WorldWideScience

Sample records for active optical waveguides

  1. Gratings in passive and active optical waveguides

    DEFF Research Database (Denmark)

    Berendt, Martin Ole

    1999-01-01

    This research project has focused on gratings in optical waveguides. These gratings may be produced by UV photon imprinting in optical fibers or planar technology waveguides. The gratings are optical waveguide equivalents of bulk dielectric mirrors or diffraction grating. For a grating in a waveg......This research project has focused on gratings in optical waveguides. These gratings may be produced by UV photon imprinting in optical fibers or planar technology waveguides. The gratings are optical waveguide equivalents of bulk dielectric mirrors or diffraction grating. For a grating...... mode losses confirmed. An elaborated grating model, including the detailed shape of the index modulation, has been developed. This model improves the interpretation of grating growth dynamic, which is of value to both; analysis of the UV imprinting set-ups, and to the investigation of photosensitivity...... mechanisms in silica. An other important part of the project aimed at perfection of distributed feed back DFB fiber lasers. At the outset of this project, DFB fiber lasers had been demonstrated, now the DFB fiber lasers are in commercial production. One of the problems that had to be overcome was to secure...

  2. Wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George;

    2012-01-01

    This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere...... in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then...... generate a more tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can...

  3. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  4. Optical waveguide sensors

    NARCIS (Netherlands)

    Fluitman, J.; Popma, Th.

    1986-01-01

    An overview of the field of optical waveguide sensors is presented. Some emphasis is laid on the development of a single scheme under which the diversity of sensor principles can be arranged. First three types of sensors are distinguished: intrinsic, extrinsic and active. Next, two steps are disting

  5. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  6. Tailored spectroscopic and optical properties in rare earth-activated glass-ceramics planar waveguides

    Science.gov (United States)

    Ristic, Davor; Van Tran, Thi Thanh; Dieudonné, Belto; Cristina, Armellini; Berneschi, Simone; Chiappini, Andrea; Chiasera, Alessandro; Varas, Stefano; Carpentiero, Alessandro; Mazzola, Maurizio; Nunzi Conti, Gualtiero; Pelli, Stefano; Speranza, Giorgio; Feron, Patrice; Duverger Arfuso, Claire; Cibiel, Gilles; Turrell, Sylvia; Tran Ngoc, Khiem; Boulard, Brigitte; Righini, Giancarlo C.; Ferrari, Maurizio

    2013-03-01

    Glass ceramic activated by rare earth ions are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing to develop interesting new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. At the state of art the fabrication techniques based on bottom-up and top-down approaches appear to be viable although a specific effort is required to achieve the necessary reliability and reproducibility of the preparation protocols. In particular, the dependence of the final product on the specific parent glass and on the employed synthesis still remain an important task of the research in material science. Glass-ceramic waveguides overcome some of the efficiency problems experienced with conventional waveguides. These two-phase materials are composed of nanocrystals embedded in an amorphous matrix. The respective volume fractions of the crystalline and amorphous phases determine the properties of the glass ceramic. They also represent a valid alternative to widely used glass hosts such as silica as an effective optical medium for light propagation and luminescence enhancement. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters for solar energy exploitation.

  7. Optical waveguide device with an adiabatically-varying width

    Science.gov (United States)

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  8. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  9. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W

    1983-01-01

    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  10. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  11. Optical waveguide devices for bioanalysis

    OpenAIRE

    Wilkinson, J.S.

    2010-01-01

    Integrated optical waveguides offer great potential as versatile platforms for constructing advanced biosensors, optical cell-sorters and integrated optofluidic systems, exploiting the technological approaches of microelectronics and guided-wave optics to realise low-cost on-chip systems. Progress towards optical integration in microsystems for bioanalysis will be discussed, with examples in key applications, and challenges and opportunities will be described.

  12. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulation...

  13. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor;

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  14. Optical waveguide enhanced photovoltaics.

    Science.gov (United States)

    Rühle, Sven; Greenwald, Shlomit; Koren, Elad; Zaban, Arie

    2008-12-22

    Enhanced light to electric power conversion efficiency of photovoltaic cells with a low absorbance was achieved using waveguide integration. We present a proof of concept using a very thin dye-sensitized solar cell which absorbed only a small fraction of the light at normal incidence. The glass substrate in conjunction with the solar cells reflecting back contact formed a planar waveguide, which lead to more than four times higher conversion efficiency compared to conventional illumination at normal incidence. This illumination concept leads to a new type of multi-junction PV systems based on enforced spectral splitting along the waveguide.

  15. Rare-earth-ion-doped Al IIO 3 waveguides for active integrated optical devices

    Science.gov (United States)

    Bradley, Jonathan D. B.; Ay, Feridun; Blauwendraat, Tom; Wörhoff, Kerstin; Pollnau, Markus

    2007-06-01

    Reactively co-sputtered amorphous Al IIO 3 waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such Al IIO 3 films, the etching behaviour of Al IIO 3 has been investigated using an inductively coupled reactive ion etch system. The etch rate of Al IIO 3 and possible mask materials was studied by applying various common process gases and combinations of these gases, including CF 4/O II, BCl 3, BCl 3/HBr and Cl II. Based on a comparison of the etch rates and patterning feasibility of the different mask materials, a BCl 3/HBr plasma and and standard resist mask were used to fabricate channel waveguide structures. The etched structures exhibit straight sidewalls with minimal roughness and etch depths of up to 530 nm, sufficient for defining waveguides with strong optical confinement and low bending losses. Low additional propagation losses were measured in single-mode Al IIO 3 ridge waveguides defined using the developed etch process. In initial investigations, Al IIO 3:Er layers fabricated using the same deposition method applied for the undoped layers show typical emission cross-sections, low green upconversion luminescence and lifetimes up to 7 ms.

  16. Omnidirectional optical waveguide

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  17. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    OpenAIRE

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The se...

  18. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    Science.gov (United States)

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  19. Actively phase-controlled coupling between plasmonic waveguides via in-between gain-assisted nanoresonator: nanoscale optical logic gates.

    Science.gov (United States)

    Ho, Kum-Song; Han, Yong-Ha; Ri, Chol-Song; Im, Song-Jin

    2016-08-15

    The development of nanoscale optical logic gates has attracted immense attention due to increasing demand for ultrahigh-speed and energy-efficient optical computing and data processing, however, suffers from the difficulty in precise control of phase difference of the two optical signals. We propose a novel conception of nanoscale optical logic gates based on actively phase-controlled coupling between two plasmonic waveguides via an in-between gain-assisted nanoresonator. Precise control of phase difference between the two plasmonic signals can be performed by manipulating pumping rate at an appropriate frequency detuning, enabling a high contrast between the output logic states "1" and "0." Without modification of the structural parameters, different logic functions can be provided. This active nanoscale optical logic device is expected to be quite energy-efficient with ideally low energy consumption on the order of 0.1 fJ/bit. Analytical calculations and numerical experiments demonstrate the validity of the proposed concept.

  20. Optical Waveguide Sensing and Imaging

    CERN Document Server

    Bock, Wojtek J; Tanev, Stoyan

    2008-01-01

    The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinarry team of Editors was to provide an useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.

  1. Photonic crystal rod fibers: Understanding a new class of active optical waveguides

    DEFF Research Database (Denmark)

    Laurila, Marko

    of the rod fiber is evaluated in high power laser and laser amplifier configurations. The high power rod amplifier setup including the seed source is developed and characterized. Results obtained from the rod fiber showed simultaneously SM, near diffraction limited output beam quality with high average power...... which can accurately resolve propagation modes and their weights in optical waveguides to examine guiding properties and single-mode (SM) operation of different PCFs. A spatially and spectrally resolved (S2) imaging setup is developed to evaluate the SM properties of flexible PCF with a 40 μm core...... and pulse energy generation using both laser and laser amplifier configurations. Modal instabilities (MIs) in high power fiber amplifiers are discussed, and a memory effect of the MI threshold level together with a recovery method and evidence of improved performance while suppressing MIs are reported...

  2. Waveguide optical amplifier for telecom applications

    OpenAIRE

    Taccheo, Stefano; Zannin, Marcelo; Ennser, Karin; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier

    2009-01-01

    In this paper we review progress in optical gain clamped waveguide amplifiers for applications to optical communications. We demonstrate that compact waveguide devices may offer advantages compared to standard fiber amplifiers. In particular we focus on the application of gain clamping and optical burst switching networks where physical impairments may occur due to variation of the input power. Peer Reviewed

  3. An Integrated Optical Memory based on Laser Written Waveguides

    CERN Document Server

    Corrielli, Giacomo; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues

    2016-01-01

    We report on the first realization of an integrated optical memory for light based on a laser written waveguide in a doped crystal. Using femto-second laser micromachining, we fabricate waveguides in Pr$^{3+}$:Y$_2$SiO$_5$ crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor 6. We also demonstrate that, analogously to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic frequency combs, that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent the first realization of laser written waveguides in a Pr$^{3+}$:Y$_2$SiO$_5$ crystal and the first implementation of an integrated on-demand spin wave optical memory. They open new perspectives for integrated quantum memories.

  4. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Science.gov (United States)

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Agnes; Antoni, Ferenc A; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+) and organic cations through gramicidin channels and detecting the Cl(-)-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  5. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Directory of Open Access Journals (Sweden)

    Inna Székács

    Full Text Available Optical waveguide lightmode spectroscopic (OWLS techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+ and organic cations through gramicidin channels and detecting the Cl(--channel functions of the (α5β2γ2 GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.

  6. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong Kim; Sang-Yung Shin; Doo-Sun Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than-10 dB.

  7. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong; Kim; Sang-Yung; Shin; Doo-Sun; Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than -10 dB.

  8. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core sign...

  9. All-optical switching in optically induced nonlinear waveguide couplers

    Energy Technology Data Exchange (ETDEWEB)

    Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  10. Multi-element optical waveguide sensor: General concept and design.

    Science.gov (United States)

    Smardzewski, R R

    1988-02-01

    A prototype of a self-contained multi-element optical waveguide sensor for detection and identification of the constituents of gaseous or liquid mixtures has been fabricated. The device consists of eight optical waveguides, each coated with a thin film known to react specifically with one or more components in a multicomponent system. An array of eight sequentially-activated light-emitting diodes is attached to the waveguide assembly in such a fashion as to activate each detection channel separately. Each waveguide is a fiber-optic coupled to a single high-gain, low-noise photomultiplier tube or photodiode/operational amplifier detector. The amplified signals can be displayed visually or input to a microprocessor pattern-recognition algorithm. CMOS analog switches/multiplexers are used in feedback loops to control automatic gain-ranging, light-level adjustment and channel-sequencing. Preliminary experiments involving the monitoring of redox/pH changes are discussed. PMID:18964475

  11. On-chip plasmonic waveguide optical waveplate

    Science.gov (United States)

    Gao, Linfei; Huo, Yijie; Zang, Kai; Paik, Seonghyun; Chen, Yusi; Harris, James S.; Zhou, Zhiping

    2015-10-01

    Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems.

  12. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin; Seng; Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular, experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  13. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin Seng Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular,experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  14. "Unmanned” optical micromanipulation using waveguide microstructures

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson;

    2013-01-01

    that could be microfabricated, the study of how optical forces behave in such structures become useful in the emerging field of optofludics. Recently, we have shown how optically maneuverable tapered waveguide microstructures can augment beam shaping experiments by delivering strongly focused light...... for biological samples. Besides coupling low NA light to submicron targets, waveguide microstructures can also be engineered for the resulting optical forces. Interesting particle motion had been demonstrated through light’s interaction with matter, i.e. absorption, reflection or refraction. Since waveguides can...... be shaped more arbitrarily, engineered light deflection could lead to more control in the resulting motion. We demonstrated this principle with the autonomous translation of bent waveguides though pre-defined light tracks. In our experiment, incoming light makes a near 90 degree turn, hence the resulting...

  15. Recent progress on polymer optical waveguides

    Science.gov (United States)

    Kobayashi, Junya

    2008-02-01

    Intensive research on optical interconnection over flexible optical circuit boards has been undertaken for such applications as high-end routers, servers and cellular phones. And these flexible optical circuit boards are expected to be used for polymer optical waveguides. This paper reports recent progress on polymer optical waveguides. It also describes a flexible stamping method, which employs a flexible film stamp made of polymeric materials. Unlike conventional hard stamps, the flexible film stamp does not require either the stamp or its substrate to be perfectly flat, which means large area stamping is easy to achieve at reduced cost. We confirmed this by replicating 50 μm multi-mode optical polymer waveguides. The propagation loss of the waveguide is fairly low at 0.06 dB/cm at a wavelength of 850 nm. This loss is sufficiently small to meet the basic requirement for optical circuit boards, and the waveguide was used to fabricate a flexible optical circuit board with MT connectors.

  16. Optical Amplification and Photosensitivity in Sol-Gel Based Waveguides

    OpenAIRE

    Selvarajan, A; T. Srinivas

    2001-01-01

    The sol-gel process has emerged as an effective route for the fabrication of optical waveguides and guided wave devices and circuits. In particular, it is possible to incorporate active dopants like neodymium, erbium, and cesium for integrated optical active devices and circuits. In this paper, a review of recent research on active devices and circuits based on sol-gel process is made. Specific studies undertaken in our laboratory on optical amplification and photosensitivity characteristi...

  17. Waveguide-based optical chemical sensor

    Science.gov (United States)

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  18. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner;

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  19. Optical touch screen based on waveguide sensing

    Science.gov (United States)

    Pedersen, Henrik C.; Jakobsen, Michael L.; Hanson, Steen G.; Mosgaard, Morten; Iversen, Theis; Korsgaard, Jorgen

    2011-08-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching finger is also demonstrated.

