WorldWideScience

Sample records for active submarine volcano

  1. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10-6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  2. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  3. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  4. Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Malahoff, A. (National Ocean Survey-NOAA, Rockville, MD); McMurtry, G.M.; Wiltshire, J.C.; Yeh, H.W.

    1982-07-15

    High-resolution bathymetric surveys, bottom photography and sample analyses show that Loihi Seamount at the southernmost extent of the Hawaiian hotspot is an active, young submarine volcano that is probably the site of an emerging Hawaiian island. Hydrothermal deposits sampled from the active summit rift system were probably formed by precipitation from cooling vent fluids or during cooling and oxidation of high-temperature polymetallic sulphide assemblages. No exotic benthic fauna were found to be associated with the presently active hydrothermal vents mapped.

  5. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    Science.gov (United States)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  6. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  7. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc

    Science.gov (United States)

    Stern, Robert J.; Bibee, L. D.

    1984-05-01

    Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342 0.70348), Nd (ɛND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7 10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and

  8. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    Science.gov (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  9. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    Science.gov (United States)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs sources characteristics are retrieved from numerical simulation using an hydraulic equations-based code (Volc

  10. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    Science.gov (United States)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  11. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  12. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  13. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  14. Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano

    Science.gov (United States)

    Vailulu'U Research Group, T.

    2005-12-01

    Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton

  15. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    Science.gov (United States)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  16. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    Science.gov (United States)

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds.

  17. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  18. Near-specular acoustic scattering from a buried submarine mud volcano.

    Science.gov (United States)

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  19. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    Science.gov (United States)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  20. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  1. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    Science.gov (United States)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus

  2. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    Science.gov (United States)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  3. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  4. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    Science.gov (United States)

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  5. The first days of the new submarine volcano near Krakatoa

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1926-01-01

    The geological history of the Krakatoa volcano, especially the eruption of 1883, is amply described in the great work “Krakatau” by R. D. M. Verheer (1885), the Report of the Krakatoa Committee (Royal Soc. London 1888) and in the publications of B. G. Escher (Handel. 1e Nederl. Indisch Natuurwet ens

  6. Transition from circular to stellate forms of submarine volcanoes

    Science.gov (United States)

    Mitchell, Neil C.

    2001-02-01

    Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

  7. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Science.gov (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  8. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Science.gov (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  9. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    Science.gov (United States)

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-05-09

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  10. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, J.E.; Stolper, E.M. (California Institute of Technology, Pasadena (USA)); Clague, D.A. (Geological Survey, Menlo Park, CA (USA))

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  11. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  12. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    Science.gov (United States)

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  13. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    Science.gov (United States)

    Fraile-Nuez, Eugenio; Magdalena Santana-Casiano, J.; González-Dávila, Melchor

    2014-05-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  14. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    Science.gov (United States)

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  15. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    Science.gov (United States)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  16. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    Science.gov (United States)

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.

  17. Modelling submarine pyroclastic flows at the Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Hogg, A. J.; Goater, A.

    2011-12-01

    Submarine sedimentary flows are notoriously difficult to observe directly and interpreting their deposits to gain insight to the parent flows can be problematic. Pyroclastic flows from the Soufrière Hills volcano, Montserrat, which entered the ocean and deposited particles over the sea bed are a notable exception. In this case, from monitoring of the volcano, the mass of particulate released and the duration of the flow can be estimated accurately. Furthermore research cruises have imaged, cored the ocean bed and measured the distribution and composition of the deposit left by these flows over much of their runout. These observations therefore form a unique dataset in which both source conditions and final deposit are relatively well constrained. Mathematically modelling long runout sedimentary flows can also present several difficulties. Over these length and time scales, it is not feasible to simulate directly all of the fluid and particulate motions and so reduced models have been developed to capture the dominant processes and features of the flows. These have often been calibrated by laboratory scale experiments - but now with this data from the Soufrière Hills volcano, it is possible to compare model predictions with a natural scale event. Our model is based upon a shallow layer formulation, assuming hydrostatic balance in the vertical to leading order. The downslope motion of the sediment-laden fluid is driven by gravitational forces, associated with the density difference between the intruding and surrounding fluid. Particles settle out of the current to the underlying boundary, reducing the density difference, slowing the motion and forming the deposit. We develop a model that expresses conservation of fluid and particulate mass and a balance of streamwise momentum. This system of equations is integrated numerically to reveal the temporal and spatial evolution and asymptotic methods are used to reveal the dynamical controls on the runout. The theoretical

  18. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    Science.gov (United States)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    the regional velocity model (HG50; Klein, 1989) in the shallow lithosphere above 16 km depth. This is likely a result of thick deposits of volcaniclastic sediments and fractured pillow basalts that blanket the southern submarine flank of Mauna Loa, upon which Lo';ihi is currently superimposing (Morgan et al., 2003). A broad, low-velocity anomaly was observed from 20-40 km deep beneath the area of Pahala, and is indicative of the central plume conduit that supplies magma to the active volcanoes. A localized high-velocity body is observed 4-6 km deep beneath Lo';ihi's summit, extending 10 km to the North and South. Oriented approximately parallel to Lo';ihi's active rift zones, this high-velocity body is suggestive of intrusion in the upper crust, similar to Kilauea's high-velocity rift zones.

  19. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    Science.gov (United States)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  20. Flank instability assessment at Kick-'em-Jenny submarine volcano (Grenada, Lesser Antilles): a multidisciplinary approach using experiments and modeling

    Science.gov (United States)

    Dondin, F. J.-Y.; Heap, M. J.; Robertson, R. E. A.; Dorville, J.-F. M.; Carey, S.

    2017-01-01

    Kick-'em-Jenny (KeJ)—located ca. 8 km north of the island of Grenada—is the only active submarine volcano of the Lesser Antilles Volcanic Arc. Previous investigations of KeJ revealed that it lies within a collapse scar inherited from a past flank instability episode. To assess the likelihood of future collapse, we employ here a combined laboratory and modeling approach. Lavas collected using a remotely operated vehicle (ROV) provided samples to perform the first rock physical property measurements for the materials comprising the KeJ edifice. Uniaxial and triaxial deformation experiments showed that the dominant failure mode within the edifice host rock is brittle. Edifice fractures (such as those at Champagne Vent) will therefore assist the outgassing of the nearby magma-filled conduit, favoring effusive behavior. These laboratory data were then used as input parameters in models of slope stability. First, relative slope stability analysis revealed that the SW to N sector of the volcano displays a deficit of mass/volume with respect to a volcanoid (ideal 3D surface). Slope stability analysis using a limit equilibrium method (LEM) showed that KeJ is currently stable, since all values of stability factor or factor of safety (Fs) are greater than unity. The lowest values of Fs were found for the SW-NW sector of the volcano (the sector displaying a mass/volume deficit). Although currently stable, KeJ may become unstable in the future. Instability (severe reductions in Fs) could result, for example, from overpressurization due to the growth of a cryptodome. Our modeling has shown that instability-induced flank collapse will most likely initiate from the SW-NW sector of KeJ, therefore mobilizing a volume of at least ca. 0.7 km3. The mobilization of ca. 0.7 km3 of material is certainly capable of generating a tsunami that poses a significant hazard to the southern islands of the West Indies.

  1. Insights on volcanic behaviour from the 2015 July 23-24 T-phase signals generated by eruptions at Kick-'em-Jenny Submarine Volcano, Grenada, Lesser Antilles

    Science.gov (United States)

    Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.; Lynch, L.; Stewart, R.; Smith, P.; Ramsingh, C.; Nath, N.; Ramsingh, H.; Ash, C.

    2015-12-01

    Kick-'em-Jenny volcano (KeJ) is the only known active submarine volcano in the Lesser Antilles Arc. Since 1939, the year it revealed itself, and until the volcano-seismic unrest of 2015 July 11-25 , the volcano has erupted 12 times. Only two eruptions breached the surface: 1939, 1974. The volcano has an average eruption cycle of about 10-11 years. Excluding the Montserrat, Soufrière Hills, KeJ is the most active volcano in the Lesser Antilles arc. The University of the West Indies, Seismic Research Centre (SRC) has been monitoring KeJ since 1953. On July 23 and 24 at 1:42 am and 0:02 am local time, respectively, the SRC recorded T-phase signals , considered to have been generated by KeJ. Both signals were recorded at seismic stations in and north of Grenada: SRC seismic stations as well as the French volcano observatories in Guadeloupe and Martinique, Montserrat Volcano Observatory, and the Puerto Rico Seismic Network. These distant recordings, along with the experience of similar observations in previous eruptions, allowed the SRC to confirm that two explosive eruptions occurred in this episode at KeJ. Up to two days after the second eruption, when aerial surveillance was done, there was no evidence of activity at the surface. During the instrumental era, eruptions of the KeJ have been identified from T-phases recorded at seismic stations from Trinidad, in the south, to Puerto Rico, in the north. In the 2015 July eruption episode, the seismic station in Trinidad did not record T-phases associated with the KeJ eruptions. In this study we compare the T-phase signals of 2015 July with those recorded in KeJ eruptions up to 1974 to explore possible causative features for the T-phase recording pattern in KeJ eruptions. In particular, we investigate the potential role played by the Sound Fixing and Ranging (SOFAR) layer in influencing the absence of the T-phase on the Trinidad seismic station during this eruption.

  2. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.

    Science.gov (United States)

    Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun

    2015-07-01

    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).

  3. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    Science.gov (United States)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low (206)Pb/(204)Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  4. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    Science.gov (United States)

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  5. Active control of radiated pressure of a submarine hull

    Science.gov (United States)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  6. Quantifying submarine landslide processes driven by active tectonic forcing: Cook Strait submarine canyon, New Zealand.

    Science.gov (United States)

    Mountjoy, J. J.; Barnes, P. M.; Pettinga, J. R.

    2006-12-01

    The Cook Strait submarine canyon system is a multi-branched, deeply incised and highly sinuous feature of New Zealand's active margin, covering some 1500km2 of sea floor between the North and South Islands and spanning water depths of between 50 and 2700m. The canyon occurs at the transition from the westward dipping oblique subduction zone adjacent to the SE North Island and the zone of continental transpression in NE South Island. The recent acquisition of high resolution (5-10m) SIMRAD EM300 bathymetric data allows active tectonic and geomorphic processes to be assessed and quantified at a level of detail previously not possible. While multiple active submarine fault traces have been identified in the Cook Strait by previous studies, quantitative information on their activity has been limited. Cook Strait is structurally characterized by westward dipping thrust faults and E-W trending dextral strike slip faults. The multiple large magnitude high frequency earthquake sources define zones of very high ground shaking expected to contribute to triggering of extensive submarine slope failures. Landslide activity within the canyon system is widespread and represents the dominant mass movement process affecting canyon heads and walls, redistributing material into valley fills. Complexes of large (km3) multi-stepped, deep-seated (100m) translational bedding plane failures represented by gently sloping (<3°) evacuated slide-scar areas with associated blocky valley fill deposits are numerous. Steep catchment heads, channel walls and the leading edges of asymmetric thrust-fault driven anticlines are dominated by gulley and rill systems with associated eroded and/or incipient slump features. Large (107m3+) slide blocks are recognized in discrete failures with quantifiable displacement vectors. Tsunamigenic landslides in this environment are inevitable. This study will provide quantification of landslide models including triggering mechanisms, discrete geometries and

  7. Anti-submarine warfare with continuously active sonar

    NARCIS (Netherlands)

    Vossen, R. van; Beerens, S.P.; Spek, E. van der

    2011-01-01

    Existing surveillance sonar systems for anti-submarine warfare (ASW) use a pulsed sonar deployed at a low duty cycle. Continuously active sonar (CAS) is of special interest since the technique could provide better detection performance than conventional pulsed sonar, and it will provide the operator

  8. Draft Genome Sequence of Methanoculleus sediminis S3FaT, a Hydrogenotrophic Methanogen Isolated from a Submarine Mud Volcano in Taiwan.

    Science.gov (United States)

    Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Lai, Mei-Chin; Wu, Sue-Yao

    2016-04-21

    Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat.

  9. Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece

    Science.gov (United States)

    Bell, Katherine Lynn Croff; Carey, Steven N.; Nomikou, Paraskevi; Sigurdsson, Haraldur; Sakellariou, Dimitris

    2013-06-01

    Hummocky seafloor features were discovered on the eastern flank of Santorini volcano, Greece. Multibeam bathymetric mapping, airgun seismic profiling, side scan sonar survey, and remotely operated vehicle (ROV) dives have been carried out to characterize the nature of the hummocks. These hummocks appear to be composed of several tens of blocks that are up to several hundred meters in diameter, and are the surface expression of a much larger deposit than is observed in the bathymetry. The sidescan and airgun data show that the deposit covers an area of approximately 6 km wide by 20 km long, and is up to 75 m thick. We estimate the total volume of the deposit to be approximately 4.4 × 109 m3. Sampling of these blocks show they are composed of pyroclastic flow deposits produced during the Minoan eruption of Santorini (ca. 3600 BP). We propose that the deposit is the result of a multi-stage landslide event that was caused by one of the several large earthquakes or volcanic eruptions that have occurred in the vicinity of Santorini since the Minoan eruption. One or more of these events likely triggered the destabilization of a part of the eastern flank of Santorini, which led to a debris avalanche, depositing blocks and forming a hummocky terrain at the base of the island's slope. The mass movement later evolved into a turbulent suspension flow that traveled 20 km or more from the presumed initial failure. Given the size of the landslide deposit, it might have a tsunami potentially affecting the islands across the southern Aegean Sea. The understanding of earthquake-landslide dynamics has important implications for hazard assessment in this seismically active, historical, and highly populated region of the world.

  10. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    Science.gov (United States)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~ 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  11. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  12. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  13. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  14. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  15. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  16. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R.; Weaver, R. P. (Robert P.); Mader, Charles L.; Gittings, M. L. (Michael L.)

    2004-01-01

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  17. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  18. Magnetic signature of submarine volcanoes in the Phlegrean Fields-Ischia Ridge (North-Western side of the Bay of Naples, Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Secomandi

    2008-06-01

    Full Text Available This paper presents a study of the Phlegrean Fields-Ischia submarine ridge by the analysis and interpretation of high-resolution aeromagnetic data recently acquired in the Western Procida offshore. The investigated area is located along the ridge connecting Ischia to the Phlegrean Fields and is characterized by the existence of several monogenetic volcanoes aligned on a NE-SW system of faults. The high-resolution magnetic data yielded new information on the area, highlighting particularly the signature of a volcanic body located between Pt. Serra and the Ruommoli shoal. This structure has not been clearly described before and we named it as the Pt. Serra submarine volcano. The computation of the analytic signal and horizontal gradient of the data distinctly located this structure and definined the position of its rims. A 2D modeling and 3D inversion of data provided information on the volcano’s thickness, width and magnetization, disclosing a meaningful igneous body extending down to several hundred meters b.s.l.

  19. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  20. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    Science.gov (United States)

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  1. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    Science.gov (United States)

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  2. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    Directory of Open Access Journals (Sweden)

    Alejandro Ariza

    Full Text Available The submarine volcano eruption off El Hierro Island (Canary Islands on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  3. The submarine volcano eruption off El Hierro Island: Effects on the scattering migrant biota and the evolution of the pelagic communities

    KAUST Repository

    Ariza, Alejandro

    2014-07-21

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. © 2014 Ariza et al.

  4. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    Science.gov (United States)

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  5. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and

  6. Shallow velocity imaging of an active volcano

    Science.gov (United States)

    Fry, B.; Chardot, L.; Jolly, A. D.

    2014-12-01

    We use a linear array of temporary seismometers to derive a shear-wave velocity model of the upper ~1000m of the crater area of White Island, an active volcano in New Zealand. We use noise interferometry to generate dispersion curves and invert these dispersion curves to obtain a layered 1D model. By exploiting the varying interstation distances along the array, we are able to define a strong shallow impedance contrast in the upper 10 meters as well as a depth to 'effective' bedrock at about 100m. We limit the bandwidth of the measured dispersion using a 2-wave cycle approximation and construct a composite dispersion curve. We then invert the dispersion curves with two separate inversion algorithms in an effort to test the validity of using this broadband approach for monitoring active volcanoes. The first method is a non-linear approach and is useful when an a-priori starting model is poorly known or if a velocity inversion is likely. Unfortunately, this type of non-linear inversion is more sensitive to small perturbations in the recovered Green's Functions, which may be due to non-equipartitioning of the wavefield as well as to velocity changes. The second is a linearized and damped LSQR approach which we envision will be more useful for routine monitoring in situations in which the starting model is well defined. In this case, selective regularization can be used to stablize moving time-window inversion. Lastly, our results will be used as input for hydrothermal fluid flow modelling conducted in a concurrent study.

  7. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  8. An authoritative global database for active submarine hydrothermal vent fields

    Science.gov (United States)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  9. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  10. Determining the stress field in active volcanoes using focal mechanisms

    Directory of Open Access Journals (Sweden)

    Bruno Massa

    2016-11-01

    Full Text Available Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs, Campi Flegrei (217 FPSs and Long Valley Caldera (38,000 FPSs. The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  11. Determining the stress field in active volcanoes using focal mechanisms

    Science.gov (United States)

    Massa, Bruno; D'Auria, Luca; Cristiano, Elena; De Matteo, Ada

    2016-11-01

    Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs), Campi Flegrei (217 FPSs) and Long Valley Caldera (38,000 FPSs). The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  12. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  13. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  14. Deep structure and origin of active volcanoes in China

    Institute of Scientific and Technical Information of China (English)

    Dapeng Zhao; Lucy Liu

    2010-01-01

    We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate).The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.

  15. A new active volcano in the Tyrrhenian Sea?

    Directory of Open Access Journals (Sweden)

    M. Sedita

    2006-06-01

    Full Text Available A strong earthquake occurred in 2002 offshore from the northern coast of Sicily in the Southern Tyrrhenian Sea (Italy, and was followed by a series of hundreds of aftershocks. Communications through the fibre-optic cable between Palermo and Rome were interrupted a few hours after the occurrence of the main shock. After the required technical checks, the failure point was found a few kilometres away from the seismic sequence area. A few days later, a specialised cable ship reached the failure area. One side of the cable was completely burnt, while about three kilometres of cable was found locked. Tests on slices of cable showed that the temperature at which the cable was heated went well above 700oC. We can speculate that the earthquakes triggered off the emission of a submarine lava flow that buried, trapped and burnt the fibre-optic cable. The revising of the bathymetric survey made before the cable’s deployment allowed for the identification of a seamount in the vicinity of the rupture. This structure could represent the lava flow’s source volcano.

  16. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  17. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    Science.gov (United States)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  18. RRS "Charles Darwin" Cruise 178, 14 Mar - 11 Apr 2006. 3D seismic acquisition over mud volcanoes in the Gulf of Cadiz and submarine landslides in the Eivissa Channel, western Mediterranean Sea

    OpenAIRE

    Masson, D. G.; C. Berndt

    2006-01-01

    The major aims of Charles Darwin Cruise 178 were to obtain (i) 3D seismic imagery, video transects and swath bathymetry maps of mud volcanoes in the southern Gulf of Cadiz, (ii) video transects across suspected cold water coral reefs in the Alboran Sea and (iii) 3D seismic imagery of submarine landslides in the Eivissa Channel, immediately east of the Balearic Islands in the western Mediterranean Sea. The cruise was in support of the EU Framework 6 ‘HERMES’ project (Hotspot Ecosystem Research...

  19. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  20. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    Science.gov (United States)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  1. Study of Seismic Activity at Ceboruco Volcano, Mexico

    Science.gov (United States)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  2. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    Science.gov (United States)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  3. Aerial monitoring in active mud volcano by UAV technique

    Science.gov (United States)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  4. Quantitative measurements of active Ionian volcanoes in Galileo NIMS data

    Science.gov (United States)

    Saballett, Sebastian; Rathbun, Julie A.; Lopes, Rosaly M. C.; Spencer, John R.

    2016-10-01

    Io is the most volcanically active body in our solar system. The spatial distribution of volcanoes a planetary body's surface gives clues into its basic inner workings (i.e., plate tectonics on earth). Tidal heating is the major contributor to active surface geology in the outer solar system, and yet its mechanism is not completely understood. Io's volcanoes are the clearest signature of tidal heating and measurements of the total heat output and how it varies in space and time are useful constraints on tidal heating. Hamilton et al. (2013) showed through a nearest neighbor analysis that Io's hotspots are globally random, but regionally uniform near the equator. Lopes-Gautier et al. (1999) compared the locations of hotspots detected by NIMS to the spatial variation of heat flow predicted by two end-member tidal heating models. They found that the distribution of hotspots is more consistent with tidal heating occurring in asthenosphere rather than the mantle. Hamilton et al. (2013) demonstrate that clustering of hotspots also supports a dominant role for asthenosphere heating. These studies were unable to account for the relative brightness of the hotspots. Furthermore, studies of the temporal variability of Ionian volcanoes have yielded substantial insight into their nature. The Galileo Near Infrared Mapping Spectrometer (NIMS) gave us a large dataset from which to observe active volcanic activity. NIMS made well over 100 observations of Io over an approximately 10-year time frame. With wavelengths spanning from 0.7 to 5.2 microns, it is ideally suited to measure blackbody radiation from surfaces with temperatures over 300 K. Here, we report on our effort to determine the activity level of each hotspot observed in the NIMS data. We decide to use 3.5 micron brightness as a proxy for activity level because it will be easy to compare to, and incorporate, ground-based observations. We fit a 1-temperature blackbody to spectra in each grating position and averaged the

  5. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-01-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty C-14 dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substanti

  6. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    Science.gov (United States)

    Decker, Robert; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt

  7. Seismicity study of volcano-tectonic in and around Tangkuban Parahu active volcano in West Java region, Indonesia

    Science.gov (United States)

    Ry, Rexha V.; Priyono, A.; Nugraha, A. D.; Basuki, A.

    2016-05-01

    Tangkuban Parahu is one of the active volcano in Indonesia located about 15 km northern part of Bandung city. The objective of this study is to investigate the seismic activity in the time periods of January 2013 to December 2013. First, we identified seismic events induced by volcano-tectonic activities. These micro-earthquake events were identified as having difference of P-wave and S-wave arrival times less than three seconds. Then, we constrained its location of hypocenter to locate the source of the activities. Hypocenter determination was performed using adaptive simulated annealing method. Using these results, seismic tomographic inversions were conducted to image the three-dimensional velocity structure of Vp, Vs, and the Vp/Vs ratio. In this study, 278 micro-earthquake events have been identified and located. Distribution of hypocenters around Tangkuban Parahu volcano forms an alignment structure and may be related to the stress induced by magma below, also movement of shallow magma below Domas Crater. Our preliminary tomographic inversion results indicate the presences of low Vp, high Vs, and low Vp/Vs ratio that associate to accumulated young volcanic eruption products and hot material zones.

  8. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  9. Identifying hazard parameter to develop quantitative and dynamic hazard map of an active volcano in Indonesia

    Science.gov (United States)

    Suminar, Wulan; Saepuloh, Asep; Meilano, Irwan

    2016-05-01

    Analysis of hazard assessment to active volcanoes is crucial for risk management. The hazard map of volcano provides information to decision makers and communities before, during, and after volcanic crisis. The rapid and accurate hazard assessment, especially to an active volcano is necessary to be developed for better mitigation on the time of volcanic crises in Indonesia. In this paper, we identified the hazard parameters to develop quantitative and dynamic hazard map of an active volcano. The Guntur volcano in Garut Region, West Java, Indonesia was selected as study area due population are resided adjacent to active volcanoes. The development of infrastructures, especially related to tourism at the eastern flank from the Summit, are growing rapidly. The remote sensing and field investigation approaches were used to obtain hazard parameters spatially. We developed a quantitative and dynamic algorithm to map spatially hazard potential of volcano based on index overlay technique. There were identified five volcano hazard parameters based on Landsat 8 and ASTER imageries: volcanic products including pyroclastic fallout, pyroclastic flows, lava and lahar, slope topography, surface brightness temperature, and vegetation density. Following this proposed technique, the hazard parameters were extracted, indexed, and calculated to produce spatial hazard values at and around Guntur Volcano. Based on this method, the hazard potential of low vegetation density is higher than high vegetation density. Furthermore, the slope topography, surface brightness temperature, and fragmental volcanic product such as pyroclastics influenced to the spatial hazard value significantly. Further study to this proposed approach will be aimed for effective and efficient analyses of volcano risk assessment.

  10. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  11. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica

    Directory of Open Access Journals (Sweden)

    Luis Miguel Peci

    2014-01-01

    Full Text Available This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARMTM processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (DebianTM as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS described has been deployed on the active Deception Island (Antarctica volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  12. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  13. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  14. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  15. Virtual Investigations of an Active Deep Sea Volcano

    Science.gov (United States)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  16. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  17. TOMO-ETNA experiment at Etna volcano: activities on land

    Directory of Open Access Journals (Sweden)

    Jesús M. Ibáñez

    2016-09-01

    Full Text Available In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 Broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV. This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them. A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.

  18. Vanishing Volcano

    Institute of Scientific and Technical Information of China (English)

    杨树仁

    1995-01-01

    Mauna Loa, the world’s largest active volcano,is sinking into the Pacific Ocean——and it’s taking the main island of Hawaii with it! The problem:The mighty volcano has gained too much weight, says Peter Lipman of the U. S. Geological Survey.

  19. Active control of sound radiated by a submarine in bending vibration

    Science.gov (United States)

    Caresta, Mauro

    2011-02-01

    This paper theoretically investigates the use of inertial actuators to reduce the sound radiated by a submarine hull in bending vibration under harmonic excitation from the propeller. The radial forces from the propeller are tonal at the blade passing frequency and are transmitted to the hull through the stern end cone. The hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is closed by end-plates and conical end caps. The actuators are arranged in circumferential arrays and attached to the prow end cone. Both Active Vibration Control and Active Structural Acoustic Control are analysed. The inertial actuators can provide control forces with a magnitude large enough to reduce the sound radiated by the vibrations of the hull in some frequency ranges.

  20. Environment in Submarine Compartments

    Directory of Open Access Journals (Sweden)

    Anil K. Shrivastava

    1987-04-01

    Full Text Available The crew operating in the confined environment of a submarine are subjected to discomfort as a result of physiological stress caused by toxic substances which are generated due to engineering, operational and other human activities. The physioiogical problems of men under prolonged confinement in a submarine have been reviewed. Data on air pollutants monitored during 'cruise' and 'at rest' conditions inside a submarine are given. Threshold limit value (TLV of trace substances in the confined environment has been discussed. The merits of air purification and air revitalization systems currently employed for control of air pollution have been brought out.

  1. Fifteen years of thermal activity at Vanuatu's volcanoes (2000-2015) revealed by MIROVA

    Science.gov (United States)

    Coppola, D.; Laiolo, M.; Cigolini, C.

    2016-08-01

    The Vanuatu archipelago consists of 80 islands and hosts 5 subaerial volcanoes (Yasur, Lopevi, Ambrym, Aoba and Gaua) that have shown sign of activity during the past decade. In this contribution we provide a 15 years-long datasets (2000-2015) of the thermal activity recorded at these active volcanoes by means of MIROVA (Middle InfraRed Observation of Volcanic Activity) a new volcanic hotspot detection system based on MODIS data. The analyzed volcanoes are characterized by a spectrum of volcanic activities whose thermal signature has been tracked and carefully analyzed. These include strombolian-vulcanian explosions at Yasur, lava flows at Lopevi, lava lakes at Ambrym, surtseyan-type eruptions within the Voui crater lake of Aoba and ash-dominated eruptions with strong degassing at Gaua. The collected data reveal several details of the long term eruptive dynamics at single sites such as a monthly long pulse in thermal emissions at Yasur volcano as well as at the two active craters of Ambrym (Benbow and Marum). Heating cycles within Aoba crater lake and intermittent pressurized eruptions at Lopevi volcano has also been detected and shed light in the eruptive dynamics of the analyzed volcanoes. In addition we were able to track a two years long intensification of thermal output at Benbow crater (Ambrym) that preceded the occurrence of the first intra-caldera eruptions of this volcano since 1989. We emphasize how the data provided by MIROVA represent a new, safe and affordable method for monitoring in near-real time a large spectrum of volcanic activities taking place at Vanuatu and other volcanic areas.

  2. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    Science.gov (United States)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  3. Submarines against Submarines (Selected Articles),

    Science.gov (United States)

    1979-07-05

    vowels , and after b, b; t 1lse Whre. . ."r. w itten as ! in Russian, transliterate as yL cr . RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS . 1-1 English...submarines. The assimilation of postwar scientific and technological achieve- ments into submarine construction has greatly enlarged the role and

  4. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  5. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy)

    Science.gov (United States)

    Della Seta, Marta; Marotta, Enrica; Orsi, Giovanni; de Vita, Sandro; Sansivero, Fabio; Fredi, Paola

    2012-01-01

    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.

  6. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Bai Zhida; Tian Mingzhong; Wu Fadong; Xu Debing; Li Tuanjie

    2005-01-01

    The volcanic cluster in Arshan, Inner Mongolia, is located in the west of the middle section of the Da Hinggan Mountains. There are more than forty Cenozoic volcanoes among which the Yanshan Volcano and Gaoshan Volcano are the active ones in broad sense and basaltic central vents. Arshan is a newly found volcanic active region in the Chinese continent. The volcanoes are perfectly preserved and composed of cinder cones, pyroclastic sheets and lava flows. Their cones are grand and the Gaoshan cone is about 362m high, and the depth of the Yanshan crater is about 140m. The pyroclastic sheet is mainly made up of scoria, and the distribution area of scoria with thickness more than 1m is about 27km2. There are two Carbonized-wood sites in the pyroclastic sheet and the 14C datings indicate ages of 1990 ± 100a B. P and 1900 ±70a B. P, which are rectified by dendrodating. Basaltic lava flows are uncovered, and they change from pahoehoe in the early stage to aa in the later stage. There are lots of perfect fumarolic cones, fumarolic dishes and lava tumulus in the front zones. The spread of lava flow is controlled by the local topography and its main body flowed northwestwards covering the Holocene rivers and swamp deposits and blocked up the Halahahe river and its branches to create six lava-dam lakes. For these distinguishing features, Arshan volcanic cluster could be called another natural "Volcano Museum".

