WorldWideScience

Sample records for actively induced disease

  1. Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens.

    Directory of Open Access Journals (Sweden)

    Angila Gurung

    2017-12-01

    Full Text Available Marek's Disease Virus (MDV is an alphaherpesvirus that infects chickens, transforms CD4+ T cells and causes deadly lymphomas. In addition, MDV induces immunosuppression early during infection by inducing cell death of the infected lymphocytes, and potentially due to activation of regulatory T (Treg-cells. Furthermore, immunosuppression also occurs during the transformation phase of the disease; however, it is still unknown how the disease can suppress immune response prior or after lymphoma formation. Here, we demonstrated that chicken TGF-beta+ Treg cells are found in different lymphoid tissues, with the highest levels found in the gut-associated lymphoid tissue (cecal tonsil: CT, fostering an immune-privileged microenvironment exerted by TGF-beta. Surprisingly, significantly higher frequencies of TGF-beta+ Treg cells are found in the spleens of MDV-susceptible chicken lines compared to the resistant line, suggesting an association between TGF-beta+ Treg cells and host susceptibility to lymphoma formation. Experimental infection with a virulent MDV elevated the levels of TGF-beta+ Treg cells in the lungs as early as 4 days post infection, and during the transformation phase of the disease in the spleens. In contrast to TGF-beta+ Treg cells, the levels of CD4+CD25+ T cells remained unchanged during the infection and transformation phase of the disease. Furthermore, our results demonstrate that the induction of TGF-beta+ Treg cells is associated with pathogenesis of the disease, as the vaccine strain of MDV did not induce TGF-beta+ Treg cells. Similar to human haematopoietic malignant cells, MDV-induced lymphoma cells expressed high levels of TGF-beta but very low levels of TGF-beta receptor I and II genes. The results confirm that COX-2/ PGE2 pathway is involved in immunosuppression induced by MDV-lymphoma cells. Taken together, our results revealed a novel TGF-beta+ Treg subset in chickens that is activated during MDV infection and tumour

  2. Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease.

    Science.gov (United States)

    Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko

    2017-04-01

    Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.

  3. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease.

    Science.gov (United States)

    Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia

    2012-09-11

    Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  4. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  5. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn's disease.

    Science.gov (United States)

    Prantera, Cosimo; Lochs, Herbert; Grimaldi, Maria; Danese, Silvio; Scribano, Maria Lia; Gionchetti, Paolo

    2012-03-01

    Bacteria might be involved in the development and persistence of inflammation in patients with Crohn's disease (CD), and antibiotics could be used in therapy. We performed a clinical phase 2 trial to determine whether a gastroresistant formulation of rifaximin (extended intestinal release [EIR]) induced remission in patients with moderately active CD. We performed a multicenter, randomized, double-blind trial of the efficacy and safety of 400, 800, and 1200 mg rifaximin-EIR, given twice daily to 402 patients with moderately active CD for 12 weeks. Data from patients given rifaximin-EIR were compared with those from individuals given placebo, and collected during a 12-week follow-up period. The primary end point was remission (Crohn's Disease Activity Index <150) at the end of the treatment period. At the end of the 12-week treatment period, 62% of patients who received the 800-mg dosage of rifaximin-EIR (61 of 98) were in remission, compared with 43% of patients who received placebo (43 of 101) (P = .005). A difference was maintained throughout the 12-week follow-up period (45% [40 of 89] vs 29% [28 of 98]; P = .02). Remission was achieved by 54% (56 of 104) and 47% (47 of 99) of the patients given the 400-mg and 1200-mg dosages of rifaximin-EIR, respectively; these rates did not differ from those of placebo. Patients given the 400-mg and 800-mg dosages of rifaximin-EIR had low rates of withdrawal from the study because of adverse events; rates were significantly higher among patients given the 1200-mg dosage (16% [16 of 99]). Administration of 800 mg rifaximin-EIR twice daily for 12 weeks induced remission with few adverse events in patients with moderately active CD. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Koji Hase

    Full Text Available Activation-induced cytidine deaminase (AID expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM and class switch recombination (CSR. Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2 associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AID-/- mice spontaneously develop tertiary lymphoid organs (TLOs in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AID-/- mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF conditions. Gastric autoantigen -specific serum IgM was elevated in AID-/- mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells.

  7. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease

    NARCIS (Netherlands)

    Hommes, Daan; van den Blink, Bernt; Plasse, Terry; Bartelsman, Joep; Xu, Cuiping; Macpherson, Bret; Tytgat, Guido; Peppelenbosch, Mailkel; van Deventer, Sander

    2002-01-01

    Background & Aims: We investigated if inhibition of mitogen-activated protein kinases (MAPKs) was beneficial in Crohn's disease. Methods: Inhibition of JNK and p38 MAPK activation with CNI-1493, a guanylhydrazone, was tested in vitro. Twelve patients with severe Crohn's disease (mean baseline, CDAI

  8. Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis

    DEFF Research Database (Denmark)

    Oslejsková, Lucie; Grigorian, Mariam; Hulejová, Hana

    2009-01-01

    To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients.......To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients....

  9. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats

    International Nuclear Information System (INIS)

    Park, Sang-Joon; Jeong, Kyu-Shik

    2004-01-01

    We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH 2 -terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis

  10. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Science.gov (United States)

    Peng, Ruoqi; Sridhar, Sriram; Tyagi, Gaurav; Phillips, Jonathan E; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M; Kitson, Chris; Budd, David C; Fine, Jay S; Bauer, Carla M T; Stevenson, Christopher S

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  11. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Directory of Open Access Journals (Sweden)

    Ruoqi Peng

    Full Text Available The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF, has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  12. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana.

    Science.gov (United States)

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.

  13. Swing Boat: Inducing and Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Johannes Berlandi

    2017-08-01

    Full Text Available Recent studies indicate that physical activity can slow down progression of neurodegeneration in humans. To date, automated ways to induce activity have been predominantly described in rodent models. To study the impact of activity on behavior and survival in adult Drosophila melanogaster, we aimed to develop a rotating tube device “swing boat” which is capable of monitoring activity and sleep patterns as well as survival rates of flies. For the purpose of a first application, we tested our device on a transgenic fly model of Alzheimer’s disease (AD. Activity of flies was recorded in a climate chamber using the Drosophila Activity Monitoring (DAM System connected to data acquisition software. Locomotor activity was induced by a rotating tube device “swing boat” by repetitively tilting the tubes for 30 min per day. A non-exercising group of flies was used as control and activity and sleep patterns were obtained. The GAL4-/UAS system was used to drive pan-neuronal expression of human Aβ42 in flies. Immunohistochemical stainings for Aβ42 were performed on paraffin sections of adult fly brains. Daily rotation of the fly tubes evoked a pronounced peak of activity during the 30 min exercise period. Pan-neuronal expression of human Aβ42 in flies caused abnormalities in locomotor activity, reduction of life span and elevated sleep fragmentation in comparison to wild type flies. Furthermore, the formation of amyloid accumulations was observed in the adult fly brain. Gently induced activity over 12 days did not evoke prominent effects in wild type flies but resulted in prolongation of median survival time by 7 days (32.6% in Aβ42-expressing flies. Additionally, restoration of abnormally decreased night time sleep (10% and reduced sleep fragmentation (28% were observed compared to non-exercising Aβ42-expressing flies. On a structural level no prominent effects regarding prevalence of amyloid aggregations and Aβ42 RNA expression were

  14. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  15. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  16. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-01-01

    Highlights: → Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. → FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. → FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. → FGFR4-ECD reduced tetracycline-induced fatty liver in mice. → FGFR4-ECD partially restored tetracycline-repressed PPARα expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  17. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    Science.gov (United States)

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  18. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE.

    Science.gov (United States)

    Hatfield, Julianne K; Brown, Melissa A

    2015-10-01

    Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.

    Science.gov (United States)

    Liu, Yanying; Qiao, Fangfang; Leiferman, Patricia C; Ross, Alan; Schlenker, Evelyn H; Wang, Hongmin

    2017-11-15

    Although it has been speculated that proteasome dysfunction may contribute to the pathogenesis of Huntington's disease (HD), a devastating neurodegenerative disorder, how proteasome activity is regulated in HD affected stem cells and somatic cells remains largely unclear. To better understand the pathogenesis of HD, we analyzed proteasome activity and the expression of FOXO transcription factors in three wild-type (WT) and three HD induced-pluripotent stem cell (iPSC) lines. HD iPSCs exhibited elevated proteasome activity and higher levels of FOXO1 and FOXO4 proteins. Knockdown of FOXO4 but not FOXO1 expression decreased proteasome activity. Following neural differentiation, the HD-iPSC-derived neural progenitor cells (NPCs) demonstrated lower levels of proteasome activity and FOXO expressions than their WT counterparts. More importantly, overexpression of FOXO4 but not FOXO1 in HD NPCs dramatically enhanced proteasome activity. When HD NPCs were further differentiated into DARPP32-positive neurons, these HD neurons were more susceptible to death than WT neurons and formed Htt aggregates under the condition of oxidative stress. Similar to HD NPCs, HD-iPSC-derived neurons showed reduced proteasome activity and diminished FOXO4 expression compared to WT-iPSC-derived neurons. Furthermore, HD iPSCs had lower AKT activities than WT iPSCs, whereas the neurons derived from HD iPSC had higher AKT activities than their WT counterparts. Inhibiting AKT activity increased both FOXO4 level and proteasome activity, indicating a potential role of AKT in regulating FOXO levels. These data suggest that FOXOs modulate proteasome activity, and thus represents a potentially valuable therapeutic target for HD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    Science.gov (United States)

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  2. Relationship between Disease Activity and Circulating Level of Collagen II C-Telopeptide Fragments in Papain Induced Osteoarthritis Rat Model

    Directory of Open Access Journals (Sweden)

    Humaira Majeed Khan

    2014-01-01

    Full Text Available Osteoarthritis (OA is a progressive degeneration of articular cartilage leading to failure in functional mobility of joints. It is characterized by morphological, biochemical and molecular changes in histology of cartilage. Different biological markers are used as indicators to precisely predict the stage of cartilage destruction of joints in OA patients and to evaluate the therapeutic efficacy of drugs used for OA. The present research was chalked out to establish relationship between disease activity and serum level of C-terminal telopeptide of type II collagen (CTX-II in experimentally induced OA rat model. Out of 30 male Wistar rats, 25 were used to induce OA by injecting papain (10mg/0.5mL of 0.05M sodium acetate in right knee joints whereas five (control were injected with sterile normal saline solution on day 0. Blood samples (5mL each were collected on weekly basis up to 28th days of post papain injection. Sera were separated and subjected to perform ELISA for estimating CTX-II fragments as cartilage biomarker (CartiLaps ® ELISA kit in experimental groups. Maximum level of CTX–II (pg/mL (40.44±3.07 was observed in sera samples of day 14 post papain injection followed by days 21 (40.22±2.01, 28 (36.82±3.81, 7 (34.48±4.17, 1 (15.08±4.22 and day 0 (2.55±0.10. The early changes in serum CTX-II from day 0 to 14 showed significant association with cartilage damage. Later on, no significant difference was observed in CTX-II level on day 14, 21 and 28 post papain injection. It is concluded that elevation in serum CTX-II level was concomitant with the onset of disease and degradation of cartilage. Moreover, CTX-II is a sensitive diagnostic biomarker to monitor joint disorder severity in papain induced OA rat experimental model on different days. These findings may be used as base line for early diagnosis of disease and initiation of therapy for successful outcome.

  3. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Zun-Jing Liu

    2016-08-01

    Full Text Available Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer’s disease (AD, and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD.

  4. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson's disease

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-01-01

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 μM) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 μM) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKCδ) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 μM). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKCδ D327A and kinase dead PKCδ K376R or siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKCδ promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKCδ expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKCδ cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKCδ D327A protein protected against 6-OHDA-induced PKCδ activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKCδ is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.

  5. The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Ewelina Pałasz

    2017-01-01

    Full Text Available Glial cells and neurotrophins play an important role in maintaining homeostasis of the CNS. Disturbances of their function can lead to a number of nervous system diseases, including Parkinson’s disease (PD. Current clinical studies provide evidence that moderate physical activity adapted to the health status of PD patients can support pharmacological treatment, slow down the onset of motor impairments, and extend the patients period of independence. Physical activity, by stimulating the production and release of endogenous trophic factors, prevents the neurodegeneration of dopaminergic neurons via inhibition of inflammatory processes and the reduction of oxidative stress. The aim of this study is to present the current state of knowledge for the anti-inflammatory and neuroprotective properties of physical activity as a supportive therapy in Parkinson’s disease.

  6. Drug induced lung disease

    International Nuclear Information System (INIS)

    Schaefer-Prokop, Cornelia; Eisenhuber, Edith

    2010-01-01

    There is an ever increasing number of drugs that can cause lung disease. Imaging plays an important role in the diagnosis, since the clinical symptoms are mostly nonspecific. Various HRCT patterns can be correlated - though with overlaps - to lung changes caused by certain groups of drugs. Alternative diagnosis such as infection, edema or underlying lung disease has to be excluded by clinical-radiological means. Herefore is profound knowledge of the correlations of drug effects and imaging findings essential. History of drug exposure, suitable radiological findings and response to treatment (corticosteroids and stop of medication) mostly provide the base for the diagnosis. (orig.)

  7. Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease.

    Science.gov (United States)

    Kim, Mi Eun; Lee, Joo Yeon; Lee, Kyung Moon; Park, Hee Ra; Lee, Eunjin; Lee, Yujeong; Lee, Jun Sik; Lee, Jaewon

    2016-08-01

    Bee venom (BV), also known as apitoxin, is widely used in traditional oriental medicine to treat immune-related diseases. Recent studies suggest that BV could be beneficial for the treatment of neurodegenerative diseases. Parkinson's disease (PD) is the second most common neurodegenerative disease next to Alzheimer's disease, and PD pathologies are closely associated with neuroinflammation. Previous studies have suggested the neuroprotective effects of BV in animal models of PD are due to the modulation of inflammation. However, the molecular mechanisms responsible for the anti-neuroinflammatory effect of BV have not been elucidated in astrocytes. Here, the authors investigated the neuroprotective effects of BV and pramipexole (PPX; a positive control) in a subchronic MPTP-induced murine PD model. Both BV and PPX prevented MPTP-induced impairments in motor performance and reduced dopaminergic neuron loss, and furthermore, these neuroprotective effects of BV and PPX were found to be associated with reduced astroglial activation in vivo PD model. However, in MPP(+) treated primary cultured astrocytes, BV modulated astrocyte activation, whereas PPX did not, indicating that the neuroprotective effects of PPX were not mediated by neuroinflammation. These findings suggest that BV should be considered a potential therapeutic or preventive agent for PD and other neuroinflammatory associated disorders.

  8. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi, E-mail: arthik@iastate.edu

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  9. Induced disease resistance signaling in plants

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in

  10. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  11. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  12. Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinson’s Disease by Inhibiting TLR/NF-κB and Activating Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-12-01

    Full Text Available Background/Aims: Parkinson’s disease (PD is a common neurodegenerative disease in the old population, characterized by dopaminergic neuron loss, inflammation and oxidative stress injury in the substantia nigra. Glaucocalyxin B (GLB, an ent-kauranoid diterpenoid isolated from Rabdosia japonica, has anti-inflammation and anti-tumor effects. However, its effects on PD remain unclear. Methods: PD was introduced in rats via injection of lipopolysaccharide (LPS into cerebral corpus striatum, and GLB was given intracerebroventricularly to these rats. Their walking, climbing and sensory states were detected by Stepping, Whisker and Cylinder Tests. The expression of tyrosine hydroxylase (TH, glial fibrillary acidic protein (GFAP, CD11b and ionized calcium binding adaptor molecule (IBA-1 were detected by immunohischemical staining. The levels of a series of inflammatory factors, oxidative stress-related factors and apoptosis-related factors were measured by real-time PCR, immunoblotting and ELISA. In addition, Toll-like receptor (TLR/nuclear factor kappa B (NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2/heme oxygenase (HO-1 pathways were investigated to illustrate the underlying mechanism. In vitro, microglial cells exposed to LPS were treated with GLB. Results: The injection of LPS caused walking, climbing and sensory disturbances in rats, induced inflammation, oxidative stress response and apoptosis, and activated TLR/NF-κB and Nrf2/ HO-1 pathways in the cerebral tissue. GLB administration attenuated LPS-induced alterations. The TLR/NF-κB pathway was deactivated and Nrf2/HO-1 was activated after application of GLB. In vitro, cytotoxic effects induced by the conditioned medium derived from microglial cells exposed to LPS in PC12 cells were attenuated by GLB. Conclusion: GLB suppresses LPS-induced PD symptoms by modification of TLR/NF-κB and Nrf2/HO-1 pathways in vivo and in vitro.

  13. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease.

    Science.gov (United States)

    Chao, Honglu; Liu, Yinlong; Fu, Xian; Xu, Xiupeng; Bao, Zhongyuan; Lin, Chao; Li, Zheng; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-02-01

    iPLA 2 γ, calcium-independent phospholipase A 2 γ, discerningly hydrolyses glycerophospholipids to liberate free fatty acids. iPLA 2 γ-deficiency has been associated with abnormal mitochondrial function. More importantly, the iPLA 2 family is causative proteins in mitochondrial neurodegenerative disorders such as parkinsonian disorders. However, the mechanisms by which iPLA 2 γ affects Parkinson's disease (PD) remain unknown. Mitochondrion stress has a key part in rotenone-induced dopaminergic neuronal degeneration. The present evaluation revealed that lowered iPLA 2 γ function provokes the parkinsonian phenotype and leads to the reduction of dopamine and its metabolites, lowered survival, locomotor deficiencies, and organismal hypersensitivity to rotenone-induced oxidative stress. In addition, lowered iPLA 2 γ function escalated the amount of mitochondrial irregularities, including mitochondrial reactive oxygen species (ROS) regeneration, reduced ATP synthesis, reduced glutathione levels, and abnormal mitochondrial morphology. Further, lowered iPLA 2 γ function was tightly linked with strengthened lipid peroxidation and mitochondrial membrane flaws following rotenone treatment, which can cause cytochrome c release and eventually apoptosis. These results confirmed the important role of iPLA 2 γ, whereby decreasing iPLA 2 γ activity aggravates mitochondrial degeneration to induce neurodegenerative disorders in a rotenone rat model of Parkinson's disease. These findings may be useful in the design of rational approaches for the prevention and treatment of PD-associated symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diseases induced by ionising radiation

    International Nuclear Information System (INIS)

    1984-11-01

    An interim report is presented by the Industrial Injuries Advisory Council in accordance with Section 141 of the Social Security Act 1975 on the question whether the terms of prescription for occupational diseases induced by ionising radiation should be amended to cover a wider range of conditions. A lack of persuasive statistical data has prevented reliable estimates of health risks of radiation workers in the UK to be made. However the report gives details of the progress made so far and the difficulties encountered. (U.K.)

  15. Increased tumour ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer

    Directory of Open Access Journals (Sweden)

    Caroline eKuiper

    2014-02-01

    Full Text Available Ascorbate is a co-factor for the hydroxylases that regulate the transcription factor hypoxia-inducible factor (HIF-1, which provides cancer cells with a metabolic and survival advantage in the hypoxic environment of solid tumors. However, whether ascorbate affects tumor development is a highly debated issue. We aimed to determine whether tumor ascorbate was associated with HIF-1 activation and patient disease-free survival. In this study we undertook a retrospective observational analysis of tissue-banked tumor and paired normal tissue from 49 colorectal cancer patients, measuring ascorbate levels, HIF-1α and its downstream gene products BNIP3 and VEGF. Patient survival was monitored for the first six years after surgery. We found that ascorbate levels were lower in tumor tissue compared to normal tissue (p< 0.001 but overall levels varied considerably. HIF-1α, VEGF and BNIP3 were elevated in tumor samples (p< 0.01. There was an inverse relationship between tumor ascorbate content and HIF-1 pathway activation (p=0.002 and tumor size (p=0.018. Higher tumor ascorbate content was associated with significantly improved disease-free survival in the first 6 years after surgery (p=0.006, with 141 - 1,094 additional disease free days. This was independent of tumor grade and stage. Survival advantage was associated with the amount of ascorbate in the tumor, but not with the amount in adjacent normal tissue. Our results demonstrate that higher tumor ascorbate content is associated decreased HIF-1 activation, most likely due to the co-factor activity of ascorbate for the regulatory HIF hydroxylases. Our findings support the need for future studies to determine whether raising tumor ascorbate is possible with clinical intervention and whether this results in modification of hydroxylase-dependent pathways in the tumor.

  16. Active Vaccines for Alzheimer Disease Treatment.

    Science.gov (United States)

    Sterner, Rosalie M; Takahashi, Paul Y; Yu Ballard, Aimee C

    2016-09-01

    Vaccination against peptides specific to Alzheimer disease may generate an immune response that could help inhibit disease and symptom progression. PubMed and Scopus were searched for clinical trial articles, review articles, and preclinical studies relevant to the field of active Alzheimer disease vaccines and raw searches yielded articles ranging from 2016 to 1973. ClinicalTrials.gov was searched for active Alzheimer disease vaccine trials. Manual research and cross-referencing from reviews and original articles was performed. First generation Aβ42 phase 2a trial in patients with mild to moderate Alzheimer disease resulted in cases of meningoencephalitis in 6% of patients, so next generation vaccines are working to target more specific epitopes to induce a more controlled immune response. Difficulty in developing these vaccines resides in striking a balance between providing a vaccine that induces enough of an immune response to actually clear protein sustainably but not so much of a response that results in excess immune activation and possibly adverse effects such as meningoencephalitis. Although much work still needs to be done in the field to make this a practical possibility, the enticing allure of being able to treat or even prevent the extraordinarily impactful disease that is Alzheimer disease makes the idea of active vaccination for Alzheimer disease very appealing and something worth striving toward. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  17. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    Science.gov (United States)

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  18. Being active when you have heart disease

    Science.gov (United States)

    Heart disease - activity; CAD - activity; Coronary artery disease - activity; Angina - activity ... Getting regular exercise when you have heart disease is ... It may also help you be more active without chest pain or other ...

  19. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  20. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    International Nuclear Information System (INIS)

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-01

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice

  1. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Lambertucci, Flavia [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Motiño, Omar [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Villar, Silvina [Instituto de Inmunología, Facultad de Ciencias Médicas, UNR, Suipacha 531, 2000 Rosario (Argentina); Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Martín-Sanz, Paloma [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid (Spain); Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Ronco, María Teresa, E-mail: ronco@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.

  2. Immunotherapy of Human Papilloma Virus Induced Disease

    Science.gov (United States)

    van der Burg, Sjoerd H

    2012-01-01

    Immunotherapy is the generic name for treatment modalities aiming to reinforce the immune system against diseases in which the immune system plays a role. The design of an optimal immunotherapeutic treatment against chronic viruses and associated diseases requires a detailed understanding of the interactions between the target virus and its host, in order to define the specific strategies that may have the best chance to deliver success at each stage of disease. Recently, a first series of successes was reported for the immunotherapy of Human Papilloma Virus (HPV)-induced premalignant diseases but there is definitely room for improvement. Here I discuss a number of topics that in my opinion require more study as the answers to these questions allows us to better understand the underlying mechanisms of disease and as such to tailor treatment. PMID:23341861

  3. COAGULATION ACTIVITY IN LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    Dr. Sheikh Sajjadieh Mohammad Reza

    2009-07-01

    Full Text Available Patients with advanced hepatic failure may present with the entire spectrum of coagulation factor deficiencies. This study was designed to determine laboratory abnormalities in coagulation in chronic liver disease and the association of these abnormalities with the extent of chronic hepatitis and cirrhosis. Coagulation markers were assayed in 60 participants: 20 patients with chronic hepatitis, 20 patients with cirrhosis, and 20 healthy individuals (control. Plasma levels of anti-thrombin III were determined by a chromogenic substrate method, and plasma concentrations of fibrinogen were analyzed by the Rutberg method. Commercially available assays were used for laboratory coagulation tests. The levels of coagualation activity markers in patients with chronic liver disease were significantly different in comparison to those in healthy participants. These results indicate the utility of measuring markers for coagulation activity in determining which cirrhosis patients are more susceptible to disseminated intravascular coagulation.

  4. Physical activity, obesity and cardiovascular diseases.

    Science.gov (United States)

    Lakka, T A; Bouchard, C

    2005-01-01

    Sedentary lifestyle and overweight are major public health, clinical, and economical problems in modern societies. The worldwide epidemic of excess weight is due to imbalance between physical activity and dietary energy intake. Sedentary lifestyle, unhealthy diet, and consequent overweight and obesity markedly increase the risk of cardiovascular diseases. Regular physical activity 45-60 min per day prevents unhealthy weight gain and obesity, whereas sedentary behaviors such as watching television promote them. Regular exercise can markedly reduce body weight and fat mass without dietary caloric restriction in overweight individuals. An increase in total energy expenditure appears to be the most important determinant of successful exercise-induced weight loss. The best long-term results may be achieved when physical activity produces an energy expenditure of at least 2,500 kcal/week. Yet, the optimal approach in weight reduction programs appears to be a combination of regular physical activity and caloric restriction. A minimum of 60 min, but most likely 80-90 min of moderate-intensity physical activity per day may be needed to avoid or limit weight regain in formerly overweight or obese individuals. Regular moderate intensity physical activity, a healthy diet, and avoiding unhealthy weight gain are effective and safe ways to prevent and treat cardiovascular diseases and to reduce premature mortality in all population groups. Although the efforts to promote cardiovascular health concern the whole population, particular attention should be paid to individuals who are physically inactive, have unhealthy diets or are prone to weight gain. They have the highest risk for worsening of the cardiovascular risk factor profile and for cardiovascular disease. To combat the epidemic of overweight and to improve cardiovascular health at a population level, it is important to develop strategies to increase habitual physical activity and to prevent overweight and obesity in

  5. Induced vasodilation as treatment for Raynaud's disease.

    Science.gov (United States)

    Jobe, J B; Sampson, J B; Roberts, D E; Beetham, W P

    1982-11-01

    We examined the efficacy of induced vasodilation as a treatment of idiopathic Raynaud's disease. Eight persons with Raynaud's disease and seven normal persons each received 27 simultaneous pairings of hand immersion in warm water (43 degrees C) for 10 minutes with exposure of the whole body to cold (0 degrees C). A second group of seven normal persons and nine persons with Raynaud's disease received no treatments. All subjects had cold test exposures (0 degrees C) at the start and end of the study. Subjects with Raynaud's disease who received treatments showed significant increases in digital temperatures (2.2 degrees C) during the cold test compared with the values of untreated subjects with Raynaud's disease (p less than 0.05); normal subjects who had received treatments showed no difference from those who had not. Digital temperatures of subjects with Raynaud's disease after treatment increased to levels approaching those of normal subjects, although they showed lower digital temperatures during initial exposure to cold (p less than 0.01). This therapy offers a practical alternative to traditional treatments.

  6. Exercise-induced myokines in health and metabolic diseases

    Directory of Open Access Journals (Sweden)

    Byunghun So

    2014-12-01

    Full Text Available Skeletal muscle has been emerging as a research field since the past 2 decades. Contraction of a muscle, which acts as a secretory organ, stimulates production, secretion, and expression of cytokines or other muscle fiber-derived peptides, i.e., myokines. Exercise-induced myokines influence crosstalk between different organs in an autocrine, endocrine, or paracrine fashion. Myokines are recently recognized as potential candidates for treating metabolic diseases through their ability to stimulate AMP-activated protein kinase signaling, increase glucose uptake, and improve lipolysis. Myokines may have positive effects on metabolic disorders, type 2 diabetes, or obesity. Numerous studies on myokines suggested that myokines offer a potential treatment option for preventing metabolic diseases. This review summarizes the current understanding of the positive effects of exercise-induced myokines, such as interleukin-15, brain-derived neurotrophic factor, leukemia inhibitory factor, irisin, fibroblast growth factor 21, and secreted protein acidic and rich in cysteine, on metabolic diseases.

  7. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    Science.gov (United States)

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  8. Though active on RINm5F insulinoma cells and cultured pancreatic islets, recombinant IL-22 fails to modulate cytotoxicity and disease in a protocol of streptozotocin-induced experimental diabetes.

    Directory of Open Access Journals (Sweden)

    Anika eBerner

    2016-01-01

    Full Text Available Interleukin (IL-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat ß-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3ß. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and STEAP4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic ß-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8 or closely thereafter (at d8, d10, d12. These two IL-22-treatment periods coincide with two early peaks of ß-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic ß-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.

  9. Radiation-induced cerebrovascular disease in children

    International Nuclear Information System (INIS)

    Wright, T.L.; Bresnan, M.J.

    1976-01-01

    Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma

  10. Radiation induced liver disease: A clinical update

    International Nuclear Information System (INIS)

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  11. Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer’s and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2010-04-01

    Full Text Available p21-activated kinase 2 (PAK-2 appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer’s and Parkinson’s disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson’s disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer’s disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer’s and Parkinson’s disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.

  12. Cardiovascular Disease and Cancer: Student Awareness Activities.

    Science.gov (United States)

    Meyer, James H., Comp.

    Awareness activities pertaining to cancer and cardiovascular disease are presented as a supplement for high school science classes. The exercises can be used to enrich units of study dealing with the circulatory system, the cell, or human diseases. Eight activities deal with the following topics: (1) cardiovascular disease risk factors; (2)…

  13. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  14. Responsiveness of Endoscopic Indices of Disease Activity for Crohn's Disease

    NARCIS (Netherlands)

    Khanna, Reena; Zou, Guangyong; Stitt, Larry; Feagan, Brian G.; Sandborn, William J.; Rutgeerts, Paul; McDonald, John W. D.; Dubcenco, Elena; Fogel, Ronald; Panaccione, Remo; Jairath, Vipul; Nelson, Sigrid; Shackelton, Lisa M.; Huang, Bidan; Zhou, Qian; Robinson, Anne M.; Levesque, Barrett G.; D'Haens, Geert

    2017-01-01

    The Crohn's Disease Endoscopic Index of Severity (CDEIS) and the Simple Endoscopic Score for Crohn's Disease (SES-CD) are commonly used to assess Crohn's disease (CD) activity; however neither instrument is fully validated. We evaluated the responsiveness to change of the SES-CD and CDEIS using data

  15. Curcumin-induced histone acetylation inhibition improves stress-induced gastric ulcer disease in rats.

    Science.gov (United States)

    He, Ping; Zhou, Renmin; Hu, Guorui; Liu, Zhifeng; Jin, Yu; Yang, Guang; Li, Mei; Lin, Qian

    2015-03-01

    Curcumin is known to possess anti‑inflammatory properties. Despite the fact that curcumin is known to be a strong inhibitor of H+, K+‑ATPase activity, the mechanism underlying the curcumin‑induced inhibition of the transcription of the H+, K+‑ATPase α subunit in gastric mucosal parietal cells remains unclear. The present study investigated the possible mechanism by which curcumin inhibits stomach H+, K+‑ATPase activity during the acute phase of gastric ulcer disease. A rat model of stress‑induced gastric ulcers was produced, in which the anti‑ulcer effects of curcumin were examined. Curcumin‑induced inhibition of the H+, K+‑ATPase promoter via histone acetylation, was verified using a chromatin immunoprecipitation assay. The results showed that curcumin improved stress‑induced gastric ulcer disease in rats, as demonstrated by increased pH values and reduced gastric mucosal hemorrhage and ulcer index. These effects were accompanied by a significant reduction in the level of histone H3 acetylation at the site of the H+, K+‑ATPase promoter and in the expression of the gastric H+,K+‑ATPase α subunit gene and protein. In conclusion, curcumin downregulated the acetylation of histone H3 at the site of the H+, K+‑ATPase promoter gene, thereby inhibiting the transcription and expression of the H+, K+‑ATPase gene. Curcumin was shown to have a preventive and therapeutic effect in gastric ulcer disease.