  20. Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses

    Institute of Scientific and Technical Information of China (English)

    Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc

    2003-01-01

    This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.

  1. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Science.gov (United States)

    Anne, Marie-Laure; Keirsse, Julie; Nazabal, Virginie; Hyodo, Koji; Inoue, Satoru; Boussard-Pledel, Catherine; Lhermite, Hervé; Charrier, Joël; Yanakata, Kiyoyuki; Loreal, Olivier; Le Person, Jenny; Colas, Florent; Compère, Chantal; Bureau, Bruno

    2009-01-01

    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. PMID:22423209

  2. Electro-optic switching based on a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides

    Science.gov (United States)

    Qi, Zhe; Zhu, Zhi Hong; Xu, Wei; Zhang, Jian Fa; Cai Guo, Chu; Liu, Ken; Yuan, Xiao Dong; Qiao Qin, Shi

    2016-09-01

    We numerically demonstrate that electro-optic switching in the mid-infrared range can be realized using a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides (DLGPWs). The numerical results are in good agreement with the results of physical analysis. The switching mechanism is based on dynamic modification of the resonant wavelengths of the ring resonator, achieved by varying the Fermi energy of a graphene sheet. The results reveal that a switching ratio of ∼24 dB can be achieved with only a 0.01 eV change in the Fermi energy. Such electrically controlled switching operation may find use in actively tunable integrated photonic circuits.

  3. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels;

    2015-01-01

    , the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...

  4. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...

  5. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  6. Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides

    CERN Document Server

    Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki

    2016-01-01

    The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...

  7. COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION

    DEFF Research Database (Denmark)

    2001-01-01

    A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...

  8. Micropositioning of microsphere resonators on planar optical waveguides

    OpenAIRE

    Murugan, Ganapathy Senthil; Panitchob, Yuwapat; Tull, Elizabeth J.; Bartlett, Philip N.; Wilkinson, James S.

    2006-01-01

    Topographical structures to position microsphere resonators accurately upon planar optical waveguides have been designed and fabricated. The methods being employed to assemble the microspheres on the patterned planar waveguides are discussed.

  9. Design of integrated hybrid silicon waveguide optical gyroscope.

    Science.gov (United States)

    Srinivasan, Sudharsanan; Moreira, Renan; Blumenthal, Daniel; Bowers, John E

    2014-10-20

    We propose and analyze a novel highly integrated optical gyroscope using low loss silicon nitride waveguides. By integrating the active optical components on chip, we show the possibility of reaching a detection limit on the order of 19°/hr/√Hz in an area smaller than 10 cm(2). This study examines a number of parameters, including the dependence of sensitivity on sensor area.

  10. Micromolded U-shaped PDMS optical waveguide for biosensing applications

    Science.gov (United States)

    Punjabi, Nirmal; Khatri, Anjali; Mukherji, Soumyo

    2013-09-01

    Integrated optical waveguide sensors are usually fabricated using materials like silicon, silica, SU-8, etc. Their fabrication requires clean room processes which are expensive and time-consuming. We demonstrated the fabrication of PDMS based optical waveguide in non-cleanroom environment using soft lithography technique. A master-mold was fabricated using Acralyn. PDMS polymer was chosen for waveguide fabrication, as it provides low refractive index contrast in the sensing region. These PDMS waveguides were found to be 5-times more sensitive than SU-8 waveguides. High sensitivity along with mechanical robustness and ease of fabrication of PDMS waveguides provides a promising and versatile platform for biosensor application.

  11. Design of microstructured waveguide devices for applications in optical sensing

    DEFF Research Database (Denmark)

    Town, G.E.; McCosker, R.; Yuan, Scott Wu;

    2010-01-01

    Microstructured waveguides provide a versatile platform for controlling interactions between light and their environment. We show how microstructured waveguides may be designed to improve the performance of optical sensors, and discuss their practical implementation.......Microstructured waveguides provide a versatile platform for controlling interactions between light and their environment. We show how microstructured waveguides may be designed to improve the performance of optical sensors, and discuss their practical implementation....

  12. Integrated Optical Memory Based on Laser-Written Waveguides

    Science.gov (United States)

    Corrielli, Giacomo; Seri, Alessandro; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues

    2016-05-01

    We propose and demonstrate a physical platform for the realization of integrated photonic memories based on laser-written waveguides in rare-earth-doped crystals. Using femtosecond-laser micromachining, we fabricate waveguides in Pr3 +∶Y2SiO5 crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor of 6. We also demonstrate that analogous to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic-frequency combs that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent a realization of laser-written waveguides in a Pr3 +∶Y2SiO5 crystal and an implementation of an integrated on-demand spin-wave optical memory. They open perspectives for integrated quantum memories.

  13. Waveguide structure optimization of arrayed waveguide gratings concatenation in cascaded optical add/drop multiplexers

    Institute of Scientific and Technical Information of China (English)

    Yuanliang Chu(初元量); Hanyi Zhang(张汉一)

    2003-01-01

    The dimensions of input waveguide and output waveguide of arrayed waveguide gratings (AWGs) determinethe crosstalk, insertion loss and 1-dB bandwidth. In cascaded optical add/drop multiplexers (OADMs),the value of these parameters will largely affect the power penalty of system. The power penalty ofcascaded OADMs is calculated with different waveguide dimensions of AWGs in this paper. Consideringof wavelength misalignment, an optimization design of AWGs is obtained.

  14. Optical waveguides using PDMS-metal oxide hybrid nanocomposites

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.; Mullins, Michael E.

    2015-03-01

    Development of passive and active polymer based optical materials for high data rate waveguide routing and interconnects has gained increased attention because of their excellent properties such as low absorption, cost savings, and ease in fabrication. However, optical polymers are typically limited in the range of their refraction indices. Combining polymeric and inorganic optical materials provides advantages for as development of nano-composites with higher refractive indices with the possibility of being used as an active optical component. In this paper a new composite material is proposed based on polymer-metal oxide nano-composites for use as optical wave guiding structures and components. PDMS (Polydimethylsiloxane) is utilized for the polymer portion while the inorganic material is titanium dioxide. Refraction indices as high as 1.74 have been reported using these composites. For PDMS-TiO2 hybrids, the higher the ratio of titanium dioxide to PDMS, the higher the resulting refractive index. The index of refraction as a function of the PDMS:TiO2 ratio is reported with an emphasis on use as optical waveguide devices. Absorption spectrum of the nano-composites is measured showing low absorption at 850 nm and high absorption in the UV regime for direct UV laser/light curing. Prototype multimode waveguides are fabricated using soft imprint embossing that is compatible with the low viscosity nano-composite material. Cross dimensional shape and profile show the potential for full scale development utilizing the material set.

  15. Formation of Optical Solitons in Nonlinear Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    兰胜; 陈雄文

    2004-01-01

    Relying on the huge group velocity dispersion available in photonic crystal (PC) waveguides, we observe the formation of both Bragg grating solitons and gap solitons in nonlinear PC waveguides in numericalexperiments. Also,we indicate the potential applications of optical solitons in optical limiting, optical delay, and pulse compression and the feasibility of observing optical solitons in practical experiments.

  16. All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide.

    Science.gov (United States)

    Chen, Yijing; Ho, Seng-Tiong; Krishnamurthy, Vivek

    2013-12-20

    All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

  17. Optical modulation of terahertz pulses in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2008-01-01

    In this work we present a technique for optically modulating a terahertz pulse inside a parallel plate waveguide. A novel semiconductor filled waveguide is formed by coating both sides of a thin, high resistivity silicon slab with a transparent conducting oxide. While the waveguide is intrinsically...

  18. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  19. Grating assisted optical waveguide coupler to excite individual modes of a multi-mode waveguide

    Science.gov (United States)

    Bremer, K.; Lochmann, S.; Roth, B.

    2015-12-01

    Spatial division multiplexing (SDM) in the form of mode division multiplexing (MDM) in multi-mode (MM) waveguides is currently explored to overcome the capacity limitation of single-mode (SM) waveguides in data transmission technology. In this work a new approach towards mode selective optical waveguide couplers to multiplex and demultiplex individual modes of MM waveguides is presented. We discuss a grating assisted mode selective optical waveguide coupler and evaluate numerically its coupling efficiency. The approach relies on a grating structure in a SM waveguide which is used to excite individual modes of an adjacent unmodified MM waveguide via evanescent field coupling. The simulations verify that by using the grating structure and tailoring the grating period, light from the SM waveguide can be coupled selectively into the fundamental mode or any higher-order mode of a MM waveguide with high efficiency and low crosstalk to adjacent mode-channels. The results indicate the potential of the grating assisted waveguide coupler approach for future applications in on-chip photonic networks and the (de)multiplexing of individual modes of MM waveguides.

  20. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  1. Isolated Hexaphenyl Nanofibers as Optical Waveguides

    DEFF Research Database (Denmark)

    Balzer, Frank; Bordo, Vladimir; Simonsen, Adam Cohen;

    2003-01-01

    Laser-supported, dipole-assisted self-assembly results in blue-light guiding nanostructures, namely single-crystalline nanofibers of hexaphenyl molecules. The nanofibers are up to 1 mm long, extremely well-aligned to each other and their cross sections can be tuned to span the range from nonguiding...... to guiding single optical modes at = 425.5 nm. An analytical theory for such organic waveguides can reproduce quantitatively the experimentally observed behavior. From the measured damping of propagating, vibrationally dressed excitons the imaginary part of the dielectric function of isolated nanoscaled...

  2. Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

    CERN Document Server

    Zhao, Qiancheng; Huang, Yuewang; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01

    We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguide together. Analyte contained in the trapezoidal trench channel can interact with the evanescent field from the waveguide beneath. The evanescent field can be further enhanced by plasmonic nanostructures. With the help of gold nano bowtie antennas, the studied waveguide shows outstanding trapping capability on 10 nm polystyrene nanoparticles. We show that the bowtie antennas can lead to 60-fold enhancement of electric field in the antenna gap. The optical trapping force on a nanoparticle is boosted by three orders of magnitude. A strong tendency shows the nanoparticle is likely to move to the high field strength region,...

  3. ALL-OPTICAL CONTROL OF THZ RADIATION IN PARALLEL PLATE WAVEGUIDES

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to control of THz radiation in parallel plate waveguides (PPWG) by forming components in the waveguide by use of optical radiation pulses. Patterns of excited regions induced in the PPWG by an optical excitation pulses changes the electromagnetic properties of the waveguide...... medium in the THz regime, thereby forming transient passive and active components for controlling THz radiation signals. The excitation can be generation of free charge carriers in a semiconductor material in the PPWG, to create metallic regions that form mirrors, lenses or photonic crystal structures......-on-a-chip applications. The optical and THz radiation can be ultrashort pulses with picosecond or femtosecond pulse durations. L...

  4. Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation.

    Science.gov (United States)

    Ren, Yingying; Tan, Yang; Chen, Feng; Jaque, Daniel; Zhang, Huaijin; Wang, Jiyang; Lu, Qingming

    2010-07-19

    Optical channel waveguides have been produced for the first time in Nd:LGS multi-functional laser crystals by using proton implantation. The obtained good guiding performance exhibits the well-confined modal fields in the waveguiding structures. The confocal fluorescence images of the obtained waveguides have revealed that the photoluminescence properties of the Nd(3+) ions have been well-preserved in the waveguide's active volume, which suggests promising applications as multi-functional integrated laser generation elements. These images have been also used to elucidate the spatial distribution of lattice damage and distortion caused by the implantation process, which are both mainly located at the nuclear collision region.

  5. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  6. Total longitudinal momentum in a dispersive optical waveguide.

    Science.gov (United States)

    Yu, Jianhui; Chen, Chunyan; Zhai, Yanfang; Chen, Zhe; Zhang, Jun; Wu, Lijun; Huang, Furong; Xiao, Yi

    2011-12-01

    Using the Lorentz force law, we derived simpler expressions for the total longitudinal (conserved) momentum and the mechanical momentums associated with an optical pulse propagating along a dispersive optical waveguide. These expressions can be applied to an arbitrary non-absorptive optical waveguide having continuous translational symmetry. Our simulation using finite difference time domain (FDTD) method verified that the total momentum formula is valid in a two-dimensional infinite waveguide. We studied the conservation of the total momentum and the transfer of the momentum to the waveguide for the case when an optical pulse travels from a finite waveguide to vacuum. We found that neither the Abraham nor the Minkowski momentum expression for an electromagnetic wave in a waveguide represents the complete total (conserved) momentum. Only the total momentum as we derived for a mode propagating in a dispersive optical waveguides is the 'true' conserved momentum. This total momentum can be expressed as PTot = -U Die/(vg) + neff (U/c). It has three contributions: (1) the Abraham momentum; (2) the momentum from the Abraham force, which equals to the difference between the Abraham momentum and the Minkowski momentum; and (3) the momentum from the dipole force which can be expressed as -UDie/vg. The last two contributions constitute the mechanical momentum. Compared with FDTD-Lorentz-force method, the presently derived total momentum formula provides a better method in terms of analyzing the permanent transfer of optical momentum to a waveguide.

  7. Slow-light-enhanced gain in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui;

    2014-01-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material......, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers...

  8. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  9. Optical waveguide focusing system with short free-working distance

    NARCIS (Netherlands)

    Wang, H.; Groen, F.H.; Pereira, S.F.; Braat, J.J.M.

    2003-01-01

    In photonics, light usually diffracts in all directions when it emerges from a planar optical waveguide. Besides this fact, in this letter we show that a waveguide with a rectangular cross section can be turned to a focusing system by using three-dimensional self-imaging technique. We obtained a con

  10. Topological optical Bloch oscillations in a deformed slab waveguide.

    Science.gov (United States)

    Longhi, Stefano

    2007-09-15

    Spatial Bloch oscillations of light waves of purely topological origin are theoretically shown to exist in weakly deformed slab waveguides. As the optical rays trapped in the deformed waveguide can roll freely, wave diffraction is strongly affected by the topology of the deformed surface, which can be tailored to simulate the effect of a tilted periodic refractive index.

  11. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil;

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction...

  12. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström;

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  13. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  14. Optical fiber having wave-guiding rings

    Science.gov (United States)

    Messerly, Michael J.; Dawson, Jay W.; Beach, Raymond J.; Barty, Christopher P. J.

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  15. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  16. Comprehensive study on the concept of temporal optical waveguides

    Science.gov (United States)

    Zhou, Junhe; Zheng, Guozeng; Wu, Jianjie

    2016-06-01

    Time and space are dual variables which bring a lot of analogies during theoretical study. In this paper, we extend the concept of a spatial optical waveguide to the temporal domain. Here we show that it is possible to confine the optical pulse within a time interval by introducing the temporal index boundaries. The confined pulse will propagate at a speed of the index change in the waveguide, and it will be behind the original optical pulse which propagates without the temporal index variations. In this way, we may offer an approach to broaden the bandwidth of the slow light and to tune the light speed based on the existing slow light devices. The temporal waveguide has modes, which are the temporal waveforms maintaining their shapes during the propagation. In a single-mode temporal waveguide, the pulse retains its shape as the only mode of the waveguide just like an optical soliton. In a multimode temporal waveguide, multimode interference effect exists, which can duplicate a single pulse into multiple copies and be potentially implemented for all-optical signal processing.

  17. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  18. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin;

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of...

  19. Image magnification in transformation optics devices based on tapered waveguides

    Science.gov (United States)

    Zimmerman, William; Jensen, Christopher; Smolyaninova, Vera; Smolyaninov, Igor

    Recent progress in metamaterial and transformation optics (TO) research gave rise to such fascinating devices as perfect lenses, invisibility cloaks, and numerous other unusual electromagnetic devices. However, the metamaterials have problems with low-loss broadband performance and complexity of fabrication, especially in the visible frequency range. Our TO devices allow us to circumvent these difficulties by using lithographically defined metal/dielectric waveguides to emulate metamaterial properties. Adiabatic variations of the waveguide shape enable control of the effective refractive index experienced by light propagating inside the waveguide. The achieved image magnification is consistent with numerical simulations. We have studied wavelength and polarization dependent performance of the waveguides. Our experimental designs appear to be broadband, which has been verified in the 480-633 nm range. These novel optical devices considerably extend our ability to control light on sub-micrometer scales. This research was supported by the NSF Grant DMR-1104676.

  20. Surface optical Bloch oscillations in semi-infinite waveguide arrays.

    Science.gov (United States)

    Chremmos, I D; Efremidis, N K

    2012-06-01

    We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.

  1. Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays.

    Science.gov (United States)

    Levy, Miguel; Kumar, Pradeep

    2010-09-15

    We show that nonreciprocal optical Bloch-like oscillations can emerge in transversely magnetized waveguide arrays in the presence of an effective index step between the waveguides. Normal modes of the system are shown to acquire different wavenumbers in opposite propagation directions. Significant differences in phase coherence and decoherence between these normal modes are presented and discussed. Nonreciprocity is established by imposing unequal vertical refractive index gradients at the substrate/core and core/cover interfaces in the presence of transverse magnetization.

  2. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations......In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding...... that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band...

  3. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    Science.gov (United States)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  4. Optical Waveguides from Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Organic/inorganic material has attracted great attentions because its importance as photonic materials. We report on our recent results on organic/inorganic hybrid sol-gel materials and optical waveguides like splitter, thermo-optic switch and micro-cavity laser.

  5. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar lightw...

  6. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip.

    Science.gov (United States)

    Cai, Hong; Poon, Andrew W

    2012-10-01

    We study optical trapping of microparticles on an optofluidic chip using silicon nitride waveguide junctions and tapered-waveguide junctions. We demonstrate the trapping of single 1 μm-sized polystyrene particles using the evanescent field of waveguide junctions connecting a submicrometer-sized input-waveguide and a micrometer-sized output-waveguide. Particle trapping is localized in the vicinity of the junction. We also demonstrate trapping of one and two 1μm-sized polystyrene particles using tapered-waveguide junctions connecting a submicrometer-sized singlemode input-waveguide and a micrometer-sized multimode output-waveguide. Particle trapping occurs near the taper output end, the taper center and the taper input end, depending on the taper aspect ratio.

  7. Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides

    Science.gov (United States)

    Neshev, Dragomir N.; Sukhorukov, Andrey A.; Kivshar, Yuri S.

    Photonic structures with a periodic modulation of the optical refractive index play an important role in the studies of the fundamental aspects of wave dynamics [1, 2]. In particular, photonic crystals, layered media, or closely spaced optical waveguides enable manipulation of the key phenomena governing optical beam propagation: spatial refraction and diffraction. Arrays of coupled optical waveguides are particularly attractive as an experimental testbed due to their easier fabrication and characterization, as well as because of the opportunities they offer for enhanced nonlinear effects as a result of the large propagation distances in such structures. The physics of beam propagation in optical waveguide arrays is governed by the coupling of light between neighboring waveguides and the subsequent interference of the coupled light. Since both the coupling and the interference processes are sensitive to the light wavelength, the output intensity profiles can be drastically different for each spectral component of the input beam. This is a particular concern in many practical cases, including ultra-broad bandwidth optical communications, manipulation of ultra-short pulses or supercontinuum radiation, where the bandwidth of the optical signals can span over a wide frequency range.

  8. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  9. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  10. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  11. Sign-Reversal Coupling in Coupled-Resonator Optical Waveguide

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2016-01-01

    Coupled-resonator optical waveguides (CROWs), which play a significant role in modern photonics, achieve waveguiding through near-field coupling between tightly localized resonators. The coupling factor, a critical parameter in CROW theory, determines the coupling strength between two resonators and the waveguiding dispersion of a CROW. However, the original CROW theory proposed by Yariv et al. only demonstrated one value of coupling factor for a multipole resonance mode. Here, by imaging the tight-binding Bloch waves on a CROW consisting of designer-surface-plasmon resonators in the microwave regime, we demonstrate that the coupling factor in the CROW theory can reverse its sign for a multipole resonance mode. This determines two different waveguiding dispersion curves in the same frequency range, experimentally confirmed by matching Bloch wavevectors and frequencies in the CROW. Our study supplements and extends the original CROW theory, and may find novel use in functional photonic systems.

  12. Silicon waveguide based 320 Gbit/s optical sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao;

    2010-01-01

    A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained.......A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained....

  13. Unidirectional optical Bloch oscillations in asymmetric waveguide arrays.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2011-11-15

    We present an analytical proof of the existence of unidirectional optical Bloch oscillations in a waveguide array system. It is shown that the presence of nonreciprocity in the system allows for a complete normal-mode dephasing in one of the propagation directions, resulting in a unidirectional breakdown in Bloch oscillations. A model system consisting of an array of transversely magnetized asymmetric Si/SiO2 waveguides with a magneto-optic cover layer is presented. Large index contrasts between film and cover are critical for practical realizations.

  14. Quasi-BLOCH oscillations in curved coupled optical waveguides.

    Science.gov (United States)

    Joushaghani, Arash; Iyer, Rajiv; Poon, Joyce K S; Aitchison, J Stewart; de Sterke, C Martijn; Wan, Jun; Dignam, Marc M

    2009-10-01

    We report the observation of quasi-Bloch oscillations, a recently proposed, new type of dynamic localization in the spatial evolution of light in a curved coupled optical waveguide array. By spatially resolving the optical intensity at various propagation distances, we show the delocalization and final relocalization of the beam in the waveguide array. Through comparisons with other structures, we show that this dynamic localization is robust beyond the nearest-neighbor tight-binding approximation and exhibits a wavelength dependence different from conventional dynamic localization.

  15. Optical waveguide temperature sensor with liquid crystal

    OpenAIRE

    Hotra, Z.; Skoczylas, M.

    2006-01-01

    Наведено результати розроблення та дослідження сенсора температури на основі пластикового оптоволокна та нематичного рідкого кристала. Сенсор характеризується простою конструкцією і легкою адаптацією до різних умов. Використання термо-оптичних ефектів в сенсорах є дуже зручним під час роботи з агресивними середовищами. The construction and obtained results of temperature sensor operation based on plastic optical waveguide and nematic liquid crystal have been presented. Such sensor is characte...

  16. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...

  17. Silicone polymer waveguide bridge for Si to glass optical fibers

    Science.gov (United States)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  18. Measurement of the thermo-optical effect of integrated waveguides

    Science.gov (United States)

    Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus

    2016-05-01

    Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .

  19. Direction-dependent Optical Modes in Nanoscale Silicon Waveguides

    CERN Document Server

    Robinson, Jacob T

    2010-01-01

    On-chip photonic networks have the potential to transmit and route information more efficiently than electronic circuits. Recently, a number of silicon-based optical devices including modulators, buffers, and wavelength converts have been reported. However, a number of technical challenges need to be overcome before these devices can be combined into network-level architectures. In particular, due to the high refractive index contrast between the core and cladding of semiconductor waveguides, nanoscale defects along the waveguide often scatter light into the backward-propagating mode. These reflections could result in unwanted feedback to optical sources or crosstalk in bidirectional interconnects such as those employed in fiber-optic networks. It is often assumed that these reflected waves spatially overlap the forward-propagating waves making it difficult to implement optical circulators or isolators which separate or attenuate light based on its propagation direction. Here, we individually identify and map...

  20. Effect of patterns and inhomogeneities on the surface of waveguides used for optical waveguide lightmode spectroscopy applications

    DEFF Research Database (Denmark)

    Horvath, R.; Voros, J.; Graf, R.;

    2001-01-01

    It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...... of the observed effects. Numerical results are given for the different cases observed, and they are compared with the experimental data. Several possible applications of these effects are considered....

  1. Optical Code Generating Device Using 1×N Asymmetric Hollow Waveguide Couplers

    Institute of Scientific and Technical Information of China (English)

    Abang Annuar EHSAN; Sahbudin SHAARI; Mohd Kamil ABD.RAHMAN; Kee Mohd Rafique KEE ZAINAL ABIDIN

    2008-01-01

    An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.

  2. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    OpenAIRE

    Mohamad Hajj-Hassan; Timothy Gonzalez; Ebrahim Ghafar-Zadeh; Hagop Djeghelian; Vamsy Chodavarapu; Daniel Therriault; Mark Andrews

    2008-01-01

    We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides...

  3. Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays

    CERN Document Server

    Levy, Miguel

    2010-01-01

    We show that nonreciprocal optical Bloch-like oscillations can emerge in transversely magnetized waveguide arrays in the presence of an effective index step between the waveguides. Normal modes of the system are shown to acquire different wavenumbers in opposite propagation directions. Significant differences in phase coherence and decoherence between these normal modes are presented and discussed. Non-reciprocity is established by imposing unequal vertical refractive index gradients at the substrate/core, and core/cover interfaces in the presence of transverse magnetization.

  4. Classical Simulation of Squeezed Vacuum in Optical Waveguide Arrays

    CERN Document Server

    Sukhorukov, Andrey A; Sipe, John

    2013-01-01

    We reveal that classical light diffraction in arrays of specially modulated coupled optical waveguides can simulate the quantum process of two-mode squeezing in nonlinear media, with the waveguide mode amplitudes corresponding the signal and idler photon numbers. The whole Fock space is mapped by a set of arrays, where each array represents the states with a fixed difference between the signal and idler photon numbers. We demonstrate a critical transition from photon number growth to Bloch oscillations with periodical revivals of an arbitrary input state, associated with an increase of the effective phase mismatch between the pump and the squeezed photons.

  5. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper;

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities in the...... limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  6. Effects of the Planar Optical Waveguide Thickness on the Transmission Attenuation①

    Institute of Scientific and Technical Information of China (English)

    WANGJian; SUHansong

    1997-01-01

    By analyzing and computing,according to the wave theory of planar optical waveguide attenuation,a new opinion is put forward.A series of transmission atteenuation with waveguide film-thickness are given and it illustrates that optical transmission is not carrying out efficiently within some waveguide film-thickness.

  7. Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides

    CERN Document Server

    Zoubi, Hashem

    2016-01-01

    We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.

  8. Variational analysis of eigenmodes of integrated optical waveguides and applications

    Institute of Scientific and Technical Information of China (English)

    祝宁华

    1995-01-01

    An iterative procedure is proposed for the variational analysis of Ti:LiNbO3 optical waveguides. A trial solution for the dominant electric field profile of arbitrary-order eigenmodes in strip waveguides and two coupled waveguides is proposed and its parameters are determined using the variational method. The results calculated using this method agree well with those obtained using the finite-element method. The present method has been used to check the accuracy of the effective index method as well as a quasi-analytical technique based on the effective index method. The results show that the effective index method is generally accurate for the fundamental mode and becomes less accurate for higher-order vertical modes.

  9. Optimization design of optical waveguide in Mach-Zehnder electro-optical polymer modulator

    Institute of Scientific and Technical Information of China (English)

    GAO Yuan; ZHANG Xiao-xia; LIAO Jin-kun

    2011-01-01

    @@ In order to reduce transmission loss of the optical waveguide in Mach-Zehnder (M-Z) electro-optical (EO) polymer modulator,the basic iterative formula of semi-vector finite-difference beam propagation method (FD-BPM) is obtained from the scalar wave equation.The transition waveguide is combined with S-type bend branch waveguide for the M-Z EO modulator in the branch waveguide.The effects of structure parameters such as ridge width, length of the branch waveguide and interferometer spacing on the transmission loss are systematically studied by using the semi-vector FD-BPM method.The structure is optimized as an S-sine bend branch waveguide, with rib width w=7 μm, length of branch waveguide L=1200μm and interferometer spacing G=22 μm.The results show that the optimized structure can reduce transmission loss to 0.083 dB,which have a certain reference value to the design of optical waveguide in M-Z polymer modulator.

  10. Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection.

    Science.gov (United States)

    Kim, Jin Tae; Ju, Jung Jin; Park, Suntak

    2012-04-23

    For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 μm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.

  11. Telluride films and waveguides for IR integrated optics

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, Eleonore; Vigreux, Caroline; Pradel, Annie [Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universite Montpellier II, CC1503, 34095 Montpellier Cedex 5 (France); Parent, Gilles [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Universite de Nancy-Lorraine, BP239, 54506 Vandoeuvre Les Nancy Cedex (France); Barillot, Marc [Thales Alenia Space, 100 Bld. du midi, BP99, 06156 Cannes La Bocca Cedex (France)

    2011-09-15

    The fabrication of micro-components for far infrared applications such as spatial interferometry requires the realization of single-mode channel waveguides being able to work in the infrared region. One of the key issues in case of channel waveguides is the selection of materials for the core layer. Amorphous telluride films are particularly attractive for their transparency in a large spectral domain in the infrared region. A second key issue is the selection of an appropriate method for film deposition. Indeed, waveguides for far infrared applications are characterized by a thick core layer (10-15 {mu}m, typically). The challenge is thus to select a deposition method which ensures the deposition of thick films of optical quality. In this paper, it is shown that thermal co-evaporation meets this challenge. In particular, it allows varying the composition of the films very easily and thus adjusting their optical properties (refractive index, optical band gap). The example of thermally co-evaporated Te-Ge films is given. Films with typical thickness of 7-15 {mu}m were elaborated. Their morphological, structural, thermal and optical properties were measured. A particular attention was paid to the checking of the film homogeneity. The realized waveguiding structures and their optical testing are then described. In particular, the first transmission measurements at 10.6 {mu}m are presented. In conclusion, the feasibility of micro-components based on the stacking and etching of chalcogenide films is demonstrated, opening the door to applications related to detection in the mid- and thermal infrared spectral domains (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Nonlinear Optics in Optoelectronic Integration with Some Novel Waveguide Devices.

    Science.gov (United States)

    Vakhshoori, Daryoosh

    By integration we mean realizing an integrable solution to existing discrete devices which perform some useful operation. Systems are built from these functional parts. System integration requires compatible integration of these parts. At present the most important example that also relates to our work is communication systems. For this system to work reliably, the optical pulses should be stable in time and shape (small time and amplitude jitter.) The devices that measure these properties are optical correlators. These devices are bulky, occupying a cubic foot of volume with no satisfactory integrable counterpart. Here we present an integrable waveguide correlator which experimentally measured pulses from 150fsec to 12psec with an average guide power of sub mW to 2mW in the spectral range of 1.7mum to 1.06mu m. All these measurements were performed on the same waveguide structure without mechanical movements where the spectral range was limited to the band gap of the waveguide material, GaAs in our case. The other communication scheme uses wavelength division multiplexing. Optical spectrometers are ~1 meter long devices capable of 0.1A spectral resolution. Again, like correlators, there is no satisfactory integrable counterpart. In this thesis, we present an integrable parametric waveguide spectrometer capable of measuring individual modes of semiconductor laser diodes and their movement as a function of laser current. For our experiments, the resolving power of the waveguide device was about 3A and is easily extendible to the sub A range. It should be pointed out that these spectrometer devices can also be used in stabilizing laser diode frequencies which are required for the realization of reliable wavelength division multiplexed systems. Last, but not least, a possible coherent visible surface emitting waveguide device capable of mW range powers is also presented. The motivation for this study is the ever growing market for shorter wavelength semiconductor

  13. Research progresses of SOI optical waveguide devices and integrated optical switch matrix

    Institute of Scientific and Technical Information of China (English)

    YU Jinzhong; CHEN Shaowu; XIA Jinsong; WANG Zhangtao; FAN Zhongchao; LI Yanping; LIU Jingwei; YANG Di; CHEN Yuanyuan

    2005-01-01

    SOI (silicon-on-insulator) is a new material with a lot of important perform- ances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2×2 thermal-optical switch were successfully designed and fabricated. Based on these, 4×4 and 8×8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.

  14. Optical waveguide Hamiltonians leading to step-2 difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Rueda-Paz, Juvenal; Wolf, Kurt Bernardo, E-mail: bwolf@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Av. Universidad s/n, Cuernavaca, Morelos 62251 (Mexico)

    2011-03-01

    We examine the evolution of an N-point signal produced and sensed at finite arrays of points transverse to a planar waveguide, within the framework of the finite quantization of geometric optics. In contradistinction to the common mechanical Hamiltonians (kinetic plus potential energy terms) the classical waveguide Hamiltonian is the square root of a difference of squares of the refractive index profile minus the optical momentum. The finitely quantized model requires the solution of the square eigenvalue and eigenfunction problem which leads to a step-two difference equation that contains two solutions and two signs of energy. We find the proper linear combinations to fit the Kravchuk functions of the finite oscillator model.

  15. Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ An electro-optical switch based on a plasmonic T-shaped waveguide structure with a double-teeth-shaped waveguide filled with 4-dimet4ylamino-N-methyl-4stilbazolium tosylate is proposed and numerically investigated.TheFinite-difference time domain simulation results reveal that the structure can operate as a circuit switch by controlling the external voltages V1 and/or V2.The proposed structure can also operate as a variable optical attenuator, which can continuously attenuate the power of a light beam from 6dB to 30dB by an external electrical field.The structure is of small size of a few hundred nanometers.Our results may open a possibility to construct nanoscale high-density photonic integration circuits.

  16. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  17. Integrating optical glucose sensing into a planar waveguide sensor structure

    Science.gov (United States)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  18. Hybrid and Etch-Less Electrooptic Waveguide Modulator Based on Photo-Bleaching and Strain Induced Optical Waveguide Technique in Polymer.

    Science.gov (United States)

    Kim, Richard; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Yang-June; Park, Hyuk-Reol; Kim, Chang-Dae; So, Soon-Youl; Lee, Jin; Park, Gye-Choon; Park, Yongjun

    2016-02-01

    A hybrid and etchless electrooptic (EO) polymer waveguide modulator based on both a photo-bleaching-induced optical waveguide (PBOW) and a strain-induced optical waveguide (SIOW) is described. The SIOW is defined by a metal strip line stressor deposited on top of the upper cladding that introduces the refractive index change within the core region. The PBOW technique is used to form an optical waveguide which is based on a photo-bleaching process, known as a photo-oxidation that is an irreversible decomposition of EO material, resulting in a permanent decrease in index of refraction. It is shown that this proposed fabrication idea combining two etchless techniques can be applicable to a wide range of polymer photonic integrated circuits. Preliminary results obtained from fabricated devices reveal that their half-wave voltage are ranging from 8 V to 10 V, their extinction ratio exhibits more than 15 dB, and the fiber-to-waveguide-to-lens loss is estimated to be ~9.5 dB for TM polarization at 1.55/m wavelength in the active interaction of ~1.5 cm long.

  19. Hybrid and Etch-Less Electrooptic Waveguide Modulator Based on Photo-Bleaching and Strain Induced Optical Waveguide Technique in Polymer.

    Science.gov (United States)

    Kim, Richard; Kang, Byeong-Mo; Jeong, Woon-Jo; Jung, Yang-June; Park, Hyuk-Reol; Kim, Chang-Dae; So, Soon-Youl; Lee, Jin; Park, Gye-Choon; Park, Yongjun

    2016-02-01

    A hybrid and etchless electrooptic (EO) polymer waveguide modulator based on both a photo-bleaching-induced optical waveguide (PBOW) and a strain-induced optical waveguide (SIOW) is described. The SIOW is defined by a metal strip line stressor deposited on top of the upper cladding that introduces the refractive index change within the core region. The PBOW technique is used to form an optical waveguide which is based on a photo-bleaching process, known as a photo-oxidation that is an irreversible decomposition of EO material, resulting in a permanent decrease in index of refraction. It is shown that this proposed fabrication idea combining two etchless techniques can be applicable to a wide range of polymer photonic integrated circuits. Preliminary results obtained from fabricated devices reveal that their half-wave voltage are ranging from 8 V to 10 V, their extinction ratio exhibits more than 15 dB, and the fiber-to-waveguide-to-lens loss is estimated to be ~9.5 dB for TM polarization at 1.55/m wavelength in the active interaction of ~1.5 cm long. PMID:27433618

  20. The rotating planar dielectric waveguide model in wave optics: results for step-index profile optical fibers

    International Nuclear Information System (INIS)

    After the successful identification of guided rays in an optical fiber with the angular velocity of a hypothetical waveguide circumscribing it, the model of optical fibers as planar dielectric waveguides in rotation is extended to wave optics. A clear relationship between the angular velocity and the phase differences between different wavefronts of one given wave is found for step-index profile optical fibers

  1. Optical properties of microcavities and patterned waveguides

    CERN Document Server

    Culshaw, I S

    2000-01-01

    electromagnetic fields. The theoretical and measured spectra are shown to be in excellent agreement. The fitting process enabled the full set of structural parameters to be determined. The photonic dispersions of the modes of the PWGs are shown to be closely related to the calculated band structure of an idealised photonic crystal waveguide (PCW) model, namely a PC of finite thickness clad on either side by perfectly reflecting walls. The photonic bands of the ideal 2-D PCW are of mixed polarisation character owing to TE-TM/TM-TE scattering processes. Strong evidence is found to support this in the reflectivity of the 2-D PWG. Polarisation mixing leads to an anti-crossing of photonic bands of the ideal 2-D PCW, and hence the appearance of heavy photon states, away from the boundaries of the 2-D Brillouin zone. Theoretically, the coupling of external radiation to such heavy photon states is shown to occur for the 2-D PWG. A series of new PWG structures employing thin metallic films are proposed in order to all...

  2. Manipulating rogue wave triplet in optical waveguides through tapering

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rama [Department of Physics, DAV University, Jalandhar 144008 (India); Kumar, C.N., E-mail: cnkumar@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India); Vyas, Vivek M. [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113 (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research – Kolkata, Mohanpur, Nadia 741252 (India)

    2015-02-06

    Taking account of the results of the paper, published in [21] (Chabchoub and Akhmediev, 2013), containing experimental generation of rogue wave triplets in the water tank, we demonstrate a theoretical approach to coherently control the rogue wave triplet dynamics and spectral spread in a tapered index optical waveguide. The relative distance between the successive waves of the triplet, along both longitudinal and transverse axes, can be manipulated by modulating the tapering of the waveguide. This not only significantly enhances the possibility of observing these statistically rare events in the waveguide, but can also controllably amplify the intensity and spectral spread, the desired features for supercontinuum generation. The controlling of real Riccati parameter intrinsically arises from the allowed phase variation of the self-similar solutions of the nonlinear Schrödinger equation. - Highlights: • Manipulating rogue wave triplets in GNLSE using Riccati parameter is outlined. • Symmetric transformations used to scale mutual spacing in a triplet. • Results presented for sech{sup 2}-type tapered waveguides.

  3. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    CERN Document Server

    Lee, J; Mittal, S; Dagenais, M; Rolston, S L

    2013-01-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1-D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  4. Optics of an individual organic molecular mesowire waveguide: directional light emission and anomalous refractive index

    Science.gov (United States)

    Tripathi, Ravi P. N.; Dasgupta, Arindam; Chikkaraddy, Rohit; Pratim Patra, Partha; Vasista, Adarsh B.; Pavan Kumar, G. V.

    2016-06-01

    We report on experimental investigations performed on an isolated organic mesowire waveguide resting on a glass substrate. The waveguide was made of diaminoanthraquinone (DAAQ) molecular aggregates. First, we show directional emission of light from distal ends of the DAAQ waveguide. For a given mesowire geometry, operating in passive or photoluminescence regimes, we quantified the emission angles by combining multi-wavelength Fourier-plane optical microscopy and photoluminescence micro-spectroscopy. We found light emission in the photoluminescence regime to be more directional in nature compared to the passive waveguiding regime, which was supported by three-dimensional finite-difference time-domain (FDTD) simulations. Second, we measured the anomalous behaviour of refractive index as a function of emission wavelength using the spectra of directionally emitted light. Third, by using spatial-filtered collection optics, we observed and quantified single-excitation dual-channel directional, active emission from DAAQ mesowire. The results discussed herein has implication not only in understanding some fundamental aspects of exciton-polariton mediated directional light emission, but also in applications such as organic optical antennas and photonic couplers.

  5. Experimental assessment of SU-8 optical waveguides buried in plastic substrate for optical interconnections.

    Science.gov (United States)

    Hamid, Hanan H; Fickenscher, Thomas; Thiel, David V

    2015-08-01

    Multimode polymer waveguides have been developed to create low-cost, high-speed on-board optical interconnects. Buried optical waveguides made from SU-8 in a polymethyl methacrylate polymer (PMMA) substrate covered with a thin PMMA sheet are a low-cost option for electro-optical interconnects. The propagation losses for a 600  μm×600  μm straight waveguide were 1.96, 1.32, and 1.39  dB/cm, respectively, at three different wavelengths (850, 1310, and 1550 nm). The bending loss for a 15 mm bending radius is as high as 6  dB/cm. Transition and radiation losses dominate overall loss when the bending radius is less than 30 mm. The waveguide was excited using a multimode 850 nm VCSEL transmitter and detected using butt-coupled and lens-coupled receivers. The coupling loss was about 1 dB for the butt-coupling technique and 2 dB for lens coupling. The response bandwidth and the group delay of direct modulated (IF) signal were independent of the channel waveguide for communication speeds up to more than 3 GHz. This technique is viable for low-cost, short-length buried optical waveguides. PMID:26368073

  6. Integrated planar optical waveguide interferometer biosensors: a comparative review.

    Science.gov (United States)

    Kozma, Peter; Kehl, Florian; Ehrentreich-Förster, Eva; Stamm, Christoph; Bier, Frank F

    2014-08-15

    Integrated planar optical waveguide interferometer biosensors are advantageous combinations of evanescent field sensing and optical phase difference measurement methods. By probing the near surface region of a sensor area with the evanescent field, any change of the refractive index of the probed volume induces a phase shift of the guided mode compared to a reference field typically of a mode propagating through the reference arm of the same waveguide structure. The interfering fields of these modes produce an interference signal detected at the sensor׳s output, whose alteration is proportional to the refractive index change. This signal can be recorded, processed and related to e.g. the concentration of an analyte in the solution of interest. Although this sensing principle is relatively simple, studies about integrated planar optical waveguide interferometer biosensors can mostly be found in the literature covering the past twenty years. During these two decades, several members of this sensor family have been introduced, which have remarkably advantageous properties. These entail label-free and non-destructive detection, outstandingly good sensitivity and detection limit, cost-effective and simple production, ability of multiplexing and miniaturization. Furthermore, these properties lead to low reagent consumption, short analysis time and open prospects for point-of-care applications. The present review collects the most relevant developments of the past twenty years categorizing them into two main groups, such as common- and double path waveguide interferometers. In addition, it tries to maintain the historical order as it is possible and it compares the diverse sensor designs in order to reveal not only the development of this field in time, but to contrast the advantages and disadvantages of the different approaches and sensor families, as well.

  7. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides

    CERN Document Server

    Youngblood, Nathan; Ma, Rui; Koester, Steven J; Li, Mo

    2014-01-01

    For optical communication, information is converted between optical and electrical signal domains at a high rate. The devices to achieve such a conversion are various types of electro-optical modulators and photodetectors. These two types of optoelectronic devices, equally important, require different materials and consequently it has been challenging to realize both using a single material combination, especially in a way that can be integrated on the ubiquitous silicon platform. Graphene, with its gapless band structure, stands out as a unique optoelectronic material that allows both photodetection and optical modulation. Here, we demonstrate a single graphene-based device that simultaneously provides both efficient optical modulation and photodetection. The graphene device is integrated on a silicon waveguide and is tunable with a gate made from another layer of graphene to achieve near-infrared photodetection responsivity of 57 mA/W and modulation depth of 64%. This novel multifunctional device may lead t...

  8. Material dispersion measurements in optical fibre waveguides

    International Nuclear Information System (INIS)

    Preliminary measurements of material dispersion on optical fibres now being routinely produced by TELEBRAS in Brasil are carried out. This was done by using two semiconductor lasers emitting at the different wavelengths of 800 nm and 904 nm. The result of approximately 100 ps/nm/km in germania-doped silica fibres is approximately 30% higher than the value for pure silica; this agrees well with results obtained in other laboratories with similar fibres. Material dispersion can limit the bandwidth of an optical fibre, especially when a light emitting diode, operating in the 800. 900 nm wavelength region is used as the light source in a fibre optical communication system having graded-index fibres with an optimum index profile. (Author)

  9. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    Science.gov (United States)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  10. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    Directory of Open Access Journals (Sweden)

    Shih-Hsiang Hsu

    2010-12-01

    Full Text Available To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  11. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    Science.gov (United States)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  12. Metasurface-loaded waveguide for transformation optics applications

    Science.gov (United States)

    Wei, Pengjiang; Xiao, Shiyi; Xu, Yadong; Chen, Huanyang; Tak Chu, Sai; Li, Jensen

    2016-04-01

    We theoretically investigate a two-dimensional metasurface-loaded waveguide as a generic platform for transformation optics (TO) applications. The mode indices can achieve values much less or greater than one by tuning the reflection phase from the metasurface. Due to the subwavelength feature size of the metasurface, we develop an effective description of the wave propagation using an artificial electromagnetic boundary approach, which replaces the effective medium description of TO for bulk media. We numerically demonstrate a constant zero-index medium for wave collimation, gradient index profiles as Luneburg and Maxwell fisheye lenses and a wave bender based on the finite embedded coordinate transformation. These investigations provide a feasible route to perform TO with metasurfaces as waveguide boundaries, yet the designs can still be obtained using an effective boundary approach with only a few constitutive parameters.

  13. Optical trimer: A theoretical physics approach to waveguide couplers

    CERN Document Server

    Stoffel, A; Rodríguez-Lara, B M

    2016-01-01

    We study electromagnetic field propagation through an ideal, passive, triangular three-waveguide coupler using a symmetry based approach to take advantage of the underlying $SU(3)$ symmetry. The planar version of this platform has proven valuable in photonic circuit design providing optical sampling, filtering, modulating, multiplexing, and switching. We show that a group-theory approach can readily provide a starting point for design optimization of the triangular version. Our analysis is presented as a practical tutorial on the use of group theory to study photonic lattices for those not familiar with abstract algebra methods. In particular, we study the equilateral trimer to show the relation of pearl-necklace arrays with the Discrete Fourier Transform due to their cyclic group symmetry, and the isosceles trimer to show its relation with the golden ratio and its ability to provide stable output at a single waveguide. We also study the propagation dependent case of an equilateral trimer that linearly increa...

  14. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    Science.gov (United States)

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ~10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues.

  15. Optical Waveguiding in Individual Nanometer-Scale Organic Fibers

    DEFF Research Database (Denmark)

    Balzer, Frank; Bordo, Vladimir G.; Simonsen, Adam Cohen;

    2003-01-01

    We show by a combination of spectrally resolved fluorescence and atomic force microscopy that individual, single crystalline, needlelike aggregates of hexaphenyl molecules with submicron cross-sectional dimensions act as optical waveguides (“nanofibers”) in the blue spectral range. The nanofibers...... are formed via laser-supported, dipole-assisted self-assembly on single crystalline mica substrates. This method allows us to modify the morphology of individual aggregates as well as their mutual distances and the overall orientation of needle arrays. An analytical theory describes quantitatively...... the waveguiding behavior. From measurements of the damping of propagating 425-nm light the imaginary part of the dielectric function of individual nanoscaled organic aggregates is determined....

  16. All-optical controlling based on nonlinear graphene plasmonic waveguides.

    Science.gov (United States)

    Li, Jian; Tao, Jin; Chen, Zan Hui; Huang, Xu Guang

    2016-09-19

    We give the effective refractive index of graphene plasmonic waveguides with both linear and nonlinear effects based on the nonlinear cross-phase modulation, and address the effects of photo-induced refractive index change and absorption change. A non-resonant all-optical nonlinear graphene plasmonic switch with an ultra-compact size of 0.25 μm2 is proposed and numerically analyzed based on the dynamics of the photo-induced absorption change. The results show that the all-optical graphene plasmonic switch can realize a broad bandwidth over 5 THz, a potentially very high switching speed and an extinction ratio of 18.14 dB with the electric amplitude of the pump light of 1.5 × 107 V/m at the signal frequency of 28 THz. Our study could provide a possibility for future all-optical highly integrated optical components. PMID:27661951

  17. Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide

    CERN Document Server

    Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  18. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide

    Science.gov (United States)

    Shahmoon, Ephraim; Grisins, Pjotrs; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2016-05-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  19. Optical simulation of neutrino oscillations in binary waveguide arrays.

    Science.gov (United States)

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

  20. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith;

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss. A ...

  1. Three-dimensional integration of passive and active polymer waveguide devices

    Science.gov (United States)

    Garner, Sean Matthew

    This thesis presents the design, fabrication, and experimental results of three dimensionally integrated optics. This vertical and horizontal integration of polymer waveguide structures increases the integration density, reduces interconnection routing difficulties, and expands the functional diversity of adjacent devices. The devices discussed depend on the fabrication of vertical slopes using unconventional photolithography and reactive ion etching techniques. The slopes produced allow fully functional three dimensionally integrated optics that incorporate both passive and active waveguide elements. Passive structures such as vertical waveguide bends, power splitters, and polarization splitters enable three dimensional routing of the optical power among multiple vertical levels. Single mode vertical waveguide bends are demonstrated with polarization insensitive excess losses of 0.2dB. These waveguide structures incorporated bending angles up to 1.5°. Three dimensional 1 x 4 splitters, possess excess losses of 0.5dB and show the ability to fabricate complex waveguide structures in both the horizontal and vertical directions. These vertical power splitters showed controllable power splitting ratios in the output waveguides by controlling the spin cast film thickness within 0.5μM and the slope angle within 0.5°. The vertical polarization splitters incorporated birefringent polymer materials to create an adiabatic mode splitter. These possessed power extinction ratios of about 15dB for both input polarizations. The passive structures of vertical waveguide bends, power splitters, and polarization splitters enable practical three dimensional integrated optics by providing vertical routing capability of the optical signal analogous to those typically found in conventional two dimensional waveguide interconnects. Three dimensionally integrated active devices such as low-loss hybrid modulators and vertically integrated modulator designs create fully functional

  2. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation.

    Science.gov (United States)

    Chong, W Y; Lim, W H; Yap, Y K; Lai, C K; De La Rue, R M; Ahmad, H

    2016-04-01

    Increased absorption of transverse-magnetic (TM)-polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE)-polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light--and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light).

  3. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    Science.gov (United States)

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; de La Rue, R. M.; Ahmad, H.

    2016-04-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light).

  4. Bend insensitive graded index multimode polymer optical waveguides fabricated using the Mosquito method

    Science.gov (United States)

    Takahashi, Asami; Ishigure, Takaaki

    2015-02-01

    We fabricate low-loss graded index (GI) circular core multimode polymer optical waveguides with 90o bending and demonstrate low bending loss even if the bend radius is as small as 1 mm. In the several fabrication methods for GI-core polymer waveguides already proposed, we adopt the "Mosquito method" that utilize a microdispenser because the Mosquito method makes it possible to fabricate waveguides directly on board at desired places on a printed circuit board, and to draw various patterns of cores including curves. However, in the waveguides including such curved cores, the additional transmission loss due to the bending (bending loss) is a concern. Thus, we characterize the fabricated GI-core polymer waveguides with bending: using two kinds of cladding monomer with different refractive indexes for fabricating waveguides with bending. We found when the NA of waveguides was as high as 0.35, no additional loss due to bending was observed even if the bending radius is as small as 1 mm. The core diameter of the fabricated waveguides is 50 μm, and it is possible to further decrease the bending loss in the waveguides with smaller core diameter. Furthermore, utilizing the Mosquito method, we fabricate waveguides with not only horizontally curved cores but also vertically curved ones. Waveguides with vertically curved cores could make it possible to realize three-dimensionally optical wiring applicable to on-board optical interconnects.

  5. The Interaction of Optical Guided Modes with Waveguide Diffraction Gratings.

    Science.gov (United States)

    Weller-Brophy, Laura Ann

    In this thesis the results of a theoretical and experimental investigation of the coupling of guided modes by waveguide gratings are presented. This work is motivated by the potential application of waveguide gratings to integrated optical devices. The coupling of guided modes obliquely incident to both periodic and aperiodic gratings is a mechanism basic to the operation of integrated optical components such as filters, reflectors, beamsplitters, and modulators. It is shown in the Introduction to this thesis, that this mechanism is not modeled consistently by the analyses presented in the literature. For the case of TM-TM coupling, virtually each analytical treatment predicts a different value for the grating reflectivity. In addition, it is found that the typical Coupled-Mode formalisms used to derive the grating reflectivity do not offer an intuitive picture of the operation of waveguide gratings. These two particular problem areas serve as the focal points of this thesis. The latter of these is addressed through the development of a thin film model of the operation of waveguide gratings. This model presents an intuitively appealing picture of the interaction of waveguide gratings and guided modes. It also yields grating reflectivities which are in excellent agreement with those obtained through the numerical solution of the Coupled-Mode equations for both periodic and aperiodic gratings. The bulk of this research project is directed towards resolving the conflicting theoretical grating analyses presented in the literature. A new derivation of the coupling of guided modes obliquely incident to periodic gratings is presented in Chapter II of this thesis. This derivation is based on the Local Normal Mode expansion used by Marcuse for the case of normal incidence. It produces coupling coefficients which are nearly identical to those derived using the rigorous Boundary Perturbation technique. The coupling coefficients predicted by this Local Normal Mode formalism

  6. Optical biosensor based on silicon nanowire ridge waveguide

    Science.gov (United States)

    Gamal, Rania; Ismail, Yehia; Swillam, Mohamed A.

    2015-02-01

    Optical biosensors present themselves as an attractive solution for integration with the ever-trending lab-on-a-chip devices. This is due to their small size, CMOS compatibility, and invariance to electromagnetic interference. Despite their many benefits, typical optical biosensors rely on evanescent field detection, where only a small portion of the light interacts with the analyte. We propose to use a silicon nanowire ridge waveguide (SNRW) for optical biosensing. This structure is comprised of an array of silicon nanowires, with the envelope of a ridge, on an insulator substrate. The SNRW maximizes the overlap between the analyte and the incident light wave by introducing voids to the otherwise bulk structure, and strengthens the contribution of the material under test to the overall modal effective index will greatly augment the sensitivity. Additionally, the SNRW provides a fabrication convenience as it covers the entire substrate, ensuring that the etching process would not damage the substrate. FDTD simulations were conducted and showed that the percentage change in the effective index due to a 1% change in the surrounding environment was more than 170 times the amount of change perceived in an evanescent detection based bulk silicon ridge waveguide.

  7. Wavelength-dependent femtosecond pulse amplification in wideband tapered-waveguide quantum well semiconductor optical amplifiers.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2015-12-10

    In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs.

  8. Magneto optical rotation in a GaAs Quantum Well Waveguide

    CERN Document Server

    Mortezapour, Ali; Mahmoudi, Mohammad

    2016-01-01

    The interaction of two orthogonally polarized beams and a four-level GaAs quantum well (QW) waveguide is investigated. It is shown that, by applying a static magnetic field normal to the propagation direction of the driving beams, the birefringence can be induced in the QW waveguide. Moreover, it is demonstrated that the dephasing rate between two ground states of the QW waveguide makes it a dichromatic medium and can also diminish the induced birefringence. Our results show how a large and complete magneto-optical rotation in the QW waveguide can be obtained via adjusting the intensity of the magnetic field and also the length of the QW waveguide.

  9. Distributed Feedback Effects in Active Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields.......We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields....

  10. Phosphosilicate glass film for optical waveguide by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    SHEN Jian; LI Ai-wu; ZHENG Jie; ZHANG Le-tian; LIU Guo-fan; ZHENG Wei; ZHANG Yu-shu

    2005-01-01

    In this paper, silica-on-silicon erbium-doped phosphosilicate glass film material was fabricated for optical waveguides by sol-gel method. Samples were characterized and analyzed. It is demonstrated that we have got well-distributed, good translucent, alterable thickness of film and glass state erbium-doped phosphosilicate films material for optical waveguides by sol-gel method.

  11. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    CERN Document Server

    Liu, Xiaoping; Vlasov, Yurii A; Green, William M J

    2010-01-01

    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to comp...

  12. Optimization of Waveguide Structure for Tunable Optical Switch in Si/SiGe System

    Institute of Scientific and Technical Information of China (English)

    Seongjae; Boo; Won-Taek; Han

    2003-01-01

    A new electro-optical device using Si/SiGe-system with two parallel ridge waveguides is proposed for optical switching and the optimization of the structure for a single mode operation is investigated.

  13. Giant Transverse Optical Forces in Nanoscale Slot Waveguides of Hyperbolic Metamaterials

    CERN Document Server

    He, Yingran; Gao, Jie; Yang, Xiaodong

    2015-01-01

    Here we demonstrate that giant transverse optical forces can be generated in nanoscale slot waveguides of hyperbolic metamaterials, with more than two orders of magnitude stronger compared to the force created in conventional silicon slot waveguides, due to the nanoscale optical field enhancement and the extreme optical energy compression within the air slot region. Both numerical simulation and analytical treatment are carried out to study the dependence of the optical forces on the waveguide geometries and the metamaterial permittivity tensors, including the attractive optical forces for the symmetric modes and the repulsive optical forces for the anti-symmetric modes. The significantly enhanced transverse optical forces result from the strong optical mode coupling strength between two metamaterial waveguides, which can be explained with an explicit relation derived from the coupled mode theory. Moreover, the calculation on realistic metal-dielectric multilayer structures indicates that the predicted giant ...

  14. Applications of magneto-optical waveguides in integrated optics: review

    NARCIS (Netherlands)

    Dötsch, H.; Bahlmann, N.; Zhuromskyy, O.; Hammer, M.; Wilkens, L.; Gerhardt, R.; Hertel, P.; Popkov, A.F.

    2005-01-01

    Magnetooptical garnets combine high Faraday rotation with low optical losses in the near infrared region where optical communication via glass ?ber is established. In this spectral range garnets are the only materials discussed to realize nonreciprocal devices as optical isolators and circulators. A

  15. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta;

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  16. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 1...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses.......This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15...

  17. Comprehensive analytical model to characterize randomness in optical waveguides.

    Science.gov (United States)

    Zhou, Junhe; Gallion, Philippe

    2016-04-01

    In this paper, the coupled mode theory (CMT) is used to derive the corresponding stochastic differential equations (SDEs) for the modal amplitude evolution inside optical waveguides with random refractive index variations. Based on the SDEs, the ordinary differential equations (ODEs) are derived to analyze the statistics of the modal amplitudes, such as the optical power and power variations as well as the power correlation coefficients between the different modal powers. These ODEs can be solved analytically and therefore, it greatly simplifies the analysis. It is demonstrated that the ODEs for the power evolution of the modes are in excellent agreement with the Marcuse' coupled power model. The higher order statistics, such as the power variations and power correlation coefficients, which are not exactly analyzed in the Marcuse' model, are discussed afterwards. Monte-Carlo simulations are performed to demonstrate the validity of the analytical model.

  18. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  19. Manufacturability and optical functionality of multimode optical interconnections developed with fast processable and reliable polymer waveguide silicones

    Science.gov (United States)

    Liu, Joe; Lee, Allen; Hu, Mike; Chan, Lisa; Huang, Sean; Swatowski, Brandon W.; Weidner, W. Ken; Han, Joseph

    2015-03-01

    We report on the manufacturing, reliability, and optical functionality of multimode optical waveguide devices developed with a fast processable optical grade silicone. The materials show proven optical losses of 2000 hours 85°C/85% relative humidity testing as well as >4 cycles of wave solder reflow. Fabrication speeds of polyimide substrates with precise alignment features (cut by dicing saw or ablated by UV laser). Two out-of-plane coupling techniques were demonstrated in this paper, a MT connectorized sample with a 45° turning lens as well as 45° dielectric mirrors on waveguides by dicing saw. Multiple connections between fiber and polymer waveguides with MPO and two out-of-plane coupling techniques in a complete optical link are demonstrated @ 10 Gbps data rates with commercial transceiver modules. Also, complex waveguide geometries such as turnings and crossings are demonstrated by QSFP+ transceiver. The eye diagram analyses show comparable results in functionality between silicone waveguide and fiber formats.

  20. Thermo-optic Goos-Hänchen effect in silicon-on-insulator waveguide

    Science.gov (United States)

    Tang, Tingting; Luo, Li; Liu, Wenli; He, Xiujun; Zhang, Yanfen

    2015-09-01

    We study the thermo-optic Goos-Hänchen (TOGH) effect in a prism-waveguide coupling structure with silicon-on-insulator waveguide. Stationary-phase method is utilized to calculate the TOGH shift. When the waveguide is regarded as a two-dimensional planar waveguide, a nonlinear relation between GH shift and temperature is obtained. Based on the noticeable TOGH effect, a sensitive temperature modulator or sensor can be realized. As the waveguide width is limited, the proposed structure can be regarded as a three-dimensional rectangular waveguide. We explore the GH shift and TOGH effect for different modes propagating in rectangular waveguide which show different linear relations between GH shift and temperature, which can be used to design mode-selective device based on TO effect.

  1. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  2. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  3. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  4. Length optimization of an S-shaped transition between offset optical waveguides.

    Science.gov (United States)

    Marcuse, D

    1978-03-01

    We derive expressions for the radiation loss of an S-shaped waveguide transition used to connect two straight integrated optics waveguides that are offset with respect to each other. It is assumed that the diffused integrated optics waveguides are produced with the help of an electron beam machine that allows beam positioning in the y direction only in discrete steps. We thus must consider staircase approximations to the desired smooth S-shaped curves. A waveguide whose axis consists of a staircase suffers radiation losses due to the quasi-periodic deformation of its axis. A second loss contribution comes from the S-shape of the waveguide axis. The sum of these loss contributions assumes a minimum that defines the optimum length of the transition waveguide.

  5. Interferometer and sensor based on bimodal optical waveguides, and detection method

    OpenAIRE

    Domínguez, Carlos; Zinoviev, Kirill; Laura M. Lechuga

    2007-01-01

    [EN]: Planar optical waveguide interferometer (15, 25, 35, 45) comprising: a substrate (8, 28, 38, 48); a bimodal waveguide (10, 20, 20', 30, 40) comprising at least one layer (1, 2, 3) deposited on said substrate (8, 28, 38, 48), said bimodal waveguide (10, 20, 20', 30, 40) being designed for supporting a zeroorder and a first-order transverse propagating modes, said transverse propagating modes having different dispersion; a sensor plate (21, 31, 41, 51) located in a se...

  6. Optical Waveguide Lightmode Spectroscopy (OWLS) as a Sensor for Thin Film and Quantum Dot Corrosion

    OpenAIRE

    Jinke Tang; Qilin Dai; Wenyong Wang; Hao Yu; Eggleston, Carrick M; Jiajun Chen

    2012-01-01

    Optical waveguide lightmode spectroscopy (OWLS) is usually applied as a biosensor system to the sorption-desorption of proteins to waveguide surfaces. Here, we show that OWLS can be used to monitor the quality of oxide thin film materials and of coatings of pulsed laser deposition synthesized CdSe quantum dots (QDs) intended for solar energy applications. In addition to changes in data treatment and experimental procedure, oxide- or QD-coated waveguide sensors must be synthesized. We synthesi...

  7. Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases

    Science.gov (United States)

    Ruostekoski, Janne; Javanainen, Juha

    2016-09-01

    We analyze the emergence of correlated optical phenomena in the transmission of light through a waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions of the correlated collective response are identified in terms of atom density, thermal broadening, and photon losses by using stochastic Monte Carlo simulations and transfer matrix methods of transport theory. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  8. Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide.

    Science.gov (United States)

    Wang, Xianping; Yin, Cheng; Sun, Jingjing; Han, Qingbang; Li, Honggen; Sang, Minghuang; Yuan, Wen; Cao, Zhuangqi

    2013-11-01

    We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos-Hänchen shift, which potentially may be for practical use in novel optical devices. PMID:24216657

  9. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Mohamad Hajj-Hassan

    2008-12-01

    Full Text Available We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gelderived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2 responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100% of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multisensor platforms that can be cost-effectively and reliably mass-produced.

  10. Optical loss analysis of silicon rich nitride waveguides

    DEFF Research Database (Denmark)

    Mertens, Hans; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2002-01-01

    An analysis of the propagation loss in high-index LPCVD-grown silicon rich nitride (SRN) slab waveguides and channel waveguides is presented. A propagation loss as low as 0.6 dB/cm has been achieved.......An analysis of the propagation loss in high-index LPCVD-grown silicon rich nitride (SRN) slab waveguides and channel waveguides is presented. A propagation loss as low as 0.6 dB/cm has been achieved....

  11. Toward a 1.54 mu m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier

    OpenAIRE

    Tengattini, A.; J. M. Ramírez; Navarro-Urrios, D.

    2013-01-01

    In this paper, we report on the first attempt to design, fabricate, and test an on-chip optical amplifier which works at 1540 nm and can be electrically driven. It is based on an asymmetric silicon slot waveguide which embeds the active material. This is based on erbium-doped silicon rich silicon oxide. We describe the horizontal asymmetric slot waveguide design which allows us to get a high field confinement in a nanometer thick active layer. In addition, we detail the complex process needed...

  12. High sensitivity optical waveguide accelerometer based on Fano resonance.

    Science.gov (United States)

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  13. Active III-V Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Schubert, Martin;

    2011-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in a quantum well III-V semiconductor photonic crystal waveguide slab. The effect is described by enhanced light matter interaction with the decrease of the group velocity. These are promising results for future compact devices...... for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  14. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    Science.gov (United States)

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An

  15. Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Vannahme, Christoph; Sørensen, Kristian Tølbøl;

    2014-01-01

    A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 dB/mm at a wavelen...

  16. High-Index Contrast Silicon Rich Silicon Nitride Optical Waveguides and Devices

    DEFF Research Database (Denmark)

    Philipp, Hugh Taylor

    2004-01-01

    This research focused on the realization of high-density integrated optical devices made with high-index contrast waveguides. The material platform used for to develop these devices was modeled after standard silicon on silicon technology. The high-index waveguide core material was silicon rich s...

  17. Optical nano-antennae as compact and efficient couplers from free-space to waveguide modes

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Volodymyr; Malureanu, Radu;

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Other possibilities include, among others, grating couplers and end-fire end couplers. Our efforts were concentrated on nano-antennae used for coupling IR light in the telecom...... range from an optical fibre to a plasmonic slot waveguide. This type of coupling is still difficult to achieve and finding an efficient way in obtaining it would advance the use of plasmonic waveguides for optical interconnects....

  18. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn;

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated...

  19. Radiation direction control by optical slot antenna integrated with plasmonic waveguide

    Science.gov (United States)

    Park, Yeonsang; Kim, Jineun; Roh, Young-Geun; Lee, Chang-Won

    2016-04-01

    We present an optical slot antenna integrated with a metal-dielectric-metal (MIM) plasmonic waveguide. By integrating optical slot antenna on top metal layer of MIM waveguide, we can couple the plasmon guide mode into the feed antenna directly. The resonantly excited slot antenna works as a magnetic dipole and then radiates in dipole-like far-field pattern. By adding an auxiliary groove structure along with the slot antenna, the radiation can be directed into the direction where the structure determined. The demonstrated optical slot antenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.

  20. Engineering of orbital angular momentum supermodes in coupled optical waveguides

    CERN Document Server

    Turpin, A; Polo, J; Mompart, J; Ahufinger, V

    2016-01-01

    In this work we demonstrate the existence of orbital angular momentum (OAM) bright and dark supermodes in a three-evanescent coupled cylindrical waveguides system. Bright and dark supermodes are characterized by its coupling and decoupling from one of the waveguides, respectively. In addition, we demonstrate that complex couplings between modes of different waveguides appear naturally due to the characteristic spiral phase-front of OAM modes in two-dimensional configurations where the waveguides are arranged forming a triangle. Finally, by adding dissipation to the waveguide uncoupled to the dark supermode, we are able to filter it out, allowing for the design of OAM mode clonners and inverters.

  1. All-optical modulator based on a ferrofluid core metal cladding waveguide chip

    International Nuclear Information System (INIS)

    We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Optical Intensity Modulation in an LiNbO3 Slab-Coupled Waveguide

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Optical intensity modulation has been demonstrated through switching the optical beam between the main core waveguide and a closely attached leaky slab waveguide by applying a low-voltage electrical field. Theory for simulating such an LiNbO3 slab-coupled waveguide structure was suggested, and the result indicates the possibility of making the spatial guiding mode large, circular and symmetric, which further allows the potential to significantly reduce the coupling losses with adjacent lasers and optical networks. Optical intensity modulation using electro-optic effect was experimentally demonstrated in a 5 cm long waveguide fabricated by using a procedure of soft proton exchange and then an overgrowth of thin LN film on top of a c-cut LiNbO3 wafer.

  3. Optimizing SOI Slot Waveguide Fabrication Tolerances and Strip-Slot Coupling for Very Efficient Optical Sensing

    Directory of Open Access Journals (Sweden)

    Vittorio M. N. Passaro

    2012-02-01

    Full Text Available Slot waveguides are becoming more and more attractive optical components, especially for chemical and bio-chemical sensing. In this paper an accurate analysis of slot waveguide fabrication tolerances is carried out, in order to find optimum design criteria for either homogeneous or absorption sensing mechanisms, in cases of low and high aspect ratio slot waveguides. In particular, we have focused on Silicon On Insulator (SOI technology, representing the most popular technology for this kind of devices, simultaneously achieving high integration capabilities, small dimensions and low cost. An accurate analysis of single mode behavior for high aspect ratio slot waveguide has been also performed, in order to provide geometric limits for waveguide design purposes. Finally, the problem of coupling into a slot waveguide is addressed and a very compact and efficient slot coupler is proposed, whose geometry has been optimized to give a strip-slot-strip coupling efficiency close to 100%.

  4. Capacitively-Induced Free-Carrier Effects in Nanoscale Silicon Waveguides for Electro-Optic Modulation

    CERN Document Server

    Sharma, Rajat; Lin, Hung-Hsi; Isichenko, Andrei; Vallini, Felipe; Fainman, Yeshaiahu

    2015-01-01

    We fabricate silicon waveguides in silicon-on-insulator (SOI) wafers clad with either silicon dioxide, silicon nitride, or aluminum oxide, and by measuring the electro-optic behavior of ring resonators, we characterize the cladding-dependent and capacitively-induced free-carrier effects in each of these waveguides. By comparing our measured data with simulation results, we confirm that the observed voltage dependencies of the transmission spectra are due to changes in the concentrations of holes and electrons within the semiconductor waveguide, and we show for the first time how strongly these effects depend on the cladding material which comes into contact with the silicon waveguide. Additionally, the waveguide loss is found to have a particularly high sensitivity to the applied voltage, and may therefore find use in a wide range of applications which require low- or high-loss propagation. Collectively, these phenomena may be incorporated into more complex waveguide designs in the future to create high-effic...

  5. Implementation of the Simplex algorithm for reconstruction of optical parameters of double-layer planar optical waveguides

    Science.gov (United States)

    Kubica, Jacek M.

    2000-10-01

    The use of the downhill Simplex algorithm in reconstruction of optical parameters of planar silica waveguides is described. The original Nelder-Mead approach has been modified to include physical constraints of the waveguide system. Numerical results are provided to illustrate the behavior of the modified algorithm.

  6. Adaptive Integrated Optical Bragg Grating in Semiconductor Waveguide Suitable for Optical Signal Processing

    Science.gov (United States)

    Moniem, T. A.

    2016-05-01

    This article presents a methodology for an integrated Bragg grating using an alloy of GaAs, AlGaAs, and InGaAs with a controllable refractive index to obtain an adaptive Bragg grating suitable for many applications on optical processing and adaptive control systems, such as limitation and filtering. The refractive index of a Bragg grating is controlled by using an external electric field for controlling periodic modulation of the refractive index of the active waveguide region. The designed Bragg grating has refractive indices programmed by using that external electric field. This article presents two approaches for designing the controllable refractive indices active region of a Bragg grating. The first approach is based on the modification of a planar micro-strip structure of the iGaAs traveling wave as the active region, and the second is based on the modification of self-assembled InAs/GaAs quantum dots of an alloy from GaAs and InGaAs with a GaP traveling wave. The overall design and results are discussed through numerical simulation by using the finite-difference time-domain, plane wave expansion, and opto-wave simulation methods to confirm its operation and feasibility.

  7. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael;

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro...

  8. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties.

    Science.gov (United States)

    Li, Qi; Jia, Yi; Dai, Luru; Yang, Yang; Li, Junbai

    2015-03-24

    Diphenylalanine (FF) microrods were obtained by manipulating the fabrication conditions. Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence (FL) spectroscopy, and X-ray diffraction (XRD) measurements revealed the molecular arrangement within the FF microrods, demonstrating similar secondary structure and molecular arrangement within FF microtubes and nanofibers. Accordingly, a possible mechanism was proposed, which may provide important guidance on the design and assembly manipulation of peptides and other biomolecules. Furthermore, characterization of a single FF microrod indicates that the FF microrod can act as an active optical waveguide material, allowing locally excited photoluminescence to propagate along the length of the microrod with coupling out at the microrod tips. PMID:25759013

  9. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  10. Efficient graphene based electro-optical modulator enabled by interfacing plasmonic slot and silicon waveguides

    CERN Document Server

    Ding, Yunhong; Zhu, Xiaolong; Hu, Hao; Bozhevolnyi, Sergey I; Oxenløwe, Leif Katsuo; Mortensen, N Asger; Xiao, Sanshui

    2016-01-01

    Graphene based electro-absorption modulators involving dielectric optical waveguides or resonators have been widely explored, suffering however from weak graphene-light interaction due to poor overlap of optical fields with graphene layers. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening graphene-light interactions. Through careful optimization of plasmonic slot waveguides, we demonstrate efficient and compact graphene-plasmonic modulators that are interfaced with silicon waveguides and thus fully integrated in the silicon-on-insulator platform. By advantageously exploiting low-loss plasmonic slot-waveguide modes, which weakly leak into a substrate while feature strong fields within the two-layer-graphene covered slots in metal, we have successfully achieved a tunability of 0.13 dB/{\\mu}m for our fabricated graphene-plasmonic waveguide modulators with low insertion loss, which significantly exceeds the performance of previously r...

  11. Optical quality ZnSe films on silicon for mid-IR waveguides

    OpenAIRE

    Mittal, Vinita; Wilkinson, James; Senthil Murugan, Ganapathy

    2016-01-01

    ZnSe films were deposited on silicon substrates by evaporation and RF-sputtering and compared for their structural, morphological and optical properties. The deposited films were tested as waveguide cladding and the evaporated films showed lower loss.

  12. Coupled-resonator optical waveguides: Q-factor and disorder influence

    DEFF Research Database (Denmark)

    Grgic, Jure; Campaioli, Enrico; Raza, Søren;

    2011-01-01

    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder...

  13. Optical investigation of nanophotonic lithium niobate-based optical waveguide

    Science.gov (United States)

    Fakhri, Makram A.; Al-Douri, Y.; Hashim, U.; Salim, Evan T.; Prakash, Deo; Verma, K. D.

    2015-10-01

    Lithium niobate (LiNbO3) nanophotonics are prepared on quartz substrate by sol-gel method. They have been deposited with different molarity concentrations and annealed at 500 °C. These samples are characterized and analyzed by scanning electron microscope, atomic force microscopy, X-ray diffraction and ultraviolet-visible. The measured results show an importance of increasing molarity that indicates the structure starts to crystallize to become more regular. The estimated lattice constants, energy gaps and refractive index give good accordance with experimental results. Also, the calculated refractive index and optical dielectric constant are in agreement with experimental data.

  14. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    Science.gov (United States)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  15. Active structural waveguide for sensing application

    Science.gov (United States)

    Czajkowski, Karol; Kochanowicz, Marcin; Zmojda, Jacek; Miluski, Piotr; Dorosz, Dominik

    2014-05-01

    In the article a microstructural active optical fiber for sensing application was presented. Construction consists of three hexagonal rings and a core made of SiO2 - Al2O3 - Sb2O3 glass co-doped with 1Yb2O3/0.1Tm2O3 [mol%]. Developed optical fiber is characterized by upconversion luminescence (λp=980nm) at 480nm (Tm3+: 1G4→3H6) and 650 nm (Tm3+ : 1G4→3F4). Population of thulium levels was attained in result of the Yb 3+→Tm3+ upconversion energy transfer. Sensing application of elaborated active photonic structure was presented on the example of aqueous fluorescein solution. Fabricated microstructural optical fiber enables to measure of the fluorescein solutions with the concentration of (0.25 - 5.42)·10-4 [mol%]. Sensitivity of the elaborated measurement setup is 1.51·104 [1/mol%].

  16. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  17. Coupled Magnetic Resonator Optical Waveguides - mimicking spin waves in coupled metamaterials

    CERN Document Server

    Liu, Hui

    2013-01-01

    Optical resonators are important devices that control the properties of light and manipulate light-matter interaction. Various optical resonators are designed and fabricated using different techniques. For example, in coupled resonator optical waveguides, light energy is transported to other resonators through near-field coupling. In recent years, magnetic optical resonators based on LC resonance have been realized in several metallic microstructures. Such devices possess stronger local resonance and lower radiation loss compared with electric optical resonators. This study provides an overall introduction on the latest progress in coupled magnetic resonator optical waveguide (CMROW). Various waveguides composed of different magnetic resonators are presented and Lagrangian formalism is used to describe the CMROW. Moreover, several interesting properties of CMROW, such as abnormal dispersions and slow light effects, are discussed and CMROW applications in nonlinear and quantum optics are shown. Future novel na...

  18. TEM characterization of oxidized AlGaAs/AlAs nonlinear optical waveguides

    OpenAIRE

    Guillotel, E; Langlois, C.; Ghiglieno, F.; Leo, G.; Ricolleau, C.

    2010-01-01

    Abstract The internal interfaces of multilayer Al x Ga 1-x As/AlAs nonlinear optical waveguides are investigated by high-angle annular-dark-field and energy-filtered scanning transmission electron microscopy, before and after partial wet oxidation of AlAs layers. Via a simple phenomenological model, the corresponding roughness parameters allow predicting the scattering-induced waveguide optical losses, which are in reasonable agreement with the experimental value of 0.5 cm -1. We also find...

  19. Parametric Optical Signal Processing in Silicon Waveguides with Reverse-biased p-i-n Junctions

    DEFF Research Database (Denmark)

    Peucheret, C.; Da Ros, Francesco; Vukovic, Dragana;

    2014-01-01

    The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported.......The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported....

  20. A Novel MoM Approach for Obtaining Accurate and Efficient Solutions in Optical Rib Waveguide

    OpenAIRE

    YENER, Namık

    2002-01-01

    The optical rib waveguide (ORW) plays an important role in the design of several integrated optical devices. Various methods have been proposed for obtaining the modal field solutions in ORW. However, to the best of our knowledge none of them is capable of providing accurate full-wave benchmark solutions. Here we present a novel MoM approach wherein the modes of a loaded rectangular waveguide are utilized as basis functions and demonstrate that this approach is very efficient and yie...

  1. Assembly of optical fibers for the connection of polymer-based waveguide

    Science.gov (United States)

    Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix

    2003-03-01

    This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.

  2. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    Science.gov (United States)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  3. Observation of optical emission from high refractive index waveguide excited by traveling electron beam

    OpenAIRE

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    A new scheme for optical emission using a high refractive index waveguide and the traveling electron beam in vacuum was demonstrated. Optical emission around wavelength of 1.5 pm was observed for electron acceleration voltage of 40KV. © 2008 Optical Society of America.

  4. A new electro-optic waveguide architecture and the unprecedented devices it enables

    Science.gov (United States)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-04-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  5. Investigation and modelling of rare-earth activated waveguide structures

    International Nuclear Information System (INIS)

    In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure (authors)

  6. Optical Characterization of Optofluidic Waveguides Using Scattered Light Imaging.

    Science.gov (United States)

    Jenkins, Micah H; Phillips, Brian S; Zhao, Yue; Holmes, Matthew R; Schmidt, Holger; Hawkins, Aaron R

    2011-08-01

    The use of scattered light images is shown to be an attractive method for the characterization of optofluidic waveguides. The method is shown to be capable of measuring waveguide propagation losses and transmissions between solid and liquid-core structures. Measurement uncertainties are considered and characterized and were typically less than 15%.

  7. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    Science.gov (United States)

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  8. Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2013-06-17

    A high-gain optical waveguide amplifier has been realized in a channel waveguide platform of Nd:YAG ceramic produced by swift carbon ion irradiation with metal masking. The waveguide is single mode at wavelength of 810 and 1064 nm, and with the enhanced fluorescence intensity at around 1064 nm due to the Nd(3+) ion emissions. In conjunction with the low propagation loss of the waveguide, about 26.3 dB/cm of the small signal gain at 1064 nm is achieved with an 18 ns pulse laser as the seeder under the 810-nm laser excitation. This work suggests the carbon ion irradiated Nd:YAG waveguides could serve as efficient integrated amplifiers for the signal amplification. PMID:23787589

  9. Quantum Computations with Transverse Modes of an Optical Field Propagating in Waveguides

    Institute of Scientific and Technical Information of China (English)

    符建; 唐少芳

    2003-01-01

    A fully optical method to perform quantum computation with transverse modes of the optical field propagating in waveguide is proposed by supplying the prescriptions for a universal set of quantum gates. The proposal for quantum computation is based on implementing a quantum bit with two normal modes of multi-mode waveguides. The proposed C-NOT gate has the potential of being more compact and easily realized than some optical implementations, since it is based on planar lightwave circuit technology and can be constructed by using Mach-Zehnder interferometer having semiconductor optical amplifiers with very large refractive nonlinearity in its arms.

  10. Transverse writing of three-dimensional tubular optical waveguides in glass with slit-shaped femtosecond laser beams

    CERN Document Server

    Liao, Yang; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension compatible with direct coupling to single-mode optical fibers.

  11. Second-order optical nonlinearities in dilute melt proton exchange waveguides in z-cut LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben; Pedersen, Kjeld

    1996-01-01

    Planar optical waveguides with different refractive indices are made in z-cut LiNbO3 with a dilute proton exchange method using a system of glycerol containing KHSO4 and lithium benzoate. The optical second-order susceptibilities of these waveguides are measured by detecting the 266 nm reflected...... second-harmonic signal generated by a 532 nm beam directed onto the waveguide surface. It is found for this kind of waveguides that in the waveguide region all the second-order susceptibilities take values of at least 90% of the original LiNbO; values for refractive index changes less than similar to 0...

  12. Finite element analysis of a variable optical attenuator based on s-shape polymer waveguide

    Science.gov (United States)

    Wan, Jing; Wu, Lingxun; Xue, Fenglan; Hu, Jian; Fu, Yanjun; Zhang, Wei; Hu, Fangren

    2016-01-01

    A variable optical attenuator (VOA) based on S-shape polymer waveguide is demonstrated at the wavelength λ = 1.55 micron. The VOA consists of straight input and output waveguides, an S-shape waveguide and a pair of deposited electrodes. The cladding material of S waveguide is Poly (methyl methacrylate/disperse red 1) (PMMA/DR1) and the core material of S waveguide is SiON. The refractive index of the polymer cladding at S waveguide is modified by the applied electric voltage. Light scatters at the S waveguide and the VOA has large energy loss in the original state at voltage-off. In the voltage-on state, the refractive index of the polymer of the S waveguide reduces, and energy loss changes as the voltage increases. The attenuation of the VOA can be controled and adjusted by the applied voltage. The beam propagation method(BPM) and finite element analysis are employed to simulate and analyse the VOA. The results show that the VOA has large variable attenuation range of 45.2dB and low insertion loss of 0.8dB.

  13. Optical Gratings Coated with Thin Si3N4 Layer for Efficient Immunosensing by Optical Waveguide Lightmode Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lorena Diéguez

    2012-04-01

    Full Text Available New silicon nitride coated optical gratings were tested by means of Optical Waveguide Lightmode Spectroscopy (OWLS. A thin layer of 10 nm of transparent silicon nitride was deposited on commercial optical gratings by means of sputtering. The quality of the layer was tested by x-ray photoelectron spectroscopy and atomic force microscopy. As a proof of concept, the sensors were successfully tested with OWLS by monitoring the concentration dependence on the detection of an antibody-protein pair. The potential of the Si3N4 as functional layer in a real-time biosensor opens new ways for the integration of optical waveguides with microelectronics.

  14. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...

  15. Integrated diffractive optical mode converter for fiber-to-waveguide coupling

    Science.gov (United States)

    Lu, Si; Yan, Ying-Bai; Yi, De-Er; Jin, Guo-Fan; Wu, Min-Xian

    2003-07-01

    An integrated diffractive optical mode converter, which can be integrated into planar lightwave circuits (PLCs), consisting of a diffractive optical element (DOE) and a slab waveguide is presented for fiber-to-waveguide coupling. The DOE is designed using iterative phase retrieval algorithm. In the iterative algorithm, we introduce a new modification of far-field amplitude constraint to provide very high mode conversion quality. Compared with previously published mode converters, the scheme is more universal because it is applicable for any waveguide structure. In simulation, coupling losses lower than 0.12 dB have been reached for all the discussed waveguides. The converter is shown to be polarization-insensitive and applicable in multi-wavelength PLCs. And the tolerance on axis misalignment has been investigated.

  16. Single-Mode Optical Waveguides on Native High-Refractive-Index Substrates

    CERN Document Server

    Grote, Richard R

    2016-01-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs) , but the conventional methods of achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. Our waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. The proposed waveguide geometry removes the need for a buried-oxide-layer in silicon photonics, as well as the InGaAsP layer in InP-based PICs and will allow for photonic integration on emerging material platforms such as diamond and SiC.

  17. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  18. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    Science.gov (United States)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  19. Temperature-indepoendent narrow-band optical filter by an athermal waveguide

    OpenAIRE

    Kokubun, Yasuo; Yoneda, Shigeru; Tanaka, Hiroaki

    1997-01-01

    The temperature dependence of the central wavelength of narrow-band filters is a serious problem for the dense WDM systems. In this study, we realized a temperature independent narrow-band filter at 1.3μm wavelength. First, we designed an athermal waveguide in which optical path length is independent of temperature by using a finite element method. Using this athermal waveguide, we designed and fabricated a ring resonator. As a result, we successfully decreased the temperature coefficient of ...

  20. Low birefringent magneto-optical waveguides fabricated via organic-inorganic sol-gel process

    OpenAIRE

    Choueikani, F.; ROYER,F; Douadi, S.; Skora, A.; Jamon, D.; Blanc, D.; Siblini, A.

    2009-01-01

    Abstract This paper is devoted to the study and the characterization of novel magneto-optical waveguides prepared via organic-inorganic sol-gel process. Thin silica/zirconia films doped with magnetic nanoparticles were coated on glass substrate using dip-coating technique. After annealing, samples were UV-treated. Two different techniques were used to measure their properties: m-lines spectroscopy and free space ellipsometry. Results evidence low refractive index waveguides that co...

  1. Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides

    OpenAIRE

    Davanco, Marcelo; Srinivasan, Kartik

    2009-01-01

    A technique based on using optical fiber taper waveguides for probing single emitters embedded in thin dielectric membranes is assessed through numerical simulations. For an appropriate membrane geometry, photoluminescence collection efficiencies in excess of 10 % are predicted, exceeding the efficiency of standard free-space collection by an order of magnitude. Our results indicate that these fiber taper waveguides offer excellent prospects for performing efficient spectroscopy of single emi...

  2. Spatial synchronization between optical waveguides in arrays of Kerr fibers

    CERN Document Server

    Pando, L C L

    2002-01-01

    We study a new family of solutions of the discrete nonlinear Schroedinger equation (DNLSE), whose initial conditions are close to the resonances of a suitable area preserving map. We show that some of these solutions are stable. We study the DNLSE in the context of arrays consisting of a finite number of coupled Kerr waveguides. Partial as well as complete spatial synchronization arises between the electric fields of some waveguides as light propagates.

  3. Advanced waveguides for high power optical fibre sources

    OpenAIRE

    Soh, Daniel Beom Soo

    2005-01-01

    This thesis reports on theoretical and experimental studies of wavelength-selective waveguide structures for high-power Nd3+- and Yb3+-doped fibre lasers. Cladding-pumped high-power fibre lasers based on these novel waveguide designs and operating at desired unconventional wavelengths were investigated through numerical simulations and fibre laser experiments. Rare earth doped fibres have typically multiple emission bands of different effective strengths. Stimulate emission from strong ba...

  4. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects.

    Science.gov (United States)

    Dai, Daoxin

    2014-11-01

    A vertical multimode waveguide enabling micro-bends is proposed for mode-multiplexed optical interconnect links. The multimode waveguide is designed to be singlemode in the lateral direction and support higher-order modes in the vertical direction. The characteristic analysis for an SOI (silicon-on-insulator)-based vertical multimode waveguide with a ~0.3μm × ~1.5μm cross section is given as an example. The theoretical pure bending loss is negligible for all the lowest eight modes when the bending radius is even less than 5μm. When light goes through the structure consisting of a straight section connected with a bent section, it is found that some inter-mode crosstalk is caused by the significant mode hybridization happening in the sharply bent multimode waveguide. For the designed SOI-based vertical multimode waveguide, the inter-mode crosstalk is lower than -20dB even when the bending radius is chosen as small as R = 10μm, which is one order smaller than that for the traditional lateral multimode waveguide (whose minimal bending radius is about 130μm). The inter-mode crosstalk can be even reduced to -30dB when choosing R = 30μm. Such a multimode optical waveguide microbend with low inter-mode crosstalk is promising for realizing compact mode-multiplexing links.

  5. On-chip optical isolation via unidirectional Bloch oscillations in a waveguide array.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2012-09-15

    We propose to use the unidirectionality of the optical Bloch oscillation phenomenon achievable in a magneto-optic asymmetric waveguide array to achieve optical isolation. At the 1.55 μm telecommunication wavelength, our isolator design exhibits an isolation ratio of 36 dB between forward- and backward-propagating waves. The proposed design consists of a waveguide array made in a silicon-on-insulator substrate with a magnetic garnet cover layer. A key role is played by the transverse-magnetic mode nonreciprocal phase shift effect.

  6. GI-core polymer waveguide based on polynorbornene for optical interconnection

    Science.gov (United States)

    Kitazoe, Katsuma; Kinoshita, Ryota; Horimoto, Akihiro

    2016-03-01

    To meet the increasing demand for board level high speed data transmission in the area of high performance computing, much attention has been paid to employ high performance polymer optical waveguide. So far, optical interconnects have been considered to have advantages over electronic solutions in various aspects, such as lower power consumption, larger information carrying capacity and immunity to crosstalk. It is one of the advantages that waveguides are possible to be curved and crossed light paths in the same circuit plane. GI-core polymer waveguides are capable of confining the signal light around the core center more tightly, by which the GI-core waveguides exhibit low propagation loss, low crosstalk, and low modal dispersion. Therefore, GI-core reduces the loss in meshed waveguide compared to SI-core meshed waveguides. The material of our GI-core polymer waveguide is Polynorbornene. The varnish for both core and cladding is prepared and coated onto a substrate then the coated layers are exposed to a UV light through a photomask and heated at a certain temperature. After heating, index profile changes and GI-core waveguide is formed. This is our original photo-addressing method. We confirm that extremely low crossings loss is observed in both 90-degree (0.53 dB/500 crosses) and 45-degree (1.55 dB/500 crosses). Also, we succeed high-speed data transmission. We expect that this ultra low crossing loss GI-core waveguide will be one of the promising components giving a strong impact on high performance computing systems in near future.

  7. Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force

    Science.gov (United States)

    Liao, Sha-Sha; Min, Shu-Cun; Dong, Jian-Ji

    2014-12-01

    Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach—Zehnder interferometer (MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo—optic effect or electro—optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip, which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator (SOI) wafer, which has a top silicon layer of about 220 nm in thickness.

  8. Femtosecond laser microfabrication of optical waveguides in commercial microfluidic lab-on-a-chip

    NARCIS (Netherlands)

    Osellame, R.; Martinez-Vazquez, R.; Ramponi, R.; Cerullo, G.; Dongre, C.; Dekker, R.; Hoekstra, H.J.W.M.; Pollnau, M.

    2008-01-01

    One of the main challenges of lab-on-a-chip technology is the on-chip integration of photonic functionalities by manufacturing optical waveguides for sensing biomolecules flowing in the microchannels. Such integrated approach has many advantages over traditional free-space optical sensing, such as c

  9. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    Science.gov (United States)

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  10. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass producti...

  11. Femtosecond laser waveguide and FBG inscription in four-core optical fibre

    Science.gov (United States)

    Theodosiou, Antreas; Ioannou, Andreas; Polis, Michael; Lacraz, Amédée.; Koutsides, Charalambos; Kalli, Kyriacos

    2016-04-01

    We present research into the use of femtosecond lasers to develop optical waveguides inscribed in the cladding of singlemode, silica optical fibre (SMF28). The waveguides are inscribed near to the fibre core, coupling light into them evanescently and so behaving as traditional couplers. By carefully controlling the laser parameters we are able to inscribe cladding waveguides with no evidence of damage through ablation. We show that this flexible inscription method can be used as an enabling technology to couple light from single-core fibres to new multi-core optical fibres, and in this work specifically to 4-core fibre. The SMF28 fibre is fusion spliced to the multi-core fibre and using the femtosecond laser we inscribe bridging waveguides from the centrally located single mode fibre core to a selected offset core of the 4-core fibre. To demonstrate the efficiency of the method and the possibility of making new kinds of optical fibre sensors, we inscribe a fibre Bragg grating (FBG) in one of the four fibre cores. The light reflected from the FBG is coupled back to the SMF28 core via bridging waveguide and we recovered the reflection spectrum of the grating using a commercial high-resolution spectrometer.

  12. Fabrication and optical characterization of long-range surface-plasmon-polariton waveguides in the NIR

    CERN Document Server

    Weber, Markus; Boehm, Florian; Fischer, Peter; Kraus, Marion; Tashima, Toshiyuki; Liebermeister, Lars; Altpeter, Philipp; Weinfurter, Harald

    2016-01-01

    We experimentally demonstrate the propagation of long-range surface plasmon-polaritons in a nobel metal stripe waveguide at an optical wavelength of 780 nm. To minimize propagation damping the lithographically structured waveguide is produced from a thin gold stripe embedded in a dielectric polymer. Our waveguide geometry supports a symmetric fundamental and anti-symmetric first order mode. For the fundamental mode we measure a propagation loss of $(6.12^{+0.66} _{-0.54})$ dB/mm, in good agreement with numerical simulations using a vectorial eigenmode solver. Our results are a promising starting point for coupling fluorescence of individual solid