  7. Acoustic scattering from mud volcanoes and carbonate mounds.

    Science.gov (United States)

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  8. Volcano collapse along the Aleutian Ridge (western Aleutian Arc

    Directory of Open Access Journals (Sweden)

    C. Montanaro

    2011-03-01

    Full Text Available The Aleutian Ridge, in the western part of the Aleutian Arc, consists of a chain of volcanic islands perched atop the crest of a submarine ridge with most of the active Quaternary stratocones or caldera-like volcanoes being located on the northern margins of the Aleutian Islands. Integrated analysis of marine and terrestrial data resulted in the identification and characterization of 17 extensive submarine debris avalanche deposits from 11 volcanoes. Two morphological types of deposits are recognizable, elongate and lobate, with primary controls on the size and distribution of the volcanic debris being the volume and nature of material involved, proportion of fine grained material, depth of emplacement and the paleo-bathymetry. Volume calculations show the amount of material deposited in debris avalanches is as much as three times larger than the amount of material initially involved in the collapse, suggesting the incorporation of large amounts of submarine material during transport. The orientation of the collapse events is influenced by regional fault systems underling the volcanoes. The western Aleutian Arc has a significant tsunamigenic potential and communities within the Aleutian Islands and surrounding areas of the North Pacific as well as shipping and fishing fleets that cross the North Pacific may be at risk during future eruptions in this area.

  9. Comparison of submarine gully morphologies in passive and active margin settings

    Science.gov (United States)

    Jackson, C.; Shumaker, L.; Johnstone, S.; Graham, S. A.

    2015-12-01

    Passive and active tectonic margins have inherently different hypsometry, due to local patterns of deformation and subsequent impacts on the style of sedimentation. One way we can analyze and compare the two settings is through observation of submarine gullies, which are small channel features that form along the continental slope as it descends to the ocean floor. By documenting the geometries of gullies that have formed on passive margins and gullies that have formed on active margins, we attempt to distinguish differences in gully morphologies in these two settings. We manually mapped over 600 gullies and interfluves from shaded relief and contour maps generated from bathymetric data across the globe, including the coast of California, the Beaufort Sea, and the Black Sea. We extrapolated and plotted elevation profiles of the gullies along their downslope distance, and compared a range of gully properties, such as length, spacing, and slope, to look at the correlations among those elements of gullies and their tectonic setting. We find that gullies forming on active margins show the greatest variability in their slopes, exhibiting both the steepest and the shallowest slopes of the dataset. The slopes of the passive margin gullies fall within the range of the active margin gully slopes, but interestingly, we note patterns in the ranges of gully steepness at different localities. These results differ from our our anticipation that active margin gullies are steeper than passive margin gullies, but suggest that gullies in all settings display a variety of morphologies. Additional mapping of active margin gullies will better determine if there are morphological differences between the two settings.

  10. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    Science.gov (United States)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  11. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  12. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  13. Petrology and Geochemistry of Jinlongdingzi Active Volcano—the Most Recent Basaltic Explosive Volcano at Longgang

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 随建立; 等

    2000-01-01

    The Jinlongdingzi active volcano erupted before 1600a,and it is the latest basaltic explosive volcano at Longgang Volcano.Its volcanic products include the Jinlongdingzi Volcanic cone(elevation 999.4m),the lava flow and the widely-spread volcanic pyroclastic sheet(sihai Pyroclastic Sheet),Jinlongdingzi volcanic rocks are trachybasalts with very similar REE patterns and incompatible element patterns,and their 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704846 ot 0.704921 and from 0.512619 to 0.512646,respectively.It is revealed that the trachybasalt has the character of primary magma derived directly from mantle sources with very little evolution and crust contamination during its ascending.The younger mantle xenoliths demonstrate that the mantle source of the Jinlongdingzi Volcao is hydrous,with relatively low temperature.

  14. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  15. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  16. Ultra-high Resolution Mapping of the Inner Crater of the Active Kick'em Jenny Volcano

    Science.gov (United States)

    Hart, L.; Scott, C.; Tominaga, M.; Smart, C.; Vaughn, I.; Roman, C.; Carey, S.; German, C. R.; Participants, T.

    2015-12-01

    We conducted high-resolution geological characterization of a 0.015km^2 region of the inner crater of the most active submarine volcano in the Caribbean, Kick'em Jenny, located 8 km off Grenada in the Lesser Antilles Island Arc. We obtained digital still images and microbathymetery at an altitude of 3 m from the seafloor by using stereo cameras and a BlueView system mounted on Remotely Operated Vehicle (ROV) Hercules during the NA054 cruise on E/V Nautilus (Sept. - Oct. 2014). The seafloor images were processed to construct 2-D photo mosaics of the survey area using Standard Hercules Imaging Suite. We systematically classified the photographed seafloor geology based on the distribution of seafloor morphology and the observable rock fragment and outcrop sizes. The center of the crater floor shows a smooth, coherent texture with little variation in sea floor morphology. From immediately outside this area toward the crater rim, we observe an extensive area covered with outcrops, small rocks, and sediment: and within this area, (1) the north section is partially covered by uneven outcrops with elongated lineaments and a course, rugged seafloor with individual rock fragments observable; (2) the middle section contains high variability and heterogeneity in seafloor morphology in a non-systematic manner; and (3) overall, the southern most section displays subdued seafloor features both in space and variability compared to the other areas. The distributions of rock fragments were classified into four distinct sizes. We observe: (i) little variation in size distribution near the center of the crater floor; and (ii) rock fragment size increasing toward the rim of the crater. To obtain a better understanding of the link between variation in seafloor morphology, rock size distribution, and other in situ processes, we compare our observations on the digital photo mosaic to bathymetry data and ROV visuals (e.g. vents and bacterial mats).

  17. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  18. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  19. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  20. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  1. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    Science.gov (United States)

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  2. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  3. Collocated infrasound/airglow observations of eruptive activity at Etna volcano

    Science.gov (United States)

    Marchetti, Emanuele; Ripepe, Maurizio; Wüst, Sabine; Schmidt, Carsten; Kramer, Ricarda; Bittner, Michael

    2014-05-01

    In the framework of the FP7 ARISE design study project, a collocated infrasound and airglow observation campaign has been organized on Etna volcano. The experiment, carried out during the first 2 years of the project (January 2012-December 2013), consists of simultaneous observations with an infrasound array, operated by UNIFI, and a GRIPS airglow spectrometers, operated by DLR. The infrasound array, deployed on the eastern flank of the volcano at ~2000 m elevation and at a distance of ~5 km from the active craters, allows to detect and analyse infrasound radiated by eruptive activity from Etna volcano and provides the detailed time history of the infrasonic pressure related to the Etna explosive activity. The GRIPS spectrometer is deployed in the city of Catania at a distance of ~ 30 km from the craters and targeting the sky above the summit craters, allowing to measure temperature fluctuations of the airglow layer and thus to retrieve pressure fluctuations in the mesopause region. Given the high efficiency of the Etna volcano to radiate infrasound, the campaign aimed to study the infrasound propagation from the ground to the high atmosphere, as well as to investigate relationship between the eruptive plume and the atmospheric dynamics. Mass injection into a stratified atmosphere results into gravity waves controlled by the Brunt-Vaisala frequency. Here volcanic eruption, able to inject rapidly a large quantity of hot material into a stratified atmosphere is able to excite gravity waves into the atmosphere, that in turn will control the evolution of the eruptive umbrella clouds. Moreover, gravity waves generated by atmospheric dynamics can somehow control the evolution and dispersal of eruptive plume. Gravity waves during the 2012-2013 period are detected from GRIPS measurements, and detailed infrasonic time history is derived from infrasound observation. Here activity from Etna volcano during the experiment was very intense, and was punctuated by 30 lava fountain

  4. Submarine Communications .

    Directory of Open Access Journals (Sweden)

    H.B. Singh

    1993-01-01

    Full Text Available Submarines operating in deep water are virtually cut off from the outer world. It becomes very important and essential to convey survivable and critical information to the submarine during the time it operates under water. Conventional means of radio communication do not serve any useful purpose as the higher frequencies get attenuated very sharply in sea water. At VLF band, which is presently being used by most of the world Navies, signal can penetrate only upto 8-10 m of depth. This depth is not sufficient under hostile environment. ELF is another band where listening depth is around 100 m but data rate is very low. This paper summarizes the various means of communication used to send messages to submarine while cruising at various depths. It seems that in the near future blue-green laser is going to be the vital means of sending large information to a submarine operating much deeper (500-700 m with unrestricted speed.

  5. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    Science.gov (United States)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  6. Analysis of the seismicity activity of the volcano Ceboruco, Nayarit, Mexico

    Science.gov (United States)

    Rodriguez-Ayala, N. A.; Nunez-Cornu, F. J.; Escudero, C. R.; Zamora-Camacho, A.; Gomez, A.

    2014-12-01

    The Ceboruco is a stratovolcano is located in the state of Nayarit,Mexico (104 ° 30'31 .25 "W, 21 ° 7'28 .35" N, 2280msnm). This is an volcano active, as part of the Trans-Mexican Volcanic Belt, Nelson (1986) reports that it has had activity during the last 1000 years has averaged eruptions every 125 years or so, having last erupted in 1870, currently has fumarolic activity. In the past 20 years there has been an increase in the population and socio-economic activities around the volcano (Suárez Plascencia, 2013); which reason the Ceboruco study has become a necessity in several ways. Recent investigations of seismicity (Rodríguez Uribe et al., 2013) have classified the earthquakes in four families Ceboruco considering the waveform and spectral features. We present analysis included 57 days of seismicity from March to October 2012, in the period we located 97 events with arrivals of P and S waves clear, registered in at least three seasons, three components of the temporal network Ceboruco volcano.

  7. The Activity Of The Colima Volcano From 1999 To The 2003

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez-Cornu, F.; Reyes-Davila, G.; Diaz-Torres, J.

    2004-12-01

    The Colima Volcano has shown intense activity since the 10th of February 1999. This explosive activity of 1999 and 2000 generated an elliptical crater of 260 x 265 m, which began to be filled in by a Dome from October 2001, at February 2002 the volume of the Dome was of approximately 2x106 m3 spreading over the edges of the crater and starting to flow during the following 11 months, in this period small lobes formed on the flanks of the volcano. Constants landslides originated in these lobes filled ravines of San Antonio, El Cordovan, El Muerto, El Cafesito and Atenquique (subsequent to the earthquake of January of the 2003) with non consolidated materials, increasing the hazard of lahares during the rainy season. Beginning February 2003 the explosive activity increased, most significantly from April to August, when the plumes reached heights over 2000 meters above the crater, occasionally small pyroclastic flows were observed. The explosive events continue to date. We mapped the most significant morphological changes produced at the summit by the activity described, using three photogrammetric flights conducted by INEGI (2003) and CARTODATA (2002 and 2003). These were data complemented by a very large number of photographs taken on helicopter flights undertaken during these months. Both the photographs and the digital mapping have provided detailed information to quantify the geomorphologic evolution of the superior section of the volcano, in the course of the last five years.

  8. Seismicity at Uturuncu Volcano, Bolivia: Volcano-Tectonic Earthquake Swarms Triggered by the 2010 Maule, Chile Earthquake and Non-Triggered Background Activity

    Science.gov (United States)

    Christensen, D. H.; Chartrand, Z. A.; Jay, J.; Pritchard, M. E.; West, M. E.; McNutt, S. R.

    2010-12-01

    We find that the 270 ky dormant Uturuncu Volcano in SW Bolivia exhibits relatively high rates of shallow, volcano-tectonic seismicity that is dominated by swarm-like activity. We also document that the 27 February 2010 Mw 8.8 Maule, Chile earthquake triggered an exceptionally high rate of seismicity in the seconds to days following the main event. Although dormant, Uturuncu is currently being studied due to its large-scale deformation rate of 1-2 cm/yr uplift as revealed by InSAR. As part of the NASA-funded Andivolc project to investigate seismicity of volcanoes in the central Andes, a seismic network of 15 stations (9 Mark Products L22 short period and 6 Guralp CMG40T intermediate period sensors) with an average spacing of about 10 km was installed at Uturuncu from April 2009 to April 2010. Volcano-tectonic earthquakes occur at an average rate of about 3-4 per day, and swarms of 5-60 events within a span of minutes to hours occur a few times per month. Most of these earthquakes are located close to the summit at depths near and above sea level. The largest swarm occurred on 28 September 2009 and consisted of 60 locatable events over a time span of 28 hours. The locations of volcano-tectonic earthquakes at Uturuncu are oriented in a NW-SE trend, which matches the dominant orientation of regional faults and suggests a relationship between the fault system at Uturuncu and the regional tectonics of the area; a NW-SE trending fault beneath Uturuncu may serve to localize stresses that are accumulating over the broad area of uplift. Based on automated locations, the maximum local magnitude of these events is approximately M = 4 and the average magnitude is approximately M = 2. An initial estimate of the b-value is about b = 1.2. The Mw 8.8 Maule earthquake on 27 February 2010 triggered hundreds of local volcano-tectonic events at Uturuncu. High-pass filtering of the long period surface waves reveals that the first triggered events occurred with the onset of the Rayleigh

  9. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  10. Repeated remobilisation of submarine landslide debris on an active subduction margin interpreted from multibeam bathymetry and multichannel seismic data

    Science.gov (United States)

    Mountjoy, J. J.; Barnes, P. M.; McKean, J.; Pettinga, J. R.

    2008-12-01

    EM300 multibeam and multichannel seismic data reveal a 230 square kilometre submarine landslide complex which exhibits many of the characteristic features of equivalent terrestrial creeping earthflow complexes. Slope failures are sourced from the shelf edge/upper slope of the Poverty Bay reentrant on the active Hikurangi subduction margin of New Zealand where tectonic deformation, via major thrust faults with slip rates of c. 3-4 mm/yr, exerts a controlling influence on seafloor physiography. Individual landslides within this submarine complex are up to 14 km long over a vertical elevation drop of 700 m. Debris streams are in excess of 2 km wide with a debris thickness of 100 m. While multibeam data is limited to c. 10 m resolution, the scale of submarine landslide features allows us to resolve internal debris detail equivalent to terrestrial landslide examples using terrestrial techniques (e.g. airborne lidar). DEM derivative surface roughness techniques are employed to delineate the geomorphic expression of features including active and abandoned lateral shears, and contractional and extensional deformation of the landslide debris. From these interpretations multiple internal failures are recognised along the length of the landslide debris. Debris deformation is also imaged in high fold multichannel seismic data and correlated to the imaged surface geomorphic features, providing insight into the failure mechanics of the landslides. Failures initiate and evolve within the quasi-stable prograding sediment wedge built onto the upper slope during lowstand sealevels. Landslides within the greater complex are at different stages of development providing information on their spatial and temporal evolution headward and laterally along the transition from shelf to upper slope margin. We infer that failures are triggered and evolve in response to sealevel rise, and/or the frequent occurrence large earthquakes along the margin.

  11. Explosive activity of turrialva volcano (costa rica) in 2010-2016

    OpenAIRE

    Guillermo E. Alvarado

    2016-01-01

    The most recent eruptive activity of Turrialba volcano began on the 5th of January 2010, after more than one century of dormancy. The fragmentation process and aerodynamic behavior of ash from Turrialba vulcanian eruptions were investigated by combining grain-size, petrography, mineralogy, Scanning Electron Microscopy (SEM) and Energy Dispersive System (EDS) analyses. The ash components include by variable percentages of accessory fresh (no necessary juvenile) to hydrothermally altered lithic...

  12. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  13. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data.

    Science.gov (United States)

    Del Negro, Ciro; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio

    2013-10-30

    Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 - December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption.

  14. Submarine Atmospheres

    Science.gov (United States)

    1990-07-01

    antimutagenesis. Obviously, as a lot of you know, extracts of many, many vegetables , especially cruciferous vegetables , contain a lot of antimutagenic...accidents, suicides, and hcmocldes) and cancer . The accidental deaths of enlisted veterans were higher among those with history of demotlons or duty...aboard fast-attack submarines. There was clustering of cancer deaths in the year immediately following discharge from the Navy for medical disability

  15. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    Science.gov (United States)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  16. Insights into the 2011-2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity

    Science.gov (United States)

    Ibáñez, J. M.; De Angelis, S.; Díaz-Moreno, A.; Hernández, P.; Alguacil, G.; Posadas, A.; Pérez, N.

    2012-08-01

    The purpose of this work is to gain insights into the 2011-2012 eruption of El Hierro (Canary Islands) by mapping the evolution of the seismic b-value. The El Hierro seismic sequence offers a rather unique opportunity to investigate the process of reawakening of an oceanic intraplate volcano after a long period of repose. The 2011-2012 eruption is a submarine volcanic event that took place about 2 km off of the southern coast of El Hierro. The eruption was accompanied by an intense seismic swarm and surface manifestations of activity. The earthquake catalogue during the period of unrest includes over 12 000 events, the largest with magnitude 4.6. The seismic sequence can be grouped into three distinct phases, which correspond to well-separated spatial clusters and distinct earthquake regimes. The estimated b-value is of 1.18 ± 0.03, and a magnitude of completeness of 1.3, for the entire catalogue. B is very close to 1.0, which indicates completeness of the earthquake catalogue with only minor departures from the linearity of Gutenberg-Richter frequency-magnitude distribution. The most straightforward interpretation of this result is that the seismic swarm reached its final stages, and no additional large magnitude events should be anticipated, similarly to what one would expect for non-volcanic earthquake sequences. The results, dividing the activity in different phases, illustrate remarkable differences in the estimate of b-value during the early and late stages of the eruption. The early pre-eruptive activity was characterized by a b-value of 2.25. In contrast, the b-value was 1.25 during the eruptive phase. Based on our analyses, and the results of other studies, we propose a scenario that may account for the observations reported in this work. We infer that the earthquakes that occurred in the first phase reflect magma migration from the upper mantle to crustal depths. The area where magma initially intruded into the crust, because of its transitional nature

  17. Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.

    2012-04-01

    Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to

  18. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  19. Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)

    Science.gov (United States)

    Arellano, S.; Galle, B.; Melnikov, D.

    2012-04-01

    Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these

  20. Dendrogeomorphic reconstruction of lahar activity and triggers: Shiveluch volcano, Kamchatka Peninsula, Russia

    Science.gov (United States)

    Salaorni, E.; Stoffel, M.; Tutubalina, O.; Chernomorets, S.; Seynova, I.; Sorg, A.

    2017-01-01

    Lahars are highly concentrated, water-saturated volcanic hyperconcentrated flows or debris flows containing pyroclastic material and are a characteristic mass movement process on volcanic slopes. On Kamchatka Peninsula (Russian Federation), lahars are widespread and may affect remote settlements. Historical records of past lahar occurrences are generally sparse and mostly limited to events which damaged infrastructure on the slopes or at the foot of volcanoes. In this study, we present a tree-ring-based reconstruction of spatiotemporal patterns of past lahar activity at Shiveluch volcano. Using increment cores and cross sections from 126 Larix cajanderi trees, we document 34 events covering the period AD 1729-2012. Analyses of the seasonality of damage in trees reveal that 95% of all lahars occurred between October and May and thus point to the predominant role of the sudden melt of the snow cover by volcanic material. These observations suggest that most lahars were likely syn-eruptive and that lahar activity is largely restricted to periods of volcanic activity. By contrast, rainfall events do not seem to play a significant role in lahar triggering.

  1. Monitoring Monitoring Evolving Activity at Popocatepetl Volcano, Mexico, 2000-2001

    Science.gov (United States)

    Martin-DelPozzo, A.; Aceves, F.; Bonifaz, R.; Humberto, S.

    2001-12-01

    After 6 years of small eruptions, activity at Mexico's 5,452m high Popocatepetl Volcano in central Mexico, peaked in the December 2000-January 2001 eruptions. Precursors included an important increase in seismicity as well as in magmatic components of spring water and small scale deformation which resulted in growth of a new crater dome from January 16 on. Evacuation of the towns nearest the volcano over Christmas was decided because of the possibility of pyroclastic flows. During the previous years, crater dome growth, contraction and explosive clearing has dominated the activity. The January 22 eruption produced an eruption column approximately 17km high with associated pyroclastic flows. Ejecta was composed of both basic and evolved scoria and pumice and dome lithics. A large proportion of the juvenile material was intermediate between these 2 endmenbers (59-63percent SiO2 and 3.5 to 5.5 MgO) consistent with a small basic pulse entering a more evolved larger batch of magma. The January eruption left a large pit which has been partially infilled by another crater dome this August 2001.

  2. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2010-03-01

    Full Text Available The composition of non-methane organic volatile compounds (VOCs determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  3. Ionospheric Disturbances Recorded by DEMETER Satellite over Active Volcanoes: From August 2004 to December 2010

    Directory of Open Access Journals (Sweden)

    Jacques Zlotnicki

    2013-01-01

    Full Text Available The study analyzes electromagnetic data and plasma characteristics in the ionosphere recorded by DEMETER microsatellite over erupting volcanoes during the life of the mission: from August 2004 to December 2010. The time window in which anomalous changes are searched brackets the onset of the eruptive activity from 60 days before to 15 days after the period during which most pre- and posteruptive phenomena are amplified. 73 volcanoes have entered into eruption. For 58 of them, 269 anomalies were found in relation to 89 eruptions. They are distributed in 5 types, similarly to the ones observed above impeding earthquakes. The two main types are electrostatic turbulence (type 1, 23.4% and electromagnetic emissions (type 2, 69.5%. The maximum number of types 1 and 2 anomalies is recorded between 30 and 15 days before the surface activity, corresponding to the period of accelerating phenomena. The amount of anomalies seems related to the powerfulness of the eruptions. The appearance seems dependant on the likelihood to release bursts of gases during the preparatory eruptive phase. For the huge centenary October 26, 2010, Merapi (Indonesia eruption, 9 ionospheric type 2 anomalies appeared before the eruption. They mainly emerge during the mechanical fatigue stage during which microfracturing occurs.

  4. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    Science.gov (United States)

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  5. Santorini Volcano

    Science.gov (United States)

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  6. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  7. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    Science.gov (United States)

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-11-11

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  8. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  9. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  10. Some insights about the activity of the Ceboruco Volcano (Nayarit, Mexico) from recent seismic low-frequency activity

    Science.gov (United States)

    Rodríguez Uribe, María Carolina; Núñez-Cornú, Francisco Javier; Nava Pichardo, Fidencio Alejandro; Suárez-Plascencia, Carlos

    2013-10-01

    The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the western end of the Mexican volcanic belt, near several population centers and by the side of a strategic highway. During the last 1,000 years it has had, on the average, one eruption every 125 years. It last eruptive activity began in 1870, and during the following 5 years it presented superficial activity including vapor emissions, ash falls, and rhyodacitic lava flows along the southeast side. A data set consisting of 139 low-frequency volcanic-type earthquakes, recorded from March 2003 to July 2008 at the CEBN triaxial short period digital station on the southwestern side of the volcano, was classified according to waveform and spectral characteristics into four families: short duration, extended coda, bobbin, and modulated amplitude. Approximate hypocentral locations indicate that there is no particular location for events of any family, but rather that all events occur at different points within the volcano. The presence of ongoing volcanic-earthquake activity together with the ongoing vapor emissions indicate that the Ceboruco volcano continues to be active, and the higher occurrence rates of short-duration events, as compared with those for the other families, could indicate an increase in the stress in the volcanic edifice. This apparent stress increase, together with the fact that the last eruption occurred 143 years ago, tell us that the Ceboruco may be approaching a critical state, and may represent a hazard to the surrounding communities and economic activities.

  11. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    Science.gov (United States)

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  12. Fiber Bragg grating strain sensors to monitor and study active volcanoes

    Science.gov (United States)

    Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro

    2016-04-01

    Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.

  13. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  14. A Preliminary Study of the Types of Volcanic Earthquakes and Volcanic Activity at the Changbaishan Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    Ming Yuehong; Su Wei; Fang Lihua

    2006-01-01

    Since 2002, a significant increase in seismicity, obvious ground deformation and geochemical anomalies have been observed in the Changbaishan Tianchi volcanic area. A series felt earthquakes occur near the caldera, causing great influence to society. In this paper, the types of volcanic earthquakes recorded by the temporal seismic network since 2002 have been classified by analyzing the spectrum, time-frequency characteristics and seismic waveforms at different stations. The risk of volcano eruptions was also estimated. Our results show that almost all earthquakes occurring in Tianchi volcano are volcanic-tectonic earthquakes. The low frequency seismic waveforms observed at a few stations may be caused by local mediums, and have no relation with long-period events. Although the level of seismicity increased obviously and earthquake swarms occurred more frequently than before, we considered that the magma activity is still in its early stage and the eruption risk of Changbaishan Tianchi volcano is still iow in the near future.

  15. Impact of volcanic fluoride and SO/sub 7/ emissions from moderated activity volcanoes on the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J.P.; Plebin, R.; Faivre-Pierret, R.X.

    1984-01-01

    Studies in the regions of the volcanoes Etna (Italy) and Masaya (Nicaragua) show that the continuous emissions of gaseous pollutants (HF and SO/sub 2/) from moderated activity volcanoes causes a chronic pollution in the surrounding vegetation with certain economical and ecological consequences. Reciprocally the measure of the pollutants in the plants growing in volcanic regions may be a simple and fast method to investigate some characteristics of the volcanic plume: for example, intensity of the emissions of gas, direction and extent of the plume. 12 references.

  16. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    Science.gov (United States)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  17. Observations of Active Submarine Groundwater Discharge on a Shallow Coastal Sea in Yucatan, Mexico

    Science.gov (United States)

    Marino, I.; Vera, I.; Enriquez, C.; Capurro, L.; Kantun, C.

    2008-12-01

    This contribution presents detailed measurements of fresh water fluxes from an energetic submarine groundwater discharge (SGD) located on the coastal ocean on Dzilam Bravo, Yucatan, Mexico. Due to the geologic characteristics of the site (karstic geology), inland groundwater flows through karstic conduits and exits at sea. Time series of fluxes measured by an acoustic velocimeter (VECTOR), temperature and salinity are correlated to the variability imposed by tides, currents, waves and rainfall. The contribution of SGD is a determining factor in the dynamics of marine ecosystems because it provides fresh water, nutrients, contaminants and other solutes. For this reason it is important to increase the knowledge about its dynamics and mixing processes that take place in these kind of environments. To study the spacial variability of thermohaline conditions, an area of 1 by 1 km (which includes five freshwater springs) was measured with a vessel towed CTD during drough and rainfall seasons. The results reveal that the flow conditions for the main spring (X'buya-Ha) is controlled by sea level variations, which include tides and weather effects. The outflow velocity is about 0.5 m/s during dry season when the discharge is weak, and about 3 m/s during periods of intense rainfall, when the discharge is strong. Also, it was noted that outflow direction changes as a result of high and low tides along a day. Results will be presented on the spatial influence as well, showing that the effect of the springs is very localised during high tide, but expands considerably during low tides.

  18. Submarine Medicine Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Submarine Medicine Team conducts basic and applied research on biomedical aspects of submarine and diving environments. It focuses on ways to optimize the health...

  19. The Pulse of the Volcano: Discovery of Episodic Activity at Prometheus on Io

    Science.gov (United States)

    Davies, A. G.

    2003-01-01

    The temporal behaviour of thermal output from a volcano yields valuable clues to the processes taking place at and beneath the surface. Galileo Near Infrared Mapping Spectrometer (NIMS) data show that the ionian volcanoes Prometheus and Amirani have significant thermal emission in excess of nonvolcanic background emission in every geometrically appropriate NIMS observation. The 5 micron brightness of these volcanoes shows considerable variation from orbit to orbit. Prometheus in particular exhibits an episodicity that yields valuable constraints to the mechanisms of magma supply and eruption. This work is part of an on-going study to chart and quantify the thermal emission of Io's volcanoes, determine mass eruption rates, and note eruption style.

  20. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  1. Quaternary volcano-tectonic activity in the Soddo region, western margin of the Southern Main Ethiopian Rift

    NARCIS (Netherlands)

    Corti, G.; Sani, F.; Philippon, M.; Sokoutis, D.; Willingshofer, E.; Molin, P.

    2013-01-01

    We present an analysis of the distribution, timing, and characteristics of the volcano-tectonic activity on the western margin of the Southern Main Ethiopian Rift in the Soddo area (latitudes between ~7°10'N and ~6°30'N). The margin is characterized by the presence of numerous normal faults, with li

  2. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    Science.gov (United States)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Bagnardi, Marco; Acocella, Valerio

    2016-04-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we use numerical models to show that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observation. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control the shallow accumulation of magma in stacked sills, consistently with observations as well as the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  3. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    Science.gov (United States)

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  4. International Volcanological Field School in Kamchatka and Alaska: Experiencing Language, Culture, Environment, and Active Volcanoes

    Science.gov (United States)

    Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.