  16. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    Science.gov (United States)

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  17. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  18. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  19. Possible mechanisms for arsenic-induced proliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A. [Dartmouth College and Medical School, Hanover, NH (United States)] [and others

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hour of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.

  20. Radiation-induced valvular heart disease.

    Science.gov (United States)

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Induced pluripotent stem cells for retinal degenerative diseases: a ...

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... anisms of these diseases is still very limited and no radical drugs are available. Induced .... Induced pluripotent stem cells are ES-like pluripotent cells capable of .... lation to test whether immunorejection with the latter is in-.

  2. Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease.

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2015-06-01

    Full Text Available A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD- 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h and/or microbiological (S. Typhi bacteremia endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-. Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD- were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h. Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.

  3. Combined prednisolone and pirfenidone in bleomycin-induced lung disease

    Directory of Open Access Journals (Sweden)

    Preyas J Vaidya

    2016-01-01

    Full Text Available Bleomycin is a cytostatic drug commonly employed in the treatment of Hodgkin's disease, seminomas, and choriocarcinoma. Bleomycin may induce a chronic pulmonary inflammation that may progress to fibrosis. So far, only corticosteroids have been used in the treatment of bleomycin-induced lung disease with variable results. Pirfenidone is an antifibrotic drug that has been approved for the treatment of idiopathic pulmonary fibrosis. We report two cases of bleomycin-induced lung disease treated successfully with pirfenidone and oral corticosteroids.

  4. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    Science.gov (United States)

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  5. Induced resistance to rust disease in lentil

    International Nuclear Information System (INIS)

    Paul, Amitava; Singh, D.P.

    2006-01-01

    Considerable yield reduction in lentil is due to rust caused by Uromyces fabae. So far the sources of resistance to rust are available in the small seeded background. There is a need to develop rust resistant/tolerant bold seeded cultivars. Mutations were induced by gamma rays (10 and 15 kR) for incorporating resistance to rust in K-75(Mallika), a high yielding bold seeded, but rust susceptible cultivar at Pantnagar which is the hot spot for this disease. Dry seeds (300) were irradiated for each treatment. In M 1 generation, individual plants from each treatment were selfed and harvested separately which constituted the M 2 generation. In M 2 individual plant progenies were scored following a rating scale of 1 (Free) to 9(highly susceptible). At 15 kR dose, 8 plants were resistant (score 3.0) and 14 plants were tolerant (score 5.0) to rust, while in control and 10 kR populations, all plants were susceptible or highly susceptible having score of 7 or 9, respectively. The M 2 plants segregated in ratio of 1 resistant: 3 susceptible. The progenies of resistant/tolerant M 2 plants were bred true in the M 3 generation suggesting that the resistance to rust is controlled by one recessive gene. (author)

  6. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  7. Positive correlation between disease activity index and matrix metalloproteinases activity in a rat model of colitis.

    Science.gov (United States)

    Oliveira, Luiz Gustavo de; Cunha, André Luiz da; Duarte, Amaury Caiafa; Castañon, Maria Christina Marques Nogueira; Chebli, Júlio Maria Fonseca; Aguiar, Jair Adriano Kopke de

    2014-01-01

    Inflammatory bowel disease, including ulcerative colitis and Crohn's disease, comprising a broad spectrum of diseases those have in common chronic inflammation of the gastrointestinal tract, histological alterations and an increased activity levels of certain enzymes, such as, metalloproteinases. Evaluate a possible correlation of disease activity index with the severity of colonic mucosal damage and increased activity of metalloproteinases in a model of ulcerative colitis induced by dextran sulfate sodium. Colitis was induced by oral administration of 5% dextran sulfate sodium for seven days in this group (n=10), whereas control group (n=16) received water. Effects were analyzed daily by disease activity index. In the seventh day, animals were euthanized and hematological measurements, histological changes (hematoxylin and eosin and Alcian Blue staining), myeloperoxidase and metalloproteinase activities (MMP-2 and MMP-9) were determined. Dextran sulfate sodium group showed elevated disease activity index and reduced hematological parameters. Induction of colitis caused tissue injury with loss of mucin and increased myeloperoxidase (Pcorrelation with the degree of histopathological changes after induction of colitis, and this result may be related mainly to the increased activity of MMP-9 and mieloperoxidase.

  8. Radiation-induced coronary artery disease

    International Nuclear Information System (INIS)

    Dunsmore, L.D.; LoPonte, M.A.; Dunsmore, R.A.

    1986-01-01

    This report describes three patients who developed myocardial infarction at an untimely age, 4 to 12 years after radiation therapy for Hodgkin's disease. These cases lend credence to the cause and effect relation of such therapy to coronary artery disease

  9. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  10. Methylphenidate Actively Induces Emergence from General Anesthesia

    Science.gov (United States)

    Solt, Ken; Cotten, Joseph F.; Cimenser, Aylin; Wong, Kin F.K.; Chemali, Jessica J.; Brown, Emery N.

    2011-01-01

    Background Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study we tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane anesthesia. Methods Using adult rats we tested the effect of methylphenidate IV on time to emergence from isoflurane anesthesia. We then performed experiments to test separately for methylphenidate-induced changes in arousal and changes in minute ventilation. A dose-response study was performed to test for methylphenidate–induced restoration of righting during continuous isoflurane anesthesia. Surface electroencephalogram recordings were performed to observe neurophysiological changes. Plethysmography recordings and arterial blood gas analysis were performed to assess methylphenidate-induced changes in respiratory function. Droperidol IV was administered to test for inhibition of methylphenidate's actions. Results Methylphenidate decreased median time to emergence from 280 to 91 s. The median difference in time to emergence without compared to with methylphenidate was 200 [155, 331] s (median, [95% confidence interval]). During continuous inhalation of isoflurane, methylphenidate induced return of righting in a dose-dependent manner, induced a shift in electroencephalogram power from delta to theta, and induced an increase in minute ventilation. Administration of droperidol (0.5 mg/kg IV) prior to methylphenidate (5 mg/kg IV) largely inhibited methylphenidate-induced emergence behavior, electroencephalogram changes, and changes in minute ventilation. Conclusions Methylphenidate actively induces emergence from isoflurane anesthesia by increasing arousal and respiratory drive, possibly through activation of dopaminergic and adrenergic arousal circuits. Our findings suggest that methylphenidate may be clinically

  11. Chronic Active Epstein-Barr Virus Disease.

    Science.gov (United States)

    Kimura, Hiroshi; Cohen, Jeffrey I

    2017-01-01

    Chronic active Epstein-Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  12. Chronic Active Epstein–Barr Virus Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kimura

    2017-12-01

    Full Text Available Chronic active Epstein–Barr virus (CAEBV disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  13. Medicinal plant activity on Helicobacter pylori related diseases.

    Science.gov (United States)

    Wang, Yuan-Chuen

    2014-08-14

    More than 50% of the world population is infected with Helicobacter pylori (H. pylori). The bacterium highly links to peptic ulcer diseases and duodenal ulcer, which was classified as a group I carcinogen in 1994 by the WHO. The pathogenesis of H. pylori is contributed by its virulence factors including urease, flagella, vacuolating cytotoxin A (VacA), cytotoxin-associated gene antigen (Cag A), and others. Of those virulence factors, VacA and CagA play the key roles. Infection with H. pylori vacA-positive strains can lead to vacuolation and apoptosis, whereas infection with cagA-positive strains might result in severe gastric inflammation and gastric cancer. Numerous medicinal plants have been reported for their anti-H. pylori activity, and the relevant active compounds including polyphenols, flavonoids, quinones, coumarins, terpenoids, and alkaloids have been studied. The anti-H. pylori action mechanisms, including inhibition of enzymatic (urease, DNA gyrase, dihydrofolate reductase, N-acetyltransferase, and myeloperoxidase) and adhesive activities, high redox potential, and hydrophilic/hydrophobic natures of compounds, have also been discussed in detail. H. pylori-induced gastric inflammation may progress to superficial gastritis, atrophic gastritis, and finally gastric cancer. Many natural products have anti-H. pylori-induced inflammation activity and the relevant mechanisms include suppression of nuclear factor-κB and mitogen-activated protein kinase pathway activation and inhibition of oxidative stress. Anti-H. pylori induced gastric inflammatory effects of plant products, including quercetin, apigenin, carotenoids-rich algae, tea product, garlic extract, apple peel polyphenol, and finger-root extract, have been documented. In conclusion, many medicinal plant products possess anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect. Those plant products have showed great potential as pharmaceutical candidates for H. pylori

  14. Biphosphonate-induced radiographic changes in two pediatric patients with rheumatic diseases

    International Nuclear Information System (INIS)

    Fernandes, Joao L.; Rocha, Arthemizio L.; Viana, Sergio L.; Ribeiro, Maria C.; Castro, Luis C.

    2004-01-01

    Biphosphonates are now being used experimentally in children to increase bone mass, but their long-term effects remain an issue of concern. We report two cases of biphosphonate-induced radiographic changes in children with rheumatic diseases. Our experience supports the view that clinical improvement and radiographic findings after biphosphonate therapy are related to increased bone mineral density, without effects on the inflammatory process itself. Biphosphonates seem to act in rheumatic diseases by reducing bone turnover instead of improving disease activity. (orig.)

  15. Graves' disease: thyroid function and immunologic activity

    International Nuclear Information System (INIS)

    Gossage, A.A.R.; Crawley, J.C.W.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-01-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of [ 9 -9μTc]pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity - TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p<0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination

  16. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  17. Induced mutations for disease resistance in wheat

    International Nuclear Information System (INIS)

    Cerny, J.; Hanis, M.; Hanisova, A.; Knytl, V.; Sasek, A.

    1983-01-01

    Mutation induction has been used over a period of 20 years to obtain mutants of wheat with improved disease resistance. 34 wheat cultivars have been treated with X-rays, gamma rays, thermal neutrons or EMS. A great number of mutants were selected. Their mutational origin was verified by electrophoretic analysis of gliadin spectra. Resistances have been confirmed over several generations. None of the mutants have been released yet for commercial cultivation because of shortcomings in yield or susceptibility to other diseases. The use of mutants in cross-breeding is considered. (author)

  18. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage.

    Science.gov (United States)

    Guan, Su Hua; Belsham, Graham J

    2017-04-01

    Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.

  19. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  20. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation.

    Science.gov (United States)

    Porras, David; Nistal, Esther; Martínez-Flórez, Susana; Pisonero-Vaquero, Sandra; Olcoz, José Luis; Jover, Ramiro; González-Gallego, Javier; García-Mediavilla, María Victoria; Sánchez-Campos, Sonia

    2017-01-01

    Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia

  1. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  2. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  3. Clinical significance of plasminogen activator inhibitor activity in patients with exercise-induced ischemia

    International Nuclear Information System (INIS)

    Sakata, K.; Kurata, C.; Taguchi, T.; Suzuki, S.; Kobayashi, A.; Yamazaki, N.; Rydzewski, A.; Takada, Y.; Takada, A.

    1990-01-01

    To assess the fibrinolytic system in patients with exercise-induced ischemia and its relation to ischemia and severity of coronary artery disease (CAD), 47 patients with CAD confirmed by results of coronary angiography underwent symptom-limited multistage exercise thallium-201 emission computed tomography. All patients with CAD had exercise-induced ischemia as assessed from thallium-201 images. Pre- and peak exercise blood samples from each patient and preexercise blood samples from control subjects were assayed for several fibrinolytic components and were also assayed for plasma adrenaline. The extent of ischemia was defined as delta visual uptake score (total visual uptake score in delayed images minus total visual uptake score in initial images) and the severity of CAD as the number of diseased vessels. In the basal condition, plasminogen activator inhibitor (PAI) activity was significantly higher in patients with exercise-induced ischemia as compared to control subjects (p less than 0.01), although there were no significant differences in other fibrinolytic variables between the two groups. Moreover, PAI activity in the basal condition displayed a significantly positive correlation with the extent of ischemia (r = 0.47, p less than 0.01). Patients with exercise-induced ischemia were divided into two groups (24 with single-vessel disease and 23 with multivessel disease). There were no significant differences in coronary risk factors, hemodynamics, or plasma adrenaline levels during exercise between single-vessel and multivessel disease except that delta visual uptake score was significantly higher in multivessel disease (p less than 0.01)

  4. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  5. Complement Activation in Inflammatory Skin Diseases

    Directory of Open Access Journals (Sweden)

    Jenny Giang

    2018-04-01

    Full Text Available The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention.

  6. Nephrolithiasis-induced end stage renal disease

    Directory of Open Access Journals (Sweden)

    M Ounissi

    2010-03-01

    Full Text Available M Ounissi¹, T Gargueh², M Mahfoudhi¹, K Boubaker¹, H Hedri¹, R Goucha¹, E Abderrahim¹, F Ben Hamida¹, T Ben Abdallah¹, F El Younsi¹, H Ben Maiz³, A Kheder¹1Internal Medicine Department, 2Pediatric Department, 3Laboratory of Kidney Diseases, Charles Nicolle Hospital, Tunis, TunisiaIntroduction: Nephrolithiasis still remains a too frequent and underappreciated cause of end stage renal disease (ESRD.Methods and patients: Of the entire cohort of 7128 consecutive patients who started maintenance dialysis in our nephrology department between January 1992 and December 2006, a total of 45 patients (26 women, 19 men had renal stone disease as the cause of ESRD. The type of nephrolithiasis was determined in 45 cases and etiology in 42. The treatment and evolution of stone disease and patient’s survival were studied.Results: The overall proportion of nephrolithiasis related ESRD was 0.63%. The mean age was 48.4 years. Infection stones (struvite accounted for 40%, calcium stones, 26.67% (primary hyperparathyroidism:15.56%; familial hypercalciuria: 4.44%, unknown etiology: 6.66%, primary hyperoxaluria type 1, 17.78% and uric acid lithiasis in 15.56% of cases. The mean delay of the evolution of the stone renal disease to chronic renal failure was 85.8 months. The feminine gender, obesity and elevated alkaline phosphatases >128 IU/L were significantly correlated with fast evolution of ESRD. The median evolution to ESRD was 12 months. The normal body mass index (BMI, medical treatment of stone and primary hyperoxaluria type 1 were correlated with fast evolution to ESRD. All patients were treated by hemodialysis during a mean evolution of 60 months. Sixteen patients died. The patient's survival rate at 1, 3 and 5 years was 97.6, 92.8 and 69% respectively. Hypocalcemia, cardiopathy and normal calcium-phosphate product were significantly correlated with lower survival rate.Conclusion: Severe forms of nephrolithiasis remain an underestimated cause of

  7. Hypoxia Induced Factor in Chronic Kidney Disease: Friend or Foe?

    Science.gov (United States)

    Li, Weiying; Zhao, Yuliang; Fu, Ping

    2017-01-01

    Many studies have shown evidence that erythropoiesis-stimulating agents (ESAs), as a classic treatment for chronic kidney disease (CKD)-related anemia, have several disadvantages and may trigger various adverse events with long-term use. The hypoxia-induced factor (HIF) pathway has been intensively investigated in kidney disease, especially in CKD, as research has shown that HIF-mediated erythropoiesis might work as a potential therapeutic strategy for managing CKD-related anemia. Development of prolyl hydroxylase domain inhibitors (PHIs), as an effective HIF activator, is a valuable step toward finding a replacement for ESAs, which showed an effective erythropoiesis through a comprehensive and physiological approach by promoting erythropoietin production, increasing iron bioavailability and improving chronic inflammatory status. Heretofore no adverse events or obvious off-target effects have been reported in clinical trials of PHIs. Nevertheless, a cautious inspection with extended follow-up period is warranted to validate the safety of prolonged HIF elevation, especially considering its ambiguous role in fibrogenesis and inflammation responses and possible risks in accelerating vascular calcification and tumorigenesis. A weighed dosing strategy might be the key to circumvent the unexpected side-effect brought by pleotropic effects of HIF elevation and achieve a selective augmentation of HIF-mediated signaling pathway. New studies with longer follow-up period and adequate analysis about the risks for proinflammation, vascular calcification and tumorigenesis are needed to ensure the drugs are safe for long-term use before being widely accepted in daily clinical practice.

  8. Interactions between stress and physical activity on Alzheimer's disease pathology

    Directory of Open Access Journals (Sweden)

    Carla M. Yuede

    2018-02-01

    Full Text Available Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit. We evaluated the findings of studies of voluntary and forced exercise regimens in AD mouse models to determine the influence of stress, or the intensity of exercise needed to outweigh the negative effects of stress on AD measures. In addition, we show that chronic physical activity in a mouse model of AD can prevent the effects of acute restraint stress on Aβ levels in the hippocampus. Stress and physical activity have many overlapping and divergent effects on the body and some of the possible mechanisms through which physical activity may protect against stress-induced risk factors for AD are discussed. While the physiological effects of acute stress and acute exercise overlap, chronic effects of physical activity appear to directly oppose the effects of chronic stress on risk factors for AD. Further study is needed to identify optimal parameters for intensity, duration and frequency of physical activity to counterbalance effects of stress on the development and progression of AD. Keywords: Alzheimer's disease, Amyloid, Stress, Exercise, Physical activity

  9. Inflammatory activity in Crohn disease: ultrasound findings.

    Science.gov (United States)

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  10. Gastric emptying and disease activity in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Keller, Jutta; Binnewies, Ulrich; Rösch, Marie

    2015-01-01

    BACKGROUND: Gastric emptying (GE) is delayed in a subset of patients with inflammatory bowel disease (IBD). We have shown before that altered release of gastrointestinal hormones may contribute to GE disturbances, but overall effects of disease activity remain unclear. Thus, we aimed to evaluate GE...... test (baseline test). Plasma glucose, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) were measured periodically throughout the test. A total of 16 patients underwent a second GE test after 3-4 months of therapy. RESULTS: At baseline, nine patients with IBD had...... pathologically delayed GE half-time (T½ > 150 min) (P = 0·028 vs. HC). Moreover, T½ was significantly longer in the total group of patients with IBD than in HC (129 ± 12 min vs. 96 ± 7, P = 0·030). Postprandial GLP-1 responses were elevated in IBD (P = 0·002 vs. HC) and correlated with T½ (P = 0·05). Following...

  11. Induced multiple disease resistance in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.; Worland, A.J.

    1990-01-01

    Full text: The existence of genes suppressing resistance to leaf rust, stem rust and yellow rust in hexaploid wheat has been suggested. If such genes are deleted or inactivated, a more resistant variety may be obtained. In mutant lines of the wheat variety San Pastore, selected after treatment with 20,000 rad of gamma-rays, resistance to leaf rust, yellow rust, stem rust, and to some extent to Erysiphe graminis was determined. The mutants responded to infection by producing necrotic flecks in the presence of high level of disease inoculum. Similar flecks develop under stress condition. It is likely that the mother variety San Pastore carries genes for resistance which are masked by suppressor genes. Irradiation inactivates suppressors so that resistance genes which were previously masked are expressed. The first results of monosomic analysis indicate that chromosomes of groups 4 and 5 or possibly 7 may be critical for expression of resistance in the mutant lines. (author)

  12. Neuropharmacology of light-induced locomotor activation.

    Science.gov (United States)

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Leflunomide-Induced Interstitial Lung Disease: A Case Report

    Directory of Open Access Journals (Sweden)

    Aygül Güzel

    2015-04-01

    Full Text Available Leflunomide (LEF induced interstitial pneumonitis is a very rare condition but potentially fatal. We report a case of LEF induced interstitial pneumonitis. A 63-year-old woman followed-up for 37 years with the diagnosis of rheumatoid arthritis treated with LEF (20 mg/day since 5 months were admitted to our hospital with cough, dyspnea, fever, and dark sputum.Chest radiography represented bilateral alveolar consolidation. High-resolution computed tomography demonstrated diffuse ground-glass appearance and interlobular septal thickening. Since the patient’s clinics and radiologic findings improved dramatically after the cessation of LEF and recieving oral steriod therapy, she was diagnosed as drug-induced interstitial lung disease. In conclusion, when nonspecific clinical signs such as respiratory distress, cough and fever seen during the use of LEF, drug-induced interstitial lung disease should be kept in mind for the differantial diagnosis.

  14. Foods Inducing Typical Gastroesophageal Reflux Disease Symptoms in Korea

    OpenAIRE

    Choe, Jung Wan; Joo, Moon Kyung; Kim, Hyo Jung; Lee, Beom Jae; Kim, Ji Hoon; Yeon, Jong Eun; Park, Jong-Jae; Kim, Jae Seon; Byun, Kwan Soo; Bak, Young-Tae

    2017-01-01

    Background/Aims Several specific foods are known to precipitate gastroesophageal reflux disease (GERD) symptoms and GERD patients are usually advised to avoid such foods. However, foods consumed daily are quite variable according to regions, cultures, etc. This study was done to elucidate the food items which induce typical GERD symptoms in Korean patients. Methods One hundred and twenty-six Korean patients with weekly typical GERD symptoms were asked to mark all food items that induced typic...

  15. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage

    DEFF Research Database (Denmark)

    Belsham, Graham; Hua Guan, Su

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the Leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell capdependent protein synthesis within infected...

  16. Graves' disease: thyroid function and immunologic activity

    International Nuclear Information System (INIS)

    Gossage, A.A.; Crawley, J.C.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-01-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of [/sup 99m/Tc]pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity--TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p less than 0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination

  17. Hypercholesterolemia induced cerebral small vessel disease.

    Science.gov (United States)

    Kraft, Peter; Schuhmann, Michael K; Garz, Cornelia; Jandke, Solveig; Urlaub, Daniela; Mencl, Stine; Zernecke, Alma; Heinze, Hans-Jochen; Carare, Roxana O; Kleinschnitz, Christoph; Schreiber, Stefanie

    2017-01-01

    While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr-/- mouse model. We used Ldlr-/- mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr-/- mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr-/- mice compared to all other groups (P hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr-/- mice appear to be an adequate animal model for research into CSVD.

  18. Induced mutation for disease resistance in legumes

    International Nuclear Information System (INIS)

    Bravo, A.

    1984-01-01

    Mutation breeding has been used for developing genotypes that may contain resistance to: a) A necrotic strain of common mosaic virus, in common bean (Phaseolus vulgaris L.); b) Soil fungi causing root rots in chickpea (Cicer arietinum L.); c) The fungus Uromyces fabae that causes rust in lentil plants (Lens culinaria). Seeds of these three species were treated with gamma rays in doses of 1,000, 3,000, 6,000, and 9,000 rads. Treated materials and controls were grown during 1979. Chickpea M2 plants were grown in a naturally infested soil with soil-borne fungi. Lentil plants were sprayed with a suspension of spores of the rust fungus. Common bean M2 plants were sprayed with a solution containing virus particles. Ninety-three symptomless chickpea plants were identified in the M2 population. For lentil there were 47 symptomless plants and for common bean, 244 M2 plants with minor virus damage. Eight M3 progenies of chickpea, originated from symptomless M2 plants, had a high rate of survival and showed none or very little damage by root rots. In addition, some morphological changes were detected in other M3 chickpea progenies. Two progenies had larger leaflets, as compared to the control plants and those of other progenies. One progeny showed a more erect growth habit. These new traits have been attributed to genetic changes induced by the radiation treatments. By contrast to these promising results with chickpea no progress has been detected in the plant populations of common bean and lentil. (author)

  19. Symptoms in Inflammatory Bowel Disease: pathophysiologic aspects and their relation with disease activity

    NARCIS (Netherlands)

    Minderhoud, I.M.

    2007-01-01

    Symptoms in Inflammatory Bowel Disease: pathophysiologic aspects and their relation with disease activity Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD patients frequently complain of fatigue, and a substantial proportion of the patients have

  20. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  1. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson's disease

    NARCIS (Netherlands)

    Verhagen Metman, L.; del Dotto, P.; Natté, R.; van den Munckhof, P.; Chase, T. N.

    1998-01-01

    This study assessed the effects of the N-methyl-D-aspartate (NMDA) antagonist dextromethorphan (DM) on levodopa-induced dyskinesias in Parkinson's disease (PD). Recent experimental evidence suggests that increased synaptic efficacy of NMDA receptors expressed on basal ganglia neurons may play a role

  2. Carbamazepine in the treatment of Lyme disease-induced hyperacusis.

    Science.gov (United States)

    Nields, J A; Fallon, B A; Jastreboff, P J

    1999-01-01

    Lyme disease-induced hyperacusis can be an intensely disabling, chronic condition that is accompanied by posttraumatic stress disorder-like psychobehavioral sequelae. The authors describe effective treatment of 2 patients with carbamazepine. Speculations regarding a mode of action are offered.

  3. Interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease

    International Nuclear Information System (INIS)

    Su Xiuqin; Yu Shiping; Zhang Jin; Zhang Caizhen; Yuan Wei; Meng Xiangwen

    2008-01-01

    Objective: To investigate and assess the efficiency and clinical value of interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease. Methods: Ten patients definitely diagnosed with Dieulafoy disease suffering from massive acute gastrointestinal hemorrhage received celiac arterial and left gastric arterial angiography, outcoming with 8 positively and 2 negative cases. Among them, 6 were embolized with gelfoam particles and the other two with aneurismal dilatation received gelfoam particles and spring steel coils; and one of the negtive cases was given hypophysin and without intervention to the other. Results: Among the 8 intra-arterial embolized cases, only 1 case rebleeded on the third day after gelfoam embolization, and then treated by surgical operation, and the rest 7 showed no rebleeding. One case with hypophysin treatment rehabilitated after one week. Conclusions: Interventional therapeutics is a safe and effective emergency management for gastrointestinal hemorrhage induced by Dieulafoy disease. (authors)

  4. A small nonhuman primate model for filovirus-induced disease.

    Science.gov (United States)

    Carrion, Ricardo; Ro, Youngtae; Hoosien, Kareema; Ticer, Anysha; Brasky, Kathy; de la Garza, Melissa; Mansfield, Keith; Patterson, Jean L

    2011-11-25

    Ebolavirus and Marburgvirus are members of the filovirus family and induce a fatal hemorrhagic disease in humans and nonhuman primates with 90% case fatality. To develop a small nonhuman primate model for filovirus disease, common marmosets (Callithrix jacchus) were intramuscularly inoculated with wild type Marburgvirus Musoke or Ebolavirus Zaire. The infection resulted in a systemic fatal disease with clinical and morphological features closely resembling human infection. Animals experienced weight loss, fever, high virus titers in tissue, thrombocytopenia, neutrophilia, high liver transaminases and phosphatases and disseminated intravascular coagulation. Evidence of a severe disseminated viral infection characterized principally by multifocal to coalescing hepatic necrosis was seen in EBOV animals. MARV-infected animals displayed only moderate fibrin deposition in the spleen. Lymphoid necrosis and lymphocytic depletion observed in spleen. These findings provide support for the use of the common marmoset as a small nonhuman primate model for filovirus induced hemorrhagic fever. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Antistress activation therapy for cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Miroshnik E.V.

    2016-12-01

    Full Text Available The cohort pilot study had been done. Aim: to study the effectiveness of an antistress activation therapy on the functional state of human with the purpose of formation of adaptive reactions of activation and training high levels of reactivity among the two groups of patients with cardiovascular problems, ranks first among causes of death population: arterial hypertension (AH and coronary heart disease (CHD. Material and methods. From the sub-sample of the Moscow population (396 were allocated to 2 groups of patients of 30 people in each (a control group and a group for anti-stress therapy for persons with hypertension and coronary artery disease that within 1 month took adaptogens (tincture of ginseng, Eleutherococcus, etc. is minimized by a specially developed algorithm. For stress diagnosis international integrated questionnaire Perceived Stress (PSS; as well as Hospital Anxiety and Depression Scale (HADS were used. Blood pressure, heart rate, body mass index, waist circumference were measured. In addition we used new methods "Antistress activation health improvement". Results. The average age in the intervention group was 59.4 years, and in the control group was 58.3 years, p>0.05. In compliance with results of the study has been marked that persons who were treated by methods "Antistress activation health improvement" sensed general and "internal" dumping, improving of duration and quality of sleeping. Irritability, level of stress, depression, and fatigability became rather less. Dynamics of emotions locked in psychometric scales showed distinct improvement of mood, decrease of fear, sorrow, anxiety, anger, emotional instability, increase of self-reliance, activity. Conclusion. The treatment of stress, anxiety, and depression must be complexes based on biological and psychological approaches.

  6. Fructokinase activity mediates dehydration-induced renal injury.

    Science.gov (United States)

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  7. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    Science.gov (United States)

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  8. Endocrine Disruptor Vinclozolin Induced Epigenetic Transgenerational Adult-Onset Disease

    Science.gov (United States)

    Anway, Matthew D.; Leathers, Charles; Skinner, Michael K.

    2018-01-01

    The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1–F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1–F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease. PMID:16973726

  9. Radiotherapy-induced aortic valve disease associated with porcelain aorta

    International Nuclear Information System (INIS)

    Daitoku, Kazuyuki; Fukui, Kozo; Ichinoseki, Ikkoh; Munakata, Mamoru; Takahashi, Shoichi; Fukuda Ikuo

    2004-01-01

    Mediastinal irradiation has been reported to induce cardiac disease such as pericarditis, valvular dysfunction, conduction abnormalities, accelerated arteriosclerosis of the coronary arteries, and also calcifications of the ascending aorta. We herein describe a case of radiotherapy-induced porcelain aorta and aortic valve disease and their surgical treatment. The patient was diagnosed with myasthenia gravis (MG) in 1965 (Osserman's type II), and mediastinal irradiation was performed in 1970 for treatment of thymic tumor associated with MG. Thirty years after radiation therapy, complete atrioventricular block and aortic valve disease with severe calcification of the ascending aorta and aortic arch (porcelain aorta) were detected on echo cardiogram and cardiac catheterization. A permanent pacemaker was implanted via the left subclavian vein and aortic valve replacement was performed under extracorporeal circulation established by selective cerebral perfusion and balloon occlusion instead of aortic cross-clamping. As no risk factors of arteriosclerosis such as hypercholesterolemia, hyperglycemia and hypertension were apparent, we concluded that the aortic valve disease and porcelain aorta were primarily induced by radiotherapy. (author)

  10. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    Science.gov (United States)

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  11. Hypocapnia induces caspase-3 activation and increases Abeta production.

    Science.gov (United States)

    Xie, Zhongcong; Moir, Robert D; Romano, Donna M; Tesco, Giuseppina; Kovacs, Dora M; Tanzi, Rudolph E

    2004-01-01

    At least half of all cases of early onset (<60) familial Alzheimer's disease (FAD) are caused by any of over 150 mutations in three genes: the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutant forms of PS1 have been shown to sensitize cells to apoptotic cell death. We investigated the effects of hypocapnia, a risk factor for both cognitive and neurodevelopment deficits, on caspase-3 activation, apoptosis, and amyloid beta-protein (Abeta) production, and assessed the influence of the PS1Delta9 FAD mutation on these effects. For this purpose, we exposed stably transfected H4 human neuroglioma cells to conditions consistent with hypocapnia (PCO2<40 mm Hg) and hypocapnia plus hypoxia (PO2<21%). Hypocapnia (20 mm Hg CO2 for 6 h) induced caspase-3 activation and apoptosis; the PS1Delta9 FAD mutation significantly potentiated these effects. Moreover, the combination of hypocapnia (20 mm Hg CO2) and hypoxia (5%O2) induced caspase-3 activation and apoptosis in a synergistic manner. Hypocapnia (5 and 20 mm Hg CO2 for 6 h) also led to an increased Abeta production. The findings suggest that hypocapnia (e.g. during general anesthesia) could exacerbate AD neuropathogenesis. Copyright (c) 2004 S. Karger AG, Basel.

