients treated by radiotherapy ± chemotherapy. Pretreatment osteopontin (OPN), vascular endothelial growth factor (VEGF) and carbonic anhydrase IX (CA IX) plasma levels were determined by ELISA in 55 NSCLC (M0) patients receiving 66 Gy curative-intent radiotherapy or chemoradiation. Marker correlation, association with clinicopathological parameters and the prognostic value of a biomarker combination was evaluated. All biomarkers were linearly correlated and linked to different clinical parameters including lung function, weight loss (OPN), gross tumor volume (VEGF) and T stage (CA IX). High OPN (p = 0.03), VEGF (p = 0.02) and CA IX (p = 0.04) values were significantly associated with poor survival. Double marker combination additively increased the risk of death by a factor of 2 and high plasma levels of the triple combination OPN/VEGF/CA IX yielded a 5.9-fold risk of death (p = 0.009). The combined assessment of OPN/VEGF/CA IX correlated independently with prognosis (p = 0.03) in a multivariate Cox regression model including N stage, T stage and GTV. This pilot study suggests that a co-detection augments the prognostic value of single markers and that the integration of OPN, VEGF and CA IX into a hypoxic biomarker profile for the identification of patients with largely hypoxic and radioresistant tumors should be further evaluated. (orig.) [German] Hypoxische Radioresistenz spielt eine kritische Rolle in der Radiotherapie maligner Tumoren und beeinflusst Prognose und Therapieansprechen negativ. Diese prospektive Studie untersuchte den Zusammenhang und die prognostische Bedeutung einiger hypoxieassoziierter Proteine bei Patienten mit nicht-kleinzelligem Bronchialkarzinom

  5. Characterization of one Novel Flavone and four New Source Compounds from the Bark of Millettia ovalifolia and In-Vitro Inhibition of Carbonic Anhydrase-II by the Novel Flavonoid

    Directory of Open Access Journals (Sweden)

    Taj Ur Rahman

    2015-06-01

    Full Text Available The phytochemical examination of the extract of bark of Millettia ovalifolia yielded chemical constituents, which included one novel flavonoid 7-(4-methoxyphenyl-9H-furo [2, 3-f] chromen-9-one and four new source compounds characterized as 3,7-Dihydroxy-2-phenyl-4H-chromen-4-one, (E-Ethyl-13-(3,4-dimethoxyphenylacrylate, (E-Methyl-3-(3,4-dimethoxyphenylacrylate and N-Ethylacetamide. These compounds were characterized by using advance modern spectroscopic analytical techniques such as UV, IR, 1D, 2D NMR and mass spectrometry. The novel flavonoid (1 displayed significant inhibition of cytosolic form of bovine carbonic anhydrase-II with IC 50 value of 17.86 ± 0.07 µM. This flavonoid may be used as a new pharmacophore to treat cystic fibrosis, glaucoma, epilepsy, leaukomia and other disorders such as neurology etc.

  6. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein.

    Science.gov (United States)

    Entezari Heravi, Yeganeh; Sereshti, Hassan; Saboury, Ali Akbar; Ghasemi, Jahan; Amirmostofian, Marzieh; Supuran, Claudiu T

    2017-12-01

    A 3D-QSAR modeling was performed on a series of diarylpyrazole-benzenesulfonamide derivatives acting as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The compounds were collected from two datasets with the same scaffold, and utilized as a template for a new pharmacophore model to screen the ZINC database of commercially available derivatives. The datasets were divided into training, test, and validation sets. As the first step, comparative molecular field analysis (CoMFA), CoMFA region focusing and comparative molecular similarity indices analysis (CoMSIA) in parallel with docking studies were applied to a set of 41 human (h) CA II inhibitors. The validity and the prediction capacity of the resulting models were evaluated by leave-one-out (LOO) cross-validation approach. The reliability of the model for the prediction of possibly new CA inhibitors was also tested.

  7. Fluorescence Lifetime Imaging of Physiological Free Cu(II) Levels in Live Cells with a Cu(II)-Selective Carbonic Anhydrase-Based Biosensor

    Science.gov (United States)

    McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.

    2014-01-01

    Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220

  8. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  9. A novel carbonic anhydrase II mRNA isolated from mature chicken testis displays a TATA box and other promoter sequences in a leader 5' untranslated region not present in somatic tissues.