    2003-12-01

    The Kamchatka State University of Education, University of Alaska Fairbanks, and Hokkaido University are developing an international field school focused on explosive volcanism of the North Pacific. An experimental first session was held on Mutnovsky and Gorely Volcanoes in Kamchatka during August 2003. Objectives of the school are to:(1) Acquaint students with the chemical and physical processes of explosive volcanism, through first-hand experience with some of the most spectacular volcanic features on Earth; (2) Expose students to different concepts and approaches to volcanology; (3) Expand students' ability to function in a harsh environment and to bridge barriers in language and culture; (4) Build long-lasting collaborations in research among students and in teaching and research among faculty in the North Pacific region. Both undergraduate and graduate students from Russia, the United States, and Japan participated. The school was based at a mountain hut situated between Gorely and Mutnovsky Volcanoes and accessible by all-terrain truck. Day trips were conducted to summit craters of both volcanoes, flank lava flows, fumarole fields, ignimbrite exposures, and a geothermal area and power plant. During the evenings and on days of bad weather, the school faculty conducted lectures on various topics of volcanology in either Russian or English, with translation. Although subjects were taught at the undergraduate level, lectures led to further discussion with more advanced students. Graduate students participated by describing their research activities to the undergraduates. A final session at a geophysical field station permitted demonstration of instrumentation and presentations requiring sophisticated graphics in more comfortable surroundings. Plans are underway to make this school an annual offering for academic credit in the Valley of Ten Thousand Smokes, Alaska and in Kamchatka. The course will be targeted at undergraduates with a strong interest in and

  5. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    Science.gov (United States)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  6. Active tectonic structures and submarine landslides offshore southern Apulia (Italy): a new scenario for the 1743 earthquake and subsequent tsunami

    Science.gov (United States)

    Milia, Alfonsa; Iannace, Pietro; Torrente, Maurizio M.

    2017-01-01

    The southern Apulia foreland recorded a strong (Imax=X MCS) earthquake in 1743 and a concomitant tsunami, which struck the southeastern Salento coast. The seismo-genetic fault and the triggering factors of the tsunami are unknown. Three-dimensional interpretation of multichannel seismic profiles calibrated by wells using a GIS software enabled the recognition of the stratigraphic succession, structural framework, and submarine landslides offshore Salento. A thin Pliocene unit overlying the Mesozoic-Cenozoic substrate is covered by a Pleistocene succession separated by a Middle Pleistocene unconformity that formed during the regional uplift of Salento. The latter gave rise to the morphologic conditions for the deposition of a prograding wedge off the Salento coast, with a shelf break located at 150 m depth. Normal faults, mainly oriented NW-SE, displaced the early Lower Pleistocene succession and are buried by younger deposits. Since the Middle Pleistocene, a compressional event gave rise to the Apulia uplift and large folds and basement-involved reverse faults that are active in the eastern part of Apulia. A huge (58 km3) slump affecting the Middle Pleistocene prograding wedge has been documented offshore the southeast coast of Salento. The proposed geological scenario of the 1743 earthquake and subsequent tsunami is (1) an initial strong earthquake (Imax=X MCS) associated with a thrust fault located in the eastern sector of the Apulia offshore, (2) a shacking-induced large-volume slump offshore Otranto, and (3) landslide-triggered tsunamis that struck the Salento coast.

  7. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  8. The heartbeat of the volcano: The discovery of episodic activity at Prometheus on Io

    Science.gov (United States)

    Davies, A.G.; Wilson, L.; Matson, D.; Leone, G.; Keszthelyi, L.; Jaeger, W.

    2006-01-01

    The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (??m) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ???0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ???140 m3 s-1, and an averaged volumetric flux (eruption rate) of ???49 m3 s-1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ???2-3 km and a maximum depth of ???14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at

  9. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  10. Obstacle avoidance sonar for submarines

    Science.gov (United States)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  11. Reexamination of the ancient literature on activities of Kuju volcano, central Kyushu, Japan; Kuju kazan no rekishi jidai no katsudo kiroku no saikento

    Energy Technology Data Exchange (ETDEWEB)

    Imura, R.; Kamata, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-04-25

    In order to identify activities of Kuju Volcano in historic times, reviews were given on records with reference to original literature of historical documents. Kuju Volcano has erupted in October 1995, and rows of craters lying from east to west were created near the place called Mt. Iou on a hillside of the volcano. The smoke from the craters reached as high as 1000 meters in the air, and the ash fall was observed in the city of Kumamoto which is 60 km away from the volcano. Many of what has been recorded conventionally as eruption records of Kuju Volcano are surmised to have described explosions of eruptive gases on the surface area or events of gas bursts. They are not thought to be describing such eruptions as ones gushing a great amount of volcanic ash. Therefore, the activity in 1995 of Kuju Volcano that has created new rows of craters in points several hundred meters away from the eruptive gas area, and caused ash fall that accumulated thinly in surround area has a possibility that the eruption was the one much greater than those written in the records that have been known to date, rather than the one first in 257 years. Activities of Kuju Volcano in historic times must be evaluated quantitatively by continuing excavation of new historic materials and geological verifications. 25 refs.

  12. Identifying different regimes in eruptive activity: An application to Etna volcano

    Science.gov (United States)

    Mulargia, F.; Gasperini, P.; Tinti, S.

    1987-12-01

    The objective identification of different regimes in the eruptive time-history of a volcano is crucial to the understanding of its physics. While a problem well-known in statistical literature under the name of change-point or scan-point problem, no method of general applicability exists for the identification of different regimes in a time-series. In particular, the available techniques seem unsuitable to the volcanological case. We developed an original procedure based on two-sample Kolmogorov-Smirnov statistics which offers satisfactory accuracy in a broad range of conditions with a minimum of assumptions and is expressly tailored to the study of geophysical phenomena. Our procedure requires neither the a priori knowledge of the number of regimes nor of the statistical distributions governing the whole process, which can be of different type. The parent distribution of each regime is inferred through a goodness-of-fit test, and this in turn allows the confidence intervals for each of the change-points identified to be estimated by numerical simulation. This procedure is applied to the eruptive history of Mount Etna volcano. Available data allow the analysis of flank eruptions in the period 1600-1980, while the total output (summit and flank activity) can be studied only in the period 1971-1981. Information on eruptive history can be therefore obtained at two different timescales. Since no univocally accepted catalog exists except for the last few decades, we use two different sets of data, which practically exhaust all the available information. The results are interpreted by a stability analysis, and only stable results are retained. Our analysis yields that: - The inter-event times of flank eruptions in the period 1600-1980 follow two regimes before and after year 1865, while the eruptive activity in the period 1971-1981 follows four different regimes. In each regime eruptions occur according to a Poisson process and Etna behaves as a random nonstationary

  13. Strombolian surface activity regimes at Yasur volcano, Vanuatu, as observed by Doppler radar, infrared camera and infrasound

    Science.gov (United States)

    Meier, K.; Hort, M.; Wassermann, J.; Garaebiti, E.

    2016-08-01

    In late 2008 we recorded a continuous multi-parameter data set including Doppler radar, infrared and infrasound data at Yasur volcano, Vanuatu. Our recordings cover a transition in explosive style from ash-rich to ash-free explosions followed again by a phase of high ash discharge. To assess the present paradigm of Strombolian behavior in this study we investigate the geophysical signature of these different explosive episodes and compare our results to observations at Stromboli volcano, Italy. To this end we characterize Yasur's surface activity in terms of material movement, temperature and excess pressure. The joint temporal trend in these data reveals smooth variations of surface activity and regime-like persistence of individual explosion forms over days. Analysis of all data types shows ash-free and ash-rich explosive styles similar to those found at Stromboli volcano. During ash-free activity low echo powers, high explosion velocities and high temperatures result from the movement of isolated hot ballistic clasts. In contrast, ash-rich episodes exhibit high echo powers, low explosion velocities and low temperatures linked to the presence of colder ash-rich plumes. Furthermore ash-free explosions cause high excess pressure signals exhibiting high frequencies opposed to low-amplitude, low-frequency signals accompanying ash-rich activity. To corroborate these findings we compare fifteen representative explosions of each explosive episode. Explosion onset velocities derived from Doppler radar and infrared camera data are in excellent agreement and consistent with overall observations in each regime. Examination of infrasound recordings likewise confirms our observations, although a weak coupling between explosion velocity and excess pressure indicates changes in wave propagation. The overall trend in explosion velocity and excess pressure however demonstrates a general correlation between explosive style and explosion intensity, and points to stability of the

  14. Changes of biogeochemical activities before and after significant mud displacement at the Håkon Mosby Mud Volcano (HMMV)

    Science.gov (United States)

    Felden, J.; Wenzhöfer, F.; Yoerger, D.; Camilli, R.; German, C.; Olu, K.; Feseker, T.; de Beer, D.; Boetius, A.

    2012-04-01

    The Håkon Mosby Mud Volcano (72°N, 14° 43' E, 1250 m water depth) was studied for a period of a year by the Long-term Observatory On Mud-volcano Eruptions (LOOME) in 2009-2010, to investigate temporal variations of mud volcanism and consequences for biogeochemical processes. The HMMV is a highly active methane cold seep ecosystem characterized by high rates of methane efflux. It hosts different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on changes in community composition and biogeochemical activity such as methane emission, total benthic oxygen uptake, microbial methane and sulfate consumption before and after a major mud displacement recorded by LOOME. The sensor-enabled long-term observations of the HMMV habitats were combined with short-term analyses before and after the displacement events by ROVs QUEST (MARUM) and GENESIS (University of Gent), the AUV Sentry (WHOI) equipped with a multibeam and subbottom profiler, CTD and photographic unit as well as with a mass spectrometer. We found shifts in the distribution patterns of chemosynthetic communities and also substantial changes in their activity, consistent with changes in temperature gradients. This study was sponsored by the EU-Projects HERMIONE "Hotspot Ecosystem Research and Man's Impact on European Seas", and ESONET "European Seas Observatory Network" (Demonstration Mission LOOME "Long term observations on mud volcano eruptions").

  15. Coupling of Activity at Neighbouring Volcanoes in Iceland: Ground Deformation and Activity at the Bárðarbunga-Tungnafellsjökull and Eyjafjallajökull-Katla Volcano Pairs

    Science.gov (United States)

    Parks, M.; Heimisson, E. R.; Sigmundsson, F.; Hooper, A. J.; Ofeigsson, B.; Vogfjord, K. S.; Arnadottir, T.; Dumont, S.; Drouin, V.; Bagnardi, M.; Spaans, K.; Hreinsdottir, S.; Friðriksdóttir, H. M.; Jonsdottir, K.; Guðmundsson, G.; Hensch, M.; Hjaltadottir, S.; Hjartardottir, A. R.; Einarsson, P.; Gudmundsson, M. T.; Hognadottir, T.; Lafemina, P.; Geirsson, H.; Sturkell, E.; Magnússon, E.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) techniques are used to generate a time series of high-resolution deformation measurements, in the vicinity of two pairs of closely spaced volcanoes in Iceland: Bárðarbunga and Tungnafellsjökull, as well as Eyjafjallajökull and Katla. Following the declaration of Icelandic Volcanoes as a Permanent Geohazard Supersite in 2013, a considerable amount of SAR data was made available for both past and future satellite acquisitions, including new X-band images and historic C-band images. InSAR time series have been formed using these data and compared to other geodetic and microseismic measurements to determine the most likely processes responsible for recently observed deformation and/or seismicity. A comprehensive network of seismometers and continuous GPS stations are already deployed at these volcanoes and a series of campaign GPS measurements have been undertaken since 2010. We present an overview of the temporal variation in InSAR observations and these complementary field based measurements at Bárðarbunga and Tungnafellsjökull from 2014-2015 (covering the recent eruption at Holuhraun and contemporaneous slow collapse of the Bárðarbunga caldera), and Eyjafjallajökull and Katla volcanoes from 2010 onwards, after the 2010 explosive eruption of Eyjafjallajökull. We undertake a joint InSAR-GPS inversion using a Markov-chain Monte Carlo approach. The best-fit source geometries responsible for both the inflation of a 50 km long dyke and simultaneous deflation of the Bárðarbunga central volcano during the 2014-2015 unrest and eruption are found. Using these we calculate the stress changes associated with the Bárðarbunga deformation events and compare our results to the location of earthquake swarms in the vicinity of neighbouring Tungnafellsjökull, where seismic activity increased significantly following the onset of unrest at Bárðarbunga in August 2014. We also determine the optimal source parameters for

  16. Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)

    Science.gov (United States)

    Allen, C.; Oehler, D.

    2010-12-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  17. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  18. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    Science.gov (United States)

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment.

  19. Monitoring and analysis of nyamulagira volcano activity using modis data: case of the 2011-2012 eruption

    Directory of Open Access Journals (Sweden)

    Bagalwa Montfort

    2015-01-01

    Full Text Available In this paper we analyzed the 2011-2012 eruption of Nyamulagira volcano using MODIS Data. Eruptions have been occurring every 3–4 years throughout the last century. Satellite infrared data, collected by MODIS sensor to estimate pixels thermal anomaly of hot spots were analized, the radiance emitted at 3,959 and 12.02μm for each pixel and the thermal emissions at Nyamulagira feall into three distinct radiating regimes released during the 2011–2012 eruption. Initial activity was detected on 6 November, at 19:55 UTC, with a large thermal anomaly with 28 pixels approximately on the north flank of the volcano. The anomaly was limited to the north flank. The anomaly reached a maximum size of 1188 pixels in January 2012. The size and intensity of the anomaly rapidly diminished to first April 2012 were no more than 2 piixels indicate the end of eruption.

  20. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    Science.gov (United States)

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  1. Observed inflation-deflation cycles at Popocatepetl volcano using tiltmeters and its possible correlation with regional seismic activity in Mexico

    Science.gov (United States)

    Contreras Ruiz Esparza, M. G., Sr.; Jimenez Velazquez, J. C., Sr.; Valdes Gonzalez, C. M., Sr.; Reyes Pimentel, T. A.; Galaviz Alonso, S. A.

    2014-12-01

    Popocatepetl, the smoking mountain, is a stratovolcano located in central Mexico with an elevation of 5450 masl. The active volcano, close to some of the largest urban centers in Mexico - 60 km and 30 km far from Mexico City and Puebla, respectively - poses a high hazard to an estimated population of 500 thousand people living in the vicinity of the edifice. Accordingly, in July 1994 the Popocatepetl Volcanological Observatory (POVO) was established. The observatory is operated and supported by the National Center for Disaster Prevention of Mexico (CENAPRED), and is equipped to fully monitor different aspects of the volcanic activity. Among the instruments deployed, we use in this investigation two tiltmometers and broad-band seismometers at two sites (Chipiquixtle and Encinos), which send the information gathered continuously to Mexico City.In this research, we study the characteristics of the tiltmeters signals minutes after the occurrence of certain earthquakes. The Popocatepetl volcano starts inflation-deflation cycles due to the ground motion generated by events located at certain regions. We present the analysis of the tiltmeters and seismic signals of all the earthquakes (Mw>5) occurred from January 2013 to June 2014, recorded at Chipiquixtle and Encinos stations. First, we measured the maximum tilt variation after each earthquake. Next, we apply a band-pass filter for different frequency ranges to the seismic signals of the two seismic stations, and estimated the total energy of the strong motion phase of the seismic record. Finally, we compared both measurements and observed that the maximum tilt variations were occurring when the maximum total energy of the seismic signals were in a specific frequency range. We also observed that the earthquake records that have the maximum total energy in that frequency range were the ones with a epicentral location south-east of the volcano. We conclude that our observations can be used set the ground for an early

  2. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  3. Developing monitoring capability of a volcano observatory: the example of the Vanuatu Geohazards Observatory

    Science.gov (United States)

    Todman, S.; Garaebiti, E.; Jolly, G. E.; Sherburn, S.; Scott, B.; Jolly, A. D.; Fournier, N.; Miller, C. A.

    2010-12-01

    Vanuatu lies on the Pacific 'Ring of Fire'. With 6 active subaerial and 3 submarine (identified so far) volcanoes, monitoring and following up their activities is a considerable work for a national observatory. The Vanuatu Geohazards Observatory is a good example of what can be done from ‘scratch’ to develop a volcanic monitoring capability in a short space of time. A fire in June 2007 completely destroyed the old observatory building and many valuable records leaving Vanuatu with no volcano monitoring capacity. This situation forced the Government of Vanuatu to reconsider the structure of the hazards monitoring group and think about the best way to rebuild a complete volcano monitoring system. Taking the opportunity of the re-awakening of Gaua volcano (North of Vanuatu), the Vanuatu Geohazards section in partnership with GNS Science, New Zealand developed a new program including a strategic plan for Geohazards from 2010-2020, the installation of a portable seismic network with real-time data transmission in Gaua, the support of the first permanent monitoring station installation in Ambrym and the design and implementation of volcano monitoring infrastructure and protocol. Moreover the technology improvements of the last decade and the quick extension of enhanced communication systems across the islands of Vanuatu played a very important role for the development of this program. In less than one year, the implementation of this program was beyond expectations and showed considerable improvement of the Vanuatu Geohazards Observatory volcano monitoring capability. In response to increased volcanic activity (or unrest) in Ambae, the Geohazards section was fully capable of the installation of a portable seismic station in April 2010 and to follow the development of the activity. Ultimately, this increased capability results in better and timelier delivery of information and advice on the threat from volcanic activity to the National Disaster Management Office and

  4. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  5. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8-0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  6. Cost effective aero-photogrammetry toys at active volcanoes: On the use of drones, balloons and kites

    Science.gov (United States)

    Walter, Thomas R.

    2014-05-01

    The availability of aerial photographs allows spatial mapping of flows and fractures, generation of digital elevation models and other change detection. Therefore aerial photographs significantly improve our understanding of volcanic processes. The common problem is the lack of available data for most volcanoes, and the lack of systematic and chronologic repeat surveys. This work summarizes the current state of knowledge and technical implementations that currently revolutionize the field of aero-photogrammetry. By the use of unmanned vehicles, such as octocopters, helicopters and small airplanes, photo data can be acquired from almost any place at distances up to kilometres from the operator. Moreover, by the use of helium balloons, kites or their hybrid helikites, near field aero-photographs are obtained. In combination with modern stitching procedures and computer vision algorithms, the positioning of the camera and the digital elevation model of the ground can be extracted, and the active volcano and its eruption cloud be imaged from almost any perspective. This field is increasingly gaining flexibility, as lightweight cameras are available from visible, infrared and other spectral bands. Here example data are provided from volcanoes that are difficult to access by regular airplanes, showing the strengths and the limits of these new aero-photogrammetry toys.

  7. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  8. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    Science.gov (United States)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-15

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  9. Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: Central Pontides, northern Turkey

    Science.gov (United States)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Meinhold, Guido; Kylander-Clark, Andrew R. C.

    2017-02-01

    The Pontides formed the southern active margin of Laurasia during the Mesozoic. They became separated from mainland Laurasia during the Late Cretaceous, with the opening of the Black Sea as an oceanic back-arc basin. During the Early Cretaceous, a large submarine turbidite fan complex developed in the Central Pontides. The turbidites cover an area of 400 km by 90 km with a thickness of more than 2 km. We have investigated the provenance of these turbidites-the Çağlayan Formation-using paleocurrent measurements, U-Pb detrital zircon ages, REE abundances of dated zircons and geochemistry of detrital rutile grains. 1924 paleocurrent measurements from 96 outcrop stations indicate flow direction from northwest to southeast in the eastern part of the Çağlayan Basin and from north-northeast to west-southwest in the western part. 1194 detrital zircon ages from 13 Lower Cretaceous sandstone samples show different patterns in the eastern, central and western parts of the basin. The majority of the U-Pb detrital zircon ages in the eastern part of the basin are Archean and Paleoproterozoic (61% of all zircon ages, 337 grains); rocks of these ages are absent in the Pontides and present in the Ukrainian Shield, which indicates a source north of the Black Sea. In the western part of the basin the majority of the zircons are Carboniferous and Neoproterozoic (68%, 246 grains) implying more local sources within the Pontides. The detrital zircons from the central part show an age spectrum as mixture of zircons from western and eastern parts. Significantly, Jurassic and Early Cretaceous zircons make up less than 2% of the total zircon population, which implies lack of a coeval magmatic arc in the region. This is compatible with the absence of the Lower Cretaceous granites in the Pontides. Thus, although the Çağlayan Basin occupied a fore-arc position above the subduction zone, the arc was missing, probably due to flat subduction, and the basin was largely fed from the Ukrainian

  10. Evolution of magma feeding system in Kumanodake agglutinate activity, Zao Volcano, northeastern Japan

    Science.gov (United States)

    Takebe, Yoshinori; Ban, Masao

    2015-10-01

    The Kumanodake agglutinate of Zao Volcano in northeastern Japan consists of pyroclastic surge layers accumulated during the early part of the newest stage of activity (ca. 33 ka to present). Our petrologic study of this agglutinate based on systematically collected samples aims to reveal the evolution of magma feeding system. To understand the magma evolution, we have examined samples from the agglutinate by using petrologic data including, petrography, analysis of minerals (plagioclase, pyroxene, and olivine), glass compositions, and whole rock major element and trace element (Ba, Sr, Cr, Ni, V, Rb, Zr, Nb, and Y) compositions. Agglutinate are mixed, medium-K, calc-alkaline olv-cpx-opx basaltic andesite (55.2-56.2% SiO2). Results show that the magma feeding system comprised a shallow felsic chamber injected by mafic magma from depth. The felsic magma (59-62% SiO2, 950-990 °C), which was stored at a shallower depth, had orthopyroxene (Mg# = 60-69), clinopyroxene (Mg# = 65-71), and low-An plagioclase (Anca. 58-70). The mafic magma is further divisible into two types: less-differentiated and more-differentiated, designed respectively as an initial mafic magma-1 and a second mafic magma-2. The original mafic magma-1 was olivine (Fo~ 84) basalt (ca. 48-51% SiO2, 1110-1140 °C). The second mafic magma-2, stored occasionally at 4-6 km depth, was basalt (1070-1110 °C) having Foca. 80 olivine and high-An (Anca. 90) plagioclase phenocrysts. These two magmas mixed (first mixing) to form hybrid mafic magma. The forced injections of the hybrid mafic magmas activated the felsic magma, and these two were mixed (second mixing) shortly before eruptions. The explosivity is inferred to have increased over time because the abundance of large scoria increased. Furthermore, the erupted magma composition became more mafic, which reflects increased percentage of the hybrid mafic magma involved in the second mixing. At the beginning of activity, the mafic magma also acted as a heat

  11. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    Science.gov (United States)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  12. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    Science.gov (United States)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    below sea level), the high velocities are sharply truncated to the south. However, at greater depths, the anomalously high velocities extend another 20 km into the submarine flank, distinguishing this feature as a once extensive rift zone. The presence of dense, coherent intrusive rock may have anchored Mauna Loa's southeastern flank, such that much of the volcano's recent deformation has occurred along the west flank of Mauna Loa. This massive rift zone may also impede the propagation of Kilauea's southwest rift zone, accounting for its lesser development relative to Kilauea's east rift zone. The velocity highs beneath Kilauea's submarine flank likely represent buried seamounts that might obstruct the seaward migration of volcano's south flank, causing the bench uplift at the toe of flank. These new observations lead us to propose that previously unrecognized intrusive complexes within Mauna Loa and Kilauea have significantly affected the past evolution of these volcanoes in the Island of Hawaii, and are likely responsible for the present patterns of deformation on these active volcanoes.

  13. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  14. Behavior of volatiles in arc volcanism : geochemical and petrologic evidence from active volcanoes in Indonesia

    NARCIS (Netherlands)

    Hoog, J.C.M. de

    2001-01-01

    Large amounts of material are recycled along subduction zones by uprising magmas, of which volcanoes are the surface expression. This thesis focuses on the behavior of volatiles elements (S, Cl, H) during these recycling processes. The study area is the Indonesian arc system, which hosts

  15. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  16. Submarine neutrino communication

    CERN Document Server

    Huber, Patrick

    2009-01-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  17. Submarine neutrino communication

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick, E-mail: pahuber@vt.ed [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2010-09-06

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  18. Submarine neutrino communication

    Science.gov (United States)

    Huber, Patrick

    2010-09-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  19. Explosive eruptive activity and temporal magmatic changes at Yotei Volcano during the last 50,000 years, southwest Hokkaido, Japan

    Science.gov (United States)

    Uesawa, Shimpei; Nakagawa, Mitsuhiro; Umetsu, Akane

    2016-10-01

    To understand the eruptive history, structure, and magmatic evolution of Yotei Volcano, southwest Hokkaido, Japan, we investigated the geology and petrology of tephras located around the base of the volcano. We identified 43 tephra units interbedded with soils (in descending stratigraphic order, tephras Y1-Y43), and four widespread regional tephras. Ten radiocarbon ages were obtained from soils beneath the Yotei tephras. On the basis of petrologic differences and, the stratigraphic positions of thick layers of volcanic ash soil, indicative of volcanic stratigraphic gaps, the Yotei tephras are divided into four groups (in ascending stratigraphic order): Yotei tephra groups I, II-1, II-2, and II-3. We calculated the age of each eruptive deposit based on the soil accumulation rate, and estimated the volume of each eruption using isopach maps or the correlation between eruption volume and the maximum thickness at ~ 10 km from the summit crater. The results regarding eruptive activity and the rate of explosive eruptions indicate four eruptive stages at Yotei Volcano over the last 50,000 years. Stage I eruptions produced Yotei tephra group I between ca. 54 cal. ka BP and up to at least ca. 46 cal. ka BP, at relatively high average eruption rates of 0.07 km3 dense-rock equivalent (DRE)/ky. After a pause in activity of ca. 8000 years, Stage II-1 to II-2 eruptions produced Yotei tephra groups II-1 and II-2 from ca. 38 to ca. 21 cal. ka BP at high average eruption rates (0.10 km3 DRE/ky), after a pause in activity of 2000-3000 years. Finally, after another pause in activity of 4000-5000 years, Stage II-3 eruptions produced Yotei tephra group II-3 from ca. 16.5 cal. ka BP until the present day, at low average eruption rates (0.009 km3 DRE/ky). Whole-rock geochemical compositions vary within each tephra group over the entire eruption history. For example, group I and II-3 tephras contain the lowest and highest abundances, respectively, of K2O, P2O5, and Zr. Group II-1 has the

  20. Intense Seismic Activity at Chiles and Cerro Negro Volcanoes on the Colombia-Ecuador Border

    Science.gov (United States)

    Torres, R. A.; Cadena, O.; Gomez, D.; Ruiz, M. C.; Prejean, S. G.; Lyons, J. J.; White, R. A.

    2015-12-01

    The region of Chiles and Cerro Negro volcanoes, located on the Colombian-Ecuadorian border, has experienced an ongoing seismic swarm beginning in Aug. 2013. Based on concern for local residents and authorities, a cooperative broadband monitoring network was installed by the Servicio Geológico Colombiano in Colombia and the Instituto Geofísico of the Escuela Politécnica Nacional in Ecuador. Since November 2013 more than 538,000 earthquakes were recorded; although since May 2015 the seismicity has decreased significantly to an average of 70 events per day. Three large earthquake swarms with increasing energy occurred in Aug.-Oct. 2013, March-May 2014, and Sept.-Dec. 2014. By the end of 2014, roughly 400 earthquakes greater than M 3 had occurred with a maximum rate of 8000 earthquakes per day. The largest earthquake was a 5.6 ML on Oct. 20, 2014. This event produced an InSAR coseismic deformation of ~23 cm (S. Ebmeier, personal communication). Most events are typical brittle failure volcano-tectonic (VT) earthquakes that are located in a cluster beneath the southern flank of Chiles volcano, with depths between 1.5 and 10 km. Although the great majority of earthquakes are VT, some low-frequency (LF, ~0.5 Hz) and very-low-frequency (VLF) events have occurred. Particle motion analysis suggests that the VLF source migrated with time. While a VLF on Oct. 15, 2014 was located south of Chiles volcano, near the InSAR source, the VLF registered on Feb. 14, 2015 was likely located very close to Chiles Volcano. We infer that magma intrusion and resulting fluid exsolution at depths greater than 5 km are driving seismicity in the Chiles-Cerro Negro region. However earthquakes are failing in a manner consistent with regional tectonics. Relative relocations reveal a structure consistent with mapped regional faults. Thus seismicity is likely controlled by an interaction of magmatic and tectonic processes. Because the regional stress field is highly compressional and the volcanoes

  1. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  2. Submarine Landslides: What we Know and Where we are Going!

    Science.gov (United States)

    Moscardelli, L. G.; Mountjoy, J. J.; Micallef, A.; Strasser, M.; Vanneste, M.; Chaytor, J. D.; Mosher, D.; Krastel, S.; Lo Iacono, C.; Yamada, Y.

    2015-12-01

    Submarine landslides and other gravity-induced movements can disrupt very large areas of continental margins resulting in long-term seafloor morphologic change and multi-scale mass transport deposits (MTDs). Potential consequences of submarine landslides include damage to seabed infrastructure, offshore facilities, as well as generation or enhancement of tsunamis. MTDs are common on the modern seafloor and within the stratigraphic record. Slides, slumps and debris flows can be constituents of MTDs and can co-occur in the same event or depositional unit. Recent research indicates that relationships exist between MTD geological setting, causal mechanisms, and geometries. Quantitative data analysis suggests that MTD morphometric parameters can be used to link these three parameters. Despite many advances in this field, it still remains unclear how to definitively identify pre-conditioning factors and triggers of submarine landslides in modern slopes, and how submarine landslides evolve after initiation. In addition, new questions regarding the interaction between submarine landslides and active marine processes, such as bottom currents and fluid flow, have emerged.One of the mandates of the S4SLIDE (IGCP-640) project, a joint endeavor of UNESCO and IGCP that represents the broad field of submarine landslide research, is to facilitate interactions at an international level among scientists, industry and government representatives to advance our knowledge on a number of outstanding science questions: (i) What is the nature of the interaction between current-controlled sedimentation and submarine landslides? (ii) What role do transient turbulent-laminar flows play in the formation of submarine landslides? (iii) Do climatic variations control the occurrence of submarine landslides? (iv) What is the economic significance of submarine landslides? (v) Do we understand the hazards that submarine landslides pose to the environment and to humans? This presentation will cover

  3. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  4. Submarine neutrino communication

    OpenAIRE

    Huber, Patrick

    2009-01-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly...