  12. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    Science.gov (United States)

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  13. Statin Induced Myopathy a Patient with Multiple Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Özgül Uçar

    2011-04-01

    Full Text Available Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins are the most successful class of drugs for the treatment of hypercholesterolaemia and dyslipidaemia. However, the popular profile of statins in terms of efficacy has been maligned by theiradverse effects. Statin induced myopathy, which can be seen at any time during the course of therapy, is a clinically important cause of statin intolerance and discontinuation. When a patient with multiple systemic diseases who use numerous medications represent with myalgia and muscle cramps, statin induced myopathy may not be remembered at first. We present a patient with multiple systemic diseases, alcohol and morphine abuse in whom myopathy developed. After exclusion of other etiologies, we concluded that myopathy was related to statin therapy.

  14. EULAR Sjögren's syndrome disease activity index (ESSDAI)

    DEFF Research Database (Denmark)

    Seror, Raphaèle; Bowman, Simon J; Brito-Zeron, Pilar

    2015-01-01

    The EULAR Sjögren's syndrome (SS) disease activity index (ESSDAI) is a systemic disease activity index that was designed to measure disease activity in patients with primary SS. With the growing use of the ESSDAI, some domains appear to be more challenging to rate than others. The ESSDAI is now...

  15. Drug-induced Liver Disease in Patients with Diabetes Mellitus

    OpenAIRE

    Iryna, Klyarytskaya; Helen, Maksymova; Elena, Stilidi

    2016-01-01

    The study presented here was accomplished to assess the course of drug-induced liver diseases in patient’s rheumatoid arthritis receiving long-term methotrexate therapy. Diabetes mellitus was revealed as the most significant risk factor. The combination of diabetes mellitus with other risk factors (female sex) resulted in increased hepatic fibrosis, degree of hepatic encephalopathy and reduction of hepatic functions. The effectiveness and safety of ursodeoxycholic acid and cytolytic type-with...

  16. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  17. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    Directory of Open Access Journals (Sweden)

    Aayushi Uberoi

    2016-05-01

    Full Text Available Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1 that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR, specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  18. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    Science.gov (United States)

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  19. Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

    Directory of Open Access Journals (Sweden)

    Ioannis Vogiatzis

    2012-01-01

    Full Text Available In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i the imbalance between ventilatory capacity and demand, (ii the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients’ quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  20. Mechanisms of physical activity limitation in chronic lung diseases.

    Science.gov (United States)

    Vogiatzis, Ioannis; Zakynthinos, George; Andrianopoulos, Vasileios

    2012-01-01

    In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i) the imbalance between ventilatory capacity and demand, (ii) the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii) the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea) and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients' quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  1. Interferon-γ-induced protein 10 in Lyme disease.

    Science.gov (United States)

    Fallahi, P; Elia, G; Bonatti, A

    2017-01-01

    Lyme disease is an infectious disease caused by bacteria of the Borrelia type, that affects about 300,000 people a year in the USA and 65,000 people a year in Europe. Borrelia infection, and Lyme disease, following occupational exposure has been frequently reported in USA, Europe and Asia. The manifestations of Lyme disease include erythema migrans (EM), arthritis, neuroborrelliosis (NB), and others. Cytokines and chemokines primarily orchestrate leukocyte recruitment to the areas of Borrelia infection, and they are critical mediators of immune and inflammatory responses, in particular of the induction of interferon (IFN)-γ and IFN-γ dependent chemokines. In EM high levels of T helper (Th) 1 cells chemoattranctants [monokine induced by IFN-γ (MIG), IFN-γ-induced protein 10 (IP- 10), and IFN-inducible T cell alpha chemoattractant (I-TAC)] have been shown. Synovial tissues and fluids of patients with Lyme Arthritis (LA) (overall with antibiotic-refractory LA) contained exceptionally high levels of Th1 chemoattractants and cytokines, particularly MIG and IFN-γ. In NB concentrations of IP-10 and I-TAC in the cerebrospinal fluid (CSF) were significantly higher, suggesting that IP-10 and I-TAC create a chemokine gradient between the CSF and serum and recruite C-X-C chemokine receptor 3-expressing memory CD4+ T-cells into the CSF of these patients. A positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction has also been shown. These results suggest that IFN-γ dependent chemokines are important biomarkers to monitor the progression and diffusion of the disease in patients with Borrelia infection; further larger studies are needed.

  2. MCID/Low Disease Activity State Workshop: low disease activity state in rheumatoid arthritis.

    NARCIS (Netherlands)

    Wells, G.A.; Boers, M.; Shea, B.; Anderson, J.; Felson, D.T.; Johnson, K.; Kirwan, J.; Lassere, M.N.; Robinson, V.; Simon, L.S.; Strand, V.; Riel, P.L.C.M. van; Tugwell, P.S.

    2003-01-01

    The MCID (minimal clinically important difference) module of OMERACT 5 developed a research agenda that led to the conclusion that a state of low disease activity for rheumatoid arthritis (RA) would need to be defined. To develop such a definition the various concepts and terminologies, the process

  3. Exercise-induced myokines and their role in chronic diseases

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2011-01-01

    increases the risk of type 2 diabetes, cardiovascular diseases (CVD), colon cancer and postmenopausal breast cancer. These diseases constitute a network of related diseases, also called "the diseasome of physical inactivity". In this review, physical inactivity is given the central role as an independent...... and strong risk factor for accumulation of visceral fat and consequently the activation of a network of systemic inflammatory pathways, which promote development of neurodegeneration as well as insulin resistance, atherosclerosis, and tumour growth. The recent finding that muscles produce and release...

  4. Platelet activation in pregnancy-induced hypertension.

    Science.gov (United States)

    Karalis, Ioannis; Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H

    2005-01-01

    Although excess platelet activation, as indicated by increased plasma beta thromboglobulin (beta-TG), has been shown in pregnancy-induced hypertension (PIH), platelet adhesion, platelet morphology and a comparison of platelet and soluble (plasma) levels of the adhesion molecules P-selectin (pPsel and sPsel, respectively) have not been studied. We conducted a cross-sectional study of 35 consecutive women with PIH (age 31+/-6 years), 31 consecutive women with normotensive pregnancies (age 29+/-5 years) and 30 normotensive non pregnant women (age 30+/-5 years). Platelet adhesion was studied in vitro by binding to fibrinogen-coated microwells, platelet morphology [mass and volume by flow cytometry], whole-platelet P-selectin (pPsel) by ELISA of the lysate of 2 x 10(8) cells, and the plasma markers soluble P-selectin (sP-sel) and beta-TG, by ELISA. The women with PIH had significantly raised sPsel, pPsel and (as expected) beta-TG (all p<0.05), when compared to the normotensive pregnant women and controls. However, in PIH platelet adhesion was similar to that in the normotensive pregnancy, but still higher than the normal controls (p<0.001). There was no difference among the three groups with respect to platelet mass and volume. pPsel and platelet adhesion correlated with gestational age and with systolic and diastolic blood pressure (all p<0.05). Increased platelet activation and adhesion develop during normal pregnancy, with some indices being further altered in PIH.

  5. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.

    Science.gov (United States)

    Rocha, Sandra M; Saraiva, Tatiana; Cristóvão, Ana C; Ferreira, Raquel; Santos, Tiago; Esteves, Marta; Saraiva, Cláudia; Je, Goun; Cortes, Luísa; Valero, Jorge; Alves, Gilberto; Klibanov, Alexander; Kim, Yoon-Seong; Bernardino, Liliana

    2016-06-04

    Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced

  6. Nanodiamonds activate blood platelets and induce thromboembolism.

    Science.gov (United States)

    Kumari, Sharda; Singh, Manoj K; Singh, Sunil K; Grácio, José J A; Dash, Debabrata

    2014-03-01

    Nanodiamonds (NDs) have been evaluated for a wide range of biomedical applications. Thus, thorough investigation of the biocompatibility of NDs has become a research priority. Platelets are highly sensitive and are one of the most abundant cell types found in blood. They have a central role in hemostasis and arterial thrombosis. In this study, we aim to investigate the direct and acute effects of carboxylated NDs on platelet function. In this study, pro-coagulant parameters such as platelet aggregability, intracellular Ca(2+) flux, mitochondrial transmembrane potential (ΔΨm), generation of reactive oxygen species, surface exposure of phosphatidylserine, electron microscopy, cell viability assay and in vivo thromboembolism were analyzed in great detail. Carboxylated NDs evoked significant activation of human platelets. When administered intravenously in mice, NDs were found to induce widespread pulmonary thromboembolism, indicating the remarkable thrombogenic potential of this nanomaterial. Our findings raise concerns regarding the putative biomedical applications of NDs pertaining to diagnostics and therapeutics, and their toxicity and prothrombotic properties should be critically evaluated.

  7. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  8. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-01-01

    Full Text Available Cardiovascular disease (CVD causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2, a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.

  9. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    International Nuclear Information System (INIS)

    Herholz, Karl

    2008-01-01

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  10. Disease activity in pregnant women with Crohn's disease and birth outcomes: a regional Danish cohort study

    DEFF Research Database (Denmark)

    Nørgård, Bente; Hundborg, Heidi H; Jacobsen, Bent Ascanius

    2007-01-01

    OBJECTIVES: CD is associated with increased risk of adverse birth outcomes, but existing studies have not assessed the impact of disease activity during pregnancy. We examined the impact of disease activity on birth outcomes: LBW, preterm birth, LBW at term, and CAs. METHODS: All births by CD wom...... disease activity). Further research is needed to assess the critical impact of disease activity in larger cohorts of CD women....

  11. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  12. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  13. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  14. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  15. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease

    Directory of Open Access Journals (Sweden)

    Liane Rabinowich

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a leading cause of liver disease in developed countries. Its frequency is increasing in the general population mostly due to the widespread occurrence of obesity and the metabolic syndrome. Although drugs and dietary supplements are viewed as a major cause of acute liver injury, drug induced steatosis and steatohepatitis are considered a rare form of drug induced liver injury (DILI. The complex mechanism leading to hepatic steatosis caused by commonly used drugs such as amiodarone, methotrexate, tamoxifen, valproic acid, glucocorticoids, and others is not fully understood. It relates not only to induction of the metabolic syndrome by some drugs but also to their impact on important molecular pathways including increased hepatocytes lipogenesis, decreased secretion of fatty acids, and interruption of mitochondrial β-oxidation as well as altered expression of genes responsible for drug metabolism. Better familiarity with this type of liver injury is important for early recognition of drug hepatotoxicity and crucial for preventing severe forms of liver injury and cirrhosis. Moreover, understanding the mechanisms leading to drug induced hepatic steatosis may provide much needed clues to the mechanism and potential prevention of the more common form of metabolic steatohepatitis.

  16. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  17. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  18. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  19. Extracellular Matrix Metalloproteinase Inducer EMMPRIN (CD147 in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Saskia N. I. von Ungern-Sternberg

    2018-02-01

    Full Text Available The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs. EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease.

  20. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease

    Directory of Open Access Journals (Sweden)

    Kim Byung S

    2012-09-01

    Full Text Available Abstract Background Theiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS. IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Methods Female C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU. Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry. Results Administration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6 mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence. Conclusions These results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of

  1. Drug induced exocytosis of glycogen in Pompe disease.

    Science.gov (United States)

    Turner, Christopher T; Fuller, Maria; Hopwood, John J; Meikle, Peter J; Brooks, Doug A

    2016-10-28

    Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca 2+ -dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules. Copyright © 2016. Published by Elsevier Inc.

  2. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  3. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth A. LaMarca

    2018-04-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional “mini-brains” and clustered, regularly interspersed short palindromic repeats (CRISPR-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson’s disease, and consider the future of this groundbreaking research.

  4. Active and Passive Smoking, Chronic Disease and Poverty in China ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Active and Passive Smoking, Chronic Disease and Poverty in China. The globalization ... The impending burden of tobacco-related chronic disease will be significant in a population of 1.3 billion. ... Center for Health Statistics and Information.

  5. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...... orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion...

  6. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion......Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...

  7. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    Directory of Open Access Journals (Sweden)

    Joanna Ślusarczyk

    2016-01-01

    Full Text Available The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1 and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.

  8. Drug-induced interstitial lung diseases. Often forgotten

    International Nuclear Information System (INIS)

    Poschenrieder, F.; Stroszczynski, C.; Hamer, O.W.

    2014-01-01

    Drug-induced interstitial lung diseases (DILD) are probably more common than diagnosed. Due to their potential reversibility, increased vigilance towards DILD is appropriate also from the radiologist's point of view, particularly as these diseases regularly exhibit radiological correlates in high-resolution computed tomography (HRCT) of the lungs. Based on personal experience typical relatively common manifestations of DILD are diffuse alveolar damage (DAD), eosinophilic pneumonia (EP), hypersensitivity pneumonitis (HP), organizing pneumonia (OP), non-specific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). These patterns are presented based on case studies, whereby emphasis is placed on the clinical context. This is to highlight the relevance of interdisciplinary communication and discussion in the diagnostic field of DILD as it is a diagnosis of exclusion or of probability in most cases. Helpful differential diagnostic indications for the presence of DILD, such as an accompanying eosinophilia or increased attenuation of pulmonary consolidations in amiodarone-induced pneumopathy are mentioned and the freely available online database http://www.pneumotox.com is presented. (orig.) [de

  9. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    Science.gov (United States)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  10. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone.

    Science.gov (United States)

    Khadrawy, Yasser A; Salem, Ahmed M; El-Shamy, Karima A; Ahmed, Emad K; Fadl, Nevein N; Hosny, Eman N

    2017-09-03

    The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na + /K + -ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na + /K + -ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.

  11. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves.

    Directory of Open Access Journals (Sweden)

    Liana Dalcantara Ongouya Mouekouba

    Full Text Available Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST, second messengers (NO, H2O2, O2(- and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4. Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis to be LEXYL2 (β-xylosidase and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.

  12. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery: A case report.

    Science.gov (United States)

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. The diagnostic procedure documented specific drug-induced valvular fibrosis. Surgical mitral and aortic valve replacement was performed. Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome.

  13. Active Crohn's disease is associated with low vitamin D levels

    DEFF Research Database (Denmark)

    Jørgensen, Søren Peter; Hvas, Christian Lodberg; Agnholt, Jørgen

    2013-01-01

    activity is associated with low vitamin D levels. METHODS: In a cross-sectional study of 182 CD patients and 62 healthy controls, we measured serum 25-OH vitamin D. Stratified analysis was used to compare 25-OH vitamin D levels with Crohn's disease activity index, C-reactive protein, smoking status, intake...... of oral vitamin D supplements and seasonal variation in CD patients and healthy controls. RESULTS: Serum 25-OH vitamin D was inversely associated with disease activity: Median 25-OH vitamin D levels of Crohn's disease in remission, mildly, and moderately active diseases evaluated by Crohn's disease...... D levels (51nmol/l) than patients who did not smoke (76nmol/l), plevels. CONCLUSIONS: Active Crohn's disease was associated with low serum 25-OH vitamin D. Patients who smoked had lower 25-OH...

  14. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  15. Disease-induced resource constraints can trigger explosive epidemics

    Science.gov (United States)

    Böttcher, L.; Woolley-Meza, O.; Araújo, N. A. M.; Herrmann, H. J.; Helbing, D.

    2015-11-01

    Advances in mathematical epidemiology have led to a better understanding of the risks posed by epidemic spreading and informed strategies to contain disease spread. However, a challenge that has been overlooked is that, as a disease becomes more prevalent, it can limit the availability of the capital needed to effectively treat those who have fallen ill. Here we use a simple mathematical model to gain insight into the dynamics of an epidemic when the recovery of sick individuals depends on the availability of healing resources that are generated by the healthy population. We find that epidemics spiral out of control into “explosive” spread if the cost of recovery is above a critical cost. This can occur even when the disease would die out without the resource constraint. The onset of explosive epidemics is very sudden, exhibiting a discontinuous transition under very general assumptions. We find analytical expressions for the critical cost and the size of the explosive jump in infection levels in terms of the parameters that characterize the spreading process. Our model and results apply beyond epidemics to contagion dynamics that self-induce constraints on recovery, thereby amplifying the spreading process.

  16. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  17. Evaluation of therapeutic effect of low dose naltrexone in experimentally-induced Crohn's disease in rats.

    Science.gov (United States)

    Tawfik, Dina Ibrahim; Osman, Afaf Sayed; Tolba, Hedayat Mahmoud; Khattab, Aida; Abdel-Salam, Lubna O; Kamel, Mahmoud M

    2016-10-01

    Crohn's disease is a relapsing inflammatory condition afflicting the digestive tract. Drugs used for treatment of Crohn's disease may be associated with serious side effects. Endogenous opioid peptides modulate inflammatory cytokine production. Opioid antagonists have been shown to play a role in healing and repair of tissues. This work was designed to detect the possible beneficial effects of opioid antagonist naltrexone in indomethacin-induced Crohn's disease in rats. Enteritis was induced in male albino rats by two subcutaneous injection of indomethacin in a dose of 7.5mg/kg 24h apart started on day one. Salfasalazine, naltrexone and their combination were administered orally from day one of induction of enteritis to day 10. Disease activity index, serum levels of C-reactive protein and tumor necrosis factor-α, macroscopic and microscopic pathological scores and in vitro motility studies were evaluated. Induction of enteritis resulted in significant increase of disease activity index, significant elevation of serum levels of C-reactive protein and tumor necrosis factor-α, significant deterioration of pathological scores and significant increase in the mean contractility response of the isolated ileal segments compared with normal untreated rats. Treatment with sulfasalazine, low dose of natrexone or their combination resulted in significant improvement of all measured parameters compared with enteritis group. The current finding could provide new interesting opportunity for developing new therapeutic approaches for treatment of Crohn's disease. Use of naltrexone, especially in small dose, has little side effects making it of interest for treatment of Crohn's disease. Also, it provides the possibility of reduced doses of other drugs if it is used as combined therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  19. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  20. Chemical-induced disease relation extraction with various linguistic features.

    Science.gov (United States)

    Gu, Jinghang; Qian, Longhua; Zhou, Guodong

    2016-01-01

    Understanding the relations between chemicals and diseases is crucial in various biomedical tasks such as new drug discoveries and new therapy developments. While manually mining these relations from the biomedical literature is costly and time-consuming, such a procedure is often difficult to keep up-to-date. To address these issues, the BioCreative-V community proposed a challenging task of automatic extraction of chemical-induced disease (CID) relations in order to benefit biocuration. This article describes our work on the CID relation extraction task on the BioCreative-V tasks. We built a machine learning based system that utilized simple yet effective linguistic features to extract relations with maximum entropy models. In addition to leveraging various features, the hypernym relations between entity concepts derived from the Medical Subject Headings (MeSH)-controlled vocabulary were also employed during both training and testing stages to obtain more accurate classification models and better extraction performance, respectively. We demoted relation extraction between entities in documents to relation extraction between entity mentions. In our system, pairs of chemical and disease mentions at both intra- and inter-sentence levels were first constructed as relation instances for training and testing, then two classification models at both levels were trained from the training examples and applied to the testing examples. Finally, we merged the classification results from mention level to document level to acquire final relations between chemicals and diseases. Our system achieved promisingF-scores of 60.4% on the development dataset and 58.3% on the test dataset using gold-standard entity annotations, respectively. Database URL:https://github.com/JHnlp/BC5CIDTask. © The Author(s) 2016. Published by Oxford University Press.

  1. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease

    Science.gov (United States)

    Kong, Su-Kang; Soo Kim, Byung; Gi Uhm, Tae; Soo Chang, Hun; Sook Park, Jong; Woo Park, Sung; Park, Choon-Sik; Chung, Il Yup

    2016-01-01

    Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA–protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis. PMID:27534531

  2. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

    Science.gov (United States)

    Allende, Maria L; Cook, Emily K; Larman, Bridget C; Nugent, Adrienne; Brady, Jacqueline M; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J; Proia, Richard L

    2018-03-01

    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB -corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB -corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB -corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.

  3. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease.

    Science.gov (United States)

    Chou, Shih-Jie; Yu, Wen-Chung; Chang, Yuh-Lih; Chen, Wen-Yeh; Chang, Wei-Chao; Chien, Yueh; Yen, Jiin-Cherng; Liu, Yung-Yang; Chen, Shih-Jen; Wang, Chien-Ying; Chen, Yu-Han; Niu, Dau-Ming; Lin, Shing-Jong; Chen, Jaw-Wen; Chiou, Shih-Hwa; Leu, Hsin-Bang

    2017-04-01

    Fabry disease (FD) is a lysosomal storage disease in which glycosphingolipids (GB3) accumulate in organs of the human body, leading to idiopathic hypertrophic cardiomyopathy and target organ damage. Its pathophysiology is still poorly understood. We aimed to generate patient-specific induced pluripotent stem cells (iPSC) from FD patients presenting cardiomyopathy to determine whether the model could recapitulate key features of the disease phenotype and to investigate the energy metabolism in Fabry disease. Peripheral blood mononuclear cells from a 30-year-old Chinese man with a diagnosis of Fabry disease, GLA gene (IVS4+919G>A) mutation were reprogrammed into iPSCs and differentiated into iPSC-CMs and energy metabolism was analyzed in iPSC-CMs. The FD-iPSC-CMs recapitulated numerous aspects of the FD phenotype including reduced GLA activity, cellular hypertrophy, GB3 accumulation and impaired contractility. Decreased energy metabolism with energy utilization shift to glycolysis was observed, but the decreased energy metabolism was not modified by enzyme rescue replacement (ERT) in FD-iPSCs-CMs. This model provided a promising in vitro model for the investigation of the underlying disease mechanism and development of novel therapeutic strategies for FD. This potential remedy for enhancing the energetic network and utility efficiency warrants further study to identify novel therapies for the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kanae Iijima-Ando

    2009-12-01

    Full Text Available The amyloid-beta 42 (Abeta42 is thought to play a central role in the pathogenesis of Alzheimer's disease (AD. However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.

  5. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  6. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  7. Lipocalin-2 in Fructose-Induced Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jessica Lambertz

    2017-11-01

    Full Text Available The intake of excess dietary fructose most often leads to non-alcoholic fatty liver disease (NAFLD. Fructose is metabolized mainly in the liver and its chronic consumption results in lipogenic gene expression in this organ. However, precisely how fructose is involved in NAFLD progression is still not fully understood, limiting therapy. Lipocalin-2 (LCN2 is a small secreted transport protein that binds to fatty acids, phospholipids, steroids, retinol, and pheromones. LCN2 regulates lipid and energy metabolism in obesity and is upregulated in response to insulin. We previously discovered that LCN2 has a hepatoprotective effect during hepatic insult, and that its upregulation is a marker of liver damage and inflammation. To investigate if LCN2 has impact on the metabolism of fructose and thereby arising liver damage, we fed wild type and Lcn2−/− mice for 4 or 8 weeks on diets that were enriched in fructose either by adding this sugar to the drinking water (30% w/v, or by feeding a chow containing 60% (w/w fructose. Body weight and daily intake of food and water of these mice was then measured. Fat content in liver sections was visualized using Oil Red O stain, and expression levels of genes involved in fat and sugar metabolism were measured by qRT-PCR and Western blot analysis. We found that fructose-induced steatosis and liver damage was more prominent in female than in male mice, but that the most severe hepatic damage occurred in female mice lacking LCN2. Unexpectedly, consumption of elevated fructose did not induce de novo lipogenesis or fat accumulation. We conclude that LCN2 acts in a lipid-independent manner to protect the liver against fructose-induced damage.

  8. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  9. Neuroendocrine and oxidoreductive mechanisms of stress-induced cardiovascular diseases.

    Science.gov (United States)

    Pajović, S B; Radojcić, M B; Kanazir, D T

    2008-01-01

    The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition.

  10. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα, leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an

  11. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  12. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2017-01-01

    Full Text Available As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD is related to several pathological processes, including: (1 augmenting lipogenesis; (2 leading to mitochondrial dysfunction; (3 stimulating the activation of inflammatory pathways; and (4 causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXRα, sterol regulatory element binding protein (SREBP-1/1c, acetyl-CoA carboxylase (ACC, fatty acid synthase (FAS, stearoyl-CoA desaturase (SCD, peroxisome proliferator–activated receptor α (PPARα, leptin nuclear factor-erythroid 2-related factor 2 (Nrf2, nuclear factor kappa B (NF-κB, tumor necrosis factor α (TNF-α, c-Jun amino terminal kinase (JNK, phosphatidylinositol 3-kinase (PI3K and adenosine 5′-monophosphate (AMP-activated protein kinase (AMPK. Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−-epicatechin and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD.

  13. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  14. Paraoxonase 1 Activity in Endocrine Diseases

    OpenAIRE

    Özlem Tarçın; Dilek Gogas Yavuz

    2011-01-01

    Paraoxonase is an esterase bound to high-density lipoproteins which by metabolizing lipid peroxides, prevents their accumulation on low-density lipoproteins. It also hydrolyzes various organophosphorus compounds. Considering the role of PON1 in hydrolyzing phospholipid and cholesteryl-ester hydroperoxides and thus protecting lipoproteins against oxidative modification, it can be concluded that PON1 may be an indicator of the risk of atherosclerosis/coronary artery disease development. Recent ...

  15. Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease.

    Directory of Open Access Journals (Sweden)

    Shrestha Priyadarsini

    Full Text Available Keratoconus (KC is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36 and KC diagnosed subjects (n = 17. Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF and KC subjects (Human Keratoconus Cells-HKC and stimulated with a Vitamin C (VitC derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15 or prolactin-inducible protein (PIP was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1, a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.

  16. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    Science.gov (United States)

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  17. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    Science.gov (United States)

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  18. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2014-09-01

    Full Text Available Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs technology brings together the potential benefits of embryonic stem cells (ESCs (i.e., self-renewal, pluripotency and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.

  19. Cytomegalovirus infection in inflammatory bowel disease is not associated with worsening of intestinal inflammatory activity.

    Directory of Open Access Journals (Sweden)

    Alexandre Medeiros do Carmo

    Full Text Available Cytomegalovirus is highly prevalent virus and usually occurs in immunocompromised patients. The pathophysiology and treatment of inflammatory bowel disease often induce a state of immunosuppression. Because this, there are still doubts and controversies about the relationship between inflammatory bowel disease and cytomegalovirus.Evaluate the frequency of cytomegalovirus in patients with inflammatory bowel disease and identify correlations.Patients with inflammatory bowel disease underwent an interview, review of records and collection of blood and fecal samples. The search for cytomegalovirus was performed by IgG and IgM blood serology, by real-time PCR in the blood and by qualitative PCR in feces. Results were correlated with red blood cell levels, C-reactive protein levels, erythrocyte sedimentation rates and fecal calprotectin levels for each patient.Among the 400 eligible patients, 249 had Crohn's disease, and 151 had ulcerative colitis. In the group of Crohn's disease, 67 of the patients had moderate or severe disease, but 126 patients presented with active disease, based on the evaluation of the fecal calprotectin. In patients with ulcerative colitis, only 21 patients had moderate disease, but 76 patients presented with active disease, based on the evaluation of the fecal calprotectin. A large majority of patients had positive CMV IgG. Overall, 10 patients had positive CMV IgM, and 9 patients had a positive qualitative detection of CMV DNA by PCR in the feces. All 400 patients returned negative results after the quantitative detection of CMV DNA in blood by real-time PCR. Analyzing the 19 patients with active infections, we only found that such an association occurred with the use of combined therapy (anti-TNF-alpha + azathioprine.The findings show that latent cytomegalovirus infections are frequent and active cytomegalovirus infection is rare. We did not find any association between an active infection of CMV and inflammatory bowel

  20. Ultraviolet induced lysosome activity in corneal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm/sup -2/ to 10.000 Jm/sup -2/ and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm/sup -2/ and lens threshold (Hsub(L)) was 7.500 Jm/sup -2/. The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared.

  1. Ultraviolet induced lysosome activity in corneal epithelium

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A 5.000 W Xe-Hg high pressure lamp and a double monochromator were used to produce a 3.3 nm half-bandpass ultraviolet radiation at 295 nm. Pigmented rabbit eyes were irradiated with radiant exposures from 140 Jm -2 to 10.000 Jm -2 and evaluated by slit-lamp biomicroscopy, light and electron microscopy. Corneal threshold (Hsub(c) was 200 Jm -2 and lens threshold (Hsub(L)) was 7.500 Jm -2 . The most repeatable and reliable corneal response to these levels of UV was the development of corneal epithelial granules. Histological changes included a loss of superficial epithelial cells and selective UV induced autolysis of the wing cells. It is suggested that the biomicroscopically observed granules are the clinical manifestation of the secondary lysosomes revealed by light and electron microscopy. It is proposed that UV breaks down the primary lysosome membranes to release hydrolytic enzymes which in turn form the secondary lysosomes during autolysis. Extreme levels of radiant exposure at 295 nm result in indiscriminate destruction of all layers of the corneal epithelium, but the posterior cornea was spared. (orig.) [de

  2. Misconceptions about mirror-induced motor cortex activation.

    NARCIS (Netherlands)

    Praamstra, P.; Torney, L.; Rawle, C.J.; Miall, R.C.

    2011-01-01

    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex

  3. Targeting Inflammation-Induced Obesity and Metabolic Diseases by Curcumin and Other Nutraceuticals

    Science.gov (United States)

    Aggarwal, Bharat B.

    2011-01-01

    Extensive research within the past two decades has revealed that obesity, a major risk factor for type 2 diabetes, atherosclerosis, cancer, and other chronic diseases, is a proinflammatory disease. Several spices have been shown to exhibit activity against obesity through antioxidant and anti-inflammatory mechanisms. Among them, curcumin, a yellow pigment derived from the spice turmeric (an essential component of curry powder), has been investigated most extensively as a treatment for obesity and obesity-related metabolic diseases. Curcumin directly interacts with adipocytes, pancreatic cells, hepatic stellate cells, macrophages, and muscle cells. There, it suppresses the proinflammatory transcription factors nuclear factor-kappa B, signal transducer and activators of transcription-3, and Wnt/β-catenin, and it activates peroxisome proliferator-activated receptor-γ and Nrf2 cell-signaling pathways, thus leading to the downregulation of adipokines, including tumor necrosis factor, interleukin-6, resistin, leptin, and monocyte chemotactic protein-1, and the upregulation of adiponectin and other gene products. These curcumin-induced alterations reverse insulin resistance, hyperglycemia, hyperlipidemia, and other symptoms linked to obesity. Other structurally homologous nutraceuticals, derived from red chili, cinnamon, cloves, black pepper, and ginger, also exhibit effects against obesity and insulin resistance. PMID:20420526

  4. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2016-01-01

    The aging eye appears to be at considerable risk from oxidative stress. A great deal of research indicates that dysfunctional mitochondria are the primary site of reactive oxygen species (ROS). More than 95% of O2 produced during normal metabolism is generated by the electron transport chain in the inner mitochondrial membrane. Mitochondria are also the major target of ROS. Cataract formation, the opacification of the eye lens, is one of the leading causes of human blindness worldwide, accounting for 47.8% of all causes of blindness. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cell plasma membrane damage, which causes clouding of the lens, light scattering, and obstruction of vision. ROS-induced damage in the lens cell may consist of oxidation of proteins, DNA damage, and/or lipid peroxidation, all of which have been implicated in cataractogenesis. This article is an attempt to integrate how mitochondrial ROS are altered in the aging eye along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. As a result of the combination of weak metal chelating, OH and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid, and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biologic membranes and aqueous environments and act as the antiapoptotic natural drug compounds The authors developed and patented the new ophthalmic compositions, including N-acetylcarnosine, acting as a prodrug of naturally targeted to mitochondria L-carnosine endowed with pluripotent antioxidant activities combined with mitochondria

  5. Metabolism features in the active rheumatoid disease

    Energy Technology Data Exchange (ETDEWEB)

    Cossermelli, W; Carvalho, N; Papaleo Netto, M [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-02-01

    The /sup 131/I-labelled albumin metabolism was studied in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations.