    Science.gov (United States)

    Mezquita, J; Pau, M; Mezquita, C

    1994-09-30

    The primary structure of a novel carbonic anhydrase II-encoding cDNA clone (CAII) isolated from a chicken testis cDNA library is presented. The size of the CAII mRNA obtained from meiotic and haploid chicken testis cells is larger than the corresponding mRNA from immature testis and somatic tissues. The nucleotide sequence of the chicken testis CAII clone revealed a protein-coding region identical to the published sequence of CAII mRNA from erythroid cells. However, the 5' untranslated region (UTR) of the testis CAII mRNA is larger than the corresponding somatic sequence. The 5' UTR contains a leader sequence not present in the CAII mRNA isolated from erythroid cells or chick retina. The additional 5' UTR of the mRNA displays a TATA box, located 23-30 bp upstream from the cap site of the CAII mRNA transcribed in erythroid cells, and several G+C-rich boxes. Our results suggest that the use of a testis-specific promoter would result in the incorporation of somatic promoter sequences into the 5' UTR of the testis message.

  10. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  11. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  12. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  13. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  14. 碳酸酐酶抑制剂乙酰唑胺对切口痛大鼠痛行为的影响%Effects of carbonic anhydrase inhibitor acetazolamide on pain behavior in a rat model of incision pain

    Institute of Scientific and Technical Information of China (English)

    韩潞潞; 赵华平; 薛庆生; 于布为

    2011-01-01

    Aim To observe the effect of carbonic anhydrase inhibitor acetazolamide ( ACT ) on the behavior of rats with incision pain. Methods All rats were intrathecally cathetered, six days later they were randomly divided into 5 groups with 16 rats in each group:sham, sham + ACT, incision pain, incision pain + low dose of ACT( 2.25 μg ), incision pain + high dose of ACT( 22.5 μg ). Rat' s incision pain model was established by using Brennan's method. ACT or vehicle was administered intrathecally 24 h after operation. Thermal withdrawal latency( TWL ) and mechanical withdrawal threshold( MWT ) were measured and compared 1 d before operation( baseline )and l d after operation( before drug injection and 30,75,120,165,240 min after drug injection ). Results The TWL and MWT were decreased significantly on 1 d after incision compared with baseline( P < 0.05 ). Intrathecal administration of highdose ACT increased the TWL at 30, 75 and 120 min after drug injection( P < 0.05 ). However, high dose ACT had no effect on the MWT. The TWL in incision + HACT group was significantly higher than that in incision group at 30, 75 and 120 min after drug injection ( P < 0.05 ). Conclusions ACT at large dose can partially alleviate incision-induced heat hyperalgesia but has no effect on the mechanical hyperalgesia. Carbonic anhydrase might be involved in the development of heat hyperalgesia induced by incision.%目的 观察鞘内注射碳酸酐酶抑制剂乙酰唑胺(ACT)对大鼠切口痛行为的影响.方法 所有大鼠术前6天鞘内置管,随机分为5组:假手术组、假手术+ACT组、切口痛组、切口痛+ACT低剂量(2.25 μg)组、切口痛+ACT高剂量(22.5 μg)组,每组16只.按照Brennan法建立切口痛模型.ACT和生理盐水均在术后d 1鞘内给予.分别于术前d 1(基础值)、术后d 1(给药前,给药后30、75、120、165、240 min)测定大鼠的热缩足潜伏期(TWL)和机械缩足反射阈值(MWT),并予比较.结果 切口痛术后d 1(给药

  15. Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content.

    Science.gov (United States)

    Long, Benedict M; Rae, Benjamin D; Badger, Murray R; Price, G Dean

    2011-09-01

    Carboxysomes, containing the cell's complement of RuBisCO surrounded by a specialized protein shell, are a central component of the cyanobacterial CO(2)-concentrating mechanism. The ratio of two forms of the β-carboxysomal protein CcmM (M58 and M35) may affect the carboxysomal carbonic anhydrase (CcaA) content. We have over-expressed both M35 and M58 in the β-cyanobacterium Synechococcus PCC7942. Over-expression of M58 resulted in a marked increase in the amount of this protein in carboxysomes at the expense of M35, with a concomitant increase in the observed CcaA content of carboxysomes. Conversely, M35 over-expression diminished M58 content of carboxysomes and led to a decrease in CcaA content. Carboxysomes of air-grown wild-type cells contained slightly elevated CcaA and M58 content and slightly lower M35 content compared to their 2% CO(2)-grown counterparts. Over a range of CcmM expression levels, there was a strong correlation between M58 and CcaA content, indicating a constant carboxysomal M58:CcaA stoichiometry. These results also confirm a role for M58 in the recruitment of CcaA into the carboxysome and suggest a tight regulation of M35 and M58 translation is required to produce carboxysomes with an appropriate CA content. Analysis of carboxysomal protein ratios, resulting from the afore-mentioned over-expression studies, revealed that β-carboxysomal protein stoichiometries are relatively flexible. Determination of absolute protein quantities supports the hypothesis that M35 is distributed throughout the β-carboxysome. A modified β-carboxysome packing model is presented.