  5. New insights on Panarea volcano from terrestrial, marine and airborne data

    Science.gov (United States)

    Anzidei, Marco

    2010-05-01

    The Panarea volcano belongs to the Aeolian arc system and its activity, which recently produced impacts on the environment as well as on human settlements, is known since historical times. This volcano, which includes Panarea island and its archipelago, is the emergent portion of submarine stratovolcano more than 2000 m high and 20 Km across. In November 2002 a submarine gas eruption started offshore 3 Km east of Panarea on top of a shallow rise of 2.3 km2 surrounded by the islets of Lisca Bianca, Bottaro and Lisca Nera. This event has posed new concern on a volcano generally considered extinct. Soon after the submarine eruption, this area has been surveyed under multidisciplinary programs funded by the Italian Department of the Civil Protection and INGV. Monitoring programs included subaerial and sea bottom DEM of Panarea volcano by merging aerial digital photogrammetry, aerial laser scanning and multibeam bathymetry. A GPS ground deformation network (PANANET) was designed, set up and measured during time span December 2002 - October 2007. GPS data show rates of motion and strain values typical of volcanic areas which are in agreement with the NE-SW and NW-SE tectonic systems. The latter coincide with the main pathways for the upwelling of hydrothermal fluids. GPS data inferred a pre-event uplift followed by a general subsidence and shortening across the area that could be interpreted as the response to the surface of the inflation and deflation of the hydrothermal system reservoir which is progressively reducing its pressure after the 2002 gas eruption. Magnetic and gravimetric data depict the deep and shallow structure of the volcano. From geochemical surveys were calculated energetic conditions at craters. Data were coupled with the computed physic-chemical state of the fluids at the level of the deep reservoir and provided the boundary conditions of the occurred event, and suggesting that a low-energy explosion was responsible for producing the craters at the

  6. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  7. Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure?

    Science.gov (United States)

    Brunet, Morgane; Le Friant, Anne; Boudon, Georges; Lafuerza, Sara; Talling, Peter; Hornbach, Matthew; Ishizuka, Osamu; Lebas, Elodie; Guyard, Hervé

    2016-03-01

    Landslides are common features in the vicinity of volcanic islands. In this contribution, we investigate landslides emplacement and dynamics around the volcanic island of Martinique based on the first scientific drilling of such deposits. The evolution of the active Montagne Pelée volcano on this island has been marked by three major flank-collapses that removed much of the western flank of the volcano. Subaerial collapse volumes vary from 2 to 25 km3 and debris avalanches flowed into the Grenada Basin. High-resolution seismic data (AGUADOMAR-1999, CARAVAL-2002, and GWADASEIS-2009) is combined with new drill cores that penetrate up to 430 m through the three submarine landslide deposits previously associated to the aerial flank-collapses (Site U1399, Site U1400, Site U1401, IODP Expedition 340, Joides Resolution, March-April 2012). This combined geophysical and core data provide an improved understanding of landslide processes offshore a volcanic island. The integrated analysis shows a large submarine landslide deposit, without debris avalanche deposits coming from the volcano, comprising up to 300 km3 of remobilized seafloor sediment that extends for 70 km away from the coast and covers an area of 2100 km2. Our new data suggest that the aerial debris avalanche deposit enter the sea but stop at the base of submarine flank. We propose a new model dealing with seafloor sediment failures and landslide propagation mechanisms, triggered by volcanic flank-collapse events affecting Montagne Pelée volcano. Newly recognized landslide deposits occur deeper in the stratigraphy, suggesting the recurrence of large-scale mass-wasting processes offshore the island and thus, the necessity to better assess the associated tsunami hazards in the region.

  8. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  9. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    Science.gov (United States)

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-01-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema‘uma‘u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema‘uma‘u magma reservoir. In fact, a relatively small density increase (gravity change measured during the period with the largest mass increase, between March 2011 and November 2012. Other mechanisms may also play a role in the gravity increase without producing significant uplift of the surface, including compressibility of magma, formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  10. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009-2012

    Science.gov (United States)

    Bagnardi, Marco; Poland, Michael P.; Carbone, Daniele; Baker, Scott; Battaglia, Maurizio; Amelung, Falk

    2014-09-01

    Analysis of microgravity and surface displacement data collected at the summit of Kīlauea Volcano, Hawaii (USA), between December 2009 and November 2012 suggests a net mass accumulation at ~1.5 km depth beneath the northeast margin of Halema`uma`u Crater, within Kīlauea Caldera. Although residual gravity increases and decreases are accompanied by periods of uplift and subsidence of the surface, respectively, the volume change inferred from the modeling of interferometric synthetic aperture radar deformation data can account for only a small portion (as low as 8%) of the mass addition responsible for the gravity increase. We propose that since the opening of a new eruptive vent at the summit of Kīlauea in 2008, magma rising to the surface of the lava lake outgasses, becomes denser, and sinks to deeper levels, replacing less dense gas-rich magma stored in the Halema`uma`u magma reservoir. In fact, a relatively small density increase (formation of olivine cumulates, and filling of void space by magma. The rate of gravity increase, higher than during previous decades, varies through time and seems to be directly correlated with the volcanic activity occurring at both the summit and the east rift zone of the volcano.

  11. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufri\\`ere of Guadeloupe volcano

    CERN Document Server

    Jourde, Kevin; Marteau, Jacques; d'Ars, Jean de Bremond; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique particularly interesting in volcanology. Here we show that muon radiography may be efficient to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufri\\`ere lava dome. We present an experiment conducted on this volcano during the Summer $2014$ and bring evidence that huge density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from $1 \\times 10^6 \\; \\mathrm{m}^3$ to $7 \\times 10^6 \\; \\mathrm{m}^3$. However, the mass changes remain quite constant, two of them being negative ($\\Delta m \\approx -0.6 \\times 10^9 \\; \\mathrm{kg}$) and a third one being positive ($\\Delta m \\approx +2 \\times 10^9 \\; \\mathrm{kg}$). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides w...

  12. Permafrost and Periglacial Activity Distribution and Geothermal Anomalies in the Chachani and El Misti Volcanoes (Southern Peru)

    Science.gov (United States)

    Palacios, D.; Andrés, N.; Úbeda, J.; Alcalá, J.

    2009-04-01

    The El Misti volcano (16˚ 17′ S, 71˚ 24′ W, 5.822 m) is considered one of the most potentially catastrophic in America. Its crater is 18 km from the centre of Arequipa (2335 m a.s.l.), a city with more than 800,000 inhabitants whose population has doubled over the last 20 years, spreading out over the volcano's sides and gullies in many new settlements, less than 12 km away from the crater. Although the last significant eruptive period occurred in 2300-2050 BP, during the last five thousand years the recurrence period for eruptions has been 500 to 1500 years (Thouret et al. 2001). The last eruption occurred between 1440 and 1447 AD, although it was low-intensity. The crater currently has fumarolic activity. The volcano does not show any signs of having supported glaciers or any periglacial form in the past. The Chachani volcanic complex (16˚ 11' S 71˚ 31' W, 6.057 m a.s.l.) lies 18 km northeast of El Misti and 22 km from the centre of the city of Arequipa. The complex is made up of several volcanic cones and domes. The date of the most recent eruption is unknown, and no current or recent eruptive activity has been recorded or detected (Paquereau et al. 2006). The complex probably supported glaciers during the Little Ice Age, although there are none at present. Geomorphological evidence shows that glaciers during the Last Glacial Maximum were very extensive, with some of their feet reaching an altitude of 4000m. Rocky glaciers up to 1800 m long can be found inside some of the cirques. The PichuPichi Complex (16° 25' 25"S 71°14'27", 5650 m a.s.l.), 22 km E of El Misti, supported substantial glaciers during the Last Glacial Maximum, with a minimum foot altitude of c.4000 m, and like the Chachani, has numerous rock glacier formations in its cirques. The aim of this paper is to ascertain whether the lack of glacial or periglacial geomorphological evidence on the El Misti volcano is due to its destruction from subsequent volcanic activity, or

  13. Methane anomalies in seawater above the Loihi submarine summit area, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Gamo, Toshitaka; Ishibashi, Junichiro; Sakai, Hitoshi (Univ. of Tokyo (Japan)); Tilbrook, B. (Univ. of Hawaii, Honolulu (USA))

    1987-10-01

    Hydrothermal activity above Loihi submarine volcano was characterized by water column distributions of methane, pH and helium-3. It was found that the southern Loihi summit is almost covered with hydrothermal plumes, which have anomalously high concentrations of methane (maximum: 569 {times} 10{sup {minus}6} cm{sup 3} kg{sup {minus}}1) accompanied by high concentrations of helium-3 and low pH values (minimum: 7.18). The plumes consist of two layers: a shallow plume (about 200 m above the summit) and a deep plume (about 100 m above the summit), probably derived from different hydrothermal vents. The shallow and deep plumes showed different CH{sub 4}/{sup 3}He and CH{sub 4}/pH ratios with the same {sup 3}He/pH ratio, which implies that methane concentrations differ between the hydrothermal end members for the two plumes. The variation of methane between the end members is suggested to result from inter-vent inhomogeneity of bacterial activities that consume or produce methane within the vents. Comparison of the CH{sub 4}/{sup 3}He ratios of the two plumes with the previous data for Loihi and other submarine hydrothermal areas confirms that the Loihi hotspot has one to two orders of magnitude smaller CH{sub 4}/{sup 3}He value than those of the East Pacific Rise and the Galapagos spreading centers.

  14. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands.

    Directory of Open Access Journals (Sweden)

    Isabel Ferrera

    Full Text Available The submarine volcanic eruption occurring near El Hierro (Canary Islands in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012. Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m, coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria. Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer

  15. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    Science.gov (United States)

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  16. SO2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: Transition from continuous to episodic activity

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Steele, Alexander; Bernard, Benjamin; Bourquin, Julie; Galle, Bo; Arrais, Santiago; Vásconez, Freddy

    2015-06-01

    We present continuous SO2 measurements performed at Tungurahua volcano with a permanent network of 4 scanning DOAS instruments between 2007 and 2013. The volcano has been erupting since September 1999, but on the contrary to the first years of eruption when the activity was quasi-continuous, the activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. During our study period we distinguish 11 phases lasting from 17 to 527 days separated by quiescence periods of 26 to 184 days. We propose a new routine to quantify the SO2 emissions when data from a dense DOAS monitoring network are available. This routine consists in summing all the highest validated SO2 measurements among all stations during the 10 h of daily working-time to obtain a daily observed SO2 mass. Since measurement time is constant at Tungurahua the "observed" amounts can be expressed in tons per 10 h and can easily be converted to a daily average flux or mass per day. Our results provide time series having an improved correlation on a long time scale with the eruptive phases and with quiescence periods. A total of 1.25 Mt (1.25 × 109 kg) of SO2 has been released by Tungurahua during the study period, with 95% of these emissions occurring during phases of activity and only 5% during quiescence. This shows a contrast with previous volcanic behaviour when passive degassing dominated the total SO2 emissions. SO2 average daily mass emission rates are of 73 ± 56 t/d during quiescent periods, 735 ± 969 t/d during long-lasting phases and 1424 ± 1224 t/d during short-lasting phases. Degassing during the different eruptive phases displays variable patterns. However, two contrasting behaviours can be distinguished for the onset of eruptive phases with both sudden and progressive onsets being observed. The first is characterised by violent opening of the conduit by high energy Vulcanian explosions; and the second by a progressive, in crescendo

  17. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  18. Experimental Study on Free Spanning Submarine Pipeline Under Dynamic Excitation

    Institute of Scientific and Technical Information of China (English)

    李昕; 刘亚坤; 周晶; 马恒春; 朱彤

    2002-01-01

    Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclnsions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.

  19. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  20. Contact Lenses on Submarines

    Science.gov (United States)

    2014-09-26

    Kinney, J.A.S., Luria , S.M., McKay, C.L., and Ryan, A.P. Vision of submariners. Undersea Biomed. Res. Sub. Suppl.: S163-S173, 1979. 3’. Kinney, J.A.S... Luria , S.M., Ryan, A. P., Schlichting, C.L., and Paulson, H.M. The vision of submariners and National Guardsmen: a longitudinal study. NSMRL...Rep. No. 918, 1980. 4. Socks, J.F. and Luria , S.M. Improvement of vision through the periscope, background and proposed solutions. NSMRL Rep. No

  1. It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity

    Science.gov (United States)

    Suckale, Jenny; Hager, Bradford H.; Elkins-Tanton, Linda T.; Nave, Jean-Christophe

    2010-07-01

    This is the second paper of two that examine numerical simulations of buoyancy-driven flow in the presence of large viscosity contrasts. In the first paper, we demonstrated that a combination of three numerical tools, an extended ghost fluid type method, the level set approach, and the extension velocity technique, accurately simulates complex interface dynamics in the presence of large viscosity contrasts. In this paper, we use this threefold numerical method to investigate bubble dynamics in the conduits of basaltic volcanos with a focus on normal Strombolian eruptions. Strombolian type activity, named after the famously episodic eruptions at Stromboli volcano, is characterized by temporally discrete fountains of incandescent clasts. The mildly explosive nature of normal Strombolian activity, as compared to more effusive variants of basaltic volcanism, is related to the presence of dissolved gas in the magma, yielding a complex two-phase flow problem. We present a detailed scaling analysis allowing identification of the pertinent regime for a given flow problem. The dynamic interactions between gas and magma can be classified into three nondimensional regimes on the basis of bubble sizes and magma viscosity. Resolving the fluid dynamics at the scale of individual bubbles is not equally important in all three regimes: As long as bubbles remain small enough to be spherical, their dynamic interactions are limited compared to the rich spectrum of coalescence and breakup processes observed for deformable bubbles, in particular, once inertia ceases to be negligible. One key finding in our simulations is that both large gas bubbles and large conduit-filling gas pockets ("slugs") are prone to dynamic instabilities that lead to their rapid breakup during buoyancy-driven ascent. We provide upper bound estimates for the maximum stable bubble size in a given magmatic system and discuss the ramifications of our results for two commonly used models of normal Strombolian type

  2. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  3. Seismic Activity Related to the 2002-2003 Mt. Etna Volcano Eruption (Italy): Fault Plane Solutions and Stress Tensor Computation

    Science.gov (United States)

    Barberi, G.; Cammarata, L.; Cocina, O.; Maiolino, V.; Musumeci, C.; Privitera, E.

    2003-04-01

    Late on the night of October 26, 2002, a bi-lateral eruption started on both the eastern and the southeastern flanks of Mt. Etna. The opening of the eruptive fracture system on the NE sector and the reactivation of the 2001 fracture system, on the S sector, were accompanied by a strong seismic swarm recorded between October 26 and 28 and by sharp increase of volcanic tremor amplitude. After this initial phase, on October 29 another seismogenetic zone became active in the SE sector of the volcano. At present (January 2003) the eruption is still in evolution. During the whole period a total of 862 earthquakes (Md≫1) was recorded by the local permanent seismic network run by INGV - Sezione di Catania. The maximum magnitude observed was Md=4.4. We focus our attention on 55 earthquakes with magnitude Md≫ 3.0. The dataset consists of accurate digital pickings of P- and S-phases including first-motion polarities. Firstly earthquakes were located using a 1D velocity model (Hirn et alii, 1991), then events were relocated by using two different 3D velocity models (Aloisi et alii, 2002; Patane et alii, 2002). Results indicate that most of earthquakes are located to the east of the Summit Craters and to northeast of them. Fault plane solutions (FPS) obtained show prevalent strike-slip rupture mechanisms. The suitable FPSs were considered for the application of Gephart and Forsyth`s algorithm in order to evaluate seismic stress field characteristics. Taking into account the preliminary results we propose a kinematic model of the eastern flank eastward movement in response of the intrusion processes in the central part of the volcano. References Aloisi M., Cocina O., Neri G., Orecchio B., Privitera E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. Physics of the Earth and Planetary Interiors 4154, pp. 1-17 Hirn A., Nercessian A., Sapin M., Ferrucci F., Wittlinger G. (1991). Seismic heterogeneity of Mt. Etna: structure and activity. Geophys. J

  4. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    Science.gov (United States)

    Magdalena Santana-Casiano, J.; González-Dávila, Melchor; Fraile-Nuez, Eugenio

    2014-05-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Important changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients were produced. As a result of the ongoing magmatic activity, the submarine eruption produced an unprecedented episode of severe acidification and fertilization. The findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem.

  5. Holocene block-and-ash flows from summit dome activity of Citlaltépetl volcano, Eastern Mexico

    Science.gov (United States)

    Carrasco-Núñez, Gerardo

    1999-01-01

    A major eruption produced several block-and-ash flows about 4,100 years B.P. at Citlaltépetl volcano (Pico de Orizaba), an ice-capped, 5670-m-high, andesitic, active stratovolcano located at the eastern end of the Mexican Volcanic Belt. Repetitive gravitational collapse of a dacitic dome at the summit crater produced a series of block-and-ash flows, lahars, and floods, which were channeled through two main river-valleys on the west and south flanks of the volcano. The total erupted volume is estimated to be at least 0.27 km 3. The deposits in both areas are similar in composition, and size, but they differ in the area covered, distribution, and structure. The western deposits form a large fan, cover a larger area, and include numerous laharic and fluviatile deposits. In contrast, the southern deposits form prominent terraces where confined in narrow channels, and have associated laharic units in distal areas, where the flows reach a maximum distance of 30 km from the vent. Directed disruptions of a central summit dome occurred, possibly first to the west and then to the southeast, perhaps due to minor modifications of the summit dome morphology, producing the voluminous block-and-ash flow deposits documented here. The flows were strongly controlled by topography, influencing the deposition of the moving particles. Grain-size variations along the flow paths are hardly detectable suggesting no evident lateral downstream transformations. Because sudden changes in dome morphology may cause significant variations in the direction of future dome collapse, specific areas of potential affectation cannot be predicted. Therefore, about 350,000 inhabitants living within a radius of 35-km from the vent could be potentially impacted if catastrophic block-and-ash flows were to recur in the future from similar summit dome activity. Recognition of these deposits is therefore important for hazard assessment because some seemingly safe areas may be at high risk.

  6. Asymmetric Volcano Trend in Oxygen Reduction Activity of Pt and Non-Pt Catalysts: In Situ Identification of the Site-Blocking Effect.

    Science.gov (United States)

    Li, Jingkun; Alsudairi, Amell; Ma, Zi-Feng; Mukerjee, Sanjeev; Jia, Qingying

    2017-02-01

    Proper understanding of the major limitations of current catalysts for oxygen reduction reaction (ORR) is essential for further advancement. Herein by studying representative Pt and non-Pt ORR catalysts with a wide range of redox potential (Eredox) via combined electrochemical, theoretical, and in situ spectroscopic methods, we demonstrate that the role of the site-blocking effect in limiting the ORR varies drastically depending on the Eredox of active sites; and the intrinsic activity of active sites with low Eredox have been markedly underestimated owing to the overlook of this effect. Accordingly, we establish a general asymmetric volcano trend in the ORR activity: the ORR of the catalysts on the overly high Eredox side of the volcano is limited by the intrinsic activity; whereas the ORR of the catalysts on the low Eredox side is limited by either the site-blocking effect and/or intrinsic activity depending on the Eredox.

  7. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  8. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  9. Evidence of persistent seismo-volcanic activity at Marsili seamount

    Directory of Open Access Journals (Sweden)

    Antonino D'Alessandro

    2012-06-01

    Full Text Available The Marsili submarine volcano is the largest European volcano, and it can be considered as the key to our understanding of the dynamics of the spreading and back-arc lithosphere formation in the Tyrrhenian sector [Marani et al. 2004, and references therein]. Despite its size, it is very difficult to monitor due to its geographical position [D'Alessandro et al. 2011], and it still remains little known. In 2006, the Centro Nazionale Terremoti (National Earthquake Centre of the Istituto Nazionale di Geofisica e Vulcanologia (INGV deployed a broadband ocean-bottom seismometer with hydrophone (OBS/H [Mangano et al. 2011] on the flat top of Marsili volcano, at a depth of ca. 790 m. In only nine days, the instrument recorded ca. 800 seismo-volcanic events [D'Alessandro et al. 2009]. This revealed the intense seismo-volcanic activity of Marsili volcano for the first time. […] 

  10. Volcanic gas composition changes during the gradual decrease of the gigantic degassing activity of Miyakejima volcano, Japan, 2000-2015

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Matsushima, Nobuo; Saito, Genji; Kazahaya, Ryunosuke

    2017-02-01

    The composition of volcanic gases discharged from Miyakejima volcano has been monitored during the intensive degassing activity that began after the eruption in 2000. During the 15 years from 2000 to 2015, Miyakejima volcano discharged 25.5 Mt of SO2, which required degassing of 3 km3 of basaltic magma. The SO2 emission rate peaked at 50 kt/day at the end of 2000 and quickly decreased to 5 kt/day by 2003. During the early degassing period, the volcanic gas composition was constant with the CO2/SO2 = 0.8 (mol ratio), H2O/SO2 = 35, HCl/SO2 = 0.08, and SO2/H2S = 15. The SO2 emission rate decreased gradually to 0.5 kt/day by 2012, and the gas composition also changed gradually to CO2/SO2 = 1.5, H2O/SO2 = 150, HCl/SO2 = 0.15, and SO2/H2S = 6. The compositional changes are not likely caused by changes in degassing pressure or volatile heterogeneity of a magma chamber but are likely attributed to an increase of hydrothermal scrubbing caused by large decrease of the volcanic gas emission rate, suggesting a supply of gases with constant composition during the 15 years. The intensive degassing was modeled based on degassing of a convecting magma conduit. The gradual SO2 emission rate that decrease without changes in volcanic gas composition is attributed to a reduction of diameter of the convecting magma conduit.

  11. Activity of Changbaishan Tianchi Volcano Since Late Pleistocene--The Constrain From Geochronology of High Precision U- Series Tims Method

    Institute of Scientific and Technical Information of China (English)

    Wang Fei; Chen Wenji; Zhang Zhonglu; Hu Yutai; Peng Zicheng

    2000-01-01

    11 samples of lava and pumice from the cone of Changbaishan Tianchi Volcano, Jiling, China, were dated by using high precision U - series TIMS method. We conclude that the bottom of the cone formed before 350 ka, the middle part in 70~80 ka, the upper during 20~ 1ka, and the top less than 1ka, and the age based periods of the volcano eruption since Late Pleistocene is given as follows: > 350ka, 70ka, 18 ~ 25ka, 10ka, 4C5ka, 1~0.75ka, which may offer the basis for the study of volcanic disaster in future. In addition, the principle of dating young volcanic rocks by using U - series TIMS method is introduced briefly. Differentiation characteristics of U and Th in different minerals of the volcanic rocks are discussed, and the ability producing isochrons, based on U and Th differentiation, are discussed. In the last part of the paper,the closure of samples to the elements U and Th, which is important for age results, is discussed by using (234U/238U)radioactivity ratio which can be used to monitor if the samples have been weathered or eroded or leached since the time they formed. In this study, all samples have (234U/238U) activity ratios within 1% of secular equilibrium ((234U/238U) radioactivity ratios are unity), indicating no disturbance of the 234U- 238U system. All of these discussions show that the TIMS method is good to date Tianchi volcanics and the results are reliable.

  12. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    Science.gov (United States)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  13. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    Science.gov (United States)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  14. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  15. Variations of the state of stress and dike propagation at Fernandina volcano, Galápagos.

    Science.gov (United States)

    Bagnardi, M.; Amelung, F.

    2012-04-01

    Fernandina volcano forms the youngest and westernmost island of the Galapagos Archipelago, a group of volcanic islands located near the equator and 1000 km west of Ecuador. Twenty-five eruptions in the last two hundred years make Fernandina the most active volcano in the archipelago and one of the most active volcanoes in the world. Most eruptions occur along fissures fed by dikes that propagate from the central magmatic system and from reservoirs centered under the summit caldera. Eruptive fissures in the subaerial portion of the volcano form two distinct sets: (1) arcuate or circumferential fissures characterize the upper portion of the volcano around the caldera while (2) radial fissures are present on the lower flanks. The subaerial portion of the volcano lacks of well-developed rift zones, while the submarine part of Fernandina shows three rifting zones that extend from the western side of the island. Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface displacement at Fernandina acquired from 1992 to 2010, and in particular the ones spanning the last three eruptions (1995 - radial, 2005 - circumferential and 2009 - radial) we infer the geometry of the shallow magmatic system and of the dikes that fed these eruptions. A shallow dipping radial dike on the southwestern flank has been inferred by Jónnson et al. (1999) for the 1995 eruption. This event shows a pattern of deformation strikingly similar to the one associated with the April 2009 eruption for which we infer a similar geometry. Co-eruptive deformation for the 2005 event has been modeled by Chadwick et al. (2010) using three planar dikes, connected along hinge lines, in the attempt to simulate a curve-concave shell, steeply dipping toward the caldera at the surface and more gently dipping at depth. Dike propagation in a volcano is not a random process but it is controlled by the orientation of the principal stresses, with the dike orthogonal to the least compressive stress

  16. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  17. The Activity of Major Faults and the Hydrothermal Alteration Zone at Tianchi Volcano of Changbaishan

    Institute of Scientific and Technical Information of China (English)

    Liu Mingjun; Gu Menglin; Sun Zhenguo; Wei Haiquan; Jin Bolu

    2004-01-01

    It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermal alteration zone varies obviously in elevation at different sections of the same layer on the caldera's inner wall of Tianchi, with that at the north section near the Tianwen Peak about 110 m higher than that at the south near the Jiangjun Peak in Korea. The top surface of the hydrothermal alteration zone can be taken as key horizon to tectonic movement. The difference indicates that the total uplift height of the NW wall of the Liudaogou-TianchiJingfengshan fault, the principal fault trending NE at Tianchi, is bigger than that of the SE wall ever since the occurrence of hydrothermal alteration. This also explains why the topography in the northwest side of Tianchi is steeper and with more developed river system than in the southeast. The uplifting of the northeastern wall is bigger than that of the southwest along the principal NW-trend fault, namely, the Baishanzhen-Tianchi-Jince fault. It is observed from characters of hydrothermal alteration and the palaeoresiduum, that the recent vertical movement rate along the principal NE-trend fault is larger than that of the principal NW-trend fault. The two faults intersect at Tianchi, dividing the volcano into 4 blocks, with the uplift magnitudes decreasing successively in the order of the north, the west, the east and the south block. The biggest uplift of the north block corresponds well to the shallow magma batch in the north of Tianchi observed by DSS and telluric electromagnetic sounding, and etc.and they may be related with the causes.

  18. A potential submarine landslide tsunami in South China Sea

    Science.gov (United States)

    Huang, Z.; Zhang, Y.; Switzer, A. D.

    2010-12-01

    Submarine earthquakes and submarine landslides are two main sources of tsunamis. Tsunami hazard modeling in the South China Sea has been primarily concerned with the potential large submarine earthquakes in the Manila trench. In contrast, evaluating the regional risk posed by tsunamis generated from submarine landslide is a new endeavor. At offshore south central Vietnam, bathymetric and seismic surveys show evidence of potentially tsunamigenic submarine landslides although their ages remain uncertain. We model two hypothetical submarine landslide events at a potential site on the heavily sediment laden, seismically active, steep continental slope offshore southeast Vietnam. Water level rises along the coast of Vietnam are presented for the potential scenarios, which indicate that the southeast coastal areas of Vietnam are at considerable risk of tsunami generated offshore submarine landslides. Key references: Kusnowidjaja Megawati, Felicia Shaw, Kerry Sieh, Zhenhua Huang, Tso-Ren Wu, Y. Lin, Soon Keat Tan and Tso-Chien Pan.(2009). Tsunami hazard from the subduction megathrust of the South China Sea, Part I, Source characterization and the resulting tsunami, Journal of Asian Earth Sciences, Vol. 36(1), pp. 13-20. Enet, F., Grilli, S.T. and Watts, P. (2003). Laboratory experiments for tsunami generated by underwater landslides: comparison with numerical modeling, In: Proceedings of 13th International Conference on Offshore and Polar Engineering, Honolulu, Hawaii, USA, pp. 372-379.