  6. Metabolism features in the active rheumatoid disease

    International Nuclear Information System (INIS)

    Cossermelli, W.; Carvalho, N.; Papaleo Netto, M.

    1974-01-01

    It was studied the 131 I-labelled albumin metabolism in fourteen female patients with rheumatoid arthritis. The half-life of distribution was increased while the turnover half-life and turnover rate was within normal limits. These results led to assume that synthesis and catabolism may not change this disease, not being the responsible mechanism of hypoalbuminemia. Hypoalbuminemia would appear as compensatory mechanism in view of other protein alterations, as hypergammaglobulinemia, without changes of stabilizing and metabolic properties of albumin, perhaps due to albumin molecular alterations [pt

  7. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  8. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  9. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  10. The climatic change induced by human activities

    International Nuclear Information System (INIS)

    Balairon Ruiz, L.

    2004-01-01

    The climate of the Earth is a changing climate. Along their history many natural climate changes have existed in all time scales. At the present time we use the term climate changes have existed in all time scales. At the present time we use the term climate change in a restricted way, understanding that we have referring to a singular change that has their origin in the modification of the natural composition of the atmosphere. The increase of greenhouse gases from the second half the XVIII century, is due to the human activities of fossil fuels burning to obtain energy and to industrial and agricultural activities needing for the development of a world which population has been duplicated between 1960 and 2000, until overcoming the 6,000 million inhabitants. In particular, the concentrations of carbon dioxide-CO 2 have increased in a 34%. The more recent emission scenarios proposed by the IPCC (SRES, 2000) are based on hypothesis about the population evolution, the energy consumption and the word patterns of development, which are grouped in four families dominated as A1, A2, B1 and B2. The answer for these scenarios from a range of climate models results in an increase of the world average surface atmospheric temperature between 1,4 degree centigrade and 5,8 degree centigrade and a corresponding sea level rise understood between 9 cm and 88 cm. The changes in the precipitation patterns show us that could be above to the current one in high and media latitudes and below in subtropical latitudes, with exceptions highly depending of the model used. (Author)

  11. Activation of Nrf2 protects against triptolide-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF, has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2 in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN, attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.

  12. Prevalence and prediction of exercise-induced oxygen desaturation in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    van Gestel, A J R; Clarenbach, C F; Stöwhas, A C; Teschler, S; Russi, E W; Teschler, H; Kohler, M

    2012-01-01

    Previous studies with small sample sizes reported contradicting findings as to whether pulmonary function tests can predict exercise-induced oxygen desaturation (EID). To evaluate whether forced expiratory volume in one second (FEV(1)), resting oxygen saturation (SpO(2)) and diffusion capacity for carbon monoxide (DLCO) are predictors of EID in chronic obstructive pulmonary disease (COPD). We measured FEV(1), DLCO, SpO(2) at rest and during a 6-min walking test as well as physical activity by an accelerometer. A drop in SpO(2) of >4 to daily physical activity (r = -0.31, p = 0.008). EID is highly prevalent among patients with COPD and can be predicted by FEV(1). EID seems to be associated with impaired daily physical activity which supports its clinical importance. Copyright © 2012 S. Karger AG, Basel.

  13. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease.

    Science.gov (United States)

    Prasad, Kailash; Dhar, Indu

    2014-12-01

    Added sugars comprising of table sugar, brown sugar, corn syrup, maple syrup, honey, molasses, and other sweeteners in the prepared processed foods and beverages have been implicated in the pathophysiology of cardiovascular diseases. This article deals with the reactive oxygen species (ROS) as a mechanism of sugar-induced cardiovascular diseases. There is an association between the consumption of high levels of serum glucose with cardiovascular diseases. Various sources of sugar-induced generation of ROS, including mitochondria, nicotinamide adenine dinucleotide phosphate-oxidase, advanced glycation end products, insulin, and uric acid have been discussed. The mechanism by which ROS induce the development of atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias have been discussed in detail. In conclusion, the data suggest that added sugars induce atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias and that these effects of added sugars are mediated through ROS.

  14. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  15. Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?

    Science.gov (United States)

    Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara

    2015-01-01

    The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. PMID:26009763

  16. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  17. Physical Activity Recommendations in Patients with Chronic Obstructive Pulmonary Disease

    NARCIS (Netherlands)

    Hartman, Jorine E.; Boezen, H. Marike; Zuidema, Menno J.; de Greef, Mathieu H. G.; ten Hacken, Nick H. T.; Boezen, Hendrika

    2014-01-01

    Background: Physical activity recommendations are hardly studied in patients with chronic obstructive pulmonary disease (COPD), and specifically recommendations that are individualized to a patient's aerobic fitness level are not studied. Objectives: To compare individualized (relative) and

  18. Effects of physical activity on life expectancy with cardiovascular disease

    NARCIS (Netherlands)

    O.H. Franco (Oscar); C.E.D. de Laet (Chris); A. Peeters (Andrea); J. Jonker (Joost); J.P. Mackenbach (Johan); W.J. Nusselder (Wilma)

    2005-01-01

    textabstractBackground: Physical inactivity is a modifiable risk factor for cardiovascular disease. However, little is known about the effects of physical activity on life expectancy with and without cardiovascular disease. Our objective was to calculate the consequences of different physical

  19. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  20. Measures of rheumatoid arthritis disease activity in Australian clinical practice.

    Science.gov (United States)

    Taylor, Andrew; Bagga, Hanish

    2011-01-01

    Objectives. To investigate which rheumatoid arthritis (RA) disease activity measures are being collected in patients receiving glucocorticoids, non-biologic or biologic disease-modifying antirheumatic drugs (DMARDs) in Australian rheumatology practice. Methods. A retrospective audit of medical records was conducted from eight rheumatology practices around Australia. Each rheumatologist recruited 30 consecutive eligible patients into the review, 10 of whom must have been receiving a biological agent for rheumatoid arthritis. Disease activity measures and radiographic assessments were collected from each patient's last consultation. For biologic patients, disease activity measures were also collected from when the patient was first initiated on the biological agent. Results. At last consultation, the disease measures that were recorded most often were ESR (89.2%), haemoglobin (87.5%), and CRP (84.2%). DAS28 was infrequently recorded (16.3%). The rate of recording disease activity measures for patients receiving biologic DMARDs decreased over time (mean 27 months). Conclusion. This review has shown inconsistency of RA activity measures being recorded in Australian rheumatology clinical practice. An accurate assessment of the disease process is necessary to effectively target rheumatoid arthritis patients to treat in order to achieve optimal outcomes.

  1. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  2. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  3. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  4. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  5. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  6. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  7. Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jessika C. Bridi

    2018-02-01

    Full Text Available Parkinson's disease (PD is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn, and the loss of dopaminergic (DA neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ. Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In

  8. Minimal Disease Activity as a Treatment Target in Psoriatic Arthritis

    DEFF Research Database (Denmark)

    Gossec, Laure; McGonagle, Dennis; Korotaeva, Tatiana

    2018-01-01

    As in other inflammatory rheumatic diseases, the objective of psoriatic arthritis (PsA) treatment is the achievement of a defined target. Recent recommendations propose aiming for remission or low disease activity; however, a consensual definition of remission is lacking. A state of minimal disease....... Since its development, MDA has been used increasingly in studies and clinical trials. In this article, the potential use of MDA as a treatment target in PsA is reviewed. The frequencies of MDA achievement with biologic disease-modifying antirheumatic drugs are summarized based on data from registries...

  9. Serum Renalase Levels Correlate with Disease Activity in Lupus Nephritis.

    Directory of Open Access Journals (Sweden)

    Chaojun Qi

    Full Text Available Lupus nephritis (LN is among the most serious complications of systemic lupus erythematosus (SLE, which causes significant morbidity and mortality. Renalase is a novel, kidney-secreted cytokine-like protein that promotes cell survival. Here, we aimed to investigate the relationship of serum renalase levels with LN and its role in the disease progression of LN.For this cross-sectional study, 67 LN patients and 35 healthy controls were enrolled. Seventeen active LN patients who received standard therapies were followed up for six months. Disease activity was determined by the SLE Disease Activity-2000 (SLEDAI-2K scoring system and serum renalase amounts were determined by ELISA. Predictive value of renalase for disease activity was assessed. Furthermore, the expression of renalase in the kidneys of patients and macrophage infiltration was assessed by immunohistochemistry.Serum renalase amounts were significantly higher in LN patients than in healthy controls. Moreover, patients with proliferative LN had more elevated serum renalase levels than Class V LN patients. In proliferative LN patients, serum renalase levels were significantly higher in patients with active LN than those with inactive LN. Serum renalase levels were positively correlated with SLEDAI-2K, 24-h urine protein excretion, ds-DNA and ESR but inversely correlated with serum albumin and C3. Renalase amounts decreased significantly after six-months of standard therapy. The performance of renalase as a marker for diagnosis of active LN was 0.906 with a cutoff value of 66.67 μg/ml. We also observed that the amount of renalase was significantly higher in glomerular of proliferative LN along with the co-expression of macrophages.Serum renalase levels were correlated with disease activity in LN. Serum renalase might serve as a potential indicator for disease activity in LN. The marked increase of glomerular renalase and its association with macrophages suggest that it might play an

  10. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome.

    Science.gov (United States)

    Robins, Richard; Baldwin, Cindy; Aoudjit, Lamine; Côté, Jean-François; Gupta, Indra R; Takano, Tomoko

    2017-08-01

    Hyper-activation of Rac1, a small GTPase, in glomerular podocytes has been implicated in the pathogenesis of familial proteinuric kidney diseases. However, the role of Rac1 in acquired nephrotic syndrome is unknown. To gain direct insights into this, we generated a transgenic mouse model expressing a doxycycline-inducible constitutively active form of Rac1 (CA-Rac1) in podocytes. Regardless of the copy number, proteinuria occurred rapidly within five days, and the histology resembled minimal change disease. The degree and severity of proteinuria were dependent on the transgene copy number. Upon doxycycline withdrawal, proteinuria resolved completely (one copy) or nearly completely (two copy). After one month of doxycycline treatment, two-copy mice developed glomerulosclerosis that resembled focal segmental glomerulosclerosis (FSGS) with urinary shedding of transgene-expressing podocytes. p38 MAPK was activated in podocytes upon CA-Rac1 induction while a p38 inhibitor attenuated proteinuria, podocyte loss, and glomerulosclerosis. Mechanistically, activation of Rac1 in cultured mouse podocytes reduced adhesiveness to laminin and induced redistribution of β1 integrin, and both were partially reversed by the p38 inhibitor. Activation of Rac1 in podocytes was also seen in kidney biopsies from patients with minimal change disease and idiopathic FSGS by immunofluorescence while sera from the same patients activated Rac1 in cultured human podocytes. Thus, activation of Rac1 in podocytes causes a spectrum of disease ranging from minimal change disease to FSGS, due to podocyte detachment from the glomerular basement membrane that is partially dependent on p38 MAPK. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation

    Directory of Open Access Journals (Sweden)

    Shi Fushan

    2012-07-01

    Full Text Available Abstract Background Prion diseases are neurodegenerative disorders characterized by the accumulation of an abnormal disease-associated prion protein, PrPSc. In prion-infected brains, activated microglia are often present in the vicinity of PrPSc aggregates, and microglial activation is thought to play a key role in the pathogenesis of prion diseases. Although interleukin (IL-1β release by prion-induced microglia has been widely reported, the mechanism by which primed microglia become activated and secrete IL-1β in prion diseases has not yet been elucidated. In this study, we investigated the role of the NACHT, LRR and PYD domains-containing protein (NALP3 inflammasome in IL-1β release from lipopolysaccharide (LPS-primed microglia after exposure to a synthetic neurotoxic prion fragment (PrP106-126. Methods The inflammasome components NALP3 and apoptosis-associated speck-like protein (ASC were knocked down by gene silencing. IL-1β production was assessed using ELISA. The mRNA expression of NALP3, ASC, and pro-inflammatory factors was measured by quantitative PCR. Western blot analysis was used to detect the protein level of NALP3, ASC, caspase-1 and nuclear factor-κB. Results We found that that PrP106-126-induced IL-1β release depends on NALP3 inflammasome activation, that inflammasome activation is required for the synthesis of pro-inflammatory and chemotactic factors by PrP106-126-activated microglia, that inhibition of NF-κB activation abrogated PrP106-126-induced NALP3 upregulation, and that potassium efflux and production of reactive oxygen species were implicated in PrP106-126-induced NALP3 inflammasome activation in microglia. Conclusions We conclude that the NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. To our knowledge, this is the first time that strong evidence for the involvement of NALP3 inflammasome in prion-associated inflammation has been found.

  12. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Xibao Zhao; Xibao Zhao; Debing Pu; Debing Pu; Zizhao Zhao; Huihui Zhu; Hongrui Li; Hongrui Li; Yaping Shen; Xingjie Zhang; Ruihan Zhang; Jianzhong Shen; Weilie Xiao; Weilie Xiao; Weilin Chen

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflamm...

  13. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  14. Anti-Inflammatory Effects of Fargesin on Chemically Induced Inflammatory Bowel Disease in Mice

    Directory of Open Access Journals (Sweden)

    Bei Yue

    2018-06-01

    Full Text Available Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO activity, reducing tumor necrosis factor (TNF-α secretion, and inhibiting nitric oxide (NO production in colitis mice. The degradation of inhibitory κBα (IκBα, phosphorylation of p65, and mRNA expression of nuclear factor κB (NF-κB target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, and dose-dependently inhibited the activity of NF-κB-luciferase in lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-κB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.

  15. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  16. Physical activity and cardiovascular disease risk factors among ...

    African Journals Online (AJOL)

    Background: Cardiovascular diseases (CVD) risk factors are increasing at an unprecedented rate in developing countries. However, fewer studies have evaluated the role of physical activity in preventing CVD in these countries. We assessed level physical activity and its relationship with CVD risk factors among young and ...

  17. PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications.

    Science.gov (United States)

    Barreiro, Esther; Gea, Joaquim

    2018-01-26

    Skeletal muscle dysfunction and mass loss is a characteristic feature in patients with chronic diseases including cancer and acute conditions such as critical illness. Maintenance of an adequate muscle mass is crucial for the patients' prognosis irrespective of the underlying condition. Moreover, aging-related sarcopenia may further aggravate the muscle wasting process associated with chronic diseases and cancer. Poly(adenosine diphosphate-ribose) polymerase (PARP) activation has been demonstrated to contribute to the pathophysiology of muscle mass loss and dysfunction in animal models of cancer-induced cachexia. Genetic inhibition of PARP activity attenuated the deleterious effects seen on depleted muscles in mouse models of oncologic cachexia. In the present minireview the mechanisms whereby PARP activity inhibition may improve muscle mass and performance in models of cancer-induced cachexia are discussed. Specifically, the beneficial effects of inhibition of PARP activity on attenuation of increased oxidative stress, protein catabolism, poor muscle anabolism and mitochondrial content and epigenetic modulation of muscle phenotype are reviewed in this article. Finally, the potential therapeutic strategies of pharmacological PARP activity inhibition for the treatment of cancer-induced cachexia are also being described in this review.

  18. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    . The third hypothesis is that the activation and rinsing process can be described by diffusion. This hypothesis is proved using Fick’s diffusion laws combined with the short-time-plating experiment. The influence of laser parameters on the surface structure is investigated for Nd:YAG, UV, and fiber lasers......The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...... (LISA) is introduced and studied as a new technique for producing 3D moulded interconnect devices (3D-MIDs). This technique enables the metallization of polymer surface modified by laser and subsequently activated by a PdCl2/SnCl2 system. Various technologies exist on an industrial level...

  19. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2011-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB. Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.

  20. PET activation in basal ganglia disorders: Parkinson's disease and dystonia

    International Nuclear Information System (INIS)

    Ceballos-Baumann, A.O.; Boecker, H.; Conrad, B.

    1997-01-01

    This article reviews PET activation studies with performance of different motor paradigms (joy-stick movements, imagination of movement, writing) in patients with movement disorders. The focus will be on Parkinson's disease (PD) and dystonia. PET findings will be related to clinical and electrophysiological observations. PET activation studies before and after therapeutic interventions such as pallidotomy in Parkinson's disease and botulinum toxin in writer's cramp are described. The contribution of PET activation studies to the understanding of the pathophysiology of dystonia and PD is discussed. (orig.) [de

  1. Histologic scoring indices for evaluation of disease activity in Crohn's disease

    NARCIS (Netherlands)

    Novak, Gregor; Parker, Claire E.; Pai, Rish K.; Macdonald, John K.; Feagan, Brian G.; Sandborn, William J.; D'Haens, Geert; Jairath, Vipul; Khanna, Reena

    2017-01-01

    Histologic assessment of mucosal disease activity has been increasingly used in clinical trials of treatment for Crohn's disease. However, the operating properties of the currently existing histologic scoring indices remain unclear. A systematic review was undertaken to evaluate the development and

  2. Magnetic resonance imaging for evaluation of disease activity in Crohn's disease: a systematic review

    NARCIS (Netherlands)

    Horsthuis, Karin; Bipat, Shandra; Stokkers, Pieter C. F.; Stoker, Jaap

    2009-01-01

    To systematically review the evidence on the accuracy of MRI for grading disease activity in Crohn's disease (CD). The MEDLINE, EMBASE, CINAHL and Cochrane databases were searched for studies on the accuracy of MRI in grading CD compared to a predefined reference standard. Two independent observers

  3. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  4. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  5. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  6. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Franco, Gilson C.N.; Kajiya, Mikihito; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Ernst, Cory W.O.; Boyesen, Janie L.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-01-01

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  7. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  8. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  9. Fibromyalgia in patients with other rheumatic diseases: prevalence and relationship with disease activity.

    Science.gov (United States)

    Haliloglu, Sema; Carlioglu, Ayse; Akdeniz, Derya; Karaaslan, Yasar; Kosar, Ali

    2014-09-01

    Fibromyalgia (FM) is a syndrome characterized by chronic widespread pain and the presence of specific tender points. The prevalence of FM has been estimated at 2-7 % of the general global population. The presence of FM in several rheumatic diseases with a structural pathology has been reported as 11-30 %. The objectives of this study were to determine the prevalence of FM and to evaluate the possible relationship between FM existence and disease activity among rheumatic diseases. The study group included 835 patients--197 rheumatoid arthritis (RA), 67 systemic lupus erythematosus (SLE), 119 ankylosing spondylitis (AS), 238 osteoarthritis (OA), 14 familial Mediterranean fever (FMF), 53 Behçet's disease (BD), 71 gout, 25 Sjögren's syndrome (SS), 20 vasculitis, 29 polymyalgia rheumatica (PMR), and two polymyositis (PM)--with or without FM. Recorded information included age, gender, laboratory parameters, presence of fatigue, and disease activity indexes. The prevalence of FM in patients with rheumatologic diseases was found to be 6.6 % for RA, 13.4 % for SLE, 12.6 % for AS, 10.1 % for OA, 5.7 % for BD, 7.1 % for FMF, 12 % for SS, 25 % for vasculitis, 1.4 % for gout, and 6.9 % for PMR. One out of two patients with PM was diagnosed with FM. Some rheumatologic cases (AS, OA) with FM were observed mostly in female patients (p = 0.000). Also, there were significant correlations between disease activity indexes and Fibromyalgia Impact Questionnaire scores for most rheumatologic patients (RA, AS, OA, and BD) (p diseases, and its recognition is important for the optimal management of these diseases. Increased pain, physical limitations, and fatigue may be interpreted as increased activity of these diseases, and a common treatment option is the prescription of higher doses of biologic agents or corticosteroids. Considerations of the FM component in the management of rheumatologic diseases increase the likelihood of the success of the treatment.

  10. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Constanza Bondar

    2017-01-01

    Full Text Available Gaucher disease (GD is caused by mutations in the glucosylceramidase β (GBA 1 gene that confer a deficient level of activity of glucocerebrosidase (GCase. This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE, an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD.

  11. Elevated Expression of the NLRP3 Inflammasome and Its Correlation with Disease Activity in Adult-onset Still Disease.

    Science.gov (United States)

    Hsieh, Chia-Wei; Chen, Yi-Ming; Lin, Chi-Chen; Tang, Kuo-Tung; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Kuo-Lung; Chen, Der-Yuan

    2017-08-01

    The dysregulation of the NLRP3 (NLR containing a pyrin domain) inflammasome is involved in autoinflammatory diseases. Adult-onset Still disease (AOSD) is regarded as an autoinflammatory disease. However, the pathogenic involvement of NLRP3 inflammasome in AOSD remains unclear and NLRP3 activators in AOSD are currently unknown. The mRNA expression of NLRP3 inflammasome signaling in peripheral blood mononuclear cells (PBMC) from 34 patients with AOSD and 14 healthy subjects was determined using quantitative-PCR (qPCR). The changes in mRNA and protein levels of NLRP3 inflammasome signaling in PBMC treated with the potential activator [imiquimod (IMQ)] or inhibitor of NLRP3 were evaluated using qPCR and immunoblotting, respectively. The supernatant levels of interleukin (IL)-1β and IL-18 were determined by ELISA. Significantly higher mRNA levels of NLRP3 inflammasome signaling were observed in patients with AOSD compared with healthy controls. NLRP3 expressions were positively correlated with disease activity in patients with AOSD. IMQ (an effective Toll-like receptor 7 ligand; 10 µ g/ml and 25 µ g/ml) stimulation of PBMC from patients with AOSD induced dose-dependent increases of mRNA expression of NLRP3 (mean ± standard error of the mean, 2.06 ± 0.46 and 6.05 ± 1.84, respectively), caspase-1 (1.81 ± 0.23 and 4.25 ± 0.48), IL-1β (5.68 ± 1.51 and 12.13 ± 3.71), and IL-18 (2.32 ± 0.37 and 4.81 ± 0.51) compared with controls (all p < 0.005). IMQ stimulation of PBMC from patients similarly induced greater increases in protein expressions of NLRP3 inflammasome compared with controls. The protein expressions of NLRP3, IL-1β, and IL-18 on PBMC significantly decreased after treatment with NLRP3 inhibitor in patients with AOSD. Increased expression of NLRP3 inflammasome and its positive correlation with disease activity in AOSD suggest its involvement in disease pathogenesis. IMQ upregulated expressions of NLRP3 inflammasome signaling, and IMQ might be an

  12. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity?

    Science.gov (United States)

    Mohan, Chandra; Assassi, Shervin

    2015-11-26

    Serological and proteomic biomarkers can help clinicians diagnose rheumatic diseases earlier and assess disease activity more accurately. These markers have been incorporated into the recently revised classification criteria of several diseases to enable early diagnosis and timely initiation of treatment. Furthermore, they also facilitate more accurate subclassification and more focused monitoring for the detection of certain disease manifestations, such as lung and renal involvement. These biomarkers can also make the assessment of disease activity and treatment response more reliable. Simultaneously, several new serological and proteomic biomarkers have become available in the routine clinical setting--for example, a protein biomarker panel for rheumatoid arthritis and a myositis antibody panel for dermatomyositis and polymyositis. This review will focus on commercially available antibody and proteomic biomarkers in rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), dermatomyositis and polymyositis, and axial spondyloarthritis (including ankylosing spondylitis). It will discuss how these markers can facilitate early diagnosis as well as more accurate subclassification and assessment of disease activity in the clinical setting. The ultimate goal of current and future biomarkers in rheumatic diseases is to enable early detection of these diseases and their clinical manifestations, and to provide effective monitoring and treatment regimens that are tailored to each patient's needs and prognosis. © BMJ Publishing Group Ltd 2015.

  13. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  14. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients

    International Nuclear Information System (INIS)

    Takahashi-Niki, Kazuko; Niki, Takeshi; Taira, Takahiro; Iguchi-Ariga, Sanae M.M.; Ariga, Hiroyoshi

    2004-01-01

    DJ-1 is a multi-functional protein that plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in onset of Parkinson's disease. We have previously reported that L166P, a mutant DJ-1 found in Parkinson's disease patients, had no activity to prevent hydrogen peroxide (H 2 O 2 )-induced cell death. In this study, we analyzed other mutants of DJ-1 found in Parkinson's disease patients, including M26I, R98Q, and D149A, as well as L166P. We first found that all of the mutants made heterodimers with wild-type DJ-1, while all of the mutants except for L166P made homodimers. We then found that M26I and L166P, both of which are derived from homozygous mutations of the DJ-1 gene, were unstable and that their stabilities were recovered, in part, in the presence of proteasome inhibitor, MG132. NIH3T3 cell lines stably expressing these mutants of DJ-1 showed that cell lines of L166P and C106S, a mutant for protease activity (-) of DJ-1, had no activity to scavenge even endogenously producing reactive oxygen species. These cell lines also showed that all of the mutants had reduced activities to eliminate exogenously added H 2 O 2 and that these activities, except for that of D149A, were parallel to those preventing H 2 O 2 -induced cell death

  15. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  16. Measures of Rheumatoid Arthritis Disease Activity in Australian Clinical Practice

    OpenAIRE

    Taylor, Andrew; Bagga, Hanish

    2011-01-01

    Objectives. To investigate which rheumatoid arthritis (RA) disease activity measures are being collected in patients receiving glucocorticoids, non-biologic or biologic disease-modifying antirheumatic drugs (DMARDs) in Australian rheumatology practice. Methods. A retrospective audit of medical records was conducted from eight rheumatology practices around Australia. Each rheumatologist recruited 30 consecutive eligible patients into the review, 10 of whom must have been receiving a biological...

  17. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    Science.gov (United States)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  18. Sleep disorders and inflammatory disease activity: chicken or the egg?

    Science.gov (United States)

    Parekh, Parth J; Oldfield Iv, Edward C; Challapallisri, Vaishnavi; Ware, J Catsby; Johnson, David A

    2015-04-01

    Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.

  19. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  20. Characteristics of induced activity from medical linear accelerators

    International Nuclear Information System (INIS)

    Wang Yizhen; Evans, Michael D.C.; Podgorsak, Ervin B.

    2005-01-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a 'dose rate' of 400 MU/min. A 'dose' of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible

  1. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells

    NARCIS (Netherlands)

    Staszewski, Ori; Baker, Richard E.; Ucher, Anna J.; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E. J.

    2011-01-01

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading

  2. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  3. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  4. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  5. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  6. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  7. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  8. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease

    DEFF Research Database (Denmark)

    Lovato, Paola; Brender, Christine; Agnholt, Jørgen

    2003-01-01

    Via cytoplasmic signal transduction pathways, cytokines induce a variety of biological responses and modulate the outcome of inflammatory diseases and malignancies. Crohn's disease is a chronic inflammatory bowel disease of unknown etiology. Perturbation of the intestinal cytokine homeostasis is ...

  9. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  10. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  11. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Kenner, Lukas; Florin, Lore; Hummerich, Lars; Mehic, Denis; Scheuch, Harald; Angel, Peter; Tschachler, Erwin; Wagner, Erwin F

    2005-09-15

    Psoriasis is a frequent, inflammatory disease of skin and joints with considerable morbidity. Here we report that in psoriatic lesions, epidermal keratinocytes have decreased expression of JunB, a gene localized in the psoriasis susceptibility region PSORS6. Likewise, inducible epidermal deletion of JunB and its functional companion c-Jun in adult mice leads (within two weeks) to a phenotype resembling the histological and molecular hallmarks of psoriasis, including arthritic lesions. In contrast to the skin phenotype, the development of arthritic lesions requires T and B cells and signalling through tumour necrosis factor receptor 1 (TNFR1). Prior to the disease onset, two chemotactic proteins (S100A8 and S100A9) previously mapped to the psoriasis susceptibility region PSORS4, are strongly induced in mutant keratinocytes in vivo and in vitro. We propose that the abrogation of JunB/activator protein 1 (AP-1) in keratinocytes triggers chemokine/cytokine expression, which recruits neutrophils and macrophages to the epidermis thereby contributing to the phenotypic changes observed in psoriasis. Thus, these data support the hypothesis that epidermal alterations are sufficient to initiate both skin lesions and arthritis in psoriasis.

  12. Fusarium-induced diseases of tropical, perennial crops.

    Science.gov (United States)

    Ploetz, Randy C

    2006-06-01

    ABSTRACT The world's oldest ecosystems are found in the tropics. They are diverse, highly evolved, but barely understood. This and subsequent papers describe diseases of tropical, perennial plants that are caused by Fusarium spp. Many of these are economically significant, difficult to manage, and of scientific interest. Some represent coevolved patho-systems (e.g., Panama disease, tracheomycosis of coffee, fusariosis of pineapple, and Fusarium wilt of oil palm), whereas others may be new-encounter diseases or are caused by generalist pathogens (cushion gall of cacao). New vector relationships are evident in other pathosystems (e.g., mango malformation), and two or more pathogens have been shown to cause some of the diseases (Panama disease and tracheomycosis of coffee). More work on these pathosystems is warranted as they could reveal much about the evolution of plant pathogens and the important diseases they cause.

  13. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  14. Radiation-induced external ear canal cholesteatoma-like disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Akiko; Okuno, Hideji; Noguchi, Keisuke; Komatsuzaki, Atsushi [Tokyo Medical and Dental Univ. (Japan). School of Medicine

    1999-06-01

    Three cases of cholesteatoma-like disease in the ear canals after radiation therapy for head and neck tumor were reported. Effect of irradiation on bone and soft tissue including skin brings about pathological reaction to the external ear canal as well. Two types of disease resembling cholesteatomas have been recognized: keratosis obturans (KO) and external auditory canal cholesteatoma (EACC). KO appears to be derived from disease of canal skin involved with keratinization, creating a widning of the canal. EACC, on the other hand, seems to develop in the disease of bony canal where a localized absorption of its bone with invasion of squamous epithelium takes place. (author)

  15. Ranitidine reduced levodopa-induced dyskinesia in a rat model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Cui G

    2013-12-01

    -time polymerase chain reaction showed that Arc and proenkephalin levels were reduced by chronic ranitidine (10 mg/kg in dyskinetic rats.Conclusion: These data indicate that ranitidine is a good adjunct for reducing LID in rats with dyskinesia. Inhibition of dopamine D1-mediated activation in the medium spiny neurons may account for the antidyskinetic effects of ranitidine in rats with dyskinesia.Keywords: Parkinson’s disease, levodopa-induced dyskinesia, ranitidine, Arc, proenkephalin

  16. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    Science.gov (United States)

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  17. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  18. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    healthy men (range 22-27 years), with no history of shoulder or cervical problems, were included in the study. Pain was induced by 5% hypertonic saline injections into the supraspinatus muscle or subacromially. Seated in a shoulder machine, subjects performed standardized concentric abduction (0A degrees......Muscle function is altered in painful shoulder conditions. However, the influence of shoulder pain on muscle coordination of the shoulder has not been fully clarified. The aim of the present study was to examine the effect of experimentally induced shoulder pain on shoulder muscle function. Eleven...... muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper...