  16. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  17. Methane adsorption on activated carbon

    OpenAIRE

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  18. Minimizing activated carbons production cost

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  19. Simulations of phenol adsorption on activated carbon and carbon black

    OpenAIRE

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  20. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  1. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  3. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  4. 意大利蜜蜂碳酸酐酶相关蛋白X的基因克隆及序列分析%Cloning and Sequence Analysis of Carbonic Anhydrase-Related Protein 10-like in Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    李兆英

    2012-01-01

    [目的]对意大利蜜蜂(Apis mellifera)碳酸酐酶相关蛋白(CARPs)X的基因进行克隆,并对其序列进行分析.[方法]通过RTPCR扩增得到CARP X基因的cDNA序列,同时对序列进行生物信息学分析.[结果]意大利蜜蜂CARP X基因的cDNA全长972 bp,编码324个氨基酸残基,推导的氨基酸序列具有1个信号肽、2个跨膜区;预测其分子量和等电点分别为37.1 kD和7.458;该蛋白质与小蜜蜂(Apis florea)、熊蜂(Bombus impatiens)、Bombus terrestris、金小蜂(Nasonia vitripennis)、豌豆蚜虫(Acyrthosiphon pisum)的CARP X有很近的亲缘关系;聚类分析显示在昆虫体内可能具有2种不同类型的CARP X.[结论]该研究为CARPs蛋白家族的研究提供了可靠的理论基础.%[Objective] This study aimed to clone and analyze the gene sequence encoding carbonic anhydrase-related protein 10-like from Apis mellifera. [Method] The cDNA sequence of CARP X gene was cloned through RT-PCR method, and then analyzed with bioinformatical method. [Result] The full cDNA sequence of CARP X was 972 bp long, encoding 324 amino acid residues, including a signal peptide and two transmembrane domains. The predicted molecular mass was 37.1 kDa and the predicted isoelectric point was 7.458. The CARP X from A. mellifera showed the close relationship with proteins from Apis florae, Bombus impatiens, Bombus terrestris, Nasonia vitripennis and Acyrthosiphon pisum. The insect CARP X family may contain two suhfamilies. [Conclusion] The results provided the basis for studying CARPs family.

  5. Comparison of Latanoprost/Timolol with Carbonic Anhydrase Inhibitor and Dorzolamide/Timolol with Prostaglandin Analog in the Treatment of Glaucoma

    Directory of Open Access Journals (Sweden)

    Kenji Inoue

    2014-01-01

    Full Text Available Purpose. We retrospectively reviewed medical records of glaucoma patients to investigate how switching medications may affect intraocular pressure (IOP management. Three concomitant medications were changed to two medications: one combination drop and one single-action drop. Associated adverse effects were also examined. Subjects and Methods. A total of 112 patients with primary open-angle glaucoma or ocular hypertension were examined. All patients were concomitantly using a prostaglandin (PG analog, a β-blocker, and a carbonic anhydrate inhibitor (CAI. Fifty-five patients began using latanoprost (PG analog/timolol (β-blocker fixed-combination (LTFC drops and a CAI (group 1, and 57 patients began using dorzolamide (CAI/timolol fixed-combination (DTFC drops and a PG analog (group 2. The IOP was measured every 6 months for 2 years following medication changes. Changes in visual field mean deviation (MD and medication discontinuations were also examined. Results. There were no significant differences in IOP or MD values before and after medication changes in either group. The proportion of medication discontinuations, uncontrolled IOP, and adverse reactions was similar in both groups. Conclusion. Switching patients from multiple single-action medications to combination medications was not associated with changes in IOP, visual field testing results, or adverse event frequency.

  6. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C.

    Science.gov (United States)

    Bian, Y Z; Guo, C; Chang, T M S

    2016-01-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (Poly-[Hb-SOD-CAT-CA]) contains all three major functions of red blood cells (RBCs) at an enhanced level. It transports oxygen, removes oxygen radicals and transports carbon dioxide. Our previous studies in a 90-min 30 mm Hg Mean Arterial Pressure (MAP) sustained hemorrhagic shock rat model shows that it is more effective than blood in the lowering of elevated intracellular pCO2, recovery of ST-elevation and histology of the heart and intestine. This paper is to analyze the storage and temperature stability. Allowable storage time for RBC is about 1 d at room temperature and 42 d at 4 °C. Also, RBC cannot be pasteurized to remove infective agents like HIV and Ebola. PolyHb can be heat sterilized and can be stored for 1 year even at room temperature. However, Poly-[Hb-SOD-CAT-CA] contains both Hb and enzymes and enzymes are particularly sensitive to storage and heat. We thus carried out studies to analyze its storage stability at different temperatures and heat pasteurization stability. Results of storage stability show that lyophilization extends the storage time to 1 year at 4 °C and 40 d at room temperature (compared to respectively, 42 d and 1 d for RBC). After the freeze-dry process, the enzyme activities of Poly-[SFHb-SOD-CAT-CA] was 100 ± 2% for CA, 100 ± 2% for SOD and 93 ± 3.5% for CAT. After heat pasteurization at 70 °C for 2 h, lyophilized Poly-[Hb-SOD-CAT-CA] retained good enzyme activities of CA 97 ± 4%, SOD 100 ± 2.5% and CAT 63.8 ± 4%. More CAT can be added during the crosslinking process to maintain the same enzyme ratio after heat pasteurization. Heat pasteurization is possible only for the lyophilized form of Poly-[Hb-SOD-CAT-CA] and not for the solution. It can be easily reconstituted by dissolving in suitable solutions that continues to have good storage stability though less than that for the lyophilized form. According to the P50 value, Poly-[SFHb-SOD-CAT-CA] retains its