  19. Monitoring of the nuclear submarine Komsomolets

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde E.; Flo, Janita K.; Liebig, Penny L. [Institute of Marine Research, P. O. Box 1870 Nordnes, N-5817 Bergen (Norway); Gaefvert, Torbjoern; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Gwynn, Justin P. [Norwegian Radiation Protection Authority, The Fram Centre, N-9296 Tromsoe (Norway)

    2014-07-01

    The Soviet nuclear submarine Komsomolets sank on the 7 April 1989, 180 km southwest of Bear Island in the Norwegian Sea to a depth of about 1655 m. The submarine contains one nuclear reactor containing long-lived radionuclides such as cesium-137 ({sup 137}Cs) along with other fission and activation products, in addition to 2 mixed uranium/plutonium nuclear warheads containing weapons grade plutonium. Although several model studies have shown that a radioactive leakage from Komsomolets will have insignificant impact on fish and other marine organisms, there are still public concerns about the condition of the submarine and the potential for radioactive leakage. In order to document the contamination levels and to meet public concerns, monitoring of radioactive contamination in the area adjacent to the submarine has been ongoing since 1993. Samples of bottom seawater and sediments have been collected annually by the Institute of Marine Research (IMR) and have been analysed for {sup 137}Cs and plutonium-239,240 ({sup 239,240}Pu). So far, activity concentrations in the samples have been comparable to levels found in other samples from the Norwegian and Barents Seas. During sampling from R/V 'G. O. Sars' in April 2013, an area of about 1 km{sup 2} of the seabed around Komsomolets was mapped to precisely locate the submarine using a Kongsberg EM302 multibeam echo sounder, a Simrad EK60 single beam echo sounder and an Olex 3D bottom-mapping system. For sediment sampling, a Simrad MST342 mini-transponder was attached to a Smoegen box corer to allow for precise positioning of the corer. With the aid of the Kongsberg HiPAP (High Precision Acoustic Positioning) system, 4 box cores were collected around the submarine at a distance of 10 to 20 m. In addition, one box core was collected from a reference station about 100 m upstream of the submarine. Surface sediments and sediment cores were collected from the box cores taken at each sampling location. Sediment cores

  20. Radon and its decay product activities in the magmatic area and the adjacent volcano-sedimentary Intrasudetic Basin

    Directory of Open Access Journals (Sweden)

    D. Tchorz

    2007-06-01

    Full Text Available In the magmatic area of Sudetes covering the Karkonosze granite and adjacent volcano-sedimentary Intrasudetic Basin a study of atmospheric radon activity was performed by means of SSNTD Kodak LR-115. The study was completed by gamma spectrometric survey of eU and eTh determined by gamma activity of radon decay products 214Bi and 208Tl respectively. In the case of the western part of the Karkonosze granite area the radon decay products activity in the granitic basement was found to be as high as 343 Bq/kg for 214Bi and 496 Bq/kg for 208Tl respectively. Atmospheric radon content measured by means of Kodak LR115 track detector at the height of 1.5 m was found as high as 70 Bq/m3 in the regions, where no mining activities took place. However in the eastern part of the granitic massif in the proximity of abandoned uranium mine atmospheric radon content was found to be 6000 Bq/m3. In the case of sedimentary basin where sedimentary sequence of Carboniferous rocks has been penetrated by younger gases and fluids of volcanic origin uranium mineralization developed. The region known from its CO2 outburst during coal mining activity is characterized by good ventilation of the uranium enriched geological basement resulting in increased atmospheric radon activity being in average 72 Bq/m3. In the vicinity of coal mine tailing an increase up to 125 Bq/m3 can be observed. Seasonal variations of atmospheric radon content are influenced in agricultural areas by cyclic cultivation works (plough on soils of increased uranium content and in the case of post-industrial brownfields varying rates of radon exhalation from tailings due to different meteorological conditions.

  1. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  2. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    Science.gov (United States)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1993-01-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in 20Ne and 21Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high 3He 4He ratios. The high 20Ne 22Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO2 well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere. ?? 1993.

  3. Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-

    Science.gov (United States)

    Kaji, T.; Yamazaki, H.; Kato, Y.

    2008-12-01

    Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow

  4. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  5. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  6. A preliminary survey of the broadband seismic wavefield at Puu Oo, the active vent of Kilauea volcano, Hawaii

    Directory of Open Access Journals (Sweden)

    P. Okubo

    1996-06-01

    Full Text Available The seismic wavefield near an active volcanic vent consists of superimposed signals in a wide range of frequency bands from sources inside and outside the volcano. To characterize the broadband wavefield near Puu Oo, we deployed a profile of three three-component broadband sensors in a 200 m long line about 1.5 km WSW of the active vent. During this period, Puu Oo maintained a constant, but very low level of activity. The digital data logger recorded the wavefield continuously in the frequency band between 0.01 and 40 Hz between June 25 and July 9, 1994. At the same time, local wind conditions along with air temperature and pressure were monitored by a portable digital weather station. On the basis of characteristic elements, such as waveform, spatial coherence between stations, particle motion and power spectra, the wavefield can be divided into three bands. The dominant signals in the frequency band between 0.01 and 0.1 Hz are not coherent among the stations. Their ground velocities correlate with the wind speed. The signals in the 0.1 to 0.5 Hz band are coherent across the profile and most probably represent a superposition of volcanic tremor and microseisms from the Pacific Ocean. Much of the energy above 0.5 Hz can be attributed to activity at the vent. Power spectra from recordings of the transverse components show complex peaks between 0.5 and 3 Hz which vary in amplitude due to site effects and distance. On the other hand, power spectra calculated from the radial components show a clearly periodic pattern of peaks at 1 Hz intervals for some time segments. A further remarkable feature of the power spectra is that they are highly stationary.

  7. Characteristics of volcanic gas correlated to the eruption activity; Case study in the Merapi Volcano, periods of 1990-1994

    Directory of Open Access Journals (Sweden)

    Priatna Priatna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20074Volcanic gases, collected from Gendol and Woro solfatara fields, the summit of Merapi Volcano during 1990-1994, show an increase in chemical composition of H , CO, CO , SO , and HCl prior to the volcanic events, on the contrary to the drastic decreasing water vapour. The carbon/sulfur ratio of the volcanic gases lies between 1.5 and 5.7 which means that they were derived from the fresh magma. The Apparent Equilibrium Temperature (AET which is calculated from chemical compositions of volcanic gases using reaction of SO +3H = H S+2H O showed an increasing value prior to the volcanic events. The Merapi activities lasted during August 1990 to November 1994 showed a significant increase in ratio SO /H S prior to the November 1994 pyroclastic flow. The isotopic composition of volcanic gas condensates indicates that water vapour in Gendol is directly derived from the fresh magma. On the other hand, the contamination and cooling by the subsurface water occurred around the Woro field at a shallow part. 

  8. [Medical-physiological characteristics of combat training of nuclear-power submarine crews].

    Science.gov (United States)

    Dovgusha, V V; Myznikov, I L; Shalabodov, S A; Bumaĭ, O K

    2009-10-01

    The article presents an observe of general questions of peculiarities of military-professional activity of submarine staff These questions are defining value in ideology of medical supply of submarine troops of NAVY in now-days conditions. The article also presents the statistics of morbidity in long termed sails for last forty years, it's dynamics by different categories of sail staff, on different stages of combat training activity in dependence of perioditation of work cycle of submarine staff The authors have examined modern condition of medical supply of submarines; have presented statistics of quality indexes of health of submarine staff The authors have formed main problems of medical supply of submarines and have proposed ways of their solving on modern stage.

  9. Submarine Escape Set Test Facilities

    Directory of Open Access Journals (Sweden)

    G.S.N. Murthy

    2009-07-01

    Full Text Available Submarine Escape Set (SES is used by submariners to escape from a sunken submarine. This set caters for breathing needs of the submariner under water, until he reaches the surface. Evaluation of such life-saving equipment is of paramount importance. This paper describes the submarine escape set and various constructional features and schedules of operation of test facilities designed indegenously and which can evaluate the SES. The test facility is divided into two parts: the reducer test facility, and the breathing bag test facility. The equipment has been rigorously tested and accepted by Indian Navy. Two such test facilities have been developed, one of which is installed at INS Satavahana, Visakhapatnam, and are working satisfactorily.

  10. Current submarine atmosphere control technology.

    Science.gov (United States)

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  11. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    Science.gov (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  12. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  13. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  14. The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events

    Science.gov (United States)

    Funiciello, R.; Giordano, G.; De Rita, D.

    2003-04-01

    The evaluation of volcanic hazard in the Roman hinterland related to the quiescent Colli Albani Volcano has recently been the subject of renewed attention and several interpretations by many authors. However, very little was known of the recent history of the volcano, making such interpretations rather speculative. The most recent activity of Colli Albani Volcano originated from the Albano polygenetic maar lake, which erupted several phreatomagmatic units, the most recent of which, the Peperino Albano ignimbrite, has been dated at around 25 ka. An area of several square kilometers centered around Albano Lake is presently the site of shallow and frequent seismic activity and gaseous emission as well as hydrothermal activity and is therefore considered the most prone to geologic hazards. This paper presents new stratigraphic and geomorphologic data as well as age determinations that allow rejuvenation of the most recent activity of the Colli Albani Volcano, and particularly the Albano maar lake, to the Holocene. This study allows for the first time to identify a potential hazard related to the Albano maar lake withdrawal interpreted to be related to endogenous causes, namely CO 2 emission. The main results of the study are: (1) the Peperino Albano is not, as is generally believed, the last phreatomagmatic eruption from the Colli Albani Volcano; a previously unrecognized phreatomagmatic surge deposit has been identified overlying the paleosol at the top of the Peperino Albano and related lahar deposits; (2) two lahar deposits separated by paleosols top the stratigraphic succession and are dispersed only to the NW, corresponding to the lowest point of the maar rim, indicating that catastrophic hydrologic events occurred at the Albano Lake in recent times; rapid and substantial lake-level variations and lake withdrawal are reported by Roman historians and recorded by the stratigraphy of the Albano Lake lacustrine sediments; (3) microfracturing related to seismic energy

  15. Dynamics of degassing at Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Vergniolle, S.; Jaupart, C. (Univ. Paris 7 (France))

    1990-03-10

    In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The bubbles in the foam deform under the action of buoyancy. If the critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, suface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna Ulu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km{sup 2}. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 10{sup 3} kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  16. Exploring the Gas Chemistry of Old Submarine Technologies Using Plastic Bottles as Reaction Vessels and Models

    Science.gov (United States)

    Horikoshi, Ryo; Takeiri, Fumitaka; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-01-01

    We describe an activity that is suitable for high school students and makes use of plastic bottles. This activity allows students to familiarize themselves with gas chemistry by introducing technologies that were applied in old submarine systems. Plastic bottles, which are representative of submarines, are used as reaction vessels. Three simple…

  17. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    KAUST Repository

    Vasyura-Bathke, Hannes

    2015-04-28

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a ‘sliding-trapdoor’ ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano\\'s western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that ‘sliding-trapdoor’ ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  18. Cardiometabolic Health in Submariners Returning from a 3-Month Patrol

    Directory of Open Access Journals (Sweden)

    Heath G. Gasier

    2016-02-01

    Full Text Available Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF% ≥ 25% (obesity, and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR, leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5% and fat-mass (11% occurred in the obese group as a result of reduced energy intake (~2000 kJ during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population.

  19. Is magma cooling responsible for the periodic activity of Soufrière Hills volcano, Montserrat, West Indies?

    Science.gov (United States)

    Caricchi, Luca; Simpson, Guy; Chelle-Michou, Cyril; Neuberg, Jürgen

    2016-04-01

    After 400 years of quiescence, Soufrière Hills volcano on Montserrat (SHV) started erupting in 1995. Ongoing deformation and sulphur dioxide emission demonstrate that this volcanic systems is still restless, however, after 5 years of inactivity it remains unclear whether magma extrusion will restart. Also, if such periodically observed activity at SHV will restart, can we use past monitoring data to attempt to forecast the reawakening of this volcano? Cooling of volatile saturated magma leads to crystallisation, the formation of gas bubbles and expansion. Such volumetric variations are not only potentially responsible for deformation signals observed at the surface (Caricchi et al., 2014), but also lead to pressurisation of the magmatic reservoir and eventually renewed magma extrusion (Tait et al., 1989). We postulate that volcanic activity observed at SHM over the last 20 years could be essentially the result of the unavoidable progressive cooling of a magmatic body, which was probably assembled over thousands of years and experienced internal segregation of eruptible lenses of magma (Christopher et al., 2015). To test this hypothesis, we performed thermal modelling to test if the cooling of a shallow magma body emplaced since 1990 could account for the monitoring signals observed at SHV. The results show that progressive cooling of a 4km3 volume of melt could explain the deformation rate currently observed. Using the deformation rate obtained from the modelling for the first 15 years of cooling, a reservoir volume of about 13 km3 (Paulatto et al., 2012) and a critical value of overpressure of 10 MPa, it would have taken approximately only 3 years to pressurise the reservoir to the critical pressure and restart magma extrusion. This is in agreement with the time interval between previous pauses at SHV before 2010. Considering the current deformation rates, we speculate that magma extrusion could restart in 6-8 years after the end of the last event in 2010, hence

  20. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  1. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  2. Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan

    Science.gov (United States)

    Hirose, Takashi; Nakahara, Hisashi; Nishimura, Takeshi

    2017-03-01

    Coda-wave interferometry is a technique to detect small seismic velocity changes using phase changes in similar waveforms from repeating natural or artificial sources. Seismic interferometry is another technique for detecting seismic velocity changes from cross-correlation functions of ambient seismic noise. We simultaneously use these two techniques to clarify seismic velocity changes at Sakurajima volcano, one of the most active volcanoes in Japan, examining the two methods. We apply coda-wave interferometry to the records of repeated active seismic experiments conducted once a year from 2011 to 2014, and seismic interferometry to the ambient seismic noise data. We directly compare seismic velocity changes from these two techniques. In coda-wave interferometry analyses, we detect significant seismic velocity increases between 2011 and 2013, and seismic velocity decreases between 2013 and 2014 at the northern and eastern flanks of the volcano. The absolute values are at a maximum 0.47 ± 0.06% for 2-4 Hz, 0.24 ± 0.03% for 4-8 Hz, and 0.15 ± 0.03% for 8-16 Hz, respectively. In seismic interferometry analyses, vertical-vertical cross-correlations in 1-2, 2-4, and 4-8 Hz bands indicate seismic velocity increases and decreases during 3 years of 2012-2014 with the maximum amplitudes of velocity change of ±0.3% for 1-2 Hz, ±0.4% for 2-4 Hz, and ±0.2% for 4-8 Hz, respectively. Relative velocity changes indicate the almost annual change. These periodical changes are well matched with volcano deformation detected by GNSS receivers deployed around the volcano. We compare the results from coda-wave interferometry with those from seismic interferometry on the shot days and find that most of them are consistent. This study illustrates that the combined use of coda-wave interferometry and seismic interferometry is useful to obtain accurate and continuous measurements of seismic velocity changes.[Figure not available: see fulltext.

  3. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  4. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  5. An Interactive Geospatial Database and Visualization Approach to Early Warning Systems and Monitoring of Active Volcanoes: GEOWARN

    Science.gov (United States)

    Gogu, R. C.; Schwandner, F. M.; Hurni, L.; Dietrich, V. J.

    2002-12-01

    Large parts of southern and central Europe and the Pacific rim are situated in tectonically, seismic and volcanological extremely active zones. With the growth of population and tourism, vulnerability and risk towards natural hazards have expanded over large areas. Socio-economical aspects, land use, tourist and industrial planning as well as environmental protection increasingly require needs of natural hazard assessment. The availability of powerful and reliable satellite, geophysical and geochemical information and warning systems is therefore increasingly vital. Besides, once such systems have proven to be effective, they can be applied for similar purposes in other European areas and worldwide. Technologies today have proven that early warning of volcanic activity can be achieved by monitoring measurable changes in geophysical and geochemical parameters. Correlation between different monitored data sets, which would improve any prediction, is very scarce or missing. Visualisation of all spatial information and integration into an "intelligent cartographic concept" is of paramount interest in order to develop 2-, 3- and 4-dimensional models to approach the risk and emergency assessment as well as environmental and socio-economic planning. In the framework of the GEOWARN project, a database prototype for an Early Warning System (EWS) and monitoring of volcanic activity in case of hydrothermal-explosive and volcanic reactivation has been designed. The platform-independent, web-based, JAVA-programmed, interactive multidisciplinary multiparameter visualization software being developed at ETH allows expansion and utilization to other volcanoes, world-wide databases of volcanic unrest, or other types of natural hazard assessment. Within the project consortium, scientific data have been acquired on two pilot sites: Campi Flegrei (Italy) and Nisyros Greece, including 2&3D Topography and Bathymetry, Elevation (DEM) and Landscape models (DLM) derived from conventional

  6. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    Science.gov (United States)

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  7. Controls on plan-form evolution of submarine channels

    Science.gov (United States)

    Imran, J.; Mohrig, D. C.

    2014-12-01

    Vertically aggrading sinuous channels constitute a basic building block of modern submarine fans and the greater continental slope. Interpretation of seismically imaged channels reveals a significant diversity in internal architecture, as well as important similarities and differences in the evolution of submarine channels relative to better studied rivers. Many submarine channel cross sections possess a 'gull wing' shape. Successive stacking of such channels demonstrates that systematic bank erosion is not required in order for lateral migration to occur. The lateral shift of such aggrading channels, however, is expected to be much less dynamic than in the case of terrestrial rivers. Recent high-resolution 3D seismic data from offshore Angola and an upstream segment of the Bengal Submarine Fan show intensely meandering channels that experience considerable lateral shifting during periods of active migration within submarine valleys. The cross sections of the actively migrating channels are similar to meandering river channels characterized by an outer cut-bank and inner-bank accretion. In submarine channels, the orientation of the secondary flow can be river-like or river-reverse depending on the channel gradient, cross sectional shape, and the adaptation length of the channel bend. In river channels, a single circulation cell commonly occupies the entire channel relief, redistributing the bed-load sediment across the channel, and influencing the thread of high velocity and thus the plan-form evolution of the channel. In submarine environments, the height of the circulation cell will be significantly smaller than channel relief, thus leading to development of lower relief point bars from bed-load transport. Nevertheless these "underfit" bars may play an important role in plan-form evolution of submarine channels. In rivers and submarine channels, the inclined surface accretion can be constructed via pure bed-load, suspended-load, or a combination of both transport

  8. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  9. Magma storage and migration associated with the 2011-2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic island volcanoes

    Science.gov (United States)

    González, Pablo J.; Samsonov, Sergey V.; Pepe, Susi; Tiampo, Kristy F.; Tizzani, Pietro; Casu, Francesco; Fernández, José; Camacho, Antonio G.; Sansosti, Eugenio

    2013-08-01

    Starting in July 2011, anomalous seismicity was observed at El Hierro Island, a young oceanic island volcano. On 12 October 2011, the process led to the beginning of a submarine NW-SE fissural eruption at ~15 km from the initial earthquake loci, indicative of significant lateral magma migration. Here we conduct a multifrequency, multisensor interferometric analysis of spaceborne radar images acquired using three different satellite systems (RADARSAT-2, ENVISAT, and COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin Observation)). The data fully captures both the pre-eruptive and coeruptive phases. Elastic modeling of the ground deformation is employed to constrain the dynamics associated with the magmatic activity. This study represents the first geodetically constrained active magmatic plumbing system model for any of the Canary Islands volcanoes, and one of the few examples of submarine volcanic activity to date. Geodetic results reveal two spatially distinct shallow (crustal) magma reservoirs, a deeper central source (9.5 ± 4.0 km), and a shallower magma reservoir at the flank of the southern rift (4.5 ± 2.0 km). The deeper source was recharged, explaining the relatively long basaltic eruption, contributing to the observed island-wide uplift processes, and validating proposed active magma underplating. The shallowest source may be an incipient reservoir that facilitates fractional crystallization as observed at other Canary Islands. Data from this eruption supports a relationship between the depth of the shallow crustal magmatic systems and the long-term magma supply rate and oceanic lithospheric age. Such a relationship implies that a factor controlling the existence/depth of shallow (crustal) magmatic systems in oceanic island volcanoes is the lithosphere thermomechanical behavior.

  10. Carbohydrate Metabolism in Submariner Personnel

    Science.gov (United States)

    1983-06-01

    metabolism the Wilkerson Point System, for glucose values, used in conjunction with patterns of insulin response described by Kraft(4) serves as the means...amount of exercise and carbohydrate metabolism characteristics occurred in both submariners and non-submariners. An inverse relationship also seems to...individuals(7). In the present study a significant negative correlation was also found between exercise vs one and two hour postprandial glucose and two hour

  11. A real-time framework for fast data retrieval in an image database of volcano activity scenarios

    Science.gov (United States)

    Aliotta, Marco Antonio; Cannata, Andrea; Cassisi, Carmelo; Ciancitto, Francesco; Montalto, Placido; Prestifilippo, Michele

    2015-04-01

    Explosive Activity at Stromboli Volcano (Aeolian Islands) is continuously monitored by INGV-OE in order to analyze its eruptive dynamics and specific scenarios. In particular, the images acquired from thermal cameras represent a big collection of data. In order to extract useful information from thermal image sequences, we need an efficient way to explore and retrieve information from a huge amount of data. In this work, a novel framework capable of fast data retrieval, using the "metric space" concept, is shown. In the light of it, we implemented an indexing algorithm related to similarity laws. The focal point is finding objects of a set that are "close" in relation to a given query, according to a similarity criterion. In order to perform this task, we performed morphological image processing techniques to each video frame, in order to map the shape area of each explosion into a closed curve, representing the explosion contour itself. In order to constitute a metric space, we chose a certain number of features obtained from parameters related to this closed curve and used them as objects of this metric space where similarity can be evaluated, using an appropriate "metric" function to calculate the distances. Unfortunately, this approach has to deal with an intrinsic issue involving the complexity and the number of distance functions to be calculated on a large amount of data. To overcome this drawback, we used a novel abstract data structure called "K-Pole Tree", having the property of minimizing the number of distances to be calculated among objects. Our method allows for fast retrieval of similar objects using an euclidean distance function among the features of the metric space. Thus, we can cluster explosions related to different kinds of volcanic activity, using "pivot" items. For example, given a known image sequence related to a particular type of explosion, it is possible to quickly and easily find all the image sequences that contain only similar

  12. The TOMO-ETNA experiment: an imaging active campaign at Mt. Etna volcano. Context, main objectives, working-plans and involved research projects

    Directory of Open Access Journals (Sweden)

    Jesús M. Ibáñez

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS, air-gun shooting for Wide Angle Seismic refraction (WAS, Multi-Channel Seismic (MCS reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.

  13. Dive! Dive! An Introduction to the History and Technology of Submarines.

    Science.gov (United States)

    Department of the Navy, Washington, DC.

    This resource guide for science and social studies classes explores the world of U.S. Navy submarines and other submersibles. The guide consists of background information on the history and development of submarines and a list of cross-curricular activities to challenge, educate, and entertain students. Students learn the inherent challenges that…

  14. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    Science.gov (United States)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  15. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  16. A re-evaluation of the Italian historical geomagnetic catalogue: implications for paleomagnetic dating at active Italian volcanoes

    Directory of Open Access Journals (Sweden)

    F. D'Ajello Caracciolo

    2011-06-01

    Full Text Available Paleomagnetism is proving to represent one of the most powerful dating tools of volcanics emplaced in Italy during the last few centuries/millennia. This method requires that valuable proxies of the local geomagnetic field (paleosecular variation ((PSV are available. To this end, we re-evaluate the whole Italian geomagnetic directional dataset, consisting of 833 and 696 declination and inclination measurements, respectively, carried out since 1640 AD at several localities. All directions were relocated via the virtual geomagnetic pole method to Stromboli (38.8° N, 15.2° E, the rough centre of the active Italian volcanoes. For declination-only measurements, missing inclinations were derived (always by pole method by French data (for period 1670–1789, and by nearby Italian sites/years (for periods 1640–1657 and 1790–1962. Using post-1825 declination values, we obtain a 0.46 ± 0.19° yr−1 westward drift of the geomagnetic field for Italy. The original observation years were modified, considering such drift value, to derive at a drift-corrected relocated dataset. Both datasets were found to be in substantial agreement with directions derived from the field models by Jackson et al. (2000 and Pavon-Carrasco et al. (2009. However, the drift-corrected dataset minimizes the differences between the Italian data and both field models, and eliminates a persistent 1.6° shift of 1933–1962 declination values from Castellaccio with respect to other nearly coeval Italian data. The relocated datasets were used to calculate two post-1640 Italian SV curves, with mean directions calculated every 30 and 10 years before and after 1790, respectively. The curve comparison suggests that both available field models yield the best available SV curve to perform paleomagnetic dating of 1600–1800 AD Italian volcanics, while the Italian drift-corrected curve is probably preferable for the 19th century. For the 20th century, the global model by

  17. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    Science.gov (United States)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  18. High-resolution Geophysical Mapping of Submarine Glacial Landforms

    Science.gov (United States)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.

    2014-12-01

    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  19. Ongoing Active Deformation Processes at Fernandina Volcano (Galapagos) Detected via Multi-Orbit COSMO-SkyMed SAR Data Analysis

    Science.gov (United States)

    Pepe, Susi; Castaldo, Raffaele; De Luca, Claudio; Casu, Francesco; Tizzani, Pietro; Sansosti, Eugenio

    2014-05-01

    Fernandina Volcano, Galápagos (Ecuador), has experienced several uplift and eruption episodes over the last twenty-two years. The ground deformation between 2002 and 2006 was interpreted as the effect of an inflation phenomenon of two separate magma reservoirs beneath the caldera. Moreover, the uplift deformation occurred during the 2005 eruption was concentrated near the circumferential eruptive fissures, while being superimposed on a broad subsidence centred on the caldera. The geodetic studies emphasized the presence of two sub volcanic lateral intrusions from the central storage system in December 2006 and August 2007. The latest eruption in 2009 was characterized by lava flows emitted from the SW radial fissures. We analyze the spatial and temporal ground deformation between March 2012 and July 2013, by using data acquired by COSMO-SkyMed X-band constellation along both ascending and descending orbits and by applying advanced InSAR techniques. In particular, we use the SBAS InSAR approach and combine ascending and descending time series to produce vertical and East-West components of the mean deformation velocity and deformation time series. Our analysis revealed a new uplift phenomenon due to the stress concentration inside the shallow magmatic system of the volcano. In particular, the vertical mean velocity map shows that the deformation pattern is concentrated inside caldera region and is characterized by strongly radial symmetry with a maximum displacement of about 20 cm in uplift; an axial symmetry is also observed in the EW horizontal mean velocity map, showing a maximum displacement of about +12 cm towards East for the SE flank, and -12 cm towards West for the NW flank of the volcano. Moreover, the deformation time series show a rather linear uplift trend from March to September 2012, interrupted by a low deformation rate interval lasting until January 2013. After this stage, the deformation shows again a linear behaviour with an increased uplift rate

  20. Broadband seismic measurements of degassing activity associated with lava effusion at Popocatépetl Volcano, Mexico

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Chouet, Bernard A.; Dawson, Phillip; Asch, Guenter

    2008-01-01

    From November 1999 through July 2000, a broadband seismic experiment was carried out at Popocatépetl Volcano to record seismic activity over a wide period range (0.04–100 s). We present an overview of the seismicity recorded during this experiment and discuss results of analyses of long-period (LP) and very-long-period (VLP) seismic signals recorded at stations nearest to the crater over a four-month interval December 1999–March 2000. Three families of LP signals (Types-I, II, and III) are identified based on distinctive waveform features observed periods shorter than 1 s, periods longer than 15 s, and within the period range 0.5–2.5 s. Type-I LP events have impulsive first arrivals and exhibit a characteristic harmonic wave train with dominant periods in the 1.4–1.9 s range during the first 10 s of signal. These events are also associated with a remarkable VLP wavelet with period near 30 s. Type-II LP events represent pairs of events occurring in rapid succession and whose signatures are superimposed. These are typically marked by slowly emergent first arrivals and by a characteristic VLP wave train with dominant period near 30 s, made of two successive wavelets whose shapes are quasi-identical to those of the VLP wavelets associated with Type-I events. Type-III LP events represent the most energetic signals observed during our experiment. These have an emergent first arrival and display a harmonic signature with dominant period near 1.1 s. They are dominated by periods in the 0.25–0.35 s band and contain no significant energy at periods longer than 15 s. Hypocentral locations of the three types of LP events obtained from phase picks point to shallow seismic sources clustered at depths shallower than 2 km below the crater floor. Observed variations in volcanic eruptive activity correlate with defined LP families. Most of the observed seismicity consists of Type-I events that occur in association with 1–3-min-long degassing bursts (

  1. Multibeam Bathymetry of Haleakala Volcano, Maui

    Science.gov (United States)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  2. Comparative naval architecture analysis of diesel submarines

    OpenAIRE

    Torkelson, Kai Oscar

    2005-01-01

    CIVINS Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written on submarines, no exclusively diesel submarine comparative naval architecture analyses have been published. One possible reason for few submarine studies may be the lack of complete and accurate information regarding the naval architecture of foreign diesel subma...

  3. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  4. Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records

    Science.gov (United States)

    Yukutake, Yohei; Ueno, Tomotake; Miyaoka, Kazuki

    2016-12-01

    Autocorrelation functions (ACFs) for ambient seismic noise are considered to be useful tools for estimating temporal changes in the subsurface structure. Velocity changes at Hakone volcano in central Japan, where remarkable swarm activity has often been observed, were investigated in this study. Significant velocity changes were detected during two seismic activities in 2011 and 2013. The 2011 activity began immediately after the 2011 Tohoku-oki earthquake, suggesting remote triggering by the dynamic stress changes resulting from the earthquake. During the 2013 activity, which exhibited swarm-like features, crustal deformations were detected by Global Navigation Satellite System (GNSS) stations and tiltmeters, suggesting a pressure increment of a Mogi point source at a depth of 7 km and two shallow open cracks. Waveforms that were bandpass-filtered between 1 and 3 Hz were used to calculate ACFs using a one-bit correlation technique. Fluctuations in the velocity structure were obtained using the stretching method. A gradual decrease in the velocity structure was observed prior to the 2013 activity at the KOM station near the central cone of the caldera, which started after the onset of crustal expansion observed by the GNSS stations. Additionally, a sudden significant velocity decrease was observed at the OWD station near a fumarolic area just after the onset of the 2013 activity and the tilt changes. The changes in the stress and strain caused by the deformation sources were likely the main contributors to these decreases in velocity. The precursory velocity reduction at the KOM station likely resulted from the inflation of the deep Mogi source, whereas the sudden velocity decrease at the OWD station may reflect changes in the strain caused by the shallow open-crack source. Rapid velocity decreases were also detected at many stations in and around the volcano after the 2011 Tohoku-oki earthquake. The velocity changes may reflect the redistribution of hydrothermal

  5. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  6. Modeling eruptions of Karymsky volcano

    OpenAIRE

    Ozerov, A.; Ispolatov, I.; Lees, J.