  19. Contrast-induced nephropathy in patients with chronic kidney disease and peripheral arterial disease

    International Nuclear Information System (INIS)

    Kroneberger, Christian; Enzweiler, Christian N; Schmidt-Lucke, Andre; Rückert, Ralph-Ingo; Teichgräber, Ulf; Franiel, Tobias

    2015-01-01

    The risk for contrast-induced nephropathy (CIN) after intra-arterial application of an iodine-based contrast material is unknown for patients with chronic kidney disease (CKD) and peripheral arterial disease (PAD). To investigate the incidence of CIN in patients with CKD and PAD. This retrospective study was approved by the local ethics committee. One hundred and twenty patients with 128 procedures (73 with baseline eGFR in the range of 45–60 mL/min/1.73m 2 , 55 with eGFR < 45 mL/min/1.73m 2 ) were evaluated. All patients received intra-arterially an iodine-based low-osmolar contrast material (CM) after adequate intravenous hydration with isotonic NaCl 0.9% solution. CIN was defined as an increase in serum creatinine of more than 44 μmol/L within 4 days. The influence of patient-related risk factors (age, weight, body mass index, eGFR, serum creatinine, hypertension, diabetes mellitus, coronary heart disease, heart failure) and therapy-related risk factors (amount of CM, nephrotoxic drugs, number of CM applications) on CIN were examined. CIN developed in 0% (0/73) of procedures in patients with PAD and an eGFR in the range of 45–60 mL/min/1.73m 2 and in 10.9% (6/55) of procedures in patients with an eGFR <45 mL/min/1.73m 2 . No risk factor significantly influenced the development of CIN, although baseline serum creatinine (P = 0.06) and baseline eGFR (P = 0.10) showed a considerable dependency. Patients with an eGFR in the range of 45–60 mL/min/1.73m 2 and PAD seem not at risk for CIN after intra-arterial CM application and adequate hydration. Whereas, an eGFR < 45 mL/min/1.73m 2 correlated with a risk of 10.9% for a CIN

  20. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene......-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p MMP activity level by 42% and suppressed the specific MMP-3...

  1. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility.

    Science.gov (United States)

    Nilsson, Eric E; Skinner, Michael K

    2015-01-01

    Environmental insults, such as exposure to toxicants or nutritional abnormalities, can lead to epigenetic changes that are in turn related to increased susceptibility to disease. The focus of this review is on the transgenerational inheritance of such epigenetic abnormalities (epimutations), and how it is that these inherited epigenetic abnormalities can lead to increased disease susceptibility, even in the absence of continued environmental insult. Observations of environmental toxicant specificity and exposure-specific disease susceptibility are discussed. How epimutations are transmitted across generations and how epigenetic changes in the germline are translated into an increased disease susceptibility in the adult is reviewed with regard to disease etiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hypersensitivity pneumonitis in nonhuman primates: studies on the relationship of immunoregulation and disease activity

    International Nuclear Information System (INIS)

    Keller, R.H.; Calvanico, N.J.; Stevens, J.O.

    1982-01-01

    We investigated the relationship of immunoregulation to disease activity in a nonhuman primate model of pigeon breeder's disease. Two Macaca arctoides monkeys developed classical symptoms of hypersensitivity pneumonitis after sensitization and prolonged bronchial challenge, whereas 2 other monkeys remained asymptomatic after in vivo challenge. There were no differences in the percentages of T cells, B cells, monocytes, or FCγ-bearing T cells between symptomatic and asymptomatic animals. Nonetheless, we found a population of concanavalin A-induced, pigeon serum- (PS) induced, and spontaneous T cells that functioned as suppressor cells in autologous in vitro co-cultures in asymptomatic animals that were missing or nonfunctional in symptomatic animals. Monocyte suppressors functioned in both groups. We used low-dose total body irradiation (TBI) to inactivate T suppressor cells. Fifteen radiation units of TBI caused no change in the physical activity, routine chemistries, or blood counts of the 4 animals. After TBI, however, the previously asymptomatic animals developed fever, tachypnea, and signs of pulmonary congestion after in vivo challenge with PS. There was no change in the response to challenge in the symptomatic group. This altered response to in vivo challenge in the previously asymptomatic group persisted for 2 wk after TBI. During this period the difference in in vitro immunoregulatory activity between Con A-induced, PS-induced, and spontaneous T cells in symptomatic and asymptomatic animals disappeared. Monocyte suppressors, however, continued to function in both groups after TBI. these data suggest that the monkey is an appropriate model for studies of human HP and that T cell immunoregulation may be an important element in the pathogenesis and disease activity of HP

  3. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype

    DEFF Research Database (Denmark)

    Claesson, M H; Bregenholt, S; Bonhagen, K

    1999-01-01

    We studied the induction, severity and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2......RBhigh CD4+ T lymphocytes and activated CD4+ T blasts induced early (6-12 wk posttransfer) and severe disease, while small resting and unfractionated CD4+ T cells or CD45RBlow T lymphocytes induced a late-onset disease 12-16 wk posttransfer. SCID mice transplanted with STAT-4-/- CD4+ T cells showed...

  4. CD36 participates in PrP(106-126-induced activation of microglia.

    Directory of Open Access Journals (Sweden)

    Mohammed Kouadir

    Full Text Available Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP fragment 106-126 (PrP(106-126. We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126 in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb. The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126. The results showed that PrP(106-126 treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α, increased iNOS expression and nitric oxide (NO production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126. Together, these results suggest that CD36 is involved in PrP(106-126-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126 and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides

  5. Kefiran suppresses antigen-induced mast cell activation.

    Science.gov (United States)

    Furuno, Tadahide; Nakanishi, Mamoru

    2012-01-01

    Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.

  6. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1-42-Induced Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Sulei Wang

    Full Text Available Synaptic loss induced by beta-amyloid (Aβ plays a critical role in the pathophysiology of Alzheimer's disease (AD, but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori rescued synaptic loss induced by Aβ1-42 in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1-42-induced AD mice.

  7. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis.

    Science.gov (United States)

    Gupta, Swati; Mishra, Kamla Prasad; Singh, Shashi Bala; Ganju, Lilly

    2018-04-01

    Andrographolide, a diterpenoid lactone obtained from plant Andrographis paniculata, is used in South Asian countries to relieve various inflammatory symptoms. To study the effects of this agent, the impact of andrographolide on production of inflammatory mediators were delineated in mouse peritoneal macrophages (PMϕ). Inflammatory mediators like nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin-6 and related molecular mechanisms of andrographolide-mediated inhibition of enzymes/transcription factors were studied. In addition, the in vivo anti-inflammatory activity of andrographolide was evaluated in an adjuvant-induced arthritis rat model. The results indicated that andrographolide clearly inhibited the production of NO and TNF-α in lipopolysaccharide-activated PMϕ in a dose-related manner. Immunoblot analyses revealed that andrographolide suppressed activation of both inducible NO synthase and cyclo-oxygenase-2 by directly targeting nuclear transcription factor (NF)-κB. Complete Freund's Adjuvant-induced paw edema in rats was also significantly inhibited by andrographolide treatment. From the data, we concluded that andrographolide imparted anti-inflammatory effects by suppressing two key inflammatory enzymes and a signaling pathway that mediates expression of variety of inflammatory cytokines/agents in situ. It is plausible that eventually, after further toxicologic characterization, andrographolide might be useful as a drug for the clinical treatment of various inflammatory diseases like rheumatoid arthritis or diseases associated with joint pain.

  8. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  9. Calculation of induced activity in the V-230 reactor

    International Nuclear Information System (INIS)

    Bouhahhane, A.; Farkas, G.

    2013-01-01

    In this paper, we focused on the calculation of the neutron induced activity of nuclear reactor components for decommissioning purposes. The results confirm, that the most important radionuclides in the reactor components dismantling process are 55 Fe (1 st decade), 60 Co (10 - 50 y) and 63 Ni (during the whole process). Another aim of this paper was to refer to the possibility to improve the accuracy of the calculations using continuous energy Monte Carlo methods. (authors)

  10. Macroscopic tunneling, decoherence and noise-induced activation

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Fernando C; Monteoliva, Diana; Villar, Paula I [Departamento de Fisica Juan Jose Giambiagi, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2007-05-15

    We study the effects of the environment at zero temperature on tunneling in an open system described by a static double-well potential. We show that the evolution of the system in an initial Schroedinger cat state, can be summarized in terms of three main physical phenomena, namely decoherence, quantum tunneling and noise-induced activation. Using large-scale numerical simulations, we obtain a detailed picture of the main stages of the evolution and of the relevant dynamical processes.

  11. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    Science.gov (United States)

    Seah, Yu Fen Samantha; EL Farran, Chadi A.; Warrier, Tushar; Xu, Jian; Loh, Yuin-Han

    2015-01-01

    Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases. PMID:26633382

  12. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    Directory of Open Access Journals (Sweden)

    Yu Fen Samantha Seah

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.

  13. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Claudia P. Oliveira

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common liver disease worldwide and it is associated with other medical conditions such as diabetes mellitus, metabolic syndrome, and obesity. The mechanisms of the underlying disease development and progression are not completely established and there is no consensus concerning the pharmacological treatment. In the gold standard treatment for NAFLD weight loss, dietary therapy, and physical activity are included. However, little scientific evidence is available on diet and/or physical activity and NAFLD specifically. Many dietary approaches such as Mediterranean and DASH diet are used for treatment of other cardiometabolic risk factors such as insulin resistance and type-2 diabetes mellitus (T2DM, but on the basis of its components their role in NAFLD has been discussed. In this review, the implications of current dietary and exercise approaches, including Brazilian and other guidelines, are discussed, with a focus on determining the optimal nonpharmacological treatment to prescribe for NAFLD.

  14. Assessment of disease activity in large-vessel vasculitis

    DEFF Research Database (Denmark)

    Aydin, Sibel Z.; Direskeneli, Haner; Merkel, Peter A.

    2017-01-01

    Objective. To arrive at consensus for candidate outcomes for disease activity assessment in largevessel vasculitis (LVV) in clinical trials. Methods.A Delphi survey including 99 items was circulated among international experts for 3 rounds. Results. Fifty-seven items were accepted for both giant ...

  15. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to

  16. Seasonal disease activity and serum vitamin D levels in rheumatoid ...

    African Journals Online (AJOL)

    Background: Vitamin D is a steroid hormone that plays essential roles in calcium and phosphorus metabolism, bone formation and mineralization homeostasis, also has a role in the maintenance of immune-homeostasis. Objective: We aimed to investigate seasonal serum vitamin D levels and seasonal disease activity in ...

  17. Tea and coronary heart disease : protection through estrogenlike activity?

    NARCIS (Netherlands)

    Geleijnse, J.M.; Witteman, J.C.; Launer, L.J.; Lamberts, S.J.; Pols, H.A.

    2000-01-01

    Tea drinking appears to be protective against coronary heart disease in a number of epidemiologic studies. It has been suggested that tea flavonols with antioxidative activity, including quercetin, kaempferol, and myricetin,1 could account for the favorable effect on cardiovascular health. In the

  18. Minimal disease activity for rheumatoid arthritis: a preliminary definition

    NARCIS (Netherlands)

    Wells, George A.; Boers, Maarten; Shea, Beverley; Brooks, Peter M.; Simon, Lee S.; Strand, C. Vibeke; Aletaha, Daniel; Anderson, Jennifer J.; Bombardier, Claire; Dougados, Maxime; Emery, Paul; Felson, David T.; Fransen, Jaap; Furst, Dan E.; Hazes, Johanna M. W.; Johnson, Kent R.; Kirwan, John R.; Landewé, Robert B. M.; Lassere, Marissa N. D.; Michaud, Kaleb; Suarez-Almazor, Maria; Silman, Alan J.; Smolen, Josef S.; van der Heijde, Desiree M. F. M.; van Riel, Piet L. C. M.; Wolfe, Fred; Tugwell, Peter S.

    2005-01-01

    Agreement on response criteria in rheumatoid arthritis (RA) has allowed better standardization and interpretation of clinical trial reports. With recent advances in therapy, the proportion of patients achieving a satisfactory state of minimal disease activity (MDA) is becoming a more important

  19. Minimal disease activity for rheumatoid arthritis: a preliminary definition.

    NARCIS (Netherlands)

    Wells, G.A.; Boers, M.; Shea, B.; Brooks, P.M.; Simon, L.S.; Strand, C.V.; Aletaha, D.; Anderson, J.; Bombardier, C.; Dougados, M.; Emery, P.; Felson, D.T.; Fransen, J.; Furst, D.E.; Hazes, J.M.W.; Johnson, K.; Kirwan, J.; Landewe, R.B.; Lassere, M.N.; Michaud, K.; Suarez-Almazor, M.; Silman, A.J.; Smolen, J.S.; Heijde, D.M.F.M. van der; Riel, P.L.C.M. van; Wolfe, F.; Tugwell, P.S.

    2005-01-01

    Agreement on response criteria in rheumatoid arthritis (RA) has allowed better standardization and interpretation of clinical trial reports. With recent advances in therapy, the proportion of patients achieving a satisfactory state of minimal disease activity (MDA) is becoming a more important

  20. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity.

    Science.gov (United States)

    Ahn, Soo Kyung; Hong, Samin; Park, Yu Mi; Choi, Ja Yong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2012-12-17

    Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (pAgmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  2. The influence of experimentally induced pain on shoulder muscle activity

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.

    2009-01-01

    muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper......-105A degrees) at a speed of approximately 120A degrees/s, controlled by a metronome. During abduction, electromyographic (EMG) activity was recorded by intramuscular wire electrodes inserted in two deeply located shoulder muscles and by surface-electrodes over six superficially located shoulder...... trapezius and the infraspinatus and an increase in activity of lower trapezius and latissimus dorsi muscles. Following subacromial injection a significantly increased muscle activity was seen in the lower trapezius, the serratus anterior and the latissimus dorsi muscles. In conclusion, this study shows...

  3. GRAVES’ DISEASE INDUCED REVERSIBLE SEVERE RIGHT HEART FAILURE

    Directory of Open Access Journals (Sweden)

    Kathyayani

    2015-07-01

    Full Text Available A middle aged man presented with evidence of right - sided heart failure in atrial fibrillation (AF and was found to have severe Tricuspid Regurgitation (TR with pulmonary artery hypertension (PAH, with normal left ventricular function. The common possible seconda ry causes of PAH were ruled out, but during investigation he was found to have elevated thyroid function tests compatible with the diagnosis of Graves’ disease. The treatment of Graves’ disease was started with anti - thyroid drugs and associated with a sign ificant reduction in the pulmonary arterial pressure. This case report is presented to highlight one of the rare and underdiagnosed presentations of Graves’ disease. Thyrotoxicosis can present with profound cardiovascular complications. In recent times, th ere have been few reports of secondary PAH with TR in patients with hyperthyroidism. Previously asymptomatic Graves’ disease having the signs and symptoms of right heart failure is a rare presentation and the association could be easily missed. This case p resentation emphasizes that the diagnosis of thyroid heart disease with heart failure secondary to Graves’ disease should be considered in any patient regardless of age, gender with clinical features of heart failure of unknown etiology and timely initiation of anti - thyroid drugs is necessary to treat these reversible cardiac failures.

  4. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  5. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System.

    Science.gov (United States)

    Wu, Bechien U; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J

    2017-07-01

    Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis.

  6. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Decreased ADAMTS 13 Activity is Associated With Disease Severity and Outcome in Pediatric Severe Sepsis

    Science.gov (United States)

    Lin, Jainn-Jim; Chan, Oi-Wa; Hsiao, Hsiang-Ju; Wang, Yu; Hsia, Shao-Hsuan; Chiu, Cheng-Hsun

    2016-01-01

    Abstract Decreased ADAMTS 13 activity has been reported in severe sepsis and in sepsis-induced disseminated intravascular coagulation. This study aimed to investigate the role of ADAMTS 13 in different pediatric sepsis syndromes and evaluate its relationship with disease severity and outcome. We prospectively collected cases of sepsis treated in a pediatric intensive care unit, between July 2012 and June 2014 in Chang Gung Children's Hospital in Taoyuan, Taiwan. Clinical characteristics and ADAMTS-13 activity were analyzed. All sepsis syndromes had decreased ADAMTS 13 activity on days 1 and 3 of admission compared to healthy controls. Patients with septic shock had significantly decreased ADAMTS 13 activity on days 1 and 3 compared to those with sepsis and severe sepsis. There was a significant negative correlation between ADAMTS 13 activity on day 1 and day 1 PRISM-II, PELOD, P-MOD, and DIC scores. Patients with mortality had significantly decreased ADAMTS 13 activity on day 1 than survivors, but not on day 3. Different pediatric sepsis syndromes have varying degrees of decreased ADAMTS 13 activity. ADAMTS 13 activity is strongly negatively correlated with disease severity of pediatric sepsis syndrome, whereas decreased ADAMTS 13 activity on day 1 is associated with increased risk of mortality. PMID:27100422

  8. Epstein-Barr virus induced hemophagocytic lymphohistiocytosis in X-linked lymphoproliferative disease

    Directory of Open Access Journals (Sweden)

    Senthilkumar Sankararaman

    2014-01-01

    Full Text Available X-linked lymphoproliferative disease (XLP is a rare, often fatal genetic disorder characterized by extreme vulnerability to Epstein-Barr virus (EBV. EBV-induced hemophagocytic lymphohistiocytosis (HLH is a known presentation in XLP. In EBV-induced HLH in XLP, the brain imaging findings in the acute phase include a non specific pattern. In this report, we highlight the magnetic resonance imaging and magnetic resonance spectroscopy findings in a child with EBV induced HLH in XLP.

  9. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  10. Histologic scoring indices for evaluation of disease activity in Crohn's disease.

    Science.gov (United States)

    Novak, Gregor; Parker, Claire E; Pai, Rish K; MacDonald, John K; Feagan, Brian G; Sandborn, William J; D'Haens, Geert; Jairath, Vipul; Khanna, Reena

    2017-07-21

    Histologic assessment of mucosal disease activity has been increasingly used in clinical trials of treatment for Crohn's disease. However, the operating properties of the currently existing histologic scoring indices remain unclear. A systematic review was undertaken to evaluate the development and operating characteristics of available histologic disease activity indices in Crohn's disease. Electronic searches of MEDLINE, EMBASE, PubMed, and the Cochrane Library (CENTRAL) databases from inception to 20 July 2016 were supplemented by manual reviews of bibliographies and abstracts submitted to major gastroenterology meetings (Digestive Disease Week, United European Gastroenterology Week, European Crohn's and Colitis Organisation). Any study design (e.g. randomised controlled trial, cohort study, case series) that evaluated a histologic disease activity index in patients with Crohn's disease was considered for inclusion. Study participants included adult patients (> 16 years), diagnosed with Crohn's disease using conventional clinical, radiographic or endoscopic criteria. Two authors independently reviewed the titles and abstracts of the studies identified from the literature search. The full text of potentially relevant citations were reviewed for inclusion and the study investigators were contacted as needed for clarification. Any disagreements regarding study eligibility were resolved by discussion and consensus with a third author.Two authors independently extracted and recorded data using a standard form. The following data were recorded from each eligible study: number of patients enrolled; number of patients per treatment arm; patient characteristics: age and gender distribution; description of histologic disease activity index utilized; and outcomes such as content validity, construct validity, criterion validity, responsiveness, intra-rater reliability, inter-rater reliability, and feasibility. Sixteen reports of 14 studies describing 14 different numerical

  11. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence

    Directory of Open Access Journals (Sweden)

    Modesto Rojas

    2017-06-01

    Full Text Available Increases in reactive oxygen species (ROS and decreases in nitric oxide (NO have been linked to vascular dysfunction during diabetic retinopathy (DR. Diabetes can reduce NO by increasing ROS and by increasing activity of arginase, which competes with nitric oxide synthase (NOS for their commons substrate l-arginine. Increased ROS and decreased NO can cause premature endothelial cell (EC senescence leading to defective vascular repair. We have previously demonstrated the involvement of NADPH oxidase 2 (NOX2-derived ROS, decreased NO and overactive arginase in DR. Here, we investigated their impact on diabetes-induced EC senescence. Studies using diabetic mice and retinal ECs treated with high glucose or H2O2 showed that increases in ROS formation, elevated arginase expression and activity, and decreased NO formation led to premature EC senescence. NOX2 blockade or arginase inhibition prevented these effects. EC senescence was also increased by inhibition of NOS activity and this was prevented by treatment with a NO donor. These results indicate that diabetes/high glucose-induced activation of arginase and decreases in NO bioavailability accelerate EC senescence. NOX2-generated ROS contribute importantly to this process. Blockade of NOX2 or arginase represents a strategy to prevent diabetes-induced premature EC senescence by preserving NO bioavailability.

  12. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Philip P. Foster

    2011-05-01

    Full Text Available Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak et al., we propose that the effects of exercise occur in two temporo-spatial continua of events. The inward continuum from isocortex (neocortex to entorhinal cortex/hippocampus for amyloidosis and a reciprocal outward continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1 may mediate the exercise-induced response to exercise on BDNF, neurogenesis and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ levels by increased clearance via the choroid plexus. Growth factors

  13. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  14. Disease activity indices in coeliac disease: systematic review and recommendations for clinical trials.

    Science.gov (United States)

    Hindryckx, Pieter; Levesque, Barrett G; Holvoet, Tom; Durand, Serina; Tang, Ceen-Ming; Parker, Claire; Khanna, Reena; Shackelton, Lisa M; D'Haens, Geert; Sandborn, William J; Feagan, Brian G; Lebwohl, Benjamin; Leffler, Daniel A; Jairath, Vipul

    2018-01-01

    Although several pharmacological agents have emerged as potential adjunctive therapies to a gluten-free diet for coeliac disease, there is currently no widely accepted measure of disease activity used in clinical trials. We conducted a systematic review of coeliac disease activity indices to evaluate their operating properties and potential as outcome measures in registration trials. MEDLINE, EMBASE and the Cochrane central library were searched from 1966 to 2015 for eligible studies in adult and/or paediatric patients with coeliac disease that included coeliac disease activity markers in their outcome measures. The operating characteristics of histological indices, patient-reported outcomes (PROs) and endoscopic indices were evaluated for content and construct validity, reliability, responsiveness and feasibility using guidelines proposed by the US Food and Drug Administration (FDA). Of 19 123 citations, 286 studies were eligible, including 24 randomised-controlled trials. Three of five PROs identified met most key evaluative criteria but only the Celiac Disease Symptom Diary (CDSD) and the Celiac Disease Patient-Reported Outcome (CeD PRO) have been approved by the FDA. All histological and endoscopic scores identified lacked content validity. Quantitative morphometric histological analysis had better reliability and responsiveness compared with qualitative scales. Endoscopic indices were infrequently used, and only one index demonstrated responsiveness to effective therapy. Current best evidence suggests that the CDSD and the CeD PRO are appropriate for use in the definition of primary end points in coeliac disease registration trials. Morphometric histology should be included as a key secondary or co-primary end point. Further work is needed to optimise end point configuration to inform efficient drug development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Circulating ACE2 activity correlates with cardiovascular disease development

    Directory of Open Access Journals (Sweden)

    Katalin Úri

    2016-12-01

    Full Text Available It was shown recently that angiotensin-converting enzyme activity is limited by endogenous inhibition in vivo, highlighting the importance of angiotensin II (ACE2 elimination. The potential contribution of the ACE2 to cardiovascular disease progression was addressed. Serum ACE2 activities were measured in different clinical states (healthy, n=45; hypertensive, n=239; heart failure (HF with reduced ejection fraction (HFrEF n=141 and HF with preserved ejection fraction (HFpEF n=47. ACE2 activity was significantly higher in hypertensive patients (24.8±0.8 U/ml than that in healthy volunteers (16.2±0.8 U/ml, p=0.01. ACE2 activity further increased in HFrEF patients (43.9±2.1 U/ml, p=0.001 but not in HFpEF patients (24.6±1.9 U/ml when compared with hypertensive patients. Serum ACE2 activity negatively correlated with left ventricular systolic function in HFrEF, but not in hypertensive, HFpEF or healthy populations. Serum ACE2 activity had a fair diagnostic value to differentiate HFpEF from HFrEF patients in this study. Serum ACE2 activity correlates with cardiovascular disease development: it increases when hypertension develops and further increases when the cardiovascular disease further progresses to systolic dysfunction, suggesting that ACE2 metabolism plays a role in these processes. In contrast, serum ACE2 activity does not change when hypertension progresses to HFpEF, suggesting a different pathomechanism for HFpEF, and proposing a biomarker-based identification of these HF forms.

  16. [Emotional stress-induced Shanghuo syndrome increases disease susceptibility].

    Science.gov (United States)

    Zhu, Si-Rui; Luo, Xiang; Li, Yi-Fang; Hiroshi, Kurihara; He, Rong-Rong

    2018-04-01

    Shanghuo(excessive internal heat) is a special organic state based on the concept of traditional Chinese medicine(TCM), commonly known as the abnormal heating syndrome of body in folks. With the acceleration of modern life rhythm and the increase of the social competition pressure, emotional stress has become an important cause for the spread of Shanghuo symptoms. What's more, Shanghuo can impact the body physiological functions to cause the onset, recurrence and progression of common diseases, harming the health of the body. According to the long-term research findings, the author found that Shanghuo referred to the imbalance of multiple physiological functions, such as nerve, immunity and metabolism, caused by emotional stress. "Shanghuo" is not a disease itself, but it can increase the susceptibility to a variety of diseases. This study reviewed the traditional medicine theory and the modern medical studies, and explored the relevance and correlation mechanisms between the Shanghuo symptoms and disease susceptibility, so as to provide a reference to improve the state of sub-health and prevent or treat modern diseases. Copyright© by the Chinese Pharmaceutical Association.

  17. HTLV-1 induced molecular mimicry in neurological disease.

    Science.gov (United States)

    Lee, S M; Morcos, Y; Jang, H; Stuart, J M; Levin, M C

    2005-01-01

    As a model for molecular mimicry, we study patients infected with human T-lymphotropic virus type 1 (HTLV-1) who develop a neurological disease called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease with important biological similarities to multiple sclerosis (MS) (Khan et al. 2001; Levin et al. 1998, 2002a; Levin and Jacobson 1997). The study of HAM/TSP, a disease associated with a known environmental agent (HTLV-1), allows for the direct comparison of the infecting agent with host antigens. Neurological disease in HAM/TSP patients is associated with immune responses to HTLV-1-tax (a regulatory and immunodominant protein) and human histocompatibility leukocyte antigen (HLA) DRB1*0101 (Bangham 2000; Jacobson et al. 1990; Jeffery et al. 1999; Lal 1996). Recently, we showed that HAM/TSP patients make antibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), a neuron-specific autoantigen (Levin et al. 2002a). Monoclonal antibodies to tax cross-reacted with hnRNP A1, indicating molecular mimicry between the two proteins. Infusion of cross-reactive antibodies with an ex vivo system completely inhibited neuronal firing indicative of their pathogenic nature (Kalume et al. 2004; Levin et al. 2002a). These data demonstrate a clear link between chronic viral infection and autoimmune disease of the central nervous system (CNS) in humans and, we believe, in turn will give insight into the pathogenesis of MS.

  18. Induced Pluripotent Stem Cell Technology and Direct Conversion : New Possibilities to Study and Treat Parkinson's Disease

    NARCIS (Netherlands)

    Roessler, Reinhard; Boddeke, Erik; Copray, Sjef

    Recent developments in in vitro disease modeling and regenerative medicine have placed induced pluripotent stem cells (iPSCs) in the center of attention as a unique source to study Parkinson's disease. After only 5 years of intensive research, human iPSCs can be generated without viral integration

  19. Examination of Susceptibility to Libby Amphibole Asbestos-Induced Injury in Rat Models of Cardiovascular Disease

    Science.gov (United States)

    Although cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects, no studies have been done assessing the influence of the disease on the development of lung injury induced by asbestos exposure. In this study we examined lung ...

  20. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Subclinical atherosclerosis in young patients with rheumatoid arthritis and low disease activity

    Directory of Open Access Journals (Sweden)

    F. Ragni Alunni

    2011-09-01

    Full Text Available Background: There is an increasing body of evidence suggesting that subjects with rheumatoid arthritis (RA are characterized by acceleration of atherosclerotic process of arterial wall. However, all investigations performed so far to evaluate subclinical atherosclerosis in RA included subjects without selection for age and degree of disease activity that may represent confounding factors in such an evaluation. Objectives: To verify signs of accelerated subclinical atherosclerosis in young subject suffering from RA but with low disease activity. Methods: Thirty-two patients with RA and 28 age- and sex-matched control subjects with non-inflammatory rheumatic diseases were enrolled. Inclusion criteria were age less than 60 and low disease activity with score £3.2 according to DAS28, while subjects with traditional risk factors for and/or overt cardiovascular disease were ruled out from the study. Both patients and controls underwent evaluation of carotid and femoral artery intima-media thickness by ultrasounds. Results: Patients had higher intima-media thickness than controls of all the sites evaluated at carodit artery level, whereas there were no differences at the comparison of the superficial and common femoral artery wall. At the univariate analysis, a positive correlation between LDL cholesterol levels and intima-media thickness at the carotid bifurcation was found. Conclusions: Young patients with RA and low disease activity have acceleration of atherosclerosis development as shown by increased intima-media thickness of carotid artery with respect to subjects without inflammatory rheumatic disease. It is conceivable that the organic damage of arterial wall could be the result of persistent endothelial dysfunction induced by chronic inflammation and immune dysregulation which characterize RA.

  2. Induced mutations for disease resistance in wheat and barley

    International Nuclear Information System (INIS)

    Hanis, M.; Hanisova, A.; Knytl, V.; Cerny, J.; Benc, S.

    1977-01-01

    The induction of mutations in cultivars of wheat (Triticum aestivum), barley (Hordeum vulgare), and field beans (Phaseolus vulgaris) has been part of the breeding programme at the Plant Breeding Station at Stupice since 1960. A total of 26 cultivars or selections of winter wheat, 4 cultivars or selections of spring wheat, 2 cultivars of field beans, and 43 selections of spring barley have been treated since 1960. A total of 140 mutant lines of wheat and 37 mutant lines of barley with improved disease resistance of a race-specific type have been obtained. Several mutation programme derived cultivars have been registered in Czechoslovakia (''Diamant'', ''Ametyst'', ''Favorit'', ''Hana'', ''Rapid'', and ''Atlas'' in barley, and ''Alfa'' in field beans), but none of them is a mutation for disease resistance. A series of mutants have been used in crossing programmes. Approaches to improve the efficiency of mutation breeding for disease resistance are suggested. (author)

  3. Physical activity and neuropsychiatric symptoms of Parkinson disease.

    Science.gov (United States)

    Abrantes, Ana M; Friedman, Joseph H; Brown, Richard A; Strong, David R; Desaulniers, Julie; Ing, Eileen; Saritelli, Jennifer; Riebe, Deborah

    2012-09-01

    Neuropsychiatric symptoms of Parkinson disease (PD) such as fatigue, depression, and apathy are common and detract from quality of life. There is little published on the impact of physical activity on the neuropsychiatric symptoms of PD. A convenience sample of 45 patients with PD (mean age = 66.1 years; 33% female) completed questionnaires on physical activity, neuropsychiatric symptoms, and specific exercise preferences. Covarying for age and gender, higher levels of physical activity were associated with significantly less fatigue, as well as a trend for less apathy and depression and greater positive affect. Exercise preferences included moderate intensity (73%), at home (56%), in the morning (73%), scheduled (69%), options for varied activities (73%), and preference for both structured/supervised (50%), and unsupervised/self-paced (50%) programs. Preferred activities included the use of aerobic exercise equipment, resistance training, and yoga. Developing and tailoring exercise programs that incorporate specific preferences may result in more effective interventions for patients with PD.