  7. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    Science.gov (United States)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  8. Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and caries in primary dentition

    OpenAIRE

    Fernanda Frasseto

    2011-01-01

    Resumo: Este estudo teve como objetivos determinar a atividade da anidrase carbônica VI (ACVI) na saliva de pré-escolares com cárie e investigar a relação entre a experiência cárie (dmfs) e a atividade da ACVI, o fluxo salivar e pH do biofilme antes e após o bochecho com sacarose a 20% em pré-escolares. Trinta pré-escolares com idade entre 45,3 e 80,3 meses foram divididos em 2 grupos: grupo livres de cárie (LC) e grupo com cárie (C). Exames clínicos foram realizados por um examinador de acor...

  9. 盐碱胁迫对尼罗罗非鱼鳃Na+/3HCO共转运子、碳酸酐酶基因表达的影响%Effects of salinity and alkalinity on mRNA expression of Na+/3HCO cotransporter and carbonic anhydrase genes fromOreochromis niloticus

    Institute of Scientific and Technical Information of China (English)

    梁从飞; 赵金良; 甘远迪; 王飞; Thammaratsuntorn Jeerawat; 伍勇; 李传阳; 罗明坤

    2016-01-01

    To understand fish osmotic adjustment mechanisms in saline and alkaline water, the partial cDNA se-quence was obtained from gills ofOreochromis niloticus. Physiological changes in serum osmolality, ion concen-tration (Na+, K+, Cl– and Ca2+), and gill carbonic anhydrase (CA) activities were determined, andCAandNBCe1 mRNA gene expressions under saline (10 g/L, 15 g/L NaCl), alkaline (1.5 g/L and 3 g/L NaHCO3), and sa-line-alkaline (salinity 10, 15 g/L NaCl; salinity 1.5, 3 g/L NaHCO3) conditions at different times (0 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h) were compared. The results showed that serum osmolality, ion concentration, gill CA activity, CA andNBCe1 mRNA gene expression correlated positively with the strength of saline, alkaline and sa-line-alkaline stress. Over time, serum osmolality and ion concentration trends increased and then decreased. Os-motic pressure insaline and saline-alkaline water was higher than that in alkaline water. Gill CA activity in alkaline and saline-alkaline water was higher than that in saline water. Under low concentrations of stressors, CA activity reached its highest level at a later time. Slightly higherNBCe1 gene mRNA expression was detected in gills under high concentrations of stressors (P>0.05). GillCA mRNA expression in saline, alkaline and saline-alkaline water was increased, but the increase was more evident in alkaline and saline-alkaline water (P0.05)。单碱组和盐碱混合组鳃CA活性较单盐组高,低盐碱胁迫(盐度10,碱度1.5 g/L)下CA活性较晚达最高值;不同胁迫条件下, CA基因mRNA表达均表现上调,单碱、盐碱混合组更为显著(P<0.05),推测CA较NBCe1对体内3HCO-转运作用更为显著。研究结果为尼罗罗非鱼盐碱适应生理调节提供了基础资料。

  10. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  11. Petrographic evaluation of xylite activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Predeanu, G. [Metallurgical Research Institute, Department of Raw Materials, Mehadia St. 39, Sector 6, 060543 Bucharest (Romania); Panaitescu, C. [University POLITEHNICA Bucharest, Faculty of Industrial Chemistry, Fuel Laboratory, Polizu St. 1, Sector 1, 011061, Bucharest (Romania)

    2007-08-01

    Xylites are promising materials for activated carbon manufacturing due to their low rank, low inorganic content, and structural characteristics similar to the strong consistence of wood. These are similar to the classical adsorbents used for waste water purification, and available and profitable in the long term. This study has been undertaken to provide by means of petrographic data, new information on the porous structure development in chars during direct heating carbonization and physical activation. The xylite petrographic composition is very important, mainly due to the existence of structured wooden material - textinite with round and elongated cells - that influences the development of the structure and texture during carbonization and activation. The charcoal microstructure reveals some interesting aspects about the carbonization process with regard to evolution, efficiency and pore development. In the xylite activated carbon, the adsorption surface development by means of the highly porous system depends on the type of petrographical components, raw material grain size, and carbonization parameters. (author)