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of...

  7. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  8. Temporal Changes of Seismic Velocity of Shallow Structure Associated With the 2000 Miyakejima Volcano Activity as Inferred From Ambient Seismic Noise Correlation Analyses

    Science.gov (United States)

    Anggono, T.; Nishimura, T.; Sato, H.; Ueda, H.; Ukawa, M.

    2008-12-01

    Miyakejima Island, which is located about 170 km to the south of Tokyo, Japan, is an active volcano of basaltic magma. In 2000 volcanic activity started with magma ascent and migration northwestwardly on June 26 - 27. Then, the volcano formed a caldera on the summit in July, and large amount of volcanic gas emission continued from late August until now. We analyze the ambient seismic noise recorded at three NIED seismic stations (MKK, MKT, and MKS) in the island in order to study the volcano structure behavior associated with such significant volcanic activities. We apply cross correlation analyses to the continuous records of vertical component of short period seismometers (1 s). The data are sampled at a frequency of 100 Hz with an A/D resolution of 16-bit. We calculate cross correlation functions (CCFs) for time window of 60 s for each station pair. We stack the CCFs for each month and bandpass filter the stacked data at frequency band 0.4 - 0.8 Hz. The stacked CCFs, which may represent the Green function between two stations, at station pairs MKK - MKS (the distance is 1.8 km) and MKT - MKS (the distance is 3.9 km) show wave packets with large amplitudes at both sides (positive and negative time delays). The wave packets propagate at group velocities of about 0.8 - 1.0 km/s. The stacked CCFs for MKK - MKT (the distance is 3.1 km) is one sided (negative time delay). Such asymmetric might be due to the inhomogeneous distribution of propagation direction of ambient seismic noise, so we do not use the data for the following analyses. Comparing the CCFs obtained for periods from July 1999 to June 2000 with that of October 2002, we observe small phase difference of the main wave packet. Our results show that for station pair MKK - MKS, whose path crosses the northern part of the island, velocity increased about 1.6 % after the 2000 volcanic activity. For MKT - MKS, whose path closely crosses the newly formed caldera, we estimate the velocity decrease of about 1

  9. Time-lapse camera observations of gas piston activity at Pu‘u ‘Ō‘ō, Kīlauea volcano, Hawai‘i

    Science.gov (United States)

    Orr, Tim R.; Rea, James

    2012-01-01

    Gas pistoning is a type of eruptive behavior described first at Kīlauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu‘u ‘Ō‘ō cone, in Kīlauea’s east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60 min, had volumes ranging from 14 to 104 m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49 s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.

  10. Eruptive activity at Turrialba volcano (Costa Rica): Inferences from 3He/4He in fumarole gases and chemistry of the products ejected during 2014 and 2015

    Science.gov (United States)

    Rizzo, Andrea Luca; Di Piazza, Andrea; de Moor, J. Maarten; Alvarado, Guillermo E.; Avard, Geoffroy; Carapezza, Maria Luisa; Mora, Mauricio M.

    2016-11-01

    A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864-1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.

  11. North American Submarine Cable Association (NASCA) Submarine Cables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data show the locations of in-service and out-of-service submarine cables that are owned by members of NASCA and located in U.S. territorial waters. More...

  12. Geochemical monitoring of volcano unrest and multi-step magma propagation: the example of the 2007-2011 Piton de la Fournaise activity.

    Science.gov (United States)

    Di Muro, Andrea; Métrich, Nicole; Deloule, Etienne; Civetta, Lucia

    2014-05-01

    The 2007 eruption represents a major event in the recent history of Piton de la Fournaise volcano because it produced: i) the most voluminous lava field (at least 0.21 km3), ii) the most intense lava fountaining activity (>200 m high), iii) the largest SO2 plume (>230 kt), iv) the largest summit collapse (1 km wide x 0.34 km deep) and v) the main flank slip event (up to 1.4 m eastwards) ever documented at PdF. The bulk magma volume extruded during the 2007 eruption is similar to that emitted during the entire 1998-2006 period. As a whole, the volume of lavas emitted during the whole 1998-2007 cycle is remarkably close to that estimated (~0.35 km3) for the shallow plumbing system of Piton de la Fournaise. The 2007 eruptive sequence consisted of three successive phases (February, March and April). The main phase in April ended a 9 years long period (1998-2007) of continuous edifice inflation and frequent eruptive activity (3 eruptions per year on average). On the contrary, the 2008-2011 activity is associated with a trend of continuous deflation and consists of small-volume summit eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Bulk rocks, minerals, melt inclusions, matrices and very fast cooled ejecta (Pele's hairs and tears) are studied in order to assess the link between volcano unrest processes, structure of the magma plumbing system, ascent dynamics and summit caldera collapse. Melt heterogeneity demonstrate that the shallow part of PdF edifice (upper 3 km) host low-MgO (MgO: 6.2 wt%) melts with variable normative An/Di ratios and olivine content, at variable steps of evolution towards a common ternary eutectic minimum. Repeated summit collapses favor the formation of discontinuities for shallow temporary magma storage. Extrusion of shallow evolved melts is triggered by ascent of small volumes of deeper, hotter magnesian melts (MgO: up to 8.7 wt%), previously stored in the depth range 2-4 km below sea level. Finally, the good match

  13. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  14. When the hazard you're monitoring is the least of your troubles… the early days of a ubiquitous computing citizen science initiative on active volcanoes

    Science.gov (United States)

    van Manen, S. M.; Richards, M.; Seaton, R.; Cameron, I.; Avard, G.; Martinez, M.

    2014-12-01

    Approximately 500 million people live in close proximity to one or more of the world's 1500 active volcanoes, and this number is set to increase through population growth. The corresponding human, social, environmental and economic costs of volcanic activity are likewise set to rise. Monitoring of active volcanoes is imperative to minimize the impact of volcanic activity. However, people's responses towards risk are not just determined by objective scientific information, but also by socio-cognitive factors such as hazard salience; risk perception; anxiety levels and sense of self efficacy. This project aims to take a citizen science approach to the monitoring of hazardous volcanic gases: a low-cost automated ubiquitous technology station will increase spatial and temporal data resolution while providing citizens access to relevant, accurate, timely and local information. This means a single data stream can be used to develop a better understanding of volcanic degassing and raise levels of hazard salience and increase feelings of self efficacy. A year and two prototypes into the project, this work presents the lessons learnt to date. Careful consideration was given to the station design in light of the harsh conditions it may encounter. Once the first prototypes were built, results from the initial lab tests were encouraging. Yet it wasn't until the stations were taken into the field that unexpected challenges were encountered: humans. During the very first field trial the prototype was vandalised, our second attempt was thwarted by customs and courier services. As a result, we've had to be flexible in our approach and adapt our strategy and station design in response to these events, which will eventually result in a better outcome. However, this case study serves as a reminder of the importance of considering factors beyond the equipment, data, interpretation and involvement of the public, when planning and implementing a citizen science initiative.

  15. Submarine barite-opal rocks of hydrothermal origin.

    Science.gov (United States)

    Bertine, K K; Keene, J B

    1975-04-11

    Unusual submarine rocks consisting of barite, opal, and volcanic detritus were recovered from the Lau Basin northeast of Australia. It is proposed that these rocks were formed when hydrothermal solutions emanating from a fracture zone offsetting the active spreading center in the Lau Basin came into contact with cooler ocean waters.

  16. Self-potential changes associated with volcanic activity. Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island)

    Energy Technology Data Exchange (ETDEWEB)

    Zlotniki, J. [UMR6530, Clermont-Ferrand (France); Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Le Mouel, J. L. [Institut de Physique du Globe de Paris, Laboratoire de Geomagnetisme, Paris (France); Sasai, Y. [Tokyo Univ., Tokyo (Italy). Earthquake Research Institute; Yvetot, P.; Ardisson, M. H. [UMR6524, Laboratoire de Geophysique d' Orleans, Orleans (France)

    2001-04-01

    After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ), in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35{sup 0}E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more) and are

  17. Self-potential chenges associated with volcanic activity: Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island

    Directory of Open Access Journals (Sweden)

    P. Yvetot

    2001-06-01

    Full Text Available After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35°E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more and are correlated with the structural anisotropy. Finally, during the last hours preceding the

  18. Analysis on Global Earthquake and Volcano Activity in Recent Years%近年来全球地震与火山活动分析

    Institute of Scientific and Technical Information of China (English)

    洪汉净

    2011-01-01

    The eruption of Unzen Volcano of Japan in 1900 and eruption of Pinatubo volcano of Philippine in 1991 resulted in the active in the west margin of Philippine Sea Plate, and then the global seismic and volcanism come into a new stage. Great earthquakes (M≥8) are mostly in southern hemisphere, includes Sumatra Mw 9.1, 2004, and Chile Mw 8. 8, 2010. Volcano active has similar regime, both of 2 eruptions with VEI≥5 occurred in southern hemisphere. Tohoku earthquake in 2011 induced most expensive catastrophes, and effected the global seismic regime. Based on the comparison of patterns of earthquake distribution, the earthquake at Japan Arc may not overthrow the present regime of global earthquake activity.%1990年日本云仙岳火山和1991年菲律宾皮那图博火山喷发,引发了菲律宾海板块西缘的活动.全球板块运动以及相应的地震、火山活动进入一个新的阶段,特大地震活动以南半球为主,发生了2004年苏门答腊Mw 9.1大震(Mw是矩震级),2010年智利Mw 8.8级大地震.火山活动也有类似表现,两个VEI≥5(VEI是火山爆发指数)的喷发都发生在南半球.2011年日本仙台东发生Mw 9.1级大震造成巨大的灾难,也影响了世界地震活动的格局.考虑到1933年日本三陆大震后的图像.日本弧大震可能没有完全改变全球活动格局.

  19. Evidence for lahar-triggering mechanisms in complex stratigraphic sequences: the post-twelfth century eruptive activity of Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Pistolesi, Marco; Cioni, Raffaello; Rosi, Mauro; Cashman, Katharine V.; Rossotti, Andrea; Aguilera, Eduardo

    2013-03-01

    Cotopaxi volcano is situated in the Eastern Cordillera of the Ecuadorian Andes and consists of a symmetric volcanic cone that reaches an altitude of 5,897 m above sea level; it is capped over its upper 1,000 m by a permanent glacier. The volcano has erupted frequently in the past few centuries and, according to the archival records, has produced dozens of lahars by catastrophic snow and ice melting during eruptions. In this work, we present a detailed map and a stratigraphic study of the lahar deposits of the past 800 years in two different topographic settings. A thorough knowledge of the tephrostratigraphy of the explosive activity over the same time period was a first-order pre-requisite for the complete reconstruction and dating of lahar activity and also allowed us to precisely link lahar units to eruptive phases of individual eruptions. Results indicate that, during the thirteenth to seventeenth centuries, high-intensity eruptions (Plinian events or blast-like explosions) produced large debris flows that transported meter-sized boulders. A subsequent period of activity that started in 1742 was characterized by several lahar-generating eruptive episodes that were smaller in scale but with significant variability in size (the 1877 being the smallest and most recent). Analysis of events occurring in the eighteenth century suggests that eruption style affects the volume and energy of the resulting lahars, with different pyroclastic flow types causing different mechanisms of water release from the summit glacier. Lahars produced during this time period were triggered by: (1) dilute pumice and ash-rich radially distributed density currents and (2) column collapse-related radially distributed scoria and lithic-rich pyroclastic-flows. The former produced lahar deposits that are matrix-rich, block-poor, and valley-confined, while the high erosive capacity of the latter produced lahars that are block-rich, highly energetic, and widespread. The youngest (1853 and 1877

  20. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    Science.gov (United States)

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  1. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  2. Radial anisotropy ambient noise tomography of volcanoes

    Science.gov (United States)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  3. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    Science.gov (United States)

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  4. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Cashman, Katherine V.; Mangan, Margaret T.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  5. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  6. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  7. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    Science.gov (United States)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  8. In Brief: Underwater volcano gets real-time monitoring

    Science.gov (United States)

    Zielinski, Sarah

    2007-05-01

    A real-time underwater earthquake monitoring system was installed on the top of Kick'em Jenny, an underwater volcano located off the north coast of Grenada, on 6 May. The Real Time Offshore Seismic Station (RTOSS) consists of an ocean-bottom seismometer connected by a stretchy hose to a buoy on the ocean surface. The buoy is powered by solar panels and transmits seismic data by high-frequency radio to an observatory in Sauteurs, Grenada. The RTOSS research team, led by scientists from the Woods Hole Oceanographic Institution, is coordinating with the Grenadian National Disaster Management Agency and the Seismic Unit of the University of the West Indies to incorporate the RTOSS data into existing regional monitoring. Kick'em Jenny, the only `live' submarine volcano in the West Indies, last erupted in 2001.

  9. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  10. Comparative Naval Architecture Analysis of Diesel Submarines

    Science.gov (United States)

    2005-06-01

    space required to enclose all of the requirements, this volume must be able to support the weight of the submarine. In other words, Archimedes ’ principle ...accurate information regarding the naval architecture of foreign diesel submarines. However, with some fundamental submarine design principles , drawings of...cycling and hiking, I thank you for pushing me to relieve stress through my favorite sports. Last but not least of all, I want to pay tribute to the

  11. Unusual seismic signals associated with the activity at Galeras volcano, Colombia, from July 1992 to September 1994

    Directory of Open Access Journals (Sweden)

    L. Narvàez M.

    1996-06-01

    Full Text Available After the emplacement of a lava dome at Galeras volcano in 1991, seven eruptions occurred from July 16, 1992, to September 23, 1994, six of which were preceded by quasi-monochromatic, long-duration seismic events with slowly decaying coda named «tornillos» (screws. The dominant frequencies of these unusual seismic signals are related to source characteristics and show temporal changes, diminishing and then tending to stabilize before an eruption. At the same time, the accumulated number and the duration of these signals increase several days prior to the eruption. The increase in the duration of the tornillo events and the decline of the dominant frequencies both suggest an increasing impedance contrast between the surrounding solid material and the fluid. These characteristics may be associated with an increase in the free gas phase in the magma produced by saturation of volatiles due to cooling, crystallization and partial solidification of the column of magma plugging the conduits. The solidified magma can contribute to sealing the conduits and preventing free gas escape, with consequent generation of overpressure. An eruption is initiated when the overpressure exceeds the resistance strength of the solid material.

  12. An ongoing large submarine landslide at the Japan trench

    Science.gov (United States)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  13. Recent progress in submarine geosciences in China

    Institute of Scientific and Technical Information of China (English)

    JIN Xianglong

    2013-01-01

    In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en-ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.

  14. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  15. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  16. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  17. Sediment wave-forms and modes of construction on Mariana (and other) intra-oceanic arc volcanoes

    Science.gov (United States)

    Embley, R. W.; Stern, R. J.; Chadwick, B.; Tamura, Y.; Merle, S. G.

    2014-12-01

    Most intra-oceanic arc volcanoes are composite edifices constructed primarily in the submarine environment, built up by volcaniclastic sediments derived from hydroclastic and pyroclastic processes at/near the summits, punctuated by occasional lava flows and intrusions. Of particular interest in the mode of construction are extensive fields of large sediment waveforms (SWFs), up to >2 km wavelength and >100 m amplitude, on the submarine flanks of many islands and seamounts within the Mariana and other intra-oceanic subduction zones. These SWFs are composed of coarse-grained volcaniclastic sediments derived from the (approximate) point source summits of the island and submarine volcanoes. SWFs around some seamounts and islands, particularly those with large calderas, define quasi-concentric ring-like ridges, suggesting formation by density currents generated during submarine and island eruptions, and preserved for 10s of thousands of years. Some types of SWFs appear to have formed by progressive slumping of oversteepened slopes without fluidization. General conclusions about the origin of SWFs are hampered by the dearth of samples and high resolution seismic reflection profiles. However, large coherent slumps and debris avalanches documented for some ocean islands (e.g., Hawaiian Islands) are (mostly) are not as evident on the composite arc volcanoes. Submarine Mariana arc (and other intra-oceanic arc) volcanism probably spread volcaniclastic material primarily during submarine "Neptunian" eruptions and by progressive slides and other sediment flow rather than by catastrophic flank collapse. These processes could mitigate the Hawaiian-style of tsumami hazard, but Krakatoa-type tsunami hazards exist.

  18. A submarine perspective of the Honolulu Volcanics, Oahu

    Science.gov (United States)

    Clague, David A.; Paduan, Jennifer B.; McIntosh, William C.; Cousens, Brian L.; Davis, Alicé S.; Reynolds, Jennifer R.

    2006-03-01

    Lavas and volcaniclastic deposits were observed and collected from 4 submarine cones that are part of the Honolulu Volcanics on Oahu, Hawaii. The locations of these and a few additional, but unsampled, vents demonstrate that nearly all the vents are located on or very close to the shoreline of Oahu, with the most distal vent just 12 km offshore. The clastic samples and outcrops range from coarse breccias to cross-bedded ash deposits and show that explosive volcanism at depths between about 350 and 590 m depth played a part in forming these volcanic cones. The eruptive styles appear to be dominantly effusive to strombolian at greater depths, but apparently include violent phreatomagmatic explosive activity at the shallower sites along the submarine southwest extension of the Koko Rift. The compositions of the recovered samples are broadly similar to the strongly alkalic subaerial Honolulu Volcanics lavas, but the submarine lavas, erupted further from the Koolau caldera, have slightly more radiogenic Sr isotopic ratios, and trace element patterns that are distinct from either the subaerial Honolulu Volcanics or the submarine North Arch lavas. These patterns are characterized by moderate to strong positive Sr and P anomalies, and moderate to strong negative Cs, Rb, U, Th, Zr, and Hf anomalies. Most samples have strong negative K and moderate negative Ti anomalies, as do all subaerial Honolulu Volcanics and North Arch samples, but one group of samples from the Koko Rift lack this chemical signature. The data are consistent with more garnet in the source region for the off-shore samples than for either the on-shore Honolulu Volcanics lavas. New Ar-Ar ages show that eruptions at the submarine vents and Diamond Head occurred between about 0.5 Ma and 0.1 Ma, with the youngest ages from the Koko Rift. These ages are in general agreement with most published ages for the formation and suggest that some much younger ages reported previously from the Koko Rift are probably

  19. Mud Volcanoes from the Beaufort Sea to the South China Sea

    Science.gov (United States)

    Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Dallimore, S.; Melling, H.; Liu, C. S.; Anderson, K.; Gwiazda, R.

    2015-12-01

    The detailed morphology of five submarine mud volcanoes were surveyed using an Autonomous Underwater Vehicle (AUV) developed at the Monterey Bay Aquarium Research Institute. Mud volcanoes are constructional features built by extrusion of gas, subsurface fluids and fine-grained sediment. Two surveys covering four submarine mud volcanoes were conducted on the CCGS Sir Wilfred Laurier in the Beaufort Sea in the Canadian Arctic. A survey of one mud volcano was conducted on the Taiwanese Ocean Research V in the South China Sea, SE of Taiwan. The AUV carried a multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a110 kHz sidescan, and obtained overlapping multibeam bathymetric coverage at a vertical resolution of 0.15 m with a horizontal footprint of 0.9 m and chirp seismic-reflection profiles with a vertical resolution of 0.11 m. Mud volcanoes were either flat topped or conical. The conical mud volcano off Taiwan had a diameter of ~2 km and 10° side slopes; the conical feature in the Beaufort Sea had a diameter of ~1.5 km and 4° side slopes. The sides of the conical mud volcanoes were smooth, suggesting they were formed by sediment flows that emanate from a vent on their crests. The flanks of the conical mud volcanoes characteristically had very low acoustic reflectivity, but one single high reflectivity trail from the crest of the Beaufort Sea mud volcano indicates a recent flow. Three mud volcanoes in the Beaufort Sea formed circular, flat-topped plateaus that are up to ~1.1 km in diameter and elevated up to 30 m from the surrounding seafloor. The fine scale morphology and reflectivity on these plateaus show low relief, concentric, and ovoid circles that appear to be mud boils probably associated with eruptive events of varying ages at shifting vent sites. The different mud volcano shapes are attributed to variations in the viscosity of the erupting sediment slurries and may represent a sequential morphology, which is altered by shifts in venting position over

  20. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  1. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  2. Local scour at submarine pipelines

    Institute of Scientific and Technical Information of China (English)

    Yee-Meng Chiew

    2010-01-01

    The rapid development of offshore oil_fields has increased the number of submarine pipelines being constructed for the transport of crude oil to onshore refineries.Interactions between the pipeline and an erodible bed under the influence of current and waves often lead to local scouring around the structure.When this occurs, the pipeline may be suspended on the seabed resulting in the formation of a span.If the free span is long enough, the pipe may experience resonant flow-induced oscillations,leading to structural failure.This study examines the complex flow-structure-sediment interaction leading to the development of local scour holes around submarine pipelines.It reviews published literature in this area,which primarily is confined to the development of 2-dimensional scour holes.Despite the abundance of such research studies,pipeline-scour in the field essentially is 3-dimensional in nature.Hence, most of these studies have overlooked the importance of the transverse dimension of the scour hole,while emphasizing on its vertical dimension.This dearly is an issue that must be re-examined in light of the potential hazard and environmental disaster that one faces in the event of a pipeline failure.Recent studies have begun to recognize this shortcoming,and attempts have been made to overcome the deficiency.The study presents the state-of-the-art knowledge on local scour at submarine pipelines,both from a 2-dimensional as well as the 3-dimensional perspective.

  3. Primary Initiation of Submarine Canyons

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas-giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I propose here another, unanticipated consequence of whole-Earth decompression dynamics: namely, a specific, dominant, non-erosion, underlying initiation-mechanism precursor for submarine canyons that follows as a direct consequence of Earth's early origin as a Jupiter-like gas-giant.

  4. The velocity structure of crust and upper mantle in the Wudalianchi volcano area inferred from the receiver function

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2003-01-01

    The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area. The results show that the low velocity structure of S wave is widely distributed underneath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area. The low velocity structure is related to the seismicity. The Moho interface is not clear underneath the volcano area, which may be regard to be an necessary condition for the lava upwelling. Therefore, we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.

  5. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  6. Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999-2001 activity of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Le Pennec, Jean-Luc; Ruiz, Gorki A.; Ramón, Patricio; Palacios, Enrique; Mothes, Patricia; Yepes, Hugo

    2012-03-01

    Repeated ash fall events have occurred during the 1999-ongoing eruption of Tungurahua volcano, Ecuador, notably during the late 1999 and August 2001 eruptive phases. While the eruptive styles were similar, these two phases had different impacts on nearby rural and urban Andean populations: ash falls in late 1999 had limited effects on human health and farming, whereas the 2001 phase resulted in medical problems, death of animals in livestock, and damages to houses and crops. Here we investigate the origin of this difference by estimating the size of the August 2001 event (VEI, magnitude, intensity), and by comparing monitoring information of the 1999 and 2001 phases (duration, explosion rate, column height, SO2 output rate). The results show that both phases ranked at VEI 3, although the longer 1999 phase was likely larger than the 2001 phase. Mass magnitude (M) and intensity (I) indexes calculated for the 2001 phase reach M ≈ 2.7 and I ≈ 6.5 when based on ash fall layer data, but increase to M ≈ 3.2 and I ≈ 7.0 when ballistic products are included. We investigated the influence of rain fall and wind flow regimes on ash dispersion, sedimentation and remobilization. The analysis indicates that the harmful effect of the 2001 phase resulted from unfavorable conditions that combined volcanological and seasonal origins, including: a) a low elevation of the ash plume above rural regions owed to a usually bent-over column, b) ash sedimentation in a narrow area west of the volcano under sub-steady wind directions, c) anticipated ash settling by frequent rain flushing of low intensity, and d) formation of a wet cohesive ash coating on buildings and harvests. Conversely, the stronger 1999 phase injected a large amount of ash at higher elevation in the dry season; the ash was widely disseminated across the whole Ecuadorian territory and beyond, and was frequently removed by rain and winds. In summary, our study illustrates the influences of eruption size and weather

  7. 47 CFR 32.2424 - Submarine & deep sea cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  8. 32 CFR 700.1058 - Command of a submarine.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  9. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A. (Australian National Univ., Canberra (Australia)); Clague, D.A. (Geological Survey, Hawaii National Park, HI (United States))

    1993-02-01

    Noble gas elemental and isotopic abundances have been analysed in twenty-two samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in [sup 20]Ne and [sup 21]Ne by as much as 16% with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high [sup 3]He/[sup 4]He ratios. The high [sup 20]Ne/[sup 22]Ne values in some of the Hawaiian samples, together with correlations between neon and helium systematics, suggest the presence of a solar component in the source regions of the Hawaiian mantle plume. The solar hypothesis for the Earth's primordial noble gas composition can account for helium and neon isotopic ratios observed in basaltic glasses from both plume and spreading systems, in fluids in continental hydrothermal systems, in CO[sub 2] well gases, and in ancient diamonds. These results provide new insights into the origin and evolution of the Earth's atmosphere.

  10. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  11. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  12. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  13. Deformation Study of Papandayan Volcano using GPS Survey Method and Its Correlation with Seismic Data Observation

    Directory of Open Access Journals (Sweden)

    Dina A. Sarsito

    2006-11-01

    Full Text Available Papandayan volcano located in the southern part of Garut regency, around 70 km away from Bandung city, West Java. Many methods carried out to monitoring the activities of volcano, both continuously or periodically, one of the monitoring method is periodically GPS survey. Basically those surveys are carried out to understand the pattern and velocity of displacement which occurred in the volcano body, both horizontally and vertically, and also others deformation elements such as; translation, rotation and dilatation. The Mogi modeling was also used to determine the location and volume of the pressure source which caused deformation of volcano body. By comparing seismic activity and the deformation reveal from GPS measurement, before, during and after eruption, it could be understood there is a correlation between the seismicity and its deformation. These studies is hoping that GPS measurement in Papandayan volcano could be one of supported method to determine the volcano activities, at least in Papandayan volcano.

  14. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  15. Source term analysis for a nuclear submarine accident

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Hugron, J.J.M.R. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    1999-07-01

    A source term analysis has been conducted to determine the activity release into the environment as a result of a large-break loss-of-coolant accident aboard a visiting nuclear-powered submarine to a Canadian port. This best-estimate analysis considers the fractional release from the core, and fission product transport in the primary heat transport system, primary containment (i.e. reactor compartment) and submarine hull. Physical removal mechanisms such as vapour and aerosol deposition are treated in the calculation. Since a thermalhydraulic analysis indicated that the integrity of the reactor compartment is maintained, release from the reactor compartment will only occur by leakage; however, it is conservatively assumed that the secondary containment is not isolated for a 24-h period where release occurs through an open hatch in the submarine hull. Consequently, during this period, the activity release into the atmosphere is estimated as 4.6 TBq, leading to a maximum individual dose equivalent of 0.5 mSv at 800 metres from the berthing location. This activity release is comparable to that obtained in the BEREX TSA study (for a similar accident scenario) but is four orders of magnitude less than that reported in the earlier Davis study where, unrealistically, no credit had been taken for the containment system or for any physical removal processes. (author)

  16. Water in volcanoes: evolution, storage and rapid release during landslides.

    Science.gov (United States)

    Delcamp, Audray; Roberti, Gioachino; van Wyk de Vries, Benjamin

    2016-12-01

    Volcanoes can store and drain water that is used as a valuable resource by populations living on their slopes. The water drainage and storage pattern depend on the volcano lithologies and structure, as well as the geological and hydrometric settings. The drainage and storage pattern will change according to the hydrometric conditions, the vegetation cover, the eruptive activity and the long- and short-term volcano deformation. Inspired by our field observations and based on geology and structure of volcanic edifices, on hydrogeological studies, and modelling of water flow in opening fractures, we develop a model of water storage and drainage linked with volcano evolution. This paper offers a first-order general model of water evolution in volcanoes.

  17. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  18. The reawakening of Alaska's Augustine volcano

    Science.gov (United States)

    Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.

    2006-01-01

    Augustine volcano, in south central Alaska, ended a 20-year period of repose on 11 January 2006 with 13 explosive eruptions in 20 days. Explosive activity shifted to a quieter effusion of lava in early February, forming a new summit lava dome and two short, blocky lava flows by late March (Figure 1).

  19. New volcanoes discovered in southeast Australia

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    Scientists have discovered three new active volcanoes in the Newer Volcanics Province (NVP) in southeast Australia. Researchers from Monash University in Melbourne describe in the Australian Journal of Earth Sciences how they used a combination of satellite photographs, detailed topography models from NASA, the distribution of magnetic minerals in the rocks, and site visits to analyze the region.

  20. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  1. Segmentation and Tracking of Anticyclonic Eddies during a Submarine Volcanic Eruption Using Ocean Colour Imagery

    Directory of Open Access Journals (Sweden)

    Javier Marcello

    2015-04-01

    Full Text Available The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments.