  4. Repair of experimental plaque-induced periodontal disease in dogs.

    Science.gov (United States)

    Shoukry, M; Ben Ali, L; Abdel Naby, M; Soliman, A

    2007-09-01

    Forty mongrel dogs were used in this study for induction of periodontal disease by placing subgingival silk ligatures affecting maxillary and mandibular premolar teeth during a 12-month period. Experimental premolar teeth received monthly clinical, radiographic, and histometric/pathologic assessments. The results demonstrated significant increases in scores and values of periodontal disease parameters associated with variable degrees of alveolar bone loss. The experimental maxillary premolar teeth exhibited more severe and rapid rates of periodontal disease compared with mandibular premolar teeth. Histometric analysis showed significant reduction in free and attached gingiva of the experimental teeth. Histopathological examination of buccolingual sections from experimental premolar teeth showed the presence of rete pegs within the sulcular epithelium with acanthosis and erosive changes, widening of the periodontal ligament, and alveolar bone resorption. Various methods for periodontal repair were studied in 194 experimental premolar teeth exhibiting different degrees of periodontal disease. The treatment plan comprised non-surgical (teeth scaling, root planing, and oral hygiene) and surgical methods (closed gingival curettage, modified Widman flap, and reconstructive surgery using autogenous bone marrow graft and canine amniotic membrane). The initial non-surgical treatment resulted in a periodontal recovery rate of 37.6% and was found effective for treatment of early periodontal disease based on resolution of gingivitis and reduction of periodontal probing depths. Surgical treatment by closed gingival curettage to eliminate the diseased pocket lining resulted in a recovery rate of 48.8% and proved effective in substantially reducing deep periodontal pockets. Open root planing following flap elevation resulted in a recovery rate of 85.4% and was effective for deep and refractory periodontal pockets. Autogenous bone graft implantation combined with canine amniotic

  5. Chemically induced and light-independent cryptochrome photoreceptor activation.

    Science.gov (United States)

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  6. Carbimazole-induced cholestatic hepatitis in Graves′ disease

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2013-01-01

    Full Text Available Antithyroid medications are one of the treatment options for Graves′ disease. Carbimazole is widely used as the drug of choice, except in pregnancy, where propythiouracil is preferred by many. It is generally well-tolerated. Its side-effects include allergy, upper gastrointestinal upset, a rare occurrence of granulocytosis, and others. Hepatitis is another rare, but serious side-effect. We report a healthy 30-year-old male patient with Graves′ disease, who developed cholestatic jaundice after Carbimazole therapy for four months. He made a full recovery after the drug was discontinued. An idiosyncratic mechanism seemed likely.

  7. Mental health status can reflect disease activity in rheumatoid arthritis.

    Science.gov (United States)

    Sokolovic, Sekib; Dervisevic, Vedina; Fisekovic, Saida

    2014-06-01

    A significant number of patients with rheumatoid arthritis (RA) link the start of illness with psychological trauma or severe stress. Impaired mental health (IMH), defined as depression and anxiety with psychoneuroimmunological factors, can play a significant role in RA. The main objective of this research was to investigate the mutual correlation of IMH and RA activity, estimated by the laboratory and clinical parameters in RA patients. An open clinical prospective study that lasted for 6 months was designed. There were 72 patients included, 58 women and 14 men, aged 34 to 80 years and screened for mental health status. The study population was randomized following the Brief Symptoms Inventory (BSI) scale, comprised of 53 questions with a range from 0 (no symptoms) to 4 (severe). This mental test was done only once during the study. Following the results from the BSI scale, RA patients were divided into mentally stable and mentally unstable patients to investigate the influence of RA activity on mental health. The following laboratory and clinical parameters were analyzed: sex, age, erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), C-reactive protein (CRP), anti-cyclic citrullinated peptide (anti-CCP) antibody, and disease activity score (DAS28). All RA patients did not express extra-articular manifestations or Sjögren's syndrome. The chi-square test, ANOVA, Pearson's coefficient, and IBM Statistics - SPSS v19 were used. From a total of 72 RA patients, there were 44 mentally stable and 28 mentally unstable patients. All patients had either moderate or severe active disease. The only significant correlation of IMH and activity of RA was found in CRP and DAS28, but no significance was observed in ESR, RF, and anti-CCP. The DAS28 showed high disease activity with an average of 5.3 and CRP of 20.9 mg/L in patients with unstable mental health compared to stable mental health patients, where RA was associated with a moderate DAS average value of 4.35 and

  8. Assessment of disease activity in juvenile idiopathic arthritis. The number and the size of joints matter

    DEFF Research Database (Denmark)

    Berntson, Lillemor; Wernroth, Lisa; Fasth, Anders

    2007-01-01

    Variables for assessment of disease activity of juvenile idiopathic arthritis (JIA) were studied, in order to develop a disease activity score for children with JIA.......Variables for assessment of disease activity of juvenile idiopathic arthritis (JIA) were studied, in order to develop a disease activity score for children with JIA....

  9. Disease and drug-induced arrhythmias : the example of obstructive pulmonary disease

    NARCIS (Netherlands)

    Warnier, M.J.

    2014-01-01

    Notwithstanding the clinical importance of cardiac arrhythmias, relevant information about the background risk and the exact underlying mechanisms of cardiac arrhythmias in patients with obstructive pulmonary disease (asthma and chronic obstructive pulmonary disease [COPD]) is still lacking. The

  10. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats

    Directory of Open Access Journals (Sweden)

    Zhou L

    2016-12-01

    Full Text Available Li Zhou, Sha Tan, Yi-long Shan, Yu-ge Wang, Wei Cai, Xue-hong Huang, Xi-yuan Liao, Hai-yan Li, Lei Zhang, Bing-jun Zhang, Zheng-qi Lu Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China Background: Alzheimer’s disease (AD is considered to be a neurodegenerative disorder that is characterized by increased oxidative stress. Medicinal plants, with their antioxidant properties, have been used to cure several human diseases. The aim of the current study was to explore the protective and therapeutic effect of baicalein on AD-induced rats. Materials and methods: Swiss Wistar rats were used in the study. The rats were divided into five groups. Group I: normal control group treated with water; Group II: disease control treated with AlCl3 to induce the mimicking AD for 4 successive weeks (SW; Group III: normal control group treated with baicalein (5 mg/kg for 2 SW followed by combination of baicalein and AlCl3­ for 4 SW; Group IV: normal control group treated with baicalein (10 mg/kg for 2 SW followed by combination of baicalein and AlCl3 for 4 SW; Group V: normal control group treated with rivastigmine (0.3 mg/kg for 2 SW followed by combination of rivastigmine and AlCl3 for 4 SW. Moreover, the therapeutic groups are as follows: Group VI: AD disease control treated with AlCl3 for 4 SW and serving as the therapeutic positive group; Group VII: AD disease control + baicalein (5 mg/kg for 12 SW; Group VIII: AD disease control + baicalein (10 mg/kg for 12 SW; Group IX: AD disease control + rivastigmine (0.3 mg/kg for 12 SW. Behavioral test, T-maze, and rotarod test were also performed before and after the treatment. At the end of the experimental study, all the rats were sacrificed and their brains were removed and divided into two portions. The first portion was homogenated for estimating the level of acetylcholinesterase (AchE and acetylcholine (Ach. Another portion was used

  11. Adult Congenital Heart Disease Patients Experience Similar Symptoms of Disease Activity.

    Science.gov (United States)

    Cedars, Ari M; Stefanescu Schmidt, Ada; Broberg, Craig; Zaidi, Ali; Opotowsky, Alexander; Grewal, Jasmine; Kay, Joseph; Bhatt, Ami B; Novak, Eric; Spertus, John

    2016-03-01

    There is a lack of objective data on the symptoms characterizing disease activity among adults with congenital heart disease (ACHD). The purpose of this study was to elicit the most important symptoms from patients across the spectrum of ACHD and to examine whether reported symptoms were similar across the spectrum of ACHD as a foundation for creating a patient-reported outcome measure(s). We constructed a 39-item survey using input from physicians specializing in ACHD to assess the symptoms patients associate with disease activity. Patients (n=124) prospectively completed this survey, and the results were analyzed based on underlying anatomy and disease complexity. A confirmatory cohort of patients (n=40) was then recruited prospectively to confirm the validity of the initial data. When grouped based on underlying anatomy, significant differences in disease-related symptom rankings were found for only 6 of 39 symptoms. Six symptoms were identified which were of particular significance to patients, regardless of underlying anatomy. Patients with anatomy of great complexity experienced greater overall symptom severity than those with anatomy of low or moderate complexity, attributable exclusively to higher ranking of 5 symptoms. The second patient cohort had symptom experiences similar to those of the initial cohort, differing in only 5 of 39 symptoms. This study identified 6 symptoms relevant to patients across the spectrum of ACHD and remarkable homogeneity of patient experience, suggesting that a single disease-specific patient-reported outcome can be created for quality and outcome assessments. © 2016 American Heart Association, Inc.

  12. Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking.

    Science.gov (United States)

    Medina-Franco, José L; Méndez-Lucio, Oscar; Yoo, Jakyung

    2014-02-21

    Inhibitors of human DNA methyltransferases (DNMT) are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure-activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of 'activity cliffs', e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  13. Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking

    Directory of Open Access Journals (Sweden)

    José L. Medina-Franco

    2014-02-01

    Full Text Available Inhibitors of human DNA methyltransferases (DNMT are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  14. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Fletcher, Paige; Holian, Andrij, E-mail: andrij.holian@umontana.edu

    2017-03-01

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.

  15. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Fletcher, Paige; Holian, Andrij

    2017-01-01

    NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1. - Highlights: • Silica and nanoparticles cause LMP in macrophages in vitro and in vivo. • Phagolysosome acidification is required for particle-induced LMP. • Cathepsin B and L are not required for nanoparticle-induced LMP. • Cathepsin B/L regulate the secretion of HMGB1 with particle exposure.

  16. Graves' disease: diagnostic and therapeutic challenges (multimedia activity).

    Science.gov (United States)

    Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A

    2011-06-01

    Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  18. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  19. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  20. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide.

    Science.gov (United States)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Panda, Koustubh; Acharya, Krishnendu

    2017-06-01

    Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases.

    Science.gov (United States)

    Cameron, Robert B; Beeson, Craig C; Schnellmann, Rick G

    2016-12-08

    Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.

  2. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs

    Directory of Open Access Journals (Sweden)

    Wen-I Lee

    2011-12-01

    Full Text Available Natural human immunity to the mycobacteria group, including Mycobacterium tuberculosis, Bacille Calmette-Guérin (BCG or nontuberculous mycobacteria (NTM, and/or Salmonella species, relies on the functional IL-12/23-IFN-γ integrity of macrophages (monocyte/dendritic cell connecting to T lymphocyte/NK cells. Patients with severe forms of primary immunodeficiency diseases (PIDs have more profound immune defects involving this impaired circuit in patients with severe combined immunodeficiencies (SCID including complete DiGeorge syndrome, X-linked hyper IgM syndrome (HIGM (CD40L mutation, CD40 deficiency, immunodeficiency with or without anhidrotic ectodermal dysplasia (NEMO and IKBA mutations, chronic granulomatous disease (CGD and hyper IgE recurrent infection syndromes (HIES. The patients with severe PIDs have broader diverse infections rather than mycobacterial infections. In contrast, patients with an isolated inborn error of the IL-12/23-IFN-γ pathway are exclusively prone to low-virulence mycobacterial infections and nontyphoid salmonella infections, known as Mendelian susceptibility to the mycobacterial disease (MSMD phenotype. Restricted defective molecules in the circuit, including IFN-γR1, IFN-γR2, IL-12p40, IL-12R-β1, STAT-1, NEMO, IKBA and the recently discovered CYBB responsible for autophagocytic vacuole and proteolysis, and interferon regulatory factor 8 (IRF8 for dendritic cell immunodeficiency, have been identified in around 60% of patients with the MSMD phenotype. Among all of the patients with PIDs referred for investigation since 1985, we have identified four cases with the specific defect (IFNRG1 for three and IL12RB for one, presenting as both BCG-induced diseases and NTM infections, in addition to some patients with SCID, HIGM, CGD and HIES. Furthermore, manifestations in patients with autoantibodies to IFN-γ (autoAbs-IFN-γ, which is categorized as an anticytokine autoantibody syndrome, can resemble the relatively

  3. Drug-induced impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Reiff, J; Jost, W H

    2011-05-01

    Dopamine replacement treatment with excessive or aberrant dopamine receptor stimulation can cause behavioral disturbances in Parkinson's disease, comprising dopamine dysregulation syndrome, punding, and impulse control disorders. Common impulse control disorders are compulsive buying, pathological gambling, binge eating, hypersexuality, and compulsive reckless driving.

  4. Exercise-induced myokines and their role in chronic diseases

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2011-01-01

    Physical inactivity has recently been identified as a major and independent risk factor for the development of dementia and cognitive decline. In addition to the effect of exercise with regard to protection against neurodegenerative diseases, it is well-established that physical inactivity increa...

  5. Bodybuilding-induced Mondor's disease of the chest wall.

    Science.gov (United States)

    Tröbinger, Christian; Wiedermann, Christian J

    2017-01-01

    To describe the association of bodybuilding abdominal exercise with the development of superficial sclerosing thrombophlebitis of the anterolateral thoracoabdominal wall. A single case study. University-affiliated regional community hospital. A 54-year-old man presented with an otherwise unremarkable past medical history 4 weeks after the start of left-sided chest discomfort. He had undergone orthopedic surgery of the right shoulder three months earlier. Two months after surgery, he had re-started bodybuilding with thoracoabdominal training. Soon thereafter, he noted a painful induration at the left side of his trunk. Doppler and duplex sonography revealed complete venous occlusion compatible with sclerosing thrombophlebitis leading to a palpable, subcutaneous, cord-like lesion on the left side of his trunk. Physical examination and routine laboratory findings were normal. The lesion spontaneously resolved over a course of 3 months. Mondor's disease of the subcutaneous veins of the chest wall which has been associated with breast or axillary surgery, malignant and systemic diseases can also appear in subjects performing intense thoracoabdominal exercise training. Although it requires only symptomatic therapy, physicians and therapists must be aware of the existence of this disease because, although benign and self-limiting, malignant and systemic diseases need to be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Can earth's magnetic micropulsations induce brain activities modifications?

    International Nuclear Information System (INIS)

    Assis, Altair Souza de

    2008-01-01

    Full text: We present in this paper preliminary study on which level earth's magnetic micro pulsations might interact with human brain activities. Magnetic micro pulsations are magnetospheric plasma wave Eigenmodes that are generated at the earth's magnetosphere and, via magnetospheric-ionospheric coupling induce ionospheric currents, and this ionospheric current pattern creates surface geomagnetic perturbations, which induce earth's surface electrical currents, and they are easily detected by earth's based magnetometers. These Eigenmodes are basically of Alfven type, and can be generated, for instance, by magnetic storms, situation where they are more intense and, in principle, might be felt by a more sensible human brain. Here, we also show how the modes are generated and present theirs basic physical properties. Finally, we compare the magnetic field level at the brain with the micro pulsation magnetic intensity. (author)

  7. Occupational allergic multiorgan disease induced by wheat flour

    OpenAIRE

    Gómez Torrijos, Elisa; Rodríguez Sanchez, Joaquín; Diaz Perales, Araceli; García, R.; Feo-Brito, F.; García, C.; Pineda, Fernando; Quirce, Santiago

    2015-01-01

    Bakers are repeatedly exposed to wheat flour (WF) and may develop sensitization and occupational rhinoconjunctivitis and/or asthma to WF allergens.1 Several wheat proteins have been identified as causative allergens of occupational respiratory allergy in bakery workers.1 Testing of IgE reactivity in patients with different clinical profiles of wheat allergy (food allergy, wheat-dependent exercise-induced anaphylaxis, and baker's asthma) to salt-soluble and salt-insoluble protein fractions fro...

  8. Sequential activation of proteases in radiation induced apoptosis

    International Nuclear Information System (INIS)

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  9. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov

    2016-01-01

    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  10. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2002-11-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.

  11. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  12. Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

    Science.gov (United States)

    Chin, Cecilia L.; Manzel, Lori J.; Lehman, Erin E.; Humlicek, Alicia L.; Shi, Lei; Starner, Timothy D.; Denning, Gerene M.; Murphy, Timothy F.; Sethi, Sanjay; Look, Dwight C.

    2005-01-01

    Rationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD. Methods: Exacerbation strains of H. influenzae were isolated from patients during exacerbation of clinical symptoms with subsequent development of a homologous serum antibody response and were compared with colonization strains that were not associated with symptom worsening or an antibody response. Bacterial strains were compared using an in vivo mouse model of airway infection and in vitro cell culture model of bacterial adherence and defense gene and signaling pathway activation in primary human airway epithelial cells. Results: H. influenzae associated with exacerbations caused more airway neutrophil recruitment compared with colonization strains in the mouse model of airway bacterial infection. Furthermore, exacerbation strains adhered to epithelial cells in significantly higher numbers and induced more interleukin-8 release after interaction with airway epithelial cells. This effect was likely mediated by increased activation of the nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways. Conclusions: The results indicate that H. influenzae strains isolated from patients during COPD exacerbations often induce more airway inflammation and likely have differences in virulence compared with colonizing strains. These findings support the concept that bacteria infecting the airway during COPD exacerbations mediate increased airway inflammation and contribute to decreased airway function. PMID:15805181

  13. Induced resistance by cresotic acid (3-hydroxy-4-methyl methylbenzoic acid) against wilt disease of melon and cotton

    International Nuclear Information System (INIS)

    Dong, H.; Li, Z.; Zhang, D.; Li, W.; Tang, W.

    2004-01-01

    Cresotic acid (3-hydroxy-4-methylbenzoic acid) was proved be active in controlling wilt diseases of melon and cotton plants grown in the house. Soil drench with 200-1000 ppm cresotic acid induced 62-77 %, 69-79 % and 50-60 % protection against Fusarium oxysporum f.sp melonis (FOM) in melon, Fusarium oxysporum f.sp vasinfectum (FOV) and Verticillium dahliae in cotton, respectively. Since no inhibitory effect of cresotic acid on mycelial growth of these three fungual pathogens was observed in vitro, it is suggested that control of these wilt diseases with cresotic acid resulted from induced resistance. Cresotic acid induced resistance in melon plants not only against race 0, race 1, race 2 and race 1,2, but also against a mixture of these four races of FOM, suggesting a non-race- specific resistance. Level of induced resistance by cresotic acid against FOM depended on inoculum pressure applied to melon plants. At 25 day after inoculation with FOM, percentage protection induced by cresotic acid under low inoculum pressure retained a level of 51 %, while under high inoculum pressure percentage protection decreased to only 10 %. High concentrations of cresotic acid significantly reduced plant growth. Reduction in fresh weight of melon (36-51%) and cotton (42-71%) was obtained with 500-1000 ppm cresotic acid, while only less than 8% reduction occurred with 100-200 ppm. (author)

  14. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Hino, Atsuko; Ohta, Shigeru

    2008-01-01

    AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release

  16. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization.

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    Full Text Available Accumulation and deposition of β-amyloid protein (Aβ are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients.

  17. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki, PhD

    2016-10-01

    Full Text Available Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 106/g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 106/g SD50 did not exist the infectivity.

  18. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients.

    Science.gov (United States)

    Takatsuki, Hanae; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Murayama, Shigeo; Atarashi, Ryuichiro; Nishida, Noriyuki; Satoh, Katsuya

    2016-10-01

    Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 10 6 /g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 10 6 /g SD50 did not exist the infectivity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  20. Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2016-12-01

    Full Text Available Early detection is critical in prevention and treatment of kidney disease. However currently clinical laboratory and histopathological tests do not provide region-specific and accurate biomarkers for early detection of kidney disease. The present study was conducted to identify sensitive biomarkers for early detection and progression of tubulo-interstitial nephropathy in aristolochic acid I-induced rats at weeks 4, 8 and 12. Biomarkers were validated using aristolochic acid nephropathy (AAN rats at week 24, adenine-induced chronic kidney disease (CKD rats and CKD patients. Compared with control rats, AAN rats showed anemia, increased serum urea and creatinine, progressive renal interstitial fibrosis, activation of nuclear factor-kappa B, and up-regulation of pro-inflammatory, pro-oxidant, and pro-fibrotic proteins at weeks 8 and 12. However, no significant difference was found at week 4. Metabolomics identified 12-ketodeoxycholic acid, taurochenodesoxycholic acid, LPC(15:0 and docosahexaenoic acid as biomarkers for early detection of tubulo-interstitial nephropathy. With prolonging aristolochic acid I exposure, LPE(20:2, cholic acid, chenodeoxycholic acid and LPC(17:0 were identified as biomarkers for progression from early to advanced AAN and lysoPE(22:5, indoxyl sulfate, uric acid and creatinine as biomarkers of advanced AAN. These biomarkers were reversed by treatment of irbesartan and ergone in AAN rats at week 24 and adenine-induced CKD rats. In addition, these biomarkers were also reversed by irbesartan treatment in CKD patients.

  1. Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kassai

    2014-06-01

    Full Text Available Mammalian target of rapamycin (mTOR has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC, neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.

  2. Mobile phone radiation as an inducer of human disease - a hypothesis

    International Nuclear Information System (INIS)

    French, P.; Penny, R.

    2001-01-01

    There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/ or resistance to anti-cancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer as well as other diseases of protein unfolding, and thus provides an important focus for future experimentation. Copyright (2001) Australasian Radiation Protection Society Inc

  3. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat.

    Science.gov (United States)

    Yang, Jiaqing; Song, Shilei; Li, Jian; Liang, Tao

    2014-06-01

    Clinically, Parkinson's disease (PD)-related neuronal lesions commonly occur. The purpose of this study is to investigate potential therapeutic effect of curcumin against hippocampal damage of 6-hydroxydopamine (6-OHDA)-PD rat model. These results showed that curcumin significantly increased the body weight of 6-OHDA-impaired rats (Pcurcumin-treated PD rats were effectively ameliorated as shown in open field test (Pcurcumin increased the contents of monoaminergic neurotransmitters (PCurcumin effectively alleviated the 6-OHDA-induced hippocampal damage as observed in hematoxylin-eosin (H&E) staining. Furthermore, curcumin obviously up-regulated hippocampal brain derived neurotrophic factor (BDNF), TrkB, phosphatidylinositide 3-kinases (PI3K) protein expressions, respectively as shown in Western blot analysis. These findings demonstrated that curcumin mediated the neuroprotection against 6-OHDA-induced hippocampus neurons in rats, which the underlying mechanism is involved in activating BDNF/TrkB-dependent pathway for promoting neural regeneration of hippocampal tissue. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Mice with cancer-induced bone pain show a marked decline in day/night activity.

    Science.gov (United States)

    Majuta, Lisa A; Guedon, Jean-Marc G; Mitchell, Stefanie A T; Kuskowski, Michael A; Mantyh, Patrick W

    2017-09-01

    Cancer-induced bone pain (CIBP) is the most common type of pain with cancer. In humans, this pain can be difficult to control and highly disabling. A major problem with CIBP in humans is that it increases on weight-bearing and/or movement of a tumor-bearing bone limiting the activity and functional status of the patient. Currently, there is less data concerning whether similar negative changes in activity occur in rodent models of CIBP. To determine whether there are marked changes in activity in a rodent model of CIBP and compare this to changes in skin hypersensitivity. Osteosarcoma cells were injected and confined to 1 femur of the adult male mouse. Every 7 days, spontaneous horizontal and vertical activities were assessed over a 20-hour day and night period using automated activity boxes. Mechanical hypersensitivity of the hind paw skin was assessed using von Frey testing. As the tumor cells grew within the femur, there was a significant decline in horizontal and vertical activity during the times of the day/night when the mice are normally most active. Mice also developed significant hypersensitivity in the skin of the hind paw in the tumor-bearing limb. Even when the tumor is confined to a single load-bearing bone, CIBP drives a significant loss of activity, which increases with disease progression. Understanding the mechanisms that drive this reduction in activity may allow the development of therapies that allow CIBP patients to better maintain their activity and functional status.

  5. CD4 T cell activation and disease activity at onset of multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Langkilde, Annika Reynberg; Fenst, C

    2004-01-01

    We studied CD4 T cell activation in patients with clinically isolated syndromes (CIS) suggesting an initial attack of multiple sclerosis. The percentage of blood CD26+ CD4 T cells was increased in these patients, and correlated with magnetic resonance imaging disease activity and clinical disease...... severity. In contrast, the percentage of CD25+ CD4 T cells in cerebrospinal fluid correlated negatively with the cerebrospinal fluid concentration of myelin basic protein and the presence of IgG oligoclonal bands. These results suggest that distinct systemic and intrathecal T cell activation states...

  6. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G.

    2016-01-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. PMID:27178527

  7. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.

    Science.gov (United States)

    Becattini, Simone; Taur, Ying; Pamer, Eric G

    2016-06-01

    The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Physical Activity and Risk of Cardiovascular Disease Among Older Adults

    Directory of Open Access Journals (Sweden)

    Sho-Jen Cheng

    2013-09-01

    Full Text Available Cardiovascular disease (CVD represents a leading cause of mortality and morbidity especially among the elder people, and therefore the need of effective preventive strategies is imperative. Despite limited data among the elderly people, the majority of published studies have demonstrated that physically active elderly people have lower rates of CVD. In this article, we provide an overview of the epidemiology studies that investigate this association and analyze the relevant underlying biological mechanisms. We also discuss the types and amounts of physical activity recommended for the primary prevention of CVD in older adults.

  9. MR imaging in adults with Gaucher disease type I: evulation of marrow involvement and disease activity

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, G. (Dept. of Radiology, Mount Sinai Medical Center, City Univ. of New York, NY (United States)); Shaprio, R.S. (Dept. of Radiology, Mount Sinai Medical Center, City Univ. of New York, NY (United States)); Abdelwahab, I.F. (Dept. of Radiology, Mount Sinai Medical Center, City Univ. of New York, NY (United States)); Grabowski, G. (Dept. of Pediatrics, Mount Sinai Medical Center, City Univ. of New York, NY (United States))

    1993-05-01

    An investigation was conducted to determine the usefulness of magnetic resonance imaging (MRI) in the evaluation of bone marrow involvement in patients with Gaucher disease type I. T1- and T2-weighted images were obtained of the lower extremities of 29 adult patients. Patients were classified into one of three groups based on marrow signal patterns on T1- and T2-weighted images as well as change in signal intensity from T1- to T2-weighted images. An increase in signal intensity from T1- to T2-weighted images was the criterion for an 'active process' within the bone marrow. Classification of the 29 patients produced the following results: Group A: Normal, 4 patients; group B: Marrow infiltration, 16 patients; group C: Marrow infiltration plus active marrow process, 9 patients. Correlation with clinical findings revealed that all nine patients with evidence of an active marrow process on MRI (group C) had acute bone pain. Conversely, only one of the remaining 20 patients (groups A and B) had bone pain. There was no correlation between disease activity and findings on conventional radiographs. We conclude the MRI provides an excellent noninvasive assessment of the extent and activity of marrow involvement in type I Gaucher disease. (orig.)

  10. MR imaging in adults with Gaucher disease type I: evulation of marrow involvement and disease activity

    International Nuclear Information System (INIS)

    Hermann, G.; Shaprio, R.S.; Abdelwahab, I.F.; Grabowski, G.

    1993-01-01

    An investigation was conducted to determine the usefulness of magnetic resonance imaging (MRI) in the evaluation of bone marrow involvement in patients with Gaucher disease type I. T1- and T2-weighted images were obtained of the lower extremities of 29 adult patients. Patients were classified into one of three groups based on marrow signal patterns on T1- and T2-weighted images as well as change in signal intensity from T1- to T2-weighted images. An increase in signal intensity from T1- to T2-weighted images was the criterion for an 'active process' within the bone marrow. Classification of the 29 patients produced the following results: Group A: Normal, 4 patients; group B: Marrow infiltration, 16 patients; group C: Marrow infiltration plus active marrow process, 9 patients. Correlation with clinical findings revealed that all nine patients with evidence of an active marrow process on MRI (group C) had acute bone pain. Conversely, only one of the remaining 20 patients (groups A and B) had bone pain. There was no correlation between disease activity and findings on conventional radiographs. We conclude the MRI provides an excellent noninvasive assessment of the extent and activity of marrow involvement in type I Gaucher disease. (orig.)

  11. Hemolytic disease of the newborn- anti c antibody induced hemolysis.

    Science.gov (United States)

    Murki, Srinivas; Kandraju, Hemasree; Devi, Surekha A

    2012-02-01

    Hemolytic disease in the newborn, as a cause of early jaundice, is not uncommon. This is mostly due to Rh (D), ABO incompatibility and rarely due to other minor blood group incompatibility. The authors report two cases of Rh anti c isoimmunization presenting as significant early neonatal jaundice within the 20 h of life. Both the babies were treated with intensive phototherapy. One baby underwent exchange transfusion and the other required packed cell transfusion for anemia.

  12. Subdural Hematoma in Grave’s Disease Induced Thrombocytopenia.

    OpenAIRE

    Kumar, S; Diwan, S; Chandek, S; Nitey, PO; Kakani, A

    2013-01-01

    Subdural hematoma (SDH) usually occurs secondary to trauma, in bleeding disorders it may occur spontaneously. It is a rare complication of immune thrombocytopenia. Here we report a case of 45 years female presenting with presenting with complaints of headache, palpitation and menorrhagia and later diagnosed to be a case of Grave's disease with thrombocytopenia with sub dural hematoma. No such case reports are available in literature.

  13. Subdural Hematoma in Grave’s Disease Induced Thrombocytopenia.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2013-01-01

    Full Text Available Subdural hematoma (SDH usually occurs secondary to trauma, in bleeding disorders it may occur spontaneously. It is a rare complication of immune thrombocytopenia. Here we report a case of 45 years female presenting with presenting with complaints of headache, palpitation and menorrhagia and later diagnosed to be a case of Grave's disease with thrombocytopenia with sub dural hematoma. No such case reports are available in literature.

  14. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available The potential role of the human immunodeficiency virus-1 (HIV-1 accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3, thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT-1, STAT-2 and STAT-3 through the production of proinflammatory factors.We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

  15. Participation in novelty-seeking leisure activities and Alzheimer's disease.

    Science.gov (United States)

    Fritsch, Thomas; Smyth, Kathleen A; Debanne, Sara M; Petot, Grace J; Friedland, Robert P

    2005-09-01

    The objective was to study the associations between participation in different types of mentally stimulating leisure activities and status as Alzheimer's disease (AD) case or normal control. Research suggests that participation in leisure activities, especially mentally stimulating activities, is associated with a lower risk for AD. However, no study has yet evaluated associations between AD and different types of mental leisure activities, especially those involving "novelty seeking." The authors used a case-control design to compare participation in activities across the life span in persons with AD and normal controls. Cases (n = 264) were recruited from clinical settings and from the community. Controls were drawn from 2 populations. Control group A members (n = 364) were the friends or neighbors of the cases or members of the same organizations to which the cases belonged. Control group B members (n = 181) were randomly drawn from the community. The 2 control groups did not differ in their responses to most activity questions, so they were combined. Factor analysis of activity questions identified 3 activity factors: (1) novelty seeking; (2) exchange of ideas; and (3) social. Logistic regression analysis indicated that, adjusting for control variables, greater participation in novelty-seeking and exchange-of-ideas activities was significantly associated with decreased odds of AD. The odds of AD were lower among those who more often participated in activities involving exchange of ideas and were lower yet for those who more frequently participated in novelty-seeking activities. We conclude that participation in a variety of mental activities across the life span may lower one's chances of developing AD.