  12. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  13. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  14. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  15. Pairwise comparison of {sup 89}Zr- and {sup 124}I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, Sarah M.; Punzalan, Blesida; Doran, Michael G.; Osborne, Joseph R. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Evans, Michael J. [Memorial Sloan-Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, NY (United States); Lewis, Jason S. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Radiochemistry and Imaging Sciences Service, New York, NY (United States); Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States); Memorial-Sloan Kettering Cancer Center, New York, NY (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States)

    2014-05-15

    The PET tracer, {sup 124}I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal {sup 89}Zr, however, may offer advantages as a surrogate PET nuclide over {sup 124}I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between {sup 124}I-cG250 and {sup 89}Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. We conducted experiments with {sup 89}Zr-cG250 and {sup 124}I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using {sup 89}Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 x 10{sup 12} molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of {sup 124}I/{sup 89}Zr atoms released per unit time by tumor was 17.5. Pairwise evaluation of {sup 89}Zr-cG250 and {sup

  16. Adsorption of Hydantoins on Activated Carbon,

    Science.gov (United States)

    1985-05-01

    covery, Garten and Weiss (1965) proposed the existence of chromene (benzpyran) groups on the surface of H-carbons. The acid reaction with the chromene ...presence of the chromene groups on the surface of H-carbons is responsible for the acid-adsorbing characteristics. Activation temperatures and

  17. The Transport Properties of Activated Carbon Fibers

    Science.gov (United States)

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  18. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  19. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  20. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  1. ACTIVATED CARBON/REFRIGERANT COMBINATIONS FOR ...

    African Journals Online (AJOL)

    ES Obe

    2001-03-01

    Mar 1, 2001 ... Nigerian Journal of Technology Vol. 20. No. ... Federal university of Technology ... Activated carbon is the adsorbent while ammonia, ethanol and methanol are the adsorbate. The ... production is not a new phenomenon.

  2. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  3. Granular Activated Carbon Performance Capability and Availability.

    Science.gov (United States)

    1983-06-01

    Kinetics of Activated Carbon Adsorption Journal of Water Polution 47(4) Aoril 1975 Control Federation 4-t9 Wnitna) G Aoalied Polarography for...proposed models for kinetics of adsorption of pink water organics by activated carbon. Both models are basically similar in nature and propose that...include formulation of a complete model of the pink water system based upon existing data. This model would then serve to reduce the amount of

  4. Nanospace engineering of KOH activated carbon.

    Science.gov (United States)

    Romanos, J; Beckner, M; Rash, T; Firlej, L; Kuchta, B; Yu, P; Suppes, G; Wexler, C; Pfeifer, P

    2012-01-13

    This paper demonstrates that nanospace engineering of KOH activated carbon is possible by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. High specific surface areas, porosities, sub-nanometer (activation temperature. The process typically leads to a bimodal pore size distribution, with a large, approximately constant number of sub-nanometer pores and a variable number of supra-nanometer pores. We show how to control the number of supra-nanometer pores in a manner not achieved previously by chemical activation. The chemical mechanism underlying this control is studied by following the evolution of elemental composition, specific surface area, porosity, and pore size distribution during KOH activation and preceding H(3)PO(4) activation. The oxygen, nitrogen, and hydrogen contents decrease during successive activation steps, creating a nanoporous carbon network with a porosity and surface area controllable for various applications, including gas storage. The formation of tunable sub-nanometer and supra-nanometer pores is validated by sub-critical nitrogen adsorption. Surface functional groups of KOH activated carbon are studied by microscopic infrared spectroscopy.

  5. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  6. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  7. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  8. 血清抗碳酸酐酶Ⅲ抗体ELISA检测方法的建立与初步应用%Establishment and preliminary application of the ELISA method for anti-carbonic anhydrase III antibody detection

    Institute of Scientific and Technical Information of China (English)

    刘辰庚; 王培昌

    2011-01-01

    目的 建立人血清抗碳酸酐酶(CA)Ⅲ抗体的ELISA检测方法,并对系统性红斑狼疮、皮肌炎、糖尿病肾病、高血压肾病患者和健康人群的血清抗CAⅢ抗体水平进行初步调查.方法 使用抗CAⅢ抗体标准品、CAⅢ及相应酶标抗体建立血清抗CAⅢ抗体ELISA检测方法,验证试剂稳定性、标本保存稳定性,并进行精密度、灵敏度、回收率、抗干扰性等方法学评价;各项技术指标均合格后对系统性红斑狼疮、皮肌炎、糖尿病肾病和高血压肾病患者的血清进行抗CAⅢ抗体水平检测.结果 成功建立ELISA检测人血清抗CAⅢ抗体的方法,其批内精密度为6.2%,批间精密度为8.2%,灵敏度为0.025,回收率为106%,且具有较好的抗干扰性、试剂稳定性和标本保存稳定性.系统性红斑狼疮和糖尿病肾病患者的血清抗CAⅢ抗体水平高于健康对照相(P<0.05),阳性率分别为43%和18%.皮肌炎和高血压肾病患者的血清抗CAⅢ抗体水平与健康对照组比较无统计学差异(P>0.05),且未出现阳性结果.结论 使用现有市售试剂进行人血清抗CAⅢ抗体的ELISA检测是可行的,抗CAⅢ抗体可能参与了系统性红斑狼疮和糖尿病肾病的发生发展.%Objective To establish an ELISA method for anti-carbonic anhydrase III (CA III ) antibody detection, and to evaluate the serum level of anti-CA III antibody in normal control group and patients with systemic lupus erythemato-sus, dermatomyositis, 2-type diabetic nephropathy and hypertensive nephropathy respectively. Methods To establish the ELISA method using CA III, anti-CA III antibody and enzyme labeled secondary antibody. To evaluate the stability of the regent and sample, and the sensitivity, stability and anti-interference performance of the ELISA method. To investigate the anti-CA III antibody level in serum of normal control group and patients with systemic lupus erythematosus, dermatomyositis, 2-type

  9. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    Science.gov (United States)

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  10. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  11. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  12. Preparation and characterization of activated carbons from rice ...

    African Journals Online (AJOL)

    atmosphere followed by activation using CO2 gas at various temperatures and ... available carbons, such as coal and coconut shells (Anon 1992). The ash ... extraction of the chemical from the carbonized char an activated carbon is obtained.

  13. Bimodal micropore size distribution in active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetyan, R.S.; Voloshchuk, A.M.; Limonov, N.A.; Romanov, Y.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry)

    1993-03-01

    The porous structure of active carbon was compared with that of the original mineral coal and its carbonization products. The parameters of the porous structure were calculated from the adsorption isotherms of CO[sub 2] (298 K) and H[sub 2]O (293 K). It was shown that carbonization of the original coal at 1120 K causes changes in the chemical composition, consolidation of the part which is amorphous to X-rays, generation of an ordered defect-containing structure on its basis, an increase in the volume of the micropores, and a decrease in the mean diameter. Activation of the carbonized coal affords a microporous structure with a bimodal size distribution.

  14. Converting Poultry Litter into Activated Carbon

    Science.gov (United States)

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  15. A novel activated carbon for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Haijie [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Liu, Enhui, E-mail: liuenhui99@sina.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China); Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  16. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    OpenAIRE

    Lin J. Q.; Yang S. E.; Duan J. M.; Wu J.J.; Jin L. Y.; Lin J. M.; Deng Q. L.

    2016-01-01

    Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and ki...

  17. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  18. Characteristics of Nonafluorobutyl Methyl Ether (NFE) Adsorption onto Activated Carbon Fibers and Different-Size-Activated Carbon Particles.

    Science.gov (United States)

    Tanada; Kawasaki; Nakamura; Araki; Tachibana

    2000-08-15

    The characteristics of adsorption of 1,1,1,2,2,3,3,4,4-nonafluorobutyl methyl ether (NFE), a chlorofluorocarbon (CFC) replacement, onto six different activated carbon; preparations (three activated carbon fibers and three different-sized activated carbon particles) were investigated to evaluate the interaction between activated carbon surfaces and NFE. The amount of NFE adsorbed onto the three activated carbon fibers increased with increasing specific surface area and pore volume. The amount of NFE adsorbed onto the three different-sized-activated carbon particles increased with an increase in the particle diameter of the granular activated carbon. The differential heat of the NFE adsorption onto three activated carbon fibers depended on the porosity structure of the activated carbon fibers. The adsorption rate of NFE was also investigated in order to evaluate the efficiency of NFE recovery by the activated carbon surface. The Sameshima equation was used to obtain the isotherms of NFE adsorption onto the activated carbon fibers and different-sized-activated carbon particles. The rate constant k for NFE adsorption onto activated carbon fibers was larger for increased specific surface area and pore volume. The rate of NFE adsorption on activated carbons of three different particle sizes decreased with increasing particle diameter at a low initial pressure. The adsorption isotherms of NFE for the six activated carbons conformed to the Dubinin-Radushkevich equation; the constants BE(0) (the affinity between adsorbate and adsorbent) and W(0) (the adsorption capacity) were calculated. These results indicated that the interaction between the activated carbon and NFE was larger with the smaller specific surface area of the activated carbon fibers and with the smaller particle diameter of the different-sized-activated carbon particles. The degree of packing of NFE in the pores of the activated carbon fibers was greater than that in the pores of the granular activated

  19. Catalytic activity of carbons for methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2005-05-15

    Catalytic decomposition of methane is an environmentally attractive approach to CO{sub 2}-free production of hydrogen. The objective of this work is to evaluate catalytic activity of a wide range of carbon materials for methane decomposition reaction and determine major factors governing their activity. It was demonstrated that the catalytic activity of carbon materials for methane decomposition is mostly determined by their structural and surface properties. Kinetics of methane decomposition reaction over disordered (amorphous) carbons such as carbon black and activated carbon were determined. The mechanism of carbon-catalyzed methane decomposition reaction and the nature of active sites on the carbon surface are discussed in this paper.