  2. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  3. Stratigraphy of the Hawai'i Scientific Drilling Project core (HSDP2): Anatomy of a Hawaiian shield volcano

    OpenAIRE

    Garcia, Michael O.; Haskins, Eric H.; Stolper, Edward M.; Baker, Michael

    2007-01-01

    The Hawai'i Scientific Drilling Project (HSDP2) successfully drilled ∼3.1 km into the island of Hawai'i. Drilling started on Mauna Loa volcano, drilling 247 m of subaerial lavas before encountering 832 m of subaerial Mauna Kea lavas, followed by 2019 m of submarine Mauna Kea volcanic and sedimentary units. The 2.85 km stratigraphic record of Mauna Kea volcano spans back to ∼650 ka. Mauna Kea subaerial lavas have high average olivine contents (13 vol.%) and low average vesicle abundances (10 v...

  4. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    Science.gov (United States)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  5. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand)

    Science.gov (United States)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald

    2016-04-01

    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  6. Santa Maria Volcano, Guatemala

    Science.gov (United States)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  7. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  8. Bayesian Event Tree (BET) approach to Near Real Time monitoring on active volcanoes within ASI-SRV project: Mt. Etna test case

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Taroni, Matteo; Fabrizia Buongiorno, Maria; Dini, Luigi

    2010-05-01

    ASI-Sistema Rischio Vulcanico (SRV) project is devoted to the development of a pre-operative integrated system managing different Earth Observation (EO) and Non EO data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes. The project provides the capability to maintain a repository where the acquired data are stored and generates products offering a support to risk managers during the different volcanic activity phases. All the products are obtained considering technical choices and developments of ASI-SRV based on flexible and scalable modules which take into account also the new coming space sensors and new processing algorithms. An important step of the project development regards the technical and scientific feasibility of the provided products that depends on the data availability, accuracy algorithms and models used in the processing and of course the possibility to validate the results by means of comparison with non-EO independent measurements. The multivariate analysis allows to perform multiple comparisons in order to have a first idea of which variables are largely preferentially or rather rarely distributed, also considering their geographic localization. The "Volcanic Parameter" cross correlation will allow to define the weight of each product that will be used as input in the BET-EF model (Bayesian Event Tree model for eruption forecasting ) which is an already developed algorithm for the eruption model, and will be adapt, as it is, to the ASI-SRV needs. The BET model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging any kind of available and relevant information, such as theoretical models, a priori beliefs, monitoring measures, and past data. It is mainly based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting

  9. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  10. Flow Over a Model Submarine

    Science.gov (United States)

    Jiménez, Juan; Smits, Alexander

    2003-11-01

    Experimental investigation over a DARPA SUBOFF submarine model (SUBOFF Model) was performed using flow visualization and Digital Particle Image Velocimetry (DPIV). The model has an axisymmetric body with sail and fins, and it was supported by a streamlined strut that was formed by the extension of the sail appendage. The range of flow conditions studied correspond to a Reynolds numbers based on model length, Re_L, of about 10^5. Velocity vector fields, turbulence intensities, vorticity fields, and flow visualization in the vicinity of the junction flows are presented. In the vicinity of the control surface and sail hull junctions, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. The effects of unsteady motions about an axis passing through the sail are also investigated to understand the evolution of the unsteady wake.

  11. Violent Gas Venting on the Heng-Chun Mud Volcano, South China Sea Active Continental Margin offshore SW Taiwan

    Science.gov (United States)

    Lin, S.; Cheng, W. Y.; Tseng, Y. T.; Chen, N. C.; Hsieh, I. C.; Yang, T. F.

    2014-12-01

    Accumulation of methane as gas hydrate under the sea floor has been considered a major trap for both thermal and biogenic gas in marine environment. Aided by rapid AOM process near the sea floor, fraction of methane escaping the sea floor has been considered at minuscule. However, most studies focused mainly on deepwater gas hydrate systems where gas hydrate remain relatively stable. We have studied methane seeps on the active margin offshore Taiwan, where rapid tectonic activities occur. Our intention is to evaluate the scale and condition of gas seeps in the tectonic active region. Towcam, coring, heat probe, chirp, multibeam bathymetric mapping and echo sounding were conducted at the study areas. Our results showed that gas is violently venting at the active margin, not only through sediments, but also through overlying sea water, directly into the atmosphere. Similar ventings, but, not in this scale, have also been identified previously in the nearby region. High concentrations of methane as well as traces of propane were found in sediments and in waters with flares. In conjunction, abundant chemosynthetic community, life mussel, clams, tube worms, bacterial mats together with high concentrations of dissolve sulfide, large authigenic carbonate buildups were also found. Our results indicate that methane could be another major green house gas in the shallow water active margin region.

  12. Aspects of Propeller Developements for a Submarine

    DEFF Research Database (Denmark)

    Andersen, Poul; kappel, Jens Julius; Spangenberg, Eugen

    2009-01-01

    Design and development of propellers for submarines are in some ways different from propellers for surface vessels. The most important demand is low acoustic signature that has priority over propeller efficiency, and the submarine propeller must be optimized with respect to acoustics rather than...... efficiency. Moreover the operating conditions of a submarine propeller are quite different. These aspects are discussed as well as the weighing of the various propeller parameters against the design objectives. The noise generated by the propeller can be characterized as thrust noise due to the inhomogeneous...... wake field of the submarine, trailing-edge noise and noise caused by turbulence in the inflow. The items discussed are demonstrated in a case study where a propeller of the Kappel type was developed. Three stages of the development are presented, including a design of an 8-bladed propeller where...

  13. CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

    2003-02-27

    The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

  14. Investigation of a fossil geothermal system, Hamblin-Cleopatra Volcano, Clark County, Nevada. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.S.

    1986-07-28

    The Hamblin-Cleopatra volcano, selected for study because erosion and fault displacement have exposed the entire volcanic succession, the intrusive core, a radial dike systems, and sedimentary and volcanic rocks that predate and postdate the volcano, was investigated to estimate the proportions of igneous materials forming lava flows, pyroclastic deposits, intrusive bodies, and reworked debris. Chemical changes in the magma throughout the active period of the volcano were documented. The geothermal system active within the pile after activity ceased was reconstructed. (ACR)

  15. China's First Robot Submarine Archeologist

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China recently announced successful experimentation with the first bionic robot “fish” in submarine archeology. This fish-like robot was put to work off the Fujian coast last year by archeologists conducting a submarine survey of an ancient battleship that was part of Ming general Zheng Chenggong's fleet The robot is capable of working continuously for 2-3 hours at a maximum speed of 1.5 m per second. Its performance was reported as “excellent”

  16. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  17. Submarine landslides: processes, triggers and hazard prediction.

    Science.gov (United States)

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  18. Single-station monitoring of volcanoes using seismic ambient noise

    Science.gov (United States)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  19. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    Science.gov (United States)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  20. Persistent inflation at Aira caldera accompanying explosive activity at Sakurajima volcano: Constraining deformation source parameters from Finite Element inversions

    Science.gov (United States)

    Hickey, James; Gottsmann, Jo; Iguchi, Masato; Nakamichi, Haruhisa

    2015-04-01

    Aira caldera is located within Kagoshima Bay at the southern end of Kyushu, Japan. Sakurajima is an active post-caldera andesitic stratovolcano that sits on the caldera's southern rim. Despite frequent Vulcanian-type explosive activity, the area is experiencing continued uplift at a maximum rate of approximately 1.5 cm/yr with a footprint of 40 km, indicating that magma is being supplied faster than it is erupted. This is of particular concern as the amplitude of deformation is approaching the level inferred prior to the 1914 VEI 4 eruption. Using GPS data from 1996 - 2007 we explore causes for the uplift. To solve for the optimum deformation source parameters we use an inverse Finite Element method accounting for three-dimensional material heterogeneity (inferred from seismic tomography) and the surrounding topography of the region. The same inversions are also carried out using Finite Element models that incorporate simplified homogeneous or one-dimensional subsurface material properties, with and without topography. Results from the comparison of the six different models show statistically significant differences in the inferred deformation sources. This indicates that both subsurface heterogeneity and surface topography are essential in geodetic modelling to extract the most realistic deformation source parameters. The current best-fit source sits within a seismic low-velocity zone in the north-east of the caldera at a depth of approximately 14 km with a volume increase of 1.2 x 108 m3. The source location underlies a region of active underwater fumaroles within the Wakamiko crater and differs significantly from previous analytical modelling results. Seismic data further highlights areas of high seismic attenuation as well as large aseismic zones, both of which could allude to inelastic behaviour and a significant heat source at depth. To integrate these observations, subsequent forward Finite Element models will quantify the importance of rheology and

  1. Volcano hazards at Fuego and Acatenango, Guatemala

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  2. Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Currenti, Gilda [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy); Del Negro, Ciro [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy); Lapenna, Vincenzo [Istituto di Metodologie per l' Analisi Ambientale, Consiglio Nazionale delle Ricerche, IMAA-CNR, C.da S.Loja 5, 85050 Tito, PZ (Italy); Telesca, Luciano [Istituto di Metodologie per l' Analisi Ambientale, Consiglio Nazionale delle Ricerche, IMAA-CNR, C.da S.Loja 5, 85050 Tito, PZ (Italy)]. E-mail: ltelesca@imaa.cnr.it

    2005-03-01

    The time-correlation properties in the hourly time variability of volcano-magnetic data measured at the active volcano Mt. Etna, Sicily (southern Italy), are investigated by using the detrended fluctuation analysis (DFA). DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of nonstationarities. The procedure adopted has revealed unambiguous link between the dynamics of the measured data and the recent eruptive episode of the volcano occurred on October 27, 2002.

  3. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  4. Submarine Landslides at Santa Catalina Island, California

    Science.gov (United States)

    Legg, M. R.; Francis, R. D.

    2011-12-01

    Santa Catalina Island is an active tectonic block of volcanic and metamorphic rocks originally exposed during middle Miocene transtension along the evolving Pacific-North America transform plate boundary. Post-Miocene transpression created the existing large pop-up structure along the major strike-slip restraining bend of the Catalina fault that forms the southwest flank of the uplift. Prominent submerged marine terraces apparent in high-resolution bathymetric maps interrupt the steep submarine slopes in the upper ~400 meters subsea depths. Steep subaerial slopes of the island are covered by Quaternary landslides, especially at the sea cliffs and in the blueschist metamorphic rocks. The submarine slopes also show numerous landslides that range in area from a few hectares to more than three sq-km (300 hectares). Three or more landslides of recent origin exist between the nearshore and first submerged terrace along the north-facing shelf of the island's West End. One of these slides occurred during September 2005 when divers observed a remarkable change in the seafloor configuration after previous dives in the area. Near a sunken yacht at about 45-ft depth where the bottom had sloped gently into deeper water, a "sinkhole" had formed that dropped steeply to 100-ft or greater depths. Some bubbling sand was observed in the shallow water areas that may be related to the landslide process. High-resolution multibeam bathymetry acquired in 2008 by CSU Monterey Bay show this "fresh" slide and at least two other slides of varying age along the West End. The slides are each roughly 2 hectares in area and their debris aprons are spread across the first terrace at about 85-m water depth that is likely associated with the Last Glacial Maximum sealevel lowstand. Larger submarine slides exist along the steep Catalina and Catalina Ridge escarpments along the southwest flank of the island platform. A prominent slide block, exceeding 3 sq-km in area, appears to have slipped more than

  5. Distribution of acidic groundwater around quaternary volcanoes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asamori, Koichi; Ishimaru, Tsuneari; Iwatsuki, Teruki [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    2002-06-01

    One important key issue in the understanding of the long-term stability of the geological environment is the influence of magmatism. In this study, we examined the general spatial distribution of acidic groundwater around Quaternary volcanoes in Japan using a database of groundwater geochemistry. The results may be summarized as follows: Acidic groundwater with pH < 4.8 mainly occur in present volcanic regions and are distributed from several kilometers to about 20 km from Quaternary volcanoes. The pH value of groundwater tends to decrease with increasing distance from a volcano. However, these results may be affected by inhomogeneity of groundwater data distribution and the characteristic activity of each volcano. In order to assess a specific volcanic region, a detailed analysis that considers volcanic activity, using a data set with high spatial density is necessary. (author)

  6. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    Science.gov (United States)

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  7. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  8. Turtles to Terabytes: The Ongoing Revolution in Volcano Geodesy

    Science.gov (United States)

    Dzurisin, D.

    2015-12-01

    Volcano geodesy is in the midst of a revolution. GPS and InSAR, together with extensive ground-based sensor networks, have enabled major advances in understanding how and why volcanoes deform. Surveying techniques that produced a few bytes of information per benchmark per year have been replaced by continuously operating deformation networks and imaging radar satellites that generate terabytes of data at resolutions unattainable only a few decades ago. These developments have enabled more detailed assessments of volcano hazards, more accurate forecasts of volcanic activity, and better insights into how volcanoes behave over a variety of spatial and temporal scales. Forty years ago, repeated leveling surveys showed that the floor of the Yellowstone caldera had risen more than 70 cm in the past 5 decades. Today a network of GPS stations tracks surface movements continuously with millimeter-scale accuracy and the entire deformation field is imaged frequently by a growing number of SAR satellites, revealing a far more complex style of deformation than was recognized previously. At Mount St. Helens, the 1980-1986 eruption taught us that a seemingly quiescent volcano can suddenly become overtly restless, and that accurate eruption predictions are possible at least in some limited circumstances given sufficient observations. The lessons were revisited during the volcano's 2004-2008 eruption, during which a new generation of geodetic sensors and methods detected a range of co-eruptive changes that enabled new insights into the volcano's magma storage and transport system. These examples highlight volcano deformation styles and scales that were unknown just a few decades ago but now have been revealed by a growing number of data types and modeling methods. The rapid evolution that volcano geodesy is currently experiencing provides an ongoing challenge for geodesists, while also demonstrating that geodetic unrest is common, widespread, and illuminating. Vive la révolution!

  9. Hydroplaning and submarine debris flows

    Science.gov (United States)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  10. GRIM FATE OF UNLUCKY STRANDED SUBMARINE E13

    DEFF Research Database (Denmark)

    Nørby, Søren

    2015-01-01

    THE STORY OF A BRITISH SUBMARINE THAT SUFFERED AT THE HANDS OF THE GERMANS AFTER RUNNING AGROUND IN AUGUST 1915.......THE STORY OF A BRITISH SUBMARINE THAT SUFFERED AT THE HANDS OF THE GERMANS AFTER RUNNING AGROUND IN AUGUST 1915....

  11. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  12. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    Science.gov (United States)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  13. Three-dimensional structure of the submarine flanks of La Réunion inferred from geophysical data

    Science.gov (United States)

    Gailler, Lydie-Sarah; LéNat, Jean-FrançOis

    2010-12-01

    La Réunion (Indian Ocean) constitutes a huge volcanic oceanic system of which most of the volume is submerged. We present a study of its submarine part based on the interpretation of magnetic and gravity data compiled from old and recent surveys. A model of the submarine internal structure is derived from 3-D and 2-D models using constraints from previous geological and geophysical studies. Two large-scale, previously unknown, buried volcanic construction zones are discovered in continuation of the island's construction. To the east, the Alizés submarine zone is interpreted as the remnants of Les Alizés volcano eastward flank whose center is marked by a large hypovolcanic intrusion complex. To the southwest, the Etang Salé submarine zone is interpreted as an extension of Piton des Neiges, probably fed by a volcanic rift zone over a large extent. They were predominantly built during the Matuyama period and thus probably belong to early volcanism. A correlation exists between their top and seismic horizons recognized in previous studies and interpreted as the base of the volcanic edifice. Their morphology suggested a lithospheric bulging beneath La Réunion, not required to explain our data, since the seismic interfaces match the top of our volcanic constructions. The coastal shelf coincides with a negative Bouguer anomaly belt, often associated with magnetic anomalies, suggesting a shelf built by hyaloclastites. A detailed analysis of the offshore continuation of La Montagne Massif to the north confirms this hypothesis. The gravity analysis confirms that the bathymetric bulges, forming the northern, eastern, southern, and western submarine flanks, are predominantly built by debris avalanche deposits at the surface.

  14. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  15. An experimental approach to submarine canyon evolution

    Science.gov (United States)

    Lai, Steven Y. J.; Gerber, Thomas P.; Amblas, David

    2016-03-01

    We present results from a sandbox experiment designed to investigate how sediment gravity flows form and shape submarine canyons. In the experiment, unconfined saline gravity flows were released onto an inclined sand bed bounded on the downstream end by a movable floor that was used to increase relief during the experiment. In areas unaffected by the flows, we observed featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break were deeply incised by submarine canyons with well-developed channel networks. Normalized canyon long profiles extracted from successive high-resolution digital elevation models collapse to a single profile when referenced to the migrating shelf-slope break, indicating self-similar growth in the relief defined by the canyon and intercanyon profiles. Although our experimental approach is simple, the resulting canyon morphology and behavior appear similar in several important respects to that observed in the field.

  16. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  17. Publications of the Volcano Hazards Program 2014

    Science.gov (United States)

    Nathenson, Manuel

    2016-04-08

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Natural Hazards activity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaiʻi Mānoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions.

  18. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    Science.gov (United States)

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  19. Submarine Pipeline Routing Risk Quantitative Analysis

    Institute of Scientific and Technical Information of China (English)

    徐慧; 于莉; 胡云昌; 王金英

    2004-01-01

    A new method for submarine pipeline routing risk quantitative analysis was provided, and the study was developed from qualitative analysis to quantitative analysis.The characteristics of the potential risk of the submarine pipeline system were considered, and grey-mode identification theory was used. The study process was composed of three parts: establishing the indexes system of routing risk quantitative analysis, establishing the model of grey-mode identification for routing risk quantitative analysis, and establishing the standard of mode identification result. It is shown that this model can directly and concisely reflect the hazard degree of the routing through computing example, and prepares the routing selection for the future.

  20. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Hawaiian volcanoes build long rift zones and some of the largest volcanic edifices on Earth. For the active volcanoes on the Island of Hawai‘i, the growth of these rift zones is upward and seaward and occurs through a repetitive process of decades-long buildup of a magma-system head along the rift zones, followed by rapid large-scale displacement of the seaward flank in seconds to minutes. This large-scale flank movement, which may be rapid enough to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern characterizes currently active Kīlauea Volcano, where periods of upward and seaward growth along rift zones were punctuated by large (>10 m) and rapid flank displacements in 1823, 1868, 1924, and 1975. At the much larger Mauna Loa volcano, rapid flank movements have occurred only twice in the past 200 years, in 1868 and 1951.

  1. The active Moresby Seamount Detachment Fault, Woodlark Basin: insights into structure and mechanics from high-resolution submarine mapping and sampling

    Science.gov (United States)

    Behrmann, Jan H.; Speckbacher, Romed; Nagel, Thorsten; Klaucke, Ingo; Devey, Colin W.

    2010-05-01

    Moresby Seamount Detachment, located east of Papua New Guinea in the Woodlark Basin, is arguably the best-exposed active extensional detachment fault in the world. It forms the northern slopes of Moresby Seamount, a 3000 meter high east-west trending tectonic horst separating two extensional basins. Fault zone dip is about 30°, and total horizontal stretch accumulated in the past 3.5 Ma is about 8 km. The detachment surface is exposed on the sea floor over an area of about 30 square kilometers. Denudation is almost absent, and sedimentation is apparently suppressed by strong bottom water currents, providing a unique opportunity to analyze the tectonic geomorphology and structure of the fault zone, and sample the fault rocks. R/V SONNE Expedition 203 first mapped the area with about 20 m spatial resolution by ship-based multibeam bathymetry operating at 12 kHz. Most of the detachment surface was subsequently surveyed by AUV fitted with a 200 kHz multibeam echosounder, a CTD and a water column turbidity sensor. Map resolution is about 2 m. Samples were dredged from the detachment, and in basement and sediment sites in the footwall block. In the uppermost part the detachment zone cuts through an approximately 500 m thick sequence of Pliocene clastic sediments. Topography there is rugged, with erosional gullies, and areas of slope failure. Below, an upper smooth zone of the detachment is made up by a slope-parallel belt of cataclasites, generated from metamorphic basement rocks of Paleogene or older age, mainly gabbro, metadiabase and psammo-pelitic schists. Structurally and topographically below the cataclasites is a lower rugged zone mainly exposing cataclasites and mylonites. Topography is due to localized slope failure and a major sinistral strike slip fault scarp transecting the detachment with a 320° azimuth. Below the rugged zone is a lower smooth zone of cataclasites and mylonites. The most spectacular feature here are several north-south trending, extremely

  2. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  3. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): an innovative approach in the active volcano-tectonic area of Campi Flegrei (Italy)

    Science.gov (United States)

    Caccavale, M.; Matano, F.; Sacchi, M.; Somma, R.; Troise, C.; De Natale, G.

    2013-12-01

    The western coastal sector of Campania region (southern Italy) is characterised by the presence of the active volcano-tectonic area of Campi Flegrei. This area represents a very particular and interesting case-study for a probabilistic seismic hazard analysis (PSHA). The principal seismic source, related with the caldera, is not clearly constrained in the on-shore and off-shore areas. The well-known and monitored phenomenon of bradyseism affecting a large portion of case-study area is not modelled in the standard PSHA approach. From the environmental point of view the presence of very high exposed values in terms of population, buildings, infrastructures and palaces of high archaeological, natural and artistic value, makes this area a strategic natural laboratory to develop new methodologies. Moreover the geomorphological and geo-volcanological features lead to a heterogeneous coastline, made up by both beach and tuff cliffs, rapidly evolving for erosion and landslide (i.e. mainly rock fall and rock slide) phenomena that represent an additional hazard aspect. In the Campi Flegrei the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. In the framework of Italian MON.I.C.A project (sinfrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher tendency of landslide occurrence due to the seismic effect. Resident population reported the occurrence of some small rock falls along tuff quarry slopes during the main shocks of the 1982-84 bradyseismic events. The PSHA methodology, introduced by Cornell (1968), combines the contributions to the hazard from all potential sources of earthquakes and the average activity rates associated to each seismogenic zone considered. The result of the PSHA is represented by the spatial distribution of a ground-motion (GM) parameter A, such as Peak

  4. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans

    Science.gov (United States)

    Clark, J. D.; Kenyon, N. H.; Pickering, K. T.

    1992-07-01

    Certain attributes of submarine channels measured from GLORIA sidescan sonar data from 16 different submarine fans indicate similarities with fluviatile systems. Channel width, depth, meander radius and wavelength, sinuosity, and gradient were measured. This approach makes it possible to identify high- sinuosity, low-gradient (e.g., Indus Fan channels) and low-sinuosity, high- gradient (e.g., Porcupine Seabight channels) channel systems as end members. Current classifications of submarine fans relate fan shape to grain size or sediment caliber and therefore are inadequate, principally because the shape of the fan is strongly controlled by the shape of the receiving basin, which in turn is dependent upon parameters such as tectonics and diapirism. Overall fan shape is almost invariably independent of the physics of sediment transport. Rather than fan shape, the geometry and other characteristics of submarine channels and canyons provide a more promising means of differentiating deep- marine turbidite systems.

  5. Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago

    Science.gov (United States)

    Faria, B. V.; Day, S.; Fonseca, J. F.

    2013-12-01

    Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1scar. They are interpreted as shear failures between unconsolidated material at the base of the collapse scar fill and underlying more rigid pre-collapse rocks with abundant dikes, occuring as a result of long-term gravitational re-adjustment of the collapse scar fill after inflation of the island due to the 1995 eruption. Brava experiences frequent swarms of VT events. These are located mostly offshore, with a small proportion of on-shore events. The positions of offshore events are strongly correlated with seamounts and hence are interpreted as due to submarine volcanic processes. Onshore events (0.7

  6. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    Science.gov (United States)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  7. The petrological relationship between Kamen volcano and adjacent volcanoes of Klyuchevskaya group

    Science.gov (United States)

    Churikova, Tatiana; Gordeychik, Boris; Wörner, Gerhard; Ivanov, Boris; Maximov, Alexander; Lebedev, Igor; Griban, Andrey

    2010-05-01

    The Klyuchevskaya Group (KG) of volcanoes has the highest magma production rate across the Kamchatka arc and in fact for any arc worldwide. However, modern geochemical studies of Kamen volcano, which is located between Klyuchevskoy, Bezymianny and Ploskie Sopky volcanoes, were not carried out and its relation and petrogenesis in comparison to other KG volcanoes is unknown. Space-time proximity of KG volcanoes and the common zone of seismicity below them may suggest a common source and genetic relationship. However, the lavas of neighboring volcanoes are rather different: high-Mg and high-Al basalts occur at Klyuchevskoy volcano, Hbl-bearing andesites and dаcites dominate at Bezymianny and medium-high-K subalkaline rocks at Ploskie Sopky volcano. Moreover, previously it was shown that distinct fluid signatures were observed in different KG volcanoes. In this report we present geological, petrographical, mineralogical and petrochemical data on the rocks of Kamen volcano in comparison with other KG volcanoes. Three consecutive periods of volcano activity were recognized in geological history of Kamen volcano: stratovolcano formation, development of a dike complex and formation of numerous cinder and cinder-lava monogenetic cones. The rock series of volcano are divided into four groups: olivine-bearing (Ol-2Px and Ol-Cpx), olivine-free (2Px-Pl, Cpx-Pl and abundant Pl), Hb-bearing and subaphyric rocks. While olivine-bearing rocks are observed in all volcanic stages, olivine-free lavas are presented only in the stratovolcano edifice. Lavas of the monogenetic cones are presented by olivine-bearing and subaphyric rocks. Dikes are olivine-bearing and hornblende-bearing rocks. Olivines of the Kamen stratovolcano and dikes vary from Fo60 to Fo83, clinopyroxenes are augites in composition and plagioclases have a bimodal distribution with maximum modes at An50 and An86. Oxides are represented by high-Al spinel, magnetite and titaniferous magnetite. Mineral compositions of the

  8. Monitoring for volcano-hydrothermal activity using continuous gravity and local ground acceleration measurements: New deployments at Inferno Crater, Waimangu and White Island, New Zealand

    Science.gov (United States)

    Jolly, Arthur; Fournier, Nico; Cole-Baker, Jeremy; Miller, Craig

    2010-05-01

    Volcanoes with crater lakes are often characterised by shallow hydrothermal systems which display cyclic behaviour (temperature, lake level, chemistry, etc.) and shallow seismic tremor. Present monitoring programmes in New Zealand include routine collection of these observables, but the associated shallow sub-surface processes are still inadequately modelled and poorly understood. Models would be better constrained with the incorporation of additional geophysical parameters. To this end, we have established a new test programme to continuously monitor for micro-gravity variations at New Zealand volcanoes. We utilise a Micro-g-LaCoste gPhone relative gravity meter having 1 Hz sample rate and a measurement precision of 1 microgal to test the viability of gravity monitoring for volcano-hydrothermal systems. We have initially tested the new sensor in a short term deployment (~2 months) at Inferno Crater, Waimangu, New Zealand. Inferno shows dramatic variations in crater lake level (> 7 m range), temperature (>40o C range) and hydrothermally derived tremor, all over a period of ~5 weeks. The amplitude and period of these observables are ideal for testing gravity variations associated with a cycling hydrothermal system because several cycles can be obtained in a relatively short campaign. We have deployed the gravity sensor into a buried vault having a stable concrete base to minimise local environmental influences. This vault is located ~20 meters from Inferno Lake edge (at high stand) and offers sufficient noise reduction to measure the gravitational effects associated with lake level changes. We will show results for the new gravity meter including raw relative gravity measurements and first order corrections (earth-tide, ocean loading, sensor level, temperature, and barometric pressure) to obtain both residual gravity and overprinted local ground accelerations (earthquakes and local tremor). To examine the effects of local ground vibrations on the gravity meter, we

  9. Seatbelt submarining injury and its prevention countermeasures: How a cantilever seat pan structure exacerbate submarining.

    Science.gov (United States)

    Thorbole, Chandrashekhar K

    2015-01-01

    The purpose of this study and a case report was to demonstrate seat belt webbing induced injury due to seatbelt submarining during the frontal motor vehicle crash. Submarining is an undesired phenomenon during a frontal crash scenario and is dependent on design features of the seat pan and seatbelt system. The lack of adequate anti-submarining features at any seating position with three-point restraint can cause abdominal solid and hollow organ injuries. This paper reports a case of submarining and factors that exacerbated this phenomenon leading to critical occupant abdominal injury. This case report and the following injury causation analysis demonstrate the shortcomings of a cantilever seat pan design in context to the occupant safety. The inadequate seat pan anti-submarining feature in association with lack of seatbelt load-limiter and Pretensioner reduces the level of occupant protection offered by the seat belt system in the rear seat. This case report shows the dangers of cantilever seat pan design and its association with increased risk of submarining causing severe abdominal injuries.

  10. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  11. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    Science.gov (United States)

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; de Armas, D.; González, A. G.; Domínguez-Yanes, J. F.; Escánez, J.

    2013-01-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Here, we present dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. Our findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem. PMID:23355953

  12. Health and environmental risk assessment associated with a potential recovery of the Russian submarine K-27

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.; Amundsen, I.; Brown, J.E.; Dowdall, M.; Standring, W. [Norwegian Radiation Protection Authority/CERAD CoE (Norway); Bartnicki, J. [Norwegian Meteorological Institute/CERAD CoE (Norway); Karcher, M. [O.A.Sys - Ocean Atmosphere Systems GmbH (Germany); Lind, O.C.; Salbu, B. [Norwegian University of Life Sciences/CERAD CoE (Norway)

    2014-07-01

    The nuclear submarine K-27 is one of several objects with spent nuclear fuel (SNF) which has been dumped in the Arctic. It contained two liquid metal reactors (LMRs) of 70 MW maximum thermal power each and used Pb-Bi as the coolant. The reactors were loaded with 180 kg of U-235 at an enrichment of 90 %. In September 1981, the submarine was sunk in the shallow waters of Stepovoy Fjord at an estimated depth of 30 m. Concerns have been expressed by various parties regarding the issue of dumped nuclear waste in the Kara Sea and in particular the submarine K-27. To address these concerns and to provide a better basis for evaluating possible radiological impact (especially as a consequence of a potential recovery of the submarine), an environmental impact assessment has been undertaken. The study is based on construction of different hypothetical accident scenarios and evaluating possible associated consequences for human and the environment. In general, three main scenarios seem probable and thus appropriate for consideration. One is the 'zero- alternative', i.e. investigate the current and future impact assuming no interventions. The second considers an accidental scenario involving the raising of the submarine and the third an accidental scenario related to the transportation of the submarine to shore for defueling. With regards to the accidental scenarios related to raising and transportation of the submarine, two alternatives can be considered depending on where and how a hypothetical accident will take place and whether the subsequent releases occur under water or at the water surface. The issue of an uncontrolled chain reaction occurring as a result of a potential recovery of the submarine will be included in the assessment. The work includes application of state of the art 3D hydrodynamic and atmospheric dispersion models to investigate the transport, distribution and fate of relevant radionuclides following a hypothetical accident in aquatic and

  13. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liang; LUAN Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins.They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations.In this paper,submarine slope stability is evaluated using a 2D limit equilibrium method.Considerations of slope,sediment,and triggering force on the factor of safety (FOS) were calculated in drained and undrained (φ=0) cases.Results show that submarine slopes are stable when the slope is <16° under static conditions and without a weak interlayer.With a weak interlayer,slopes are stable at <18° in the drained case and at <9° in the undrained case.Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure.The slope became unstable at >13° with earthquake peak ground acceleration (PGA) of 0.5 g;whereas with a weak layer,a PGA of 0.2 g could trigger instability at slopes > 10°,and >3 ° for PGA of 0.5 g.The northern slope of the South China Sea is geomorphologically stable under static conditions.However,because of the possibility of high PGA at the eastern margin of the South China Sea,submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope.Therefore,submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake,the most important factor for triggering submarine slides on the northern slope of the South China Sea.Considering the distribution of PGA,we consider the northern slope of the South China Sea to be stable,excluding the Taiwan Bank slope,which is tectonically active.

  14. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  15. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  16. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow.

    Science.gov (United States)

    Fox, C G; Chadwick, W W; Embley, R W

    2001-08-16

    Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations after the event. In contrast, the 1998 eruption of Axial volcano on the Juan de Fuca ridge was monitored by in situ sea-floor instruments. One of these instruments, which measured bottom pressure as a proxy for vertical deformation of the sea floor, was overrun and entrapped by the 1998 lava flow. The instrument survived-being insulated from the molten lava by the solidified crust-and was later recovered. The data serendipitously recorded by this instrument reveal the duration, character and effusion rate of a sheet flow eruption on a mid-ocean ridge, and document over three metres of lava-flow inflation and subsequent drain-back. After the brief two-hour eruption, the instrument also measured gradual subsidence of 1.4 metres over the next several days, reflecting deflation of the entire volcano summit as magma moved into the adjacent rift zone. These findings are consistent with our understanding of submarine lava effusion, as previously inferred from seafloor observations, terrestrial analogues, and laboratory simulations.

  17. Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan

    Science.gov (United States)

    Wen, Hsin-Yi; Sano, Yuji; Takahata, Naoto; Tomonaga, Yama; Ishida, Akizumi; Tanaka, Kentaro; Kagoshima, Takanori; Shirai, Kotaro; Ishibashi, Jun-ichiro; Yokose, Hisayoshi; Tsunogai, Urumu; Yang, Tsanyao F.

    2016-01-01

    Shallow submarine volcanoes have been newly discovered near the Tokara Islands, which are situated at the volcanic front of the northern Ryukyu Arc in southern Japan. Here, we report for the first time the volatile geochemistry of shallow hydrothermal plumes, which were sampled using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. These surveys were performed during the research cruise KS-14-10 of the R/V Shinsei Maru in a region stretching from the Wakamiko Crater to the Tokara Islands. The 3He flux and methane flux in the investigated area are estimated to be (0.99–2.6) × 104 atoms/cm2/sec and 6–60 t/yr, respectively. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. Methane at the Wakamiko Crater is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands. This suggests that the Tokara Islands submarine volcanoes are a key feature of the transition zone between the volcanic front and the spreading back-arc basin. PMID:27671524

  18. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  19. Submarine glaciated landscapes of central and northern British Columbia, Canada

    Science.gov (United States)

    Shaw, John; Lintern, Gwyn

    2015-04-01

    Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also

  20. Crustal activities recorded in coral reefs in the northwestern South China Sea

    Institute of Scientific and Technical Information of China (English)

    ZHAN Wenhuan; YAO Yantao; ZHANG Zhiqiang; SUN Zongxun; ZHAN Meizhen; SUN Longtao; LIU Zaifeng

    2006-01-01

    Coral reefs in the northwest of South China Sea have recorded the information from not only the environmental variation but also the crustal activities there during their development. The main crustal activities correlated with the coral reef development include fault, seismic, and volcano activities,etc. The high-resolution spark seismic profiles in the northwestern South China Sea show that the fault activities in the coral reef region have been clearly recorded, and appear as neonatal faults incising reefs. Earthquakes in the coral reef region are rather intense, especially the two occurring on December,31, 1994, and January, 10, 1995, around the southwest of Leizhou Peninsula, with the magnitude of 6.1and 6.2, respectively. They have great influence on the growth of the local coral reefs. Quaternary volcanos are active in the northwestern South China Sea, especially around the southwest of Leizhou Peninsula, and they have obvious control of the coral reef development. Some submarine volcanoes form the substrates of coral reef, while a few emerge above the sea surface and form coral islands.

  1. Long-term flow monitoring of submarine gas emanations

    Science.gov (United States)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  2. Origin of the Easter Submarine Alignment: morphology and structural lineaments

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available The Easter submarine alignment corresponds to a sequence of seamounts and oceanic islands which runs from the Ahu-Umu volcanic fields in the west to its intersection with the Nazca Ridge in the east, with a total length of about 2.900 km and a strike of N85°E. Recent bathymetric compilations that include combined satellite derived and shipboard data (Global Topography and multibeam bathymetric data (from NGDC-NOAA are interpreted both qualitatively and quantitatively by using a morphological analysis, which was comprised of the determination of bathymetric patterns, trends in lineations and structures; height measurements, computation of basal areas and volumes of seamounts, in order to establish clues on the origin of this seamount chain and to establish relationships with the regional tectonics. In the study region 514 seamounts were counted, of which 334 had a basal area less than the reference seamount (Moai. In general, the largest seamounts (>1000 m in height tend to align and to have a larger volume, with an elongation of their bases along the seamount chain. On the other hand, smaller seamounts tend to be distributed more randomly with more circular bases. As a consequence of the morphological analysis, the best possible mechanism that explains the origin of the seamount chain is the existence of a localized hotspot to the west of the Salas y Gómez Island. The corresponding plume would contribute additional magmatic material towards the East Pacific Rise through canalizations, whose secondary branches would feed intermediate volcanoes. It is possible that within the Easter Island region there would be another minor contribution through fractures in the crust, due to the crustal weakening that was produced by the Easter Fracture Zone.

  3. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  4. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  5. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Marco, E-mail: marco.neri@ct.ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Giammanco, Salvatore [Istituto Nazionale di Geofisica e Vulcanologia, Piazza Roma, 2 - 95123 Catania (Italy); Ferrera, Elisabetta; Patane, Giuseppe [Universita degli Studi di Catania, Dip. Scienze della Terra, Corso Italia, 52 - 95129 Catania (Italy); Zanon, Vittorio [Centro de Vulcanologia e Avaliacao de Riscos Geologicos - Universidade dos Acores, Rua Mae de Deus, 9501-801 Ponta Delgada (Portugal)

    2011-09-15

    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics. - Highlights: > We performed measurements of radon from soil carried out on Mt. Etna. > The sampled zone is characterized by the presence of numerous active faults. > Radon mapping reveal dangerous hidden faults buried by recent soil cover. > Our study gives some hints on the source of gas and on fault dynamics. > We recognized areas where radon activity represents a hazard to the population.

  6. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  7. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  8. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  9. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

    Science.gov (United States)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-07-01

    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  10. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  11. Response analysis of a submarine cable under fault movement

    Institute of Scientific and Technical Information of China (English)

    Liu Aiwen

    2009-01-01

    Based on the performance of submarine cables in past earthquakes, an analytical method to determine cable performance under seabed fault movement is proposed in this paper. First, common types of earthquake damage to submarine cables are summarized, which include seabed displacement induced by fault movement, submarine landslides and seabed soil liquefaction, etc. The damage is similar to damage observed to buried pipelines following land earthquakes. The Hengchun earthquake of Dec. 26, 2006 is used as a case study. The M7.2 earthquake occurred in the South China Sea at 20:26 Beijing Time, and caused 14 international submarine cables to sever and break. The results show that the proposed method predicts damage similar to that observed in the Hengchun earthquake. Based on parametric studies of the influence of the water depth and the magnitude of the submarine earthquake, countermeasures to prevent damage to submarine cables are proposed.

  12. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    Institute of Scientific and Technical Information of China (English)

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui

    2007-01-01

    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  13. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  14. Hybrid Intelligent Control for Submarine Stabilization

    Directory of Open Access Journals (Sweden)

    Minghui Wang

    2013-05-01

    Full Text Available While sailing near the sea surface, submarines will often undergo rolling motion caused by wave disturbance. Fierce rolling motion seriously affects their normal operation and even threatens their security. We propose a new control method for roll stabilization. This paper studies hybrid intelligent control combining a fuzzy control, a neural network and extension control technology. Every control strategy can achieve the ideal control effect within the scope of its effective control. The neuro‐fuzzy control strategy is used to improve the robustness of the controller. The speed control strategy and the course control strategy are conducted to extend the control range. The paper also proposes the design of the controller and carries out the simulation experiment in different sea conditions. The simulation results show that the control method proposed can indeed effectively improve the control performance of submarine stabilization.

  15. Influence of Anchoring on Burial Depth of Submarine Pipelines

    OpenAIRE

    Yuan Zhuang; Yang Li; Wei Su

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emerge...

  16. A Lanchester model of submarine attack on a carrier battlegroup

    OpenAIRE

    Eagle, James N.

    1987-01-01

    A Lanchester model is developed for a battlegroup ASW engagement. Two variations are included. In the first, long-range missile firing submarines, short-range missile or torpedo firing submarines, and submarines firing only torpedoes distribute their attack uniformly over battlegroup escort ships and carriers. In the second variation, the attack is concentrated on the carriers. supported by the Naval War College http://archive.org/details/lanchestermodelo00eagl NA

  17. At Periscope Depth: Exploring Submarine Proliferation In Southeast Asia

    Science.gov (United States)

    2015-09-01

    last modified February 19, 2015, http://www.baodanang.vn/ english /society/201502/latest-kilo- class - submarine-launched-and-named-da-nang-2397107/. 134...Named ‘Da Nang.’” Last modified February 19, 2015. http://www.baodanang.vn/ english /society/201502/latest-kilo- class -submarine- launched-and-named-da...Southeast Asia, the acquisition of submarines does not clearly follow patterns of status quo modernization and is a new asset in states’ portfolios of

  18. LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

    OpenAIRE

    SREELATHA P.R; ALICE MATHAI

    2012-01-01

    Submarine is a watercraft capable of independent operation under water. Use of submarines includes marine science, offshore industry underwater exploration etc. The pressure hull of submarine is constructed as combination of cylinders and domes. The shell is subjected to very high hydrostatic pressure, which creates large compressive stress resultants. Due to this the structure is susceptible to buckling. The introduction of stiffeners in both directions considerably increases the buckling st...

  19. SSN 774 Virginia Class Submarine (SSN 774)

    Science.gov (United States)

    2015-12-01

    increasing performance capabilities more than eleven years after lead ship delivery in October 2004. With the delivery to the Navy of USS JOHN WARNER (SSN...of VIRGINIA Class Submarines are highlighted by the Commissioning of USS JOHN WARNER (SSN 785) at Norfolk Naval Shipyard on August 1, 2015 and the...significant production milestone with the completion of her pressure hull on August 29, 2015. Other near term VIRGINIA Class program events include Pre

  20. Learning to Characterize Submarine Lava Flow Morphology at Seamounts and Spreading Centers using High Definition Video and Photomosaics

    Science.gov (United States)

    Fundis, A. T.; Sautter, L. R.; Kelley, D. S.; Delaney, J. R.; Kerr-Riess, M.; Denny, A. R.; Elend, M.

    2010-12-01

    In August, 2010 the UW ENLIGHTEN ’10 expedition provided ~140 hours of seafloor HD video footage at Axial Seamount, the most magmatically robust submarine volcano on the Juan de Fuca Ridge. During this expedition, direct imagery from an Insite Pacific HD camera mounted on the ROV Jason 2 was used to classify broad expanses of seafloor where high power (8 kw) and high bandwidth (10 Gb/s) fiber optic cable will be laid as part of the Regional Scale Nodes (RSN) component of the NSF funded Ocean Observatories Initiative. The cable will provide power and two-way, real-time communication to an array of >20 sensors deployed at the summit of the volcano and at active sites of hydrothermal venting to investigate how active processes within the volcano and at seafloor hot springs within the caldera are connected. In addition to HD imagery, over 10,000 overlapping photographs from a down-looking still camera were merged and co-registered to create high resolution photomosaics of two areas within Axial’s caldera. Thousands of additional images were taken to characterize the seafloor along proposed cable routes, allowing optimal routes to be planned well in advance of deployment. Lowest risk areas included those free of large collapse basins, steep flow fronts and fissures. Characterizing the modes of lava distribution across the seafloor is crucial to understanding the construction history of the upper oceanic crust at mid-ocean ridges. In part, reconstruction of crustal development and eruptive histories can be inferred from surface flow morphologies, which provide insights into lava emplacement dynamics and effusion rates of past eruptions. An online resource is under development that will educate students about lava flow morphologies through the use of HD video and still photographs. The objective of the LavaFlow exercise is to map out a proposed cable route across the Axial Seamount caldera. Students are first trained in appropriate terminology and background content

  1. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  2. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    Science.gov (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  3. Preventing volcanic catastrophe; the U.S. International Volcano Disaster Assistance Program

    Science.gov (United States)

    Ewert, J.W.; Murray, T.L.; Lockhart, A. B.; Miller, C.D.

    1993-01-01

    When the seismograph began to record the violent earth-shaking caused by yet another eruption of the Nevado del Ruiz volcano in Colombia, no one thought that a few hours later more than 23,000 people would be dead, killed by lahars (volcanic debris flows) in towns and villages several tens of kilometers away from the volcano. Before the fatal eruption the volcano was being monitored by scientists at a seismic station located 9 km from the summit, and information about the volcano's activity was being sent to Colombian emergency-response coordinators who were charged with alerting the public of the danger from the active volcano. Furthermore, area known to be in the pathways lahars had already been identified on maps and communities at risk had been told of their precarious locations.

  4. Decontamination and Decommissioned Small Nuclear AIP Hybrid Systems Submarines

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2013-11-01

    Full Text Available Being equipped with small reactor AIP is the trend of conventional submarine power in 21st century as well as a real power revolution in conventional submarine. Thus, the quantity of small reactor AIP Submarines is on the increase, and its decommissioning and decontamination will also become a significant international issue. However, decommissioning the small reactor AIP submarines is not only a problem that appears beyond the lifetime of the small reactor nuclear devices, but the problem involving the entire process of design, construction, running and closure. In the paper, the problem is explored based on the conception and the feasible decommissioning and decontamination means are supplied to choose from.

  5. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  6. Development of volcano monitoring technique using repeating earthquakes observed by the Volcano Observation Network of NIED

    Science.gov (United States)

    Kohno, Y.; Ueda, H.; Kimura, H.; Nagai, M.; Miyagi, Y.; Fujita, E.; Kozono, T.; Tanada, T.

    2012-12-01

    After the Grate East Japan Earthquake (M9.0) on March 11, 2011, the M6.4 earthquake occurred beneath Mt. Fuji on March 15, 2011. Although the hypocenter seemed to be very close to an assumed magma chamber of Fuji volcano, no anomalies in volcanic activity have been observed until August 2012. As an example, after the M6.1 earthquake occurred in 1998 at southwest of Iwate volcano, a change of seismic velocity structure (e.g. Nishimura et al., 2000) was observed as well as active seismicity and crustal deformation. It had affected waveforms of repeating earthquakes occurring at a plate subduction zone, that is, the waveform similarities were reduced just after the earthquake due to upwelling of magma. In this study, first we analyzed for Mt. Fuji where such changes are expected by the occurrence of the earthquake to try to develop a tool for monitoring active volcanoes using the Volcano Observation network (V-net) data. We used seismic waveform data of repeating earthquakes observed by short period seismometers of V-net and the High Sensitivity Seismograph Network Japan (Hi-net) stations near Fuji volcano after 2007. The seismic data were recorded with a sampling rate of 100 Hz, and we applied 4-8 Hz band pass filter to reduce noise. The repeating earthquakes occurred at the plate subduction zone and their catalog is compiled by Hi-net data (Kimura et al., 2006). We extracted repeating earthquake groups that include earthquakes before and after the M6.4 earthquake on March 15, 2011. A waveform of the first event of the group and waveforms of the other events are compared and calculated cross-correlation coefficients. We adjusted P wave arrivals of each event and calculate the coefficients and lag times of the latter part of the seismic waves with the time window of 1.25 s. We searched the best fit maximizing the cross-correlation coefficients with 0.1 s shift time at each time window. As a result we found three remarkable points at this time. [1] Comparing lag times

  7. The volcanoes and clouds of Venus

    Science.gov (United States)

    Prinn, R. G.

    1985-03-01

    One of the earth's most intriguing features is its geologic activity. However, volcanic eruptions have not been observed on any other body in the solar system, except for a detection of such eruptions on Jupiter's moon Io. As in a number of respects Venus is similar to earth, questions arise regarding the presence of active volcanoes on Venus. In the past, the study of such questions was made difficult or impossible by the layer of clouds surrounding the Venusian surface. In the past half decade the situation has changed. These changes are mainly related to studies based on a utilization of radio waves and microwaves which can pass through the cloud layer. Such studies have been conducted with the aid of terrestrial radio telescopes, the Pioneer Venus satellite orbiting Venus, and two Russian spacecraft. The results of these studies are discussed in detail. It appears that there are active volcanoes on Venus. This volcanism is a key link in the chemical cycle which produces the clouds. The levels of volcanic activity on Venus and earth seem to be roughly comparable.

  8. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  9. Principal Component Analysis for pattern recognition in volcano seismic spectra

    Science.gov (United States)

    Unglert, Katharina; Jellinek, A. Mark

    2016-04-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we have developed a pattern recognition technique based on a combination of Principal Component Analysis and hierarchical clustering applied to volcano seismic spectra. This technique can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. Preliminary results from applying our method to volcanic tremor from a range of volcanoes including K¯ı lauea, Okmok, Pavlof, and Redoubt suggest that spectral patterns from K¯ı lauea and Okmok are similar, whereas at Pavlof and Redoubt spectra have their own, distinct patterns.

  10. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  11. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  12. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  13. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-01-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  14. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    Science.gov (United States)

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  15. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    Science.gov (United States)

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  16. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    Science.gov (United States)

    Brothers, Daniel S.; Haeussler, Peter J.; Liberty, Lee; Finlayson, David; Geist, Eric; Labay, Keith; Byerly, Mike

    2016-03-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost - the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120-360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20-50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake-triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought.

  17. Seismicity at Fuego, Pacaya, Izalco, and San Cristobal Volcanoes, Central America, 1973-1974

    Science.gov (United States)

    McNutt, S.R.; Harlow, D.H.

    1983-01-01

    Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day with b value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and with b values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (??=3.0??0.2 km/sec.). ?? 1983 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  18. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    Science.gov (United States)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  19. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  20. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  1. Interactive Volcano Studies and Education Using Virtual Globes

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  2. A Study of the Source Processes of Colima Volcano Explosions

    Science.gov (United States)

    Nunez-Cornu, F. J.; Vargas-Bracamontes, D.; Sanchez, J. J.; Suarez-Plascencia, C.

    2007-12-01

    Colima volcano, considered as Mexico's most active volcano, has presented several intermittent effusive and explosive phases in recent years. During 2005, a sequence of explosive events with VEI less than or equal to 3 occurred. This activity presented the most intense explosions since the seismic network was deployed. Many of the explosive events were recorded by the digital three-component seismic stations operated by the University of Guadalajara and Jalisco State Civil Defense. These signals were recorded not only by stations located on the volcanic edifice, but also by stations on the northern coast of Jalisco (MCUJ, BSSJ) and Ceboruco Volcano at 184, 182 and 200 km distance, respectively. A study of these signals will be presented. Each explosion was preceded by a seismic event. Nevertheless, the located earthquakes preceding the explosions did not show a common source under the volcano structure, which suggests the existence of a complex structure with possibly more than one conduit, this is also confirmed from a first motion analysis for station F03J, located 12 km at north of the volcano. From analysis of the first ten seconds of the seismic signal on F03J using different representations of the seismic signals, such as waveforms, spectra, time-frequency and time-scale analysis, it is suggested that the source processes are non-stationary, implying that for the case of this period, a general model of the source process of the Colima volcano explosions can not be formulated. The size of the events is evaluated using different criteria. A clear relation between the magnitude of the seismic signals and the amplitude of the sonic and infrasonic waves was not observed.

  3. Three dimensional boundary layers on submarine conning towers and rudders

    Science.gov (United States)

    Gleyzes, C.

    1988-01-01

    Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.

  4. Monitoring of radioactivity at the Russian nuclear submarine Kursk

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, I. [Norwegian Radiation Protection Authority, Oesteraes (Norway); Lind, B. [Norwegian Radiation Protection Authority, Enviromental Protection Unit, Polar Environmental Centre, Tromsoe (Norway)

    2002-04-01

    In the morning of August 12th 2000, a Russian submarine accident occurred in international waters east of Rybatschi Peninsula in the Barents Sea about 250 km from Norway. The submarine, a Russian Oscar class II attack submarine, sunk to 116 meters depth at the position 69 deg. 36,99N, 37 deg. 34,50E. The submarine 'Kursk' is 154 meters long, equipped with two pressurised water reactors and the submerged displacement is 24000 tons. Each reactor has a thermal effect or 190 megawatt, or less than 10% of a typical nuclear power plant reactor. The submarines in Oscar-II class is one of the largest and most capable in the Russian Northern Fleet. No indications of leakage from the submarine have so far been observed during the monitoring expeditions. Elevated levels of radioactivity have note been detected in any dose-rate readings or at any of the measurements of environmental samples taken close to Kursk. Furthermore, no increased levels were measured on bits and pieces from the submarine or from water sampled inside the submarine. A more comprehensive report covering experience and monitoring results from the two expeditions term and impact assessments of possible future releases from Kursk. (LN)

  5. 32 CFR 707.7 - Submarine identification light.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  6. Remote sensing of thermal state of volcanoes in Turkey and neighbouring countries using ASTER nighttime images

    Science.gov (United States)

    Ulusoy, İnan; Diker, Caner

    2016-04-01

    Ongoing studies are increasingly revealing that Holocene and historical activity has been reported for many of the Anatolian volcanoes. So far, hydrothermal activity have been observed on Nemrut, Tendürek, Aǧrı (Ararat), Hasan daǧ and Kula. Fumaroles, steam vents, steam/gas emission and zones of hot grounds have been reported. Thermal state of Anatolian volcanoes have been investigated using ASTER nighttime satellite imagery. We have analyzed the nighttime thermal images of Aǧrı, Akça, Çandarlı, Erciyes, Gölcük, Göllüdaǧ, Hasandaǧ, Kula, Meydan, Nemrut, Süphan and Tendürek volcanoes in Turkey and Demavand and Nisyros volcanoes in the neighboring countries. In order to quantify the current thermal state of the volcanos studied, we have used ASTER Thermal Infrared spectra. Several ASTER nighttime images have been used to calculate land surface temperature, surface thermal anomaly and relative radiative heat flux on the volcanoes. Following the atmospheric correction of thermal images, temperature and emissivity have been separated and then land surface temperature have been calculated from 5 thermal bands. Surface temperature images have been topographically corrected. Relative radiative heat flux have been calculated using corrected surface temperature data, emissivity, vapor pressure and height-dependent air temperature values. These values have been correlated with ongoing activity observed on active Indonesian volcanoes Sinabung, Semeru and Bromo Tengger. (This study have been financially supported by TUBITAK project no: 113Y032).

  7. The thermal regime around buried submarine high-voltage cables

    Science.gov (United States)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  8. The western Aeolian Islands volcanoes (South Tyrrhenian Sea): highlight on their eruptive history based on K-Ar dating.

    Science.gov (United States)

    Leocat, E.; Gillot, P.-Y.; Peccerillo, A.

    2012-04-01

    The Aeolian Islands volcanoes are located in southern Tyrrhenian Sea on the northern continental margin of the Calabro-Peloritan basement. The Stromboli, Panarea and Vulcano volcanoes of the half eastern sector are well studied as they are still active and they represent high volcanic hazard. While stratigraphic studies were carried out on volcanoes of the western sector, radiometric ages are lacking to well understand their eruptive history. Therefore, new geochronological and geochemical data were obtained for Alicudi, Filicudi, Salina and Lipari western volcanoes. The aim is to establish a complete time framework of the volcanism and to study possible time-related variations of magma compositions. The 37 new ages were obtained using K-Ar Cassignol-Gillot technique that is suitable for dating Quaternary volcanic rocks. The new geochemical data consist of whole rock major and trace elements analysis on dated samples. Our new sets of data give evidence that the Aeolian Islands are young volcanoes emplaced within the last 300 ka. The oldest products outcrop at Filicudi, Salina and Lipari. Te first emerged activity of Alicudi volcano occurred 120 ka ago. While quiescence activity of at least 50 ka is recognized at Filicudi and Lipari, and potentially at Salina, the volcanic activity of Alicudi would have been relatively continuous. These whole volcanoes were active within the last 30 ka which has to be considered for volcanic hazard assessment. At the scale of each volcano, the degree of differentiation increase roughly through time, except at Filicudi where the ultimate products correspond to mafic magma. At the scale of the archipelago, this process increases from western Alicudi and Filicudi volcanoes, where andesitic magmas are the most evolved magmas, to central Salina and Lipari volcanoes, where rhyolitic magmas are emitted during explosive eruption. Moreover, pulses of magmatic activity would have occurred around 30-40 and 110-120 ka when the four volcanoes

  9. NUMERICAL PREDICTION OF SUBMARINE HYDRODYNAMIC COEFFICIENTS USING CFD SIMULATION

    Institute of Scientific and Technical Information of China (English)

    PAN Yu-cun; ZHANG Huai-xin; ZHOU Qi-dou

    2012-01-01

    The submarine Hydrodynamic coefficients are predicted by numerical simulations.Steady and unsteady Reynolds Averaged Navier-Stokes (RANS) simulations are carried out to numerically simulate the oblique towing experiment and the Planar Motion Mechanism (PMM) experiment performed on the SUBOFF submarine model.The dynamic mesh method is adopted to simulate the maneuvering motions of pure heaving,pure swaying,pure pitching and pure yawing.The hydrodynamic forces and moments acting on the maneuvering submarine are obtained.Consequently,by analyzing these results,the hydrodynamic coefficients of the submarine maneuvering motions can be determined.The computational results are verified by comparison with experimental data,which show that this method can be used to estimate the hydrodynamic derivatives of a fully appended submarine.

  10. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  11. Evidence of flank failure deposit reactivation in a shield volcano. A favorable context for deep-seated landslide activation (La Réunion Island)

    Science.gov (United States)

    Belle, Pierre; Aunay, Bertrand; Famin, Vincent; Join, Jean-Lambert

    2014-05-01

    Giant flank failures are recurrent features of shield volcanoes, and their deposits (i.e. breccia), constitute a significant volume in a volcanic edifice. On La Réunion Island, the growth and development of Piton des Neiges volcano has been punctuated by several flank failure episodes. One of these failures is a deep-seated landslide (>200 Mm3) occurring nowadays in Grand Ilet, a plateau inhabited by 1 000 people in the cirque of Salazie, on the northern flank of Piton des Neiges. Here we present the results of a multidisciplinary study (structural geology and field mapping, GNSS monitoring, borehole logging) performed to characterize the geological structure the Grand Ilet landslide, and identify the instability factors that control this category of destabilization. Basic breccia deposits, up to 160 meters thick, constitute the main geological formation of the unstable mass. This breccia are cut by the headwall scar of the landslide, and covered by lava flows, indicating a minimum age of 200 kyr for the destabilization that produced the deposits. The breccia is consolidated out of the landslide area. The NE toe of the landslide is evidenced by an important compressional deformation of the base of the breccia, and striated surfaces in this deformed volume indicate a NE-direction of transport. In this deformed bulge, a clay-rich layer at the base of the breccia has been identified as the main slip plane. Using a video inspection of drill casings on three exploration boreholes, we reconstructed the 3D geometry of the slip plane at the base of the breccia. This reconstruction shows that the landslide plane has an average dip of 6° toward the NE. The displacement monitoring network shows that the unstable mass has a 5.5 km2 extension, with a variable azimuth of movement direction (N140° for the SW sector, and N45° for the NE sector). The planimetric displacements velocities range between 2 cm/year in the inner part of the unstable mass to 52 cm/year at the

  12. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    Science.gov (United States)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  13. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  14. Submarine harbor navigation using image data

    Science.gov (United States)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered

  15. Seismic instrumentation plan for the Hawaiian Volcano</