  16. Compensation for thermally induced birefringence in polycrystalline ceramic active elements

    International Nuclear Information System (INIS)

    Kagan, M A; Khazanov, E A

    2003-01-01

    Polycrystalline ceramics differ significantly from single crystals in that the crystallographic axes (and hence of the axes of thermally induced birefringence) are oriented randomly in each granule of the ceramic. The quaternion formalism is employed to calculate the depolarisation in the ceramics and the efficiency of its compensation. The obtained analytic expressions are in good agreement with the numerical relations. It is shown that the larger the ratio of the sample length to the granule size, the closer the properties of the ceramics to those of a single crystal with the [111] orientation (in particular, the uncompensated depolarisation is inversely proportional to this ratio). (active media)

  17. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  18. Mechanisms of pollution-induced airway disease: in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Peden, D.B. [Univ. of North Carolina School of Medicine, Center for Environmental Medicine and Lung Biology, North Carolina (United States)

    1997-12-31

    Several studies have investigated the effects of ozone, sulphur dioxide (SO{sub 2}), and nitrogen dioxide (NO{sub 2}) on lung function in normal and asthmatic subjects. Decreased lung function has been observed with ozone levels as low as 0.15 ppm - this effect is concentration dependent and is exacerbated by exercise. A number of lines of evidence suggest that the effect on lung function is mediated, at lest in part, by neural mechanisms. In both normals and asthmatics, ozone has been shown to induce neutrophilic inflammation, with increased levels of several inflammatory mediators, including prostaglandin E{sub 2}. However, in normal subjects, none of the markers of inflammation correlate with changes in lung function. The lung function changes in asthmatics may be associated with inflammatory effects; alternatively, ozone may prime the airways for an increased response to subsequently inhaled allergen. Indeed, an influx of both polymorphonucleocytes and eosinophils has been observed in asthmatic patients after ozone exposure. It has been suggested that the effect of ozone on classic allergen-induced bronchoconstriction may be more significant than any direct effect of this pollutant in asthmatics. SO{sub 2} does not appear to affect lung function in normal subjects, but may induce bronchoconstriction in asthmatics. Nasal breathing, which is often impaired in asthmatics, reduces the pulmonary effects of SO{sub 2}, since this water-soluble gas is absorbed by the nasal mucosa. NO{sub 2} may also influence lung function in asthmatics, but further research is warranted. SO{sub 2} and NO{sub 2} alone do not seem to have a priming effect in asthmatics, but a combination of these two gases has resulted in a heightened sensitivity to subsequently inhaled allergen. (au)

  19. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  20. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  1. Characterization of inducible models of Tay-Sachs and related disease.

    Science.gov (United States)

    Sargeant, Timothy J; Drage, Deborah J; Wang, Susan; Apostolakis, Apostolos A; Cox, Timothy M; Cachón-González, M Begoña

    2012-09-01

    Tay-Sachs and Sandhoff diseases are lethal inborn errors of acid β-N-acetylhexosaminidase activity, characterized by lysosomal storage of GM2 ganglioside and related glycoconjugates in the nervous system. The molecular events that lead to irreversible neuronal injury accompanied by gliosis are unknown; but gene transfer, when undertaken before neurological signs are manifest, effectively rescues the acute neurodegenerative illness in Hexb-/- (Sandhoff) mice that lack β-hexosaminidases A and B. To define determinants of therapeutic efficacy and establish a dynamic experimental platform to systematically investigate cellular pathogenesis of GM2 gangliosidosis, we generated two inducible experimental models. Reversible transgenic expression of β-hexosaminidase directed by two promoters, mouse Hexb and human Synapsin 1 promoters, permitted progression of GM2 gangliosidosis in Sandhoff mice to be modified at pre-defined ages. A single auto-regulatory tetracycline-sensitive expression cassette controlled expression of transgenic Hexb in the brain of Hexb-/- mice and provided long-term rescue from the acute neuronopathic disorder, as well as the accompanying pathological storage of glycoconjugates and gliosis in most parts of the brain. Ultimately, late-onset brainstem and ventral spinal cord pathology occurred and was associated with increased tone in the limbs. Silencing transgenic Hexb expression in five-week-old mice induced stereotypic signs and progression of Sandhoff disease, including tremor, bradykinesia, and hind-limb paralysis. As in germline Hexb-/- mice, these neurodegenerative manifestations advanced rapidly, indicating that the pathogenesis and progression of GM2 gangliosidosis is not influenced by developmental events in the maturing nervous system.

  2. Characterization of inducible models of Tay-Sachs and related disease.

    Directory of Open Access Journals (Sweden)

    Timothy J Sargeant

    2012-09-01

    Full Text Available Tay-Sachs and Sandhoff diseases are lethal inborn errors of acid β-N-acetylhexosaminidase activity, characterized by lysosomal storage of GM2 ganglioside and related glycoconjugates in the nervous system. The molecular events that lead to irreversible neuronal injury accompanied by gliosis are unknown; but gene transfer, when undertaken before neurological signs are manifest, effectively rescues the acute neurodegenerative illness in Hexb-/- (Sandhoff mice that lack β-hexosaminidases A and B. To define determinants of therapeutic efficacy and establish a dynamic experimental platform to systematically investigate cellular pathogenesis of GM2 gangliosidosis, we generated two inducible experimental models. Reversible transgenic expression of β-hexosaminidase directed by two promoters, mouse Hexb and human Synapsin 1 promoters, permitted progression of GM2 gangliosidosis in Sandhoff mice to be modified at pre-defined ages. A single auto-regulatory tetracycline-sensitive expression cassette controlled expression of transgenic Hexb in the brain of Hexb-/- mice and provided long-term rescue from the acute neuronopathic disorder, as well as the accompanying pathological storage of glycoconjugates and gliosis in most parts of the brain. Ultimately, late-onset brainstem and ventral spinal cord pathology occurred and was associated with increased tone in the limbs. Silencing transgenic Hexb expression in five-week-old mice induced stereotypic signs and progression of Sandhoff disease, including tremor, bradykinesia, and hind-limb paralysis. As in germline Hexb-/- mice, these neurodegenerative manifestations advanced rapidly, indicating that the pathogenesis and progression of GM2 gangliosidosis is not influenced by developmental events in the maturing nervous system.

  3. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    Science.gov (United States)

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  4. [Physical activity in basic and primary prevention of cardiovascular disease].

    Science.gov (United States)

    Sobieszczańska, Małgorzata; Kałka, Dariusz; Pilecki, Witold; Adamus, Jerzy

    2009-06-01

    On account of the frequency of appearing and character of atherosclerosis cardiac vascular disease, one of the most crucial elements of effective fight against it is preparation of complex preventive programs including as vast number of population as possible. Consequently, Benjamin and Smitch suggested attaching the notion of basic prevention to the standard division into primary and secondary one. The basic prevention, carrying out in the general population, should concern genetic predisposition, psychosocial factors, keeping up proper body weight, healthy eating and physical activity. Especially high hopes are connected with high efficiency, simplicity and low money-consumption of preventive activities associated with physical activity modification, which has a crucial influence on reducing negative impact of atherosclerosis hazard. The results of numerous scientific research, carried out in many countries and on various, large groups, proved undoubtedly that at the healthy adult people of both sex the systematic physical activity of moderate intensification plays an essential part in preventing CVD and decreasing the death risk because of that reason as well. Moreover, systematic physical exercises show many other health-oriented actions, thanks to which they have an influence on decreasing premature and total death rate. The risk of incidence of civilization-related diseases such as diabetes type II, hypertension, obesity, osteoporosis, tumors (of large intestine, breast, prostatic gland) and depression has decreased significantly. Unequivocally positive influence has been proved at many observations dedicated to health recreational physical activity and physical activity connected with professional work based on aerobe effort. The positive effects have been also observed at children population and senior population which is more and more numerous and the most at risk. The beneficial action of physical activity is connected with direct effect on organism

  5. Idelalisib-induced colitis and skin eruption mimicking graft-versus-host disease.

    Science.gov (United States)

    Hammami, Muhammad Bader; Al-Taee, Ahmad; Meeks, Marshall; Fesler, Mark; Hurley, M Yadira; Cao, Dengfeng; Lai, Jin-Ping

    2017-04-01

    Idelalisib is a selective inhibitor of the delta isoform of phosphatidylinositol 3-kinase which was approved by the United States Federal Drug Administration in 2014 for the treatment of relapsed chronic lymphocytic leukemia and indolent non-Hodgkin lymphoma. Drug-induced injury of the gastrointestinal tract is a relatively frequent but usually under-recognized disease entity. We report the case of a 56-year-old male with a history of relapsed follicular lymphoma status post allogenic bone marrow transplant who developed severe diarrhea with a skin eruption mimicking graft-versus-host disease (GVHD) 6 months after starting idelalisib. He underwent a colonoscopy demonstrating a grossly normal-appearing colon and terminal ileum. Biopsies taken during the procedure revealed mild active ileitis, colitis, and proctitis with frequent epithelial apoptosis, and focal intra-epithelial lymphocytosis. Skin biopsies revealed sub-acute spongiotic dermatitis suggestive of either contact dermatitis or an eczematous drug reaction. Symptoms were attributed to idelalisib given their resolution with withdrawal of the drug in conjunction with the skin and colonic biopsies. High clinical suspicion and awareness of the histological features of idelalisib-associated colitis is important to distinguish it from potential mimickers such as GVHD and infectious colitis.

  6. Carotid body (Thermoreceptors, sympathetic neural activation, and cardiometabolic disease

    Directory of Open Access Journals (Sweden)

    Rodrigo Iturriaga

    Full Text Available The carotid body (CB is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.

  7. Explanation of diagnostic criteria for radiation-induced nervous system disease

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai

    2012-01-01

    National occupational health standard-Diagnostic Criteria for Radiation-Induced Nervous System Disease has been issued and implemented by the Ministry of health. This standard contained three independent criteria of the brain, spinal cord and peripheral nerve injury. These three kinds of disease often go together in clinic,therefore,the three diagnostic criteria were merged into radioactive nervous system disease diagnostic criteria for entirety and maneuverability of the standard. This standard was formulated based on collection of the clinical practice experience, extensive research of relevant literature and foreign relevant publications. It is mainly applied to diagnosis and treatment of occupational radiation-induced nervous system diseases, and to nervous system diseases caused by medical radiation exposure as well. In order to properly implement this standard, also to correctly deal with radioactive nervous system injury, the main contents of this standard including dose threshold, clinical manifestation, indexing standard and treatment principle were interpreted in this article. (authors)

  8. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  9. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  10. Alcoholic liver disease patients' perspective of a coping and physical activity-oriented rehabilitation intervention after hepatic encephalopathy.

    Science.gov (United States)

    Mikkelsen, Maria Rudkjaer; Hendriksen, Carsten; Schiødt, Frank Vinholt; Rydahl-Hansen, Susan

    2016-09-01

    To identify and describe the impact of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients after hepatic encephalopathy in terms of their interaction with professionals and relatives. Patients who have experienced alcohol-induced hepatic encephalopathy have reduced quality of life, multiple complications, and social problems, and rehabilitation opportunities for these patients are limited. A grounded theory study and an evaluation study of a controlled intervention study. Semi-structured interviews were conducted with 10 alcoholic liver disease patients who were diagnosed with hepatic encephalopathy and participated in a coping and physical activity-oriented rehabilitation intervention. Richard S. Lazarus's theory of stress and coping inspired the interview guide. The significance of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients' ability to cope with problems after surviving alcohol-induced hepatic encephalopathy in terms of their interaction with professionals and relatives was characterised by the core category 'regain control over the diseased body'. This is subdivided into three separate categories: 'the experience of being physically strong', 'togetherness' and 'self-control', and they impact each other and are mutually interdependent. Alcoholic liver disease patients described the strength of the rehabilitation as regaining control over the diseased body. Professionals and relatives of patients with alcoholic liver disease may need to focus on strengthening and preserving patients' control of their diseased body by facilitating the experience of togetherness, self-control and physical strength when interacting with and supporting patients with alcoholic liver disease. A coping and physical activity-oriented rehabilitation intervention may help alcoholic liver disease patients to regain control over their diseased body and give patients the experience

  11. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

    DEFF Research Database (Denmark)

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie

    2016-01-01

    The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells...... chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends...

  12. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Directory of Open Access Journals (Sweden)

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  13. Biomarkers of disease activity in vitiligo: A systematic review.

    Science.gov (United States)

    Speeckaert, R; Speeckaert, M; De Schepper, S; van Geel, N

    2017-09-01

    The pathophysiology of vitiligo is complex although recent research has discovered several markers which are linked to vitiligo and associated with disease activity. Besides providing insights into the driving mechanisms of vitiligo, these findings could reveal potential biomarkers. Activity markers can be used to monitor disease activity in clinical trials and may also be useful in daily practice. The aim of this systematic review was to document which factors have been associated with vitiligo activity in skin and blood. A second goal was to determine how well these factors are validated in terms of sensitivity and specificity as biomarkers to determine vitiligo activity. Both in skin (n=43) as in blood (n=66) an adequate number of studies fulfilled the predefined inclusion criteria. These studies used diverse methods and investigated a broad range of plausible biomarkers. Unfortunately, sensitivity and specificity analyses were scarce. In skin, simple histopathology with or without supplemental CD4 and CD8 stainings can still be considered as the gold standard, although more recently chemokine (C-X-C motif) ligand (CXCL) 9 and NLRP1 have demonstrated a good and possibly even better association with progressive disease. Regarding circulating biomarkers, cytokines (IL-1β, IL-17, IFN-γ, TGF-β), autoantibodies, oxidative stress markers, immune cells (Tregs), soluble CDs (sCD25, sCD27) and chemokines (CXCL9, CXCL10) are still competing. However, the two latter may be preferable as both chemokines and soluble CDs are easy to measure and the available studies display promising results. A large multicenter study could make more definitive statements regarding their sensitivity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  15. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    Science.gov (United States)

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  16. Induced mutations for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1976-01-01

    Wheat disease in Egypt is reviewed and results of mutation breeding by γ irradiation for disease resistance in wheat and field beans are described. Wheat mutants of the variety Giza 155 resistant to leaf rust, Giza 156 resistant to both leaf and yellow rusts, and Tosson with a reasonable level of combined resistance to the three rusts in addition to mutants of the tetraploid variety Dakar 52 with a good level of stem and yellow rust resistance are required. Their seeds were subjected to 10, 15 and 20 krad. Of 3000-3700 M 2 plants from each variety and dosage, 22 plants from both Giza 155 and Giza 156, although susceptible, showed a lower level of disease development. In 1975, M 3 families of these selected plants and 6000 plants from bulked material were grown from each variety and dosage at two locations. Simultaneously, an additional population consisting of 3000 mutagen-treated seeds was grown to have a reasonable chance of detecting mutants; 2 heads from each plant were harvested. These will be grown next season (1976) to make a population of 25,000-30,000 M 2 plants and screened to composite cultures of specific rusts. Vicia faba seeds of field bean varieties Giza 1, Giza 2 and Rebaya 40, equally susceptible to rust and chocolate spot, were subjected to 3, 5 and 7 krad of 60 Co gamma radiation and 800 M 1 plants were grown in 1972 per variety and dose. Up to this later growing season (M 3 ) no resistance was detected in M 3 plank

  17. Deuteron-induced activation data in EAF for IFMIF calculations

    International Nuclear Information System (INIS)

    Forrest, R.; Cook, I.

    2006-01-01

    The main type of activation calculations needed for fusion technology deals with the interaction of neutrons with materials. The road map for development of fusion as an electricity producing technology is based on ITER and IFMIF followed by DEMO. IFMIF is a materials testing facility that will enable materials planned to be used in DEMO to be irradiated to very high fluences, so providing the database of material properties required for the licensing of DEMO. IFMIF will use intense beams of high energy deuterons striking a flowing lithium target to produce the neutron field. Although the neutron spectrum is a good match to those produced in a D-T fusion device, there is a significant high energy tail extending up to 55 MeV. These high energy neutrons were the motivation for increasing the upper energy limit in the neutron-induced part of EAF-2005 so that activation calculations could be made in IFMIF. The deuterons themselves will also make a contribution to activation especially in the target where they strike the lithium but also due to beam losses in the accelerator. It was realised that because of corrosion in the lithium loop there is the potential for a wide range of elements to be present in the target region and it is therefore necessary to have a complete library of deuteron-induced cross section data, just as in the neutron case. A preliminary library based on model calculations with TALYS using global parameters was used to construct a deuteron-induced library and this was released as part of the maintenance release of EAF-2005.1 at the beginning of this year. This data library has been used with an updated version of the inventory code FISPACT to calculate the activation in the lithium target due to reactions of the deuterons with the corrosion products. These calculations show that deuterons are much more important than neutrons (about a factor of 70) in activating the elements other than lithium. This work shows the importance of the effect and means

  18. An inducible mouse model of late onset Tay-Sachs disease.

    Science.gov (United States)

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P disease at an earlier age (n = 21, P Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  19. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    Science.gov (United States)

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  1. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  2. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  3. Ileal Crohn disease: mural microvascularity quantified with contrast-enhanced US correlates with disease activity.

    Science.gov (United States)

    De Franco, Antonio; Di Veronica, Alessandra; Armuzzi, Alessandro; Roberto, Italia; Marzo, Manuela; De Pascalis, Barbara; De Vitis, Italo; Papa, Alfredo; Bock, Enrico; Danza, Francesco M; Bonomo, Lorenzo; Guidi, Luisa

    2012-02-01

    To quantitatively assess microvascular activation in the thickened ileal walls of patients with Crohn disease (CD) by using contrast-enhanced ultrasonography (US) and evaluate its correlation with widely used indexes of CD activity. This prospective study was approved by the ethics committee, and written informed consent was obtained from all patients. The authors examined 54 consecutively enrolled patients (mean age, 35.29 years; age range, 18-69 years; 39 men, 15 women) with endoscopically confirmed CD of the terminal ileum. Ileal wall segments thicker than 3 mm were examined with low-mechanical-index contrast-enhanced US and a second-generation US contrast agent. The authors analyzed software-plotted time-enhancement intensity curves to determine the maximum peak intensity (MPI) and wash-in slope coefficient (β) and evaluated their correlation with (a) the composite index of CD activity (CICDA), (b) the CD activity index (CDAI), and (c) the simplified endoscopic score for CD (SES-CD, evaluated in 37 patients) for the terminal ileum. Statistical analysis was performed with the Mann-Whitney test, Spearman rank test, and receiver operating characteristic (ROC) analysis. MPI and β coefficients were significantly increased in the 36 patients with a CICDA indicative of active disease (P<.0001 for both), the 33 patients with a CDAI of at least 150 (P<.032 and P<.0074, respectively), and the 26 patients with an SES-CD of at least 1 (P<.0001 and P<.002, respectively). ROC analysis revealed accurate identification (compared with CICDA) of active CD with an MPI threshold of 24 video intensity (VI) (sensitivity, 97%; specificity, 83%) and a β coefficient of 4.5 VI/sec (sensitivity, 86%; specificity, 83%). Contrast-enhanced US of the ileal wall is a promising method for objective, reproducible assessment of disease activity in patients with ileal CD. © RSNA, 2011

  4. Validation of the "German Inflammatory Bowel Disease Activity Index (GIBDI)": An Instrument for Patient-Based Disease Activity Assessment in Crohn's Disease and Ulcerative Colitis.

    Science.gov (United States)

    Hüppe, Angelika; Langbrandtner, Jana; Häuser, Winfried; Raspe, Heiner; Bokemeyer, Bernd

    2018-05-09

     Assessment of disease activity in Crohn's disease (CD) and ulcerative colitis (UC) is usually based on the physician's evaluation of clinical symptoms, endoscopic findings, and biomarker analysis. The German Inflammatory Bowel Disease Activity Index for CD (GIBDI CD ) and UC (GIBDI UC ) uses data from patient-reported questionnaires. It is unclear to what extent the GIBDI agrees with the physicians' documented activity indices.  Data from 2 studies were reanalyzed. In both, gastroenterologists had documented disease activity in UC with the partial Mayo Score (pMS) and in CD with the Harvey Bradshaw Index (HBI). Patient-completed GIBDI questionnaires had also been assessed. The analysis sample consisted of 151 UC and 150 CD patients. Kappa coefficients were determined as agreement measurements.  Rank correlations were 0.56 (pMS, GIBDI UC ) and 0.57 (HBI, GIBDI CD ), with p < 0.001. The absolute agreement for 2 categories of disease activity (remission yes/no) was 74.2 % (UC) and 76.6 % (CD), and for 4 categories (none/mild/moderate/severe) 60.3 % (UC) and 61.9 % (CD). The kappa values ranged between 0.47 for UC (2 categories) and 0.58 for CD (4 categories).  There is satisfactory agreement of GIBDI with the physician-documented disease activity indices. GIBDI can be used in health care research without access to assessments of medical practitioners. In clinical practice, the index offers a supplementary source of information. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Radioiodine-induced hypothyroidism in Graves' disease: factors associated

    International Nuclear Information System (INIS)

    Cunnien, A.J.; Hay, I.D.; Gorman, C.A.; Offord, K.P.; Scanlon, P.W.

    1982-01-01

    A retrospective analysis was done of the records of 454 patients who received their first 131 I treatment for Graves' disease during six periods covering 1951 to 1978. In the earliest group, 3% of patients were hypothyroid 3 mo after 131 I use, and 40% were hypothyroid at 1 yr. In the most recent group, 36% of patients were hypothyroid at 3 mo and 91% were myxedematous at 1 yr. Although no obvious trends were noted, whether in the number of patients pretreated with thionamide drugs, in the mean 24-hr 131 I uptake, or in the calculated dose of 131 I (muCi/estimated gram of thyroid tissue) during the years of the study, the initial mean dose of 131 I administered increased from 8.1 mCi in the earliest group to 13.8 mCi in the latest group. Concurrently, estimates of gland size increased from a mean of 26 g in the first group to 43 g in the last. If, in patients with Graves' disease, the thyroid gland size did not truly increase during the years of the study, the increasing occurrence of early hypothyroidism seen after 131 I use may reflect the conscious or unconscious decision to use larger doses of 131 I calculated on the basis of inflated estimates of thyroid gland weight

  6. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  7. Active Control Does Not Eliminate Motion-Induced Illusory Displacement

    Directory of Open Access Journals (Sweden)

    Ian M. Thornton

    2011-05-01

    Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.

  8. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  9. Cellular Changes during Renal Failure-Induced Inflammatory Aortic Valve Disease.

    Directory of Open Access Journals (Sweden)

    Mony Shuvy

    Full Text Available Aortic valve calcification (AVC secondary to renal failure (RF is an inflammation-regulated process, but its pathogenesis remains unknown. We sought to assess the cellular processes that are involved in the early phases of aortic valve disease using a unique animal model of RF-associated AVC.Aortic valves were obtained from rats that were fed a uremia-inducing diet exclusively for 2, 3, 4, 5, and 6 weeks as well as from controls. Pathological examination of the valves included histological characterization, von Kossa staining, and antigen expression analyses.After 2 weeks, we noted a significant increase in urea and creatinine levels, reflecting RF. RF parameters exacerbated until the Week 5 and plateaued. Whereas no histological changes or calcification was observed in the valves of any study group, macrophage accumulation became apparent as early as 2 weeks after the diet was started and rose after 3 weeks. By western blot, osteoblast markers were expressed after 2 weeks on the diet and decreased after 6 weeks. Collagen 3 was up-regulated after 3 weeks, plateauing at 4 weeks, whereas collagen 1 levels peaked at 2 and 4 weeks. Fibronectin levels increased gradually until Week 5 and decreased at 6 weeks. We observed early activation of the ERK pathway, whereas other pathways remained unchanged.We concluded that RF induces dramatic changes at the cellular level, including macrophage accumulation, activation of cell signaling pathway and extracellular matrix modification. These changes precede valve calcification and may increase propensity for calcification, and have to be investigated further.

  10. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation.

    Science.gov (United States)

    Shen, Hui-juan; Sun, Yan-hong; Zhang, Shui-juan; Jiang, Jun-xia; Dong, Xin-wei; Jia, Yong-liang; Shen, Jian; Guan, Yan; Zhang, Lin-hui; Li, Fen-fen; Lin, Xi-xi; Wu, Xi-mei; Xie, Qiang-min; Yan, Xiao-feng

    2014-06-01

    Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-β1 release. Blocking TGF-β pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-β1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-β1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tingting Yan

    2016-01-01

    Full Text Available Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer’s disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB. In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK. Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  12. Blood flow changes in Alzheimer's disease induced by lactate

    International Nuclear Information System (INIS)

    Pavics, L.; Sera, T.; Kalman, J.; Janka, Z.; Csernay, L.

    2002-01-01

    Full text: Lactate, as metabolite of the glycolysis is a source of energy of the nerves. In vitro and in vivo experiments showed the neuroprotective effect of lactate and improvement of brain function after ischaemic injury. Intravenous infusion of lactate increases the global cerebral blood flow (CBF). In Alzheimer disease (AD) characteristic regional blood flow abnormalities and in the cerebrospinal fluid abnormal lactate levels were detected. Since disturbed CBF and vasoregulation was found in AD the effect of intravenous Na-lactate on CBF and related metabolic parameters was examined in order to assess the CBF response in the AD brain. In twenty (14 woman, 6 man, age ± SD.: 74 ± 7 years) patients with Alzheimer's disease (DSM IV, MMT.:13 ± 6) self-control study was performed. rCBF SPECT (99mTc-HMPAO) investigations were fulfilled during 5 mg/kg body weight 0.5 M Na-lactate infusion and in control state (0.9 % saline infusion) one week apart. The rCBF changes visually and by statistical parametric mapping were analyzed. ECG, blood pressure, heart rate, venous blood pH, pCO 2 , bicarbonate, serum lactate and cortisol level were measured before and after the SPECT investigation. Acute panic inventory and anxiety rating scales were used to access the psychiatric effect of lactate. The serum lactate levels increased in average from 0.8 mmol/L to 4.6 mmol/L, and 6.1 mmol/L 10 and 20 minutes after lactate infusion respectively. Compensatory changes were found in the venous blood pH, pCO 2 and bicarbonate levels. Significant psychiatric symptoms and blood pressure and heart rate increase were not observed. The serum cortisol level remained unchanged. At the baseline investigation all of the patients have bilateral temporal or parietal hypoperfused areas in 8 patients with other additional localization of abnormalities. In 12 patients the global cerebral blood flow increased, in 8 decreased rCBF was detected by visual evaluation. According to the SPM analysis the

  13. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  14. Role of Diet in Influencing Rheumatoid Arthritis Disease Activity

    Science.gov (United States)

    Badsha, Humeira

    2018-01-01

    Background: Patients with Rheumatoid Arthritis (RA) frequently ask their doctors about which diets to follow, and even in the absence of advice from their physicians, many patients are undertaking various dietary interventions. Discussion: However, the role of dietary modifications in RA is not well understood. Several studies have tried to address these gaps in our understanding. Intestinal microbial modifications are being studied for the prevention and management of RA. Some benefits of vegan diet may be explained by antioxidant constituents, lactobacilli and fibre, and by potential changes in intestinal flora. Similarly, Mediterranean diet shows anti-inflammatory effects due to protective properties of omega-3 polyunsaturated fatty acids and vitamins, but also by influencing the gut microbiome. Gluten-free and elemental diets have been associated with some benefits in RA though the existing evidence is limited. Long-term intake of fish and other sources of long-chain polyunsaturated fatty acids are protective for development of RA. The benefits of fasting, anti-oxidant supplementation, flavanoids, and probiotics in RA are not clear. Vitamin D has been shown to influence autoimmunity and specifically decrease RA disease activity. The role of supplements such as fish oils and vitamin D should be explored in future trials to gain new insights in disease pathogenesis and develop RA-specific dietary recommendations. Conclusion: Specifically more research is needed to explore the association of diet and the gut microbiome and how this can influence RA disease activity. PMID:29515679

  15. Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity

    Science.gov (United States)

    Soloski, Mark J.; Crowder, Lauren A.; Lahey, Lauren J.; Wagner, Catriona A.

    2014-01-01

    Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (pLyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations. PMID:24740099

  16. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts.

    Science.gov (United States)

    Zhu, Rong; Zheng, Rong; Deng, Yueyi; Chen, Yiping; Zhang, Shuwei

    2014-02-15

    Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2013-01-01

    Full Text Available Gastrodia elata (GE Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson’s disease (PD, respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose polymerase (PARP in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms.

  18. Humoral Immune Response Induced by PLGA Micro Particle Coupled Newcastle Disease Virus Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Sanganagouda K

    2014-02-01

    Full Text Available This experiment was conducted for evaluating the humoral immune responses induced by Poly Lactide-co-Glycolide Acid (PLGA microspheres coupled inactivated Newcastle Disease Virus (NDV vaccine in comparison to an ‘in-house’ prepared inactivated and a live commercial vaccine. PLG microparticles containing inactivated NDV were prepared by a double emulsion technique based on solvent evaporation method. The size of the NDV coupled PLG microparticles was determined by Electron Microscopy. NDV coupled PLG microparticles were spherical having smooth surface, hollow core inside with no pores on the surface. The experiment was conducted in four groups of chickens (n=15. The encapsulation efficiency of NDV coupled PLG microparticles was determined by protein estimation and HA activity in elute. The mean (± SE size of PLG microspheres was found to be 2.409 ± 0.65 µm. The mean percent of encapsulation efficiency of PLG microspheres coupled to NDV was assessed based on the total protein content and HA activity in elute was found to be 8.03 ± 0.50 and 12.5 ± 0.00, respectively. In conclusion, the results of the experiment showed that PLGA coupled NDV vaccine elicited stronger and prolonged humoral immune response in chickens, in comparison to the other tested vaccines, as assessed by haemagglutination inhibition and enzyme linked immuno sorbent asaay titers.

  19. Radium-226-induced dental disease in Beagles: a radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Goldman, M.; Soo, S.

    1987-01-01

    Evaluation of dental radiographs made at necropsy and during the life of the dogs clearly shows age dependent changes within the control dogs. Periodontal diseases, loss of lamina dura, root ankylosis, and loss of pulp cavity were all commonly noted. Tooth loss and dental caries were rare in the control dogs. In injected Beagles loss of lamina dura was noted earlier and was dose dependent. Tooth loss and dental carried increased with dose level and appeared earlier. Tooth loss was common by 1600-1800 days of age while dental caries were common in almost all dogs by 1600-1800 days of age in the R40 level. Dental caries was the most accurate indication of the level of 226 Ra toxicity. 18 reference, 1 table

  20. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Seonmi Park

    2017-04-01

    Full Text Available Summary: Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs from patients of different ethnicities, β-globin gene (HBB haplotypes, and fetal hemoglobin (HbF levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS mutation. : In this resource article, Mostoslavsky, Murphy, and colleagues of the NextGen consortium describe a diverse, comprehensive, and characterized library of sickle cell disease-specific induced pluripotent stem cells (iPSCs from patients of different ethnicities, β-globin gene (HBB haplotypes and fetal hemoglobin (HbF levels. This bank is readily available and accessible to all investigators. Keywords: induced pluripotent stem cells, iPSCs, sickle cell disease, disease modeling, directed differentiation, gene correction

  1. Epidemiology of pollution-induced airway disease in Japan

    International Nuclear Information System (INIS)

    Miyamoto, T.

    1997-01-01

    Air pollution has been implicated as one of the factors responsible for the increased incidence of allergic diseases seen over recent years. Epidemiological studies in Japan demonstrate that atopic subjects living in urban areas are more likely to suffer from the effects of air pollution, with increased coughing, sputum production, wheezing and throat irritation. Furthermore, animal studies show that high concentrations of pollutant gases can promote airway sensitization. The incidence of allergic Rhinitis and asthma have been shown to be greater in areas where there is heavy traffic and hence high levels of automobile exhaust emissions. Intranasal administration of diesel exhaust particles in mice produces a stimulatory effect on immunoglobulin E production, and a similar finding has also been shown with suspended particulate matter in air. Air pollutants, such as ozone and nitrogen dioxide (NO 2 ), have been shown to stimulate the production of granulocyte-macrophage colony stimulating factor, which may play a vital role in airway hyperreactivity and asthma. In comparative studies of asthma in urban and rural areas, history of airway infection and a younger age of onset were found to be significantly greater in urban areas. When the asthmatic patients were divided into two groups according to environmental NO 2 levels (group I: NO 2 >30 ppb, group II: NO 2 <30 ppb), no significant difference regarding the various parameters was noted between the two groups, except for a greater severity of asthma in adults in group I, and a greater severity in chrildren in group II. These studies imply that air pollution may be one reason for the increase in allergic diseases in Japan, but a definitive conclusion cannot be drawn, and further, investigation is warranted. (au)

  2. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  3. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuyo [Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD (United States); Adhikari, Rewati [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  4. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-01-01

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection

  5. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  6. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  8. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    Science.gov (United States)

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  9. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

    Science.gov (United States)

    Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

    2016-12-01

    : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of

  10. Plasma renin activity in patients with ischaemic heart disease

    International Nuclear Information System (INIS)

    Urbanek, J.; Hofman, O.; Reisenauer, R.; Slaby, A.