  20. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  1. Methane Adsorption Study Using Activated Carbon Fiber and Coal Based Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Guo Deyong; Li Fei; Liu Wenge

    2013-01-01

    Inlfuence of ammonium salt treatment and alkali treatment of the coal based activated carbon (AC) and activated carbon ifber (ACF) adsorbents on methane adsorption capacity was studied via high-pressure adsorption experiment. Sur-face functional groups and pore structure of two types of adsorbents were characterized by the application of infrared ab-sorption spectroscopy (IR) and low temperature liquid nitrogen adsorption method. The results show that both ammonium salt treatment and alkali treatment have obvious effect on changing BET, pore volume as well as pore size distribution of adsorbents; and methane adsorption capacity of the activated carbon ifber is the maximum after the ammonium salt treatment.

  2. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  3. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  4. Cooperative redox activation for carbon dioxide conversion

    Science.gov (United States)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  5. Carbon nanomaterials: Biologically active fullerene derivatives

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2016-01-01

    Full Text Available Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters - fullerenes, nanotubes, and graphene - their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C60(OH24. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  6. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  7. Proximate analysis for determination of micropores in granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Ya. G.; Nikolaev, V.B.; Shepelev, A.N.

    1987-02-01

    A method is discussed for determining the specific micropore volume of granulated activated carbon used for water treatment in Soviet coking plants. Toluene molecules with a diameter of 0.67 nm are sorbed by activated carbon with micropore diameter ranging from 0.7 to 1.4 nm. Therefore, sorptive properties of activated carbon in relation to toluene supply information on micropore volume in carbon. A formula which describes this relation is derived. The method for determining micropore volume on the basis of toluene adsorption was tested using 8 types of activated carbon produced from coal and petroleum. Types of activated carbon characterized by the highest adsorption were selected. 1 ref.

  8. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  9. New Perspectives on Acetate and One-Carbon Metabolism in the Methanoarchaea

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, James [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-20

    Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to bicarbonate. Although widespread in prokaryotes of the domains Bacteria and Archaea, few have been investigated and the physiological functions are largely unknown. Carbonic anhydrases are of biotechnological interest for carbon dioxide capture and sequestration at point sources. Prokaryotes encode three independently evolved classes. The alpha-class is restricted to a few pathogens and the other two are uniformly distributed in phylogenetically and physiologically diverse species. Although wide-spread in prokaryotes, only three gamma-class enzymes have been biochemically characterized and the physiological functions have not been investigated. The gamma-class is prominent in anaerobic acetate-utilizing methane-producing species of the genus Methanosarcina that encode three subclasses. Enzymes from two of the subclasses, Cam and CamH from Methanosarcina thermophila, have been characterized and found to utilize iron in the active site which is the first example of an iron-containing carbonic anhydrase. No representative of the third subclass has been isolated, although this subclass constitutes the great majority of the β-class. This grant application proposed to characterize gamma-class carbonic anhydrases from diverse anaerobic prokaryotes from the domains Bacteria and Archaea to broaden the understanding of this enzyme. In particular, the three subclasses present the genetically tractable acetate-utilizing methanogen Methanosarcina acetivorans will be investigated to extend studies of acetate and one-carbon metabolism in this species. A genetic approach will be taken to ascertain the physiological functions. It is also proposed to delve deeper into the mechanism of Cam from M. thermophila, the archetype of the gamma-class, via a high resolution neutron structure and kinetic analysis of site-specific amino acid replacement variants. In the course of the investigation, goals were added to

  10. Preparation and characterization of activated carbon from waste biomass.

    Science.gov (United States)

    Tay, Turgay; Ucar, Suat; Karagöz, Selhan

    2009-06-15

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.

  11. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... Preparation of activated carbon from a renewable agricultural ... fuel-wood because household energy requirements are met with multiple ..... for activated carbon production - A review. Renewable & Sustainable. Energy ...

  12. Aqueous mercury adsorption by activated carbons.

    Science.gov (United States)

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  13. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  14. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    Indian Academy of Sciences (India)

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  15. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  16. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  17. Acclimation to high CO/sub 2/ in monoecious cucumbers. II. Carbon exchange rates, enzyme activities, and starch and nutrient concentrations. [Cucumis sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Peet, M.M.; Huber, S.C.; Patterson, D.T.

    1986-01-01

    Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO/sub 2/ decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO/sub 2/ than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO/sub 2/ grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO/sub 2/ could explain the lack of any yield increase when compared with plants grown at 350 microliters per liter.

  18. Contrasting modes of inorganic carbon acquisition amongst Symbiodinium (Dinophyceae) phylotypes.

    Science.gov (United States)

    Brading, Patrick; Warner, Mark E; Smith, David J; Suggett, David J

    2013-10-01

    Growing concerns over ocean acidification have highlighted the need to critically understand inorganic carbon acquisition and utilization in marine microalgae. Here, we contrast these characteristics for the first time between two genetically distinct dinoflagellate species of the genus Symbiodinium (phylotypes A13 and A20) that live in symbiosis with reef-forming corals. Both phylotypes were grown in continuous cultures under identical environmental conditions. Rubisco was measured using quantitative Western blots, and radioisotopic (14) C uptake was used to characterize light- and total carbon dioxide (TCO2 )-dependent carbon fixation, as well as inorganic carbon species preference and external carbonic anhydrase activity. A13 and A20 exhibited similar rates of carbon fixation despite cellular concentrations of Rubisco being approximately four-fold greater in A13. The uptake of CO2 over HCO3 - was found to support the majority of carbon fixation in both phylotypes. However, A20 was also able to indirectly utilize HCO3 - by first converting it to CO2 via external carbonic anhydrase. These results show that adaptive differences in inorganic carbon acquisition have evolved within the Symbiodinium genus, which thus carries fundamental implications as to how this functionally key genus will respond to ocean acidification, but could also represent a key trait factor that influences their productivity when in hospite of their coral hosts.

  19. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  20. Charcoal and activated carbon at elevated pressure

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)] [and others

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  1. 碳酸酐酶Ⅸ(CA-Ⅸ)与HIF-1α在前列腺癌中的表达情况及相关性研究%The expression and correlation studies about Carbon anhydrase Ⅸ (CA-Ⅸ) and Hypoxia-inducible factor-1 alpha in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    黄海; 韩金利; 姚友生; 谢文练; 黄健; 卢振权; 杜涛; 林天歆; 许可慰; 董文; 毕良宽; 郭正辉; 江春

    2012-01-01

    目的 探讨碳酸酐酶Ⅸ(CA-Ⅸ)及缺氧诱导因子-1α (HIF-1α)在前列腺癌不同分期分级中的表达及其内在联系情况. 方法 采用免疫组织化学S-P法及Western-blot检测正常前列腺组织、前列腺癌组织以及前列腺癌细胞系PC-3、Lncap中CA-Ⅸ及HIF-1α的表达情况,结合临床资料进行统计分析,评价CA-Ⅸ及HIF-1α表达情况与前列腺组织癌变分化程度之间的关系,同时分析两者之间的相关性.结果 在正常前列腺组织中CA-Ⅸ及HIF-1α基本不表达,在前列腺癌组织石蜡切片中,HIF处于高表达,其表达情况与前列腺癌病理分级相关.低分化的前列腺癌组织中HIF-1α的表达量高于高分化的前列腺癌组织.CA-Ⅸ在前列腺癌组织中表达率为37.5%,高于正常组织,与肿瘤分化程度无关.CA-Ⅸ及HIF-1α在前列腺癌组织中的表达情况具有相关性.结论 CA-Ⅸ及HIF-1α与前列腺癌的发生成正相关,而且两者在前列腺癌组织中的表达具有相关性,同时提示了以缺氧诱导因子通路为基础的分子机制在前列腺癌的演进中起到一定的作用.%Objective To study the expression and correlation of Carbon anhydrase Ⅸ (CA-Ⅸ) and Hypoxia-inducible factor-1 alpha (HIF-1α) in prostate cancer.Methods The immunohistochemistry of S-P and western-blot were used to detect the expression of Carbon anhydrase Ⅸ (CA-Ⅸ) and Hypoxia-inducible factor-1 alpha (HIF-1α) in normal prostate tissue,prostate cancer tissue,and prostate cancer cell lines PC-3,Lncap.Combined with clinical data,the statistical analysis on the evaluation of CA-Ⅸ and HIF-1α expression and prostate tissue differentiation degree relationship was done and the correlation between the two factor was analysed.Results In normal prostate tissue,CA-Ⅸ and HIF-1α almost did not express,but in prostate cancer tissue paraffin section,HIF-1α was at a high expression, and its expression had relationship with pathological

  2. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  3. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    Science.gov (United States)

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  4. Activated Carbon Fibers For Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  5. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  6. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  7. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  8. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  9. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  10. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    Science.gov (United States)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  11. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    Science.gov (United States)

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  12. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  13. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    Energy Technology Data Exchange (ETDEWEB)