    1977-01-01

    Plasma renin activity (PRA) stimulated by upright posture was measured in 300 men aged 45-64 years using a radioimmunoassay of angiotensin-I. The examined subjects were normotensive or patients with benign essential hypertension and were divided into 6 groups according to the absence of manifest atherosclerosis, the presence of definite angina pectoris or a history of myocardial infarction. Each group contained 50 unselected subjects, with a comparable mean age. Significant differences in mean PRA were found between corresponding groups of hypertensives and normotensives, the values in hypertensives being lower. The percentage of low renin values was higher in hypertensives with ischaemic heart disease than in other groups. It is suggested that this finding might be explained by functional disturbances in the kidneys in hypertensives with ischaemic heart disease. (orig.) [de

  11. Plasma renin activity in patients with ischaemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, J; Hofman, O; Reisenauer, R; Slaby, A [Karlova Universita, Prague (Czechoslovakia). Inst. of Biophysics and Nuclear Medicine; Karlova Universita, Prague (Czechoslovakia). IV. Dept. of Internal Medicine; Vyzkumny Ustav Endokrinologicky, Prague [Czechoslovakia

    1977-04-01

    Plasma renin activity (PRA) stimulated by upright posture was measured in 300 men aged 45 to 64 years using a radioimmunoassay of angiotensin-I. The examined subjects were normotensive or patients with benign essential hypertension and were divided into 6 groups according to the absence of manifest atherosclerosis, the presence of definite angina pectoris or a history of myocardial infarction. Each group contained 50 unselected subjects, with a comparable mean age. Significant differences in mean PRA were found between corresponding groups of hypertensives and normotensives, the values in hypertensives being lower. The percentage of low renin values was higher in hypertensives with ischaemic heart disease than in other groups. It is suggested that this finding might be explained by functional disturbances in the kidneys in hypertensives with ischaemic heart disease.

  12. Skin manifestations of growth hormone-induced diseases.

    Science.gov (United States)

    Kanaka-Gantenbein, Christina; Kogia, Christina; Abdel-Naser, Mohamed Badawy; Chrousos, George P

    2016-09-01

    The human skin is a well-organized organ bearing different types of cells in a well-structured interference to each other including epidermal and follicular keratinocytes, sebocytes, melanocytes, dermal papilla cells and fibroblasts, endothelial cells, sweat gland cells as well as nerves. Several hormones act on different cell types of the skin, while it is also considered an endocrine organ secreting hormones that act at several sites of the organism. GH receptors are found in almost all cell types forming the skin, while IGF-1 receptors' expression is restricted to the epidermal keratinocytes. Both Growth Hormone (GH) excess, as in the case of Acromegaly in adults, or Gigantism in growing children, and GH deficiency states lead to skin manifestations. In case of GH excess the main dermatological findings are skin thickening, coarsening of facial features, acrochordons, puffy hands and feet, oily skin and hyperhidrosis, while GH deficiency, on the contrary, is characterized by thin, dry skin and disorder of normal sweating. Moreover, special disorders associated with GH excess may have specific characteristics, as is the case of café-au-lait spots in Neurofibromatosis, or big café-au-lait skin hyperpigmented regions with irregular margins, as is the case in McCune-Albright syndrome. Meticulous examination of the skin may therefore contribute to the final diagnosis in cases of GH-induced disorders.

  13. Fructose Induced Endotoxemia in Pediatric Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ran Jin

    2014-01-01

    Full Text Available In preclinical studies of fructose-induced NAFLD, endotoxin appears to play an important role. We retrospectively examined samples from three pediatric cohorts (1 to investigate whether endotoxemia is associated with the presence of hepatic steatosis; (2 to evaluate postprandial endotoxin levels in response to fructose beverage in an acute 24-hour feeding challenge, and (3 to determine the change of fasting endotoxin amounts in a 4-week randomized controlled trial comparing fructose to glucose beverages in NAFLD. We found that adolescents with hepatic steatosis had elevated endotoxin levels compared to obese controls and that the endotoxin level correlated with insulin resistance and several inflammatory cytokines. In a 24-hour feeding study, endotoxin levels in NAFLD adolescents increased after fructose beverages (consumed with meals as compared to healthy children. Similarly, endotoxin was significantly increased after adolescents consumed fructose beverages for 2 weeks and remained high although not significantly at 4 weeks. In conclusion, these data provide support for the concept of low level endotoxemia contributing to pediatric NAFLD and the possible role of fructose in this process. Further studies are needed to determine if manipulation of the microbiome or other methods of endotoxin reduction would be useful as a therapy for pediatric NAFLD.

  14. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  15. Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy.

    Science.gov (United States)

    Choudhury, Sabanum; Borah, Anupom

    2015-07-01

    Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  17. Limit of probability of causation in the compensation of radiation induced malignant diseases

    International Nuclear Information System (INIS)

    Sun Shiquan

    1989-01-01

    Etiological relationship between previous radiation exposure and malignant diseases concerned could be estimated from NIH Epidemiological Tables expressed as Probability of Causation (PC). But the limit of PC in the compensation of radiation induced malignant diseases has not been decided definitely. In this paper PC calculations were made for populations of occupational exposure with typical distribution of individual doses and levels of exposure. The results show that it is feasible to choice PC ≥ 50% as a limit of compensation for leukemia and radon induced lung cancer. Some lenient limits may be taken for other radiation related solid carcinomas

  18. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    Science.gov (United States)

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with

  19. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer.

    Science.gov (United States)

    Ludwig, Sonja; Floros, Theofanis; Theodoraki, Marie-Nicole; Hong, Chang-Sook; Jackson, Edwin K; Lang, Stephan; Whiteside, Theresa L

    2017-08-15

    Purpose: Head and neck cancers (HNCs) often induce profound immunosuppression, which contributes to disease progression and interferes with immune-based therapies. Body fluids of patients with HNC are enriched in exosomes potentially engaged in negative regulation of antitumor immune responses. The presence and content of exosomes derived from plasma of patients with HNC are evaluated for the ability to induce immune dysfunction and influence disease activity. Experimental Design: Exosomes were isolated by size-exclusion chromatography from plasma of 38 patients with HNC and 14 healthy donors. Morphology, size, numbers, and protein and molecular contents of the recovered exosomes were determined. Coculture assays were performed to measure exosome-mediated effects on functions of normal human lymphocyte subsets and natural killer (NK) cells. The results were correlated with disease stage and activity. Results: The presence, quantity, and molecular content of isolated, plasma-derived exosomes discriminated patients with HNC with active disease (AD) from those with no evident disease (NED) after oncologic therapies. Exosomes of patients with AD were significantly more effective than exosomes of patients with NED in inducing apoptosis of CD8 + T cells, suppression of CD4 + T-cell proliferation, and upregulation of regulatory T-cell (Treg) suppressor functions (all at P Exosomes of patients with AD also downregulated NKG2D expression levels in NK cells. Conclusions: Exosomes in plasma of patients with HNC carry immunosuppressive molecules and interfere with functions of immune cells. Exosome-induced immune suppression correlates with disease activity in HNC, suggesting that plasma exosomes could be useful as biomarkers of HNC progression. Clin Cancer Res; 23(16); 4843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Induced dopaminergic neurons: A new promise for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Zhimin Xu

    2017-04-01

    Full Text Available Motor symptoms that define Parkinson’s disease (PD are caused by the selective loss of nigral dopaminergic (DA neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC or human induced pluripotent stem cells (iPSC. Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy.

  1. The mitochondrial activation of silicate and its role in silicosis, black lung disease and lung cancer.

    Science.gov (United States)

    Hadler, H I; Cook, G L

    1979-01-01

    Silicate substitutes for phosphate in the transitory uncoupling of rat liver mitochondria induced by hydrazine when beta-hydroxy-butyrate is the substrate. Uncoupling is blocked by rutamycin. Just as in the case when phosphate is combined with hydrazine, ATP, ADP, PPi, and Mg++ protect against hydrazine when silicate is combined with hydrazine. A high level of ADP in the absence of added phosphate, but in the presence of silicate, induces a pseudo state three of the mitochondria. Silicate, like sulfate and arsenate which have been reported previously, is activated by the enzymes which mediate oxidative phosphorylation. These results serve to explain a role for silicate in silicosis, black lung disease, and cancer. In addition, since there is suggestive evidence in the literature that lung tissue solubilizes asbestos fibers, these results not only expand the confluence between oxidative phosphorylation and chemical carcinogenesis but are correlated with the synergistic carcinogenicity of asbestos and smoking observed by epidemiologists.

  2. Photonic activation of plasminogen induced by low dose UVB.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm. Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å. Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the

  3. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse.

    Science.gov (United States)

    Ogden, Angela; Rida, Padmashree C G; Knudsen, Beatrice S; Kucuk, Omer; Aneja, Ritu

    2015-10-28

    Although docetaxel significantly improves survival in a variety of malignancies, its clinical utility is severely restricted by acquired chemoresistance and disease relapse. To uncover the mechanisms underlying these all too common occurrences, an abundance of research has focused on mutations and gene expression patterns; however, these findings are yet to translate into improved outcomes for patients being administered this drug. These analyses have overlooked a promising lead in the quest to discern key mediators of resistance and relapse following docetaxel therapy: polyploidization. This process is manifested following docetaxel-mediated mitotic arrest by the appearance of giant, multinucleated cells, which slipped from mitosis without undergoing cytokinesis. Polyploid cells generally possess supernumerary centrosomes, are chromosomally instable, and resist chemotherapy. We thus suspect that chemoresistance and relapse following treatment with docetaxel might be combatted by co-administration of centrosome declustering drugs, which could selectively destroy polyploid cells given that normal cells do not possess amplified centrosomes, an intriguing paradigm that warrants further investigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Activity enhances dopaminergic long-duration response in Parkinson disease

    Science.gov (United States)

    Auinger, Peggy; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Fahn, Stanley; Oakes, David; Shoulson, Ira; Kieburtz, Karl; Rudolph, Alice; Marek, Kenneth; Seibyl, John; Lang, Anthony; Olanow, C. Warren; Tanner, Caroline; Schifitto, Giovanni; Zhao, Hongwei; Reyes, Lydia; Shinaman, Aileen; Comella, Cynthia L.; Goetz, Christopher; Blasucci, Lucia M.; Samanta, Johan; Stacy, Mark; Williamson, Kelli; Harrigan, Mary; Greene, Paul; Ford, Blair; Moskowitz, Carol; Truong, Daniel D.; Pathak, Mayank; Jankovic, Joseph; Ondo, William; Atassi, Farah; Hunter, Christine; Jacques, Carol; Friedman, Joseph H.; Lannon, Margaret; Russell, David S.; Jennings, Danna; Fussell, Barbara; Standaert, David; Schwarzschild, Michael A.; Growdon, John H.; Tennis, Marsha; Gauthier, Serge; Panisset, Michel; Hall, Jean; Gancher, Stephen; Hammerstad, John P.; Stone, Claudia; Alexander-Brown, Barbara; Factor, Stewart A.; Molho, Eric; Brown, Diane; Evans, Sharon; Clark, Jeffrey; Manyam, Bala; Simpson, Patricia; Wulbrecht, Brian; Whetteckey, Jacqueline; Martin, Wayne; Roberts, Ted; King, Pamela; Hauser, Robert; Zesiewicz, Theresa; Gauger, Lisa; Trugman, Joel; Wooten, G. Frederick; Rost-Ruffner, Elke; Perlmutter, Joel; Racette, Brad A.; Suchowersky, Oksana; Ranawaya, Ranjit; Wood, Susan; Pantella, Carol; Kurlan, Roger; Richard, Irene; Pearson, Nancy; Caviness, John N.; Adler, Charles; Lind, Marlene; Simuni, Tanya; Siderowf, Andrew; Colcher, Amy; Lloyd, Mary; Weiner, William; Shulman, Lisa; Koller, William; Lyons, Kelly; Feldman, Robert G.; Saint-Hilaire, Marie H.; Ellias, Samuel; Thomas, Cathi-Ann; Juncos, Jorge; Watts, Ray; Partlow, Anna; Tetrud, James; Togasaki, Daniel M.; Stewart, Tracy; Mark, Margery H.; Sage, Jacob I.; Caputo, Debbie; Gould, Harry; Rao, Jayaraman; McKendrick, Ann; Brin, Mitchell; Danisi, Fabio; Benabou, Reina; Hubble, Jean; Paulson, George W.; Reider, Carson; Birnbaum, Alex; Miyasaki, Janis; Johnston, Lisa; So, Julie; Pahwa, Rajesh; Dubinsky, Richard M.; Wszolek, Zbigniew; Uitti, Ryan; Turk, Margaret; Tuite, Paul; Rottenberg, David; Hansen, Joy; Ramos, Serrano; Waters, Cheryl; Lew, Mark; Welsh, Mickie; Kawai, Connie; O'Brien, Christopher; Kumar, Rajeev; Seeberger, Lauren; Judd, Deborah; Barclay, C. Lynn; Grimes, David A.; Sutherland, Laura; Dawson, Ted; Reich, Stephen; Dunlop, Rebecca; Albin, Roger; Frey, Kirk; Wernette, Kristine; Mendis, Tilak

    2012-01-01

    Objective: We tested the hypothesis that dopamine-dependent motor learning mechanism underlies the long-duration response to levodopa in Parkinson disease (PD) based on our studies in a mouse model. By data-mining the motor task performance in dominant and nondominant hands of the subjects in a double-blind randomized trial of levodopa therapy, the effects of activity and dopamine therapy were examined. Methods: We data-mined the Earlier versus Later Levodopa Therapy in Parkinson's Disease (ELLDOPA) study published in 2005 and performed statistical analysis comparing the effects of levodopa and dominance of handedness over 42 weeks. Results: The mean change in finger-tapping counts from baseline before the initiation of therapy to predose at 9 weeks and 40 weeks increased more in the dominant compared to nondominant hand in levodopa-treated subjects in a dose-dependent fashion. There was no significant difference in dominant vs nondominant hands in the placebo group. The short-duration response assessed by the difference of postdose performance compared to predose performance at the same visit did not show any significant difference between dominant vs nondominant hands. Conclusions: Active use of the dominant hand and dopamine replacement therapy produces synergistic effect on long-lasting motor task performance during “off” medication state. Such effect was confined to dopamine-responsive symptoms and not seen in dopamine-resistant symptoms such as gait and balance. We propose that long-lasting motor learning facilitated by activity and dopamine is a form of disease modification that is often seen in trials of medications that have symptomatic effects. PMID:22459675

  5. Can Diet and Physical Activity Limit Alzheimer's Disease Risk?

    Science.gov (United States)

    Rege, Shraddha D; Geetha, Thangiah; Broderick, Tom L; Babu, Jeganathan Ramesh

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting elderly individuals at an alarming rate. It has become a global health crisis imposing tremendous social and economic burden on society. Although there is no cure for AD, it is important to identify and implement preventive strategies that may delay or prevent the symptoms, limit the burden, and improve the quality of life of those afflicted. Adequate nutrition and physical activity are the two potential lifestyle modifiable factors that have gained considerable interest for their potential in the prevention or management of this challenging disease. In this review, we discuss the beneficial effects of physical activity and adequate nutrition on minimizing the risk of developing AD. The research question was initially formulated in a structured and explicit way. Relevant studies were identified using a wide range of scientific databases. Their potential relevance was based on the criteria for inclusion and exclusion. The quality of selected studies was subjected to a more precise quality assessment using standard tools. A detailed description of the implemented intervention and how it differed from what the control group received was outlined. The effects of intervention on measurable outcomes for the study sample were applied. One hundred and sixty-four references were included in the review comprising of epidemiological, longitudinal, cross-sectional, intervention and randomized controlled studies. This review highlighted the effect of various nutrient diet supplements on cognitive performance in humans as well as animals with AD and mild cognitive impairment (MCI). Moreover, the effect of physical exercise on the cognitive function in animal models with AD was outlined. The findings of this review highlight the therapeutic potential of combination of nutritionally adequate diet and physical activity in preventing or delaying the symptoms associated with AD pathology.

  6. Familial occurrence of systemic mast cell activation disease.

    Directory of Open Access Journals (Sweden)

    Gerhard J Molderings

    Full Text Available Systemic mast cell activation disease (MCAD comprises disorders characterized by an enhanced release of mast cell mediators accompanied by accumulation of dysfunctional mast cells. Demonstration of familial clustering would be an important step towards defining the genetic contribution to the risk of systemic MCAD. The present study aimed to quantify familial aggregation for MCAD and to investigate the variability of clinical and molecular findings (e.g. somatic mutations in KIT among affected family members in three selected pedigrees. Our data suggest that systemic MCAD pedigrees include more systemic MCAD cases than would be expected by chance, i.e., compared with the prevalence of MCAD in the general population. The prevalence of MCAD suspected by symptom self-report in first-degree relatives of patients with MCAD amounted to approximately 46%, compared to prevalence in the general German population of about 17% (p<0.0001. In three families with a high familial loading of MCAD, the subtype of MCAD and the severity of mediator-related symptoms varied between family members. In addition, genetic alterations detected in KIT were variable, and included mutations at position 816 of the amino acid sequence. In conclusion, our data provide evidence for common familial occurrence of MCAD. Our findings observed in the three pedigrees together with recent reports in the literature suggest that, in familial cases (i.e., in the majority of MCAD, mutated disease-related operator and/or regulator genes could be responsible for the development of somatic mutations in KIT and other proteins important for the regulation of mast cell activity. Accordingly, the immunohistochemically different subtypes of MCAD (i.e. mast cell activation syndrome and systemic mastocytosis should be more accurately regarded as varying presentations of a common generic root process of mast cell dysfunction, than as distinct diseases.

  7. Treatment with radioiodine of Graves' disease. Calculated activity; fixed activity or ablation. Were are we going?

    International Nuclear Information System (INIS)

    Degrossi, O.

    2006-01-01

    The new tendencies of radioiodine ( 131 I) treatment of Graves'disease are presented . One group have the objective of administrate an activity of radioiodine to bring back the patient to euthyroidism , using individual activities to each patient. Others propose a fixed dose, with high activity to cure the disease and anticipating the hypothyroidism of the patient. The third group propose directly the ablation of the thyroids with a calculated activity to deliver 300 Gy .This calculi demand the investigation of the maximum uptake of radioiodine, the biological half life, and the thyroid weight with adequate method (US, TC, MR) Finally, the dose to not thyroid tissues are discussed and the risk of these procedures are presented. (author)

  8. Vinpocetine Ameliorates Acetic Acid-Induced Colitis by Inhibiting NF-κB Activation in Mice.

    Science.gov (United States)

    Colombo, Bárbara B; Fattori, Victor; Guazelli, Carla F S; Zaninelli, Tiago H; Carvalho, Thacyana T; Ferraz, Camila R; Bussmann, Allan J C; Ruiz-Miyazawa, Kenji W; Baracat, Marcela M; Casagrande, Rúbia; Verri, Waldiceu A

    2018-04-10

    The idiopathic inflammatory bowel diseases (IBD) comprise two types of chronic intestinal disorders: Crohn's disease and ulcerative colitis. Recruited neutrophils and macrophages contribute to intestinal tissue damage via production of ROS and NF-κB-dependent pro-inflammatory cytokines. The introduction of anti-TNF-α therapies in the treatment of IBD patients was a seminal advance. This therapy is often limited by a loss of efficacy due to the development of adaptive immune response, underscoring the need for novel therapies targeting similar pathways. Vinpocetine is a nootropic drug and in addition to its antioxidant effect, it is known to have anti-inflammatory and analgesic properties, partly by inhibition of NF-κB and downstream cytokines. Therefore, the present study evaluated the effect of the vinpocetine in a model of acid acetic-induced colitis in mice. Treatment with vinpocetine reduced edema, MPO activity, microscopic score and macroscopic damage, and visceral mechanical hyperalgesia. Vinpocetine prevented the reduction of colonic levels of GSH, ABTS radical scavenging ability, and normalized levels of anti-inflammatory cytokine IL-10. Moreover, vinpocetine reduced NF-κB activation and thereby NF-κB-dependent pro-inflammatory cytokines IL-1β, TNF-α, and IL-33 in the colon. Thus, we demonstrate for the first time that vinpocetine has anti-inflammatory, antioxidant, and analgesic effects in a model of acid acetic-induced colitis in mice and deserves further screening to address its suitability as an approach for the treatment of IBD.

  9. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  10. CD4+ CD25+ CD127low Regulatory T Cells as Indicator of Rheumatoid Arthritis Disease Activity.

    Science.gov (United States)

    Khattab, Sahar S; El-Saied, Amany M; Mohammed, Rehab A; Mohamed, Eman E

    2016-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by disturbed immune regulation, inducing a progressive cartilage and bone destruction. Despite enrichment of T regulatory cell (T-regs) in synovial fluid, conflicting results are reported concerning T-regs in peripheral blood (PB) of RA patients. To determine possible correlation between the frequency of PB CD4+ CD25+CD127low (T-regs) with RA disease activity. Forty females with RA, classified according to the Disease Activity Score 28 (DAS-28), as highly active, mild-moderate or low disease activity; and 20 age and sex matched healthy controls, were enrolled to study CD4+ CD25+ CD127low T- regs in PB by flow cytometry. Active RA patients had lower frequency of the CD4+ CD25+ CD127low T- regs compared to those with mild-moderate or low disease activity (P <0.001). The frequencies of the T- regs showed negative correlation with the DAS-28 (P<0.01). In conclusion, CD4+ CD25+ CD127low T-regs is significantly lower in highly active RA patients compared to patients with lower activity or controls. Copyright© by the Egyptian Association of Immunologists.

  11. Active Emergence from Propofol General Anesthesia is Induced by Methylphenidate

    Science.gov (United States)

    Chemali, Jessica J.; Van Dort, Christa J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane general anesthesia. Isoflurane and propofol are general anesthetics that may have distinct molecular mechanisms of action. The objective of this study was to test the hypothesis that methylphenidate actively induces emergence from propofol general anesthesia. METHODS Using adult rats, the effect of methylphenidate on time to emergence after a single bolus of propofol was determined. The ability of methylphenidate to restore righting during a continuous target controlled infusion of propofol was also tested. In a separate group of rats, a target controlled infusion of propofol was established and spectral analysis was performed on electroencephalogram recordings taken before and after methylphenidate administration. RESULTS Methylphenidate decreased median time to emergence after a single dose of propofol from 735 seconds (95% CI: 598 to 897 seconds, n=6) to 448 seconds (95% CI: 371 to 495 seconds, n=6). The difference was statistically significant (p = 0.0051). During continuous propofol anesthesia with a median final target plasma concentration of 4.0 μg/ml (95%CI: 3.2 to 4.6, n=6), none of the rats exhibited purposeful movements after injection of normal saline. After methylphenidate, however, all 6 rats promptly exhibited arousal and had restoration of righting with a median time of 82 seconds (95% CI: 30 to 166 seconds). Spectral analysis of electroencephalogram data demonstrated a shift in peak power from delta (anesthesia in rats. Further study is warranted to test the hypothesis that methylphenidate induces emergence from propofol general anesthesia in humans. PMID:22446983

  12. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    Science.gov (United States)

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  13. Resveratrol relieves Angiostrongylus cantonensis - Induced meningoencephalitis by activating sirtuin-1.

    Science.gov (United States)

    Chen, An-Chih; Shyu, Ling-Yuh; Hsin, Yue-Loong; Chen, Ke-Min; Lai, Shih-Chan

    2017-09-01

    Resveratrol, a natural herbal compound found in high levels in grapes and red wine, is frequently used as activator of sirtuin-1. This study investigated the potential function of sirtuin-1 in regulating angiostrongyliasis meningoencephalitis in resveratrol-treated mice. Mice were subjected to meningoencephalitis to study the protective effect of resveratrol against meningoencephalitis and investigate the effects of sirtuin-1 activation on brain. Results demonstrated that sirtuin-1 level decreased in mice with meningoencephalitis and significantly increased in resveratrol-treated mice. Moreover, resveratrol treatment significantly reduced eosinophil counts, p65, Interferon-γ, interleukin (IL)-5, IL-33, and tumor necrosis factor-α levels, matrix metalloproteinase-9 activity, claudin-5 degradation, and blood-brain barrier permeability. By contrast, the anti-inflammatory factor IL-10 was significantly increased in resveratrol-treated mice. Resveratrol treatment was partially beneficial in controlling the pathological processes of angiostrongyliasis meningoencephalitis. The results demonstrate the neuroprotective and anti-inflammatory effects of resveratrol against Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis in mice. Treatment with sirtuin-1 agonist was given within a therapeutic window after A. cantonensis infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Validation of the Actiheart Activity Monitor for Measurement of Activity Energy Expenditure in Children and Adolescents with Chronic Disease.

    OpenAIRE

    2010-01-01

    Abstract Introduction: The purpose of this study was to develop an activity energy expenditure (AEE) prediction equation for the Actiheart activity monitor (AH) for use in children with chronic disease. Methods: 63 children, aged 8-18 years with different types of chronic disease (Juvenile Arthritis, Hemophilia, Dermatomyositis, neuromuscular disease, Cystic Fibrosis or Congenital Heart Disease) participated in an activity testing session which consisted of a resting protocol, ...

  15. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats.

    Science.gov (United States)

    Rony, K A; Ajith, T A; Nima, N; Janardhanan, K K

    2014-03-01

    Patients with the risk for atherosclerotic disease will be targeted to reduce the existing hyperlipidemia. The hypolipidemic activity of Phellinus rimosus was studied using triton WR-1339 and high cholesterol diet (HCD) induced models. The triton induced elevated lipid profile was attenuated by P. rimosus or standard drug atorvastatin. Similarly, administration of P. rimosus along with HCD significantly decline serum triglyceride, total cholesterol, low-density lipoprotein, with elevating the high-density lipoprotein. Thiobarbituric acid reacting substances in heart and liver significantly decreased; where as activity of enzymatic antioxidants and level of reduced glutathione were significantly increased. In both models, P. rimosus extract showed a significant ameliorative effect on the elevated atherogenic index as well as LDL/HDL-C ratio. The hypolipidemic activity of P. rimosus can be ascribed to its inhibitory effect on the liver HMG CoA reductase activity. The results suggest the possible therapeutic potential of this fungus as hypolipidemic agent. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  17. 7a, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases

    Directory of Open Access Journals (Sweden)

    Siquan eSun

    2015-03-01

    Full Text Available EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt’s lymphoma cell line BL41 by Epstein-Barr virus (EBV infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7a, 25-dihydroxyxcholesterol (7a, 25-OHC, an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7a, 25-OHC bound to EBI2, and how a gradient of 7a, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DC, monocytes/macrophages and astrocytes. The identification of 7a, 25-OHC as a GPCR ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.

  18. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease.

    Science.gov (United States)

    Khurana, Navneet; Gajbhiye, Asmita

    2013-12-01

    Present study focused on the evaluation of aqueous extract of Sida cordifolia (AESC), and its different fractions; hexane (HFSC), chloroform (CFSC) and aqueous (AFSC), against rotenone induced biochemical, neurochemical, histopathological and behavioral alterations in a rat model of Parkinson's disease (PD). An estimation of the level of thiobarbituric acid reactive substances (TBARS), glutathione (GSH) and catalase (CAT) along with superoxide anion generation (SAG) in different brain regions (cortex, midbrain and cerebellum) was carried out to assess biochemical changes. Behavioral evaluation tests (catalepsy, rearing behavior and posture instability) and neurochemical estimations (norepinephrine, dopamine and serotonin level) along with histopathological evaluations of different brain regions were also performed. The varying doses (50, 100, 250mg/kg; p.o.) of different test treatments (AESC, HFSC, CFSC and AFSC) were co-administered along with rotenone (2mg/kg; s.c.), for a period of 35 days to rats of various groups and compared with rotenone per se (negative control) and l-deprenyl (positive control; 10mg/kg; p.o.) treated groups for the above mentioned parameters. The increase in catalepsy and posture instability along with decrease in rearing behavior observed due to rotenone treatment was significantly attenuated by co-treatment with varying doses of AESC and AFSC. Results of the histopathological studies of different brain regions of rats showed eosinophilic lesions in the mid brain region due to rotenone treatment. The eosinophilic lesions were significantly attenuated in co-treated groups of AESC-100mg/kg and AFSC-100mg/kg. Rotenone induced oxidative damage, revealed by increased level of TBARS, SAG and decreased level of GSH and CAT in mid brain region of rats, was attenuated by the co-treatment of AESC and AFSC. The rotenone induced decrease of dopamine level in the midbrain region of rats was also attenuated by co-treatment of AESC-100mg/kg and AFSC

  19. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  20. International Activities in Radiation-Induced Carcinogenesis. Survey Paper

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, E. [World Health Organization, Geneva (Switzerland)

    1969-11-15

    During the past 10 years special attention has been paid to the problem of late effects of radiation and in particular to radiation-induced carcinogenesis and leukaemogenesis. In the UNSCEAR report of 1958-1962 this.problem was mentioned as being of considerable importance from the point of view of estimation of risk to the population from environmental radiation. In 1964 a special report was prepared by UNSCEAR on radiation- induced carcinogenesis. In the ICRP publication No. 8, a chapter dealing with assessment of somatic risks discussed the problem of leukaemia and other neoplasms and particularly stressed the problem of thyroid carcinoma-and bone sarcoma. WHO panels of experts discussed the problem in 1960-1966 and made some recommendations for international activity in this field. In spite of the amount of scientific attention that has been given in recent years to experimental radiobiology in animals and lower forms, it has become abundantly clear that information directly applicable to humans is woefully inadequate and that there is a desperate need for carefully collected data from man on which to base public health planning and day to day work in radiation protection. This has long been recognized in the technical program of WHO in the emphasis given to the practical importance of epidemiology in human radiobiology and the degree to which it depends upon international collaboration.

  1. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  2. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  3. [Nutritional approaches to modulate oxidative stress that induce Alzheimer's disease. Nutritional approaches to prevent Alzheimer's disease].

    Science.gov (United States)

    Lara, Humberto Herman; Alanís-Garza, Eduardo Javier; Estrada Puente, María Fernanda; Mureyko, Lucía Liliana; Alarcón Torres, David Alejandro; Ixtepan Turrent, Liliana

    2015-01-01

    Alzheimer's disease is the most common cause of dementia in the world; symptoms first appear after age 65 and have a progressive evolution. Expecting an increase on its incidence and knowing there is currently no cure for Alzheimer's disease, it is a necessity to prevent progression. The change in diet due to globalization may explain the growth of the incidence in places such as Japan and Mediterranean countries, which used to have fewer incidences. There is a direct correlation between disease progression and the increased intake of alcohol, saturated fats, and red meat. Therefore, we find obesity and higher serum levels in cholesterol due to saturated fat as a result. A way to decrease the progression of Alzheimer's is through a diet rich in polipheno/es (potent antioxidants), unsaturated fats (monounsaturated and polyunsaturated), fish, vegetable fa t, fruits with low glycemic index, and a moderate consumption of red wine. Through this potent antioxidant diet we accomplish the prevention of dementia and the progression of Alzheimer's disease. This article emphasizes the food and other components that have been demonstrated to decrease the oxidative stress related to these progressive diseases.

  4. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-01

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection

  5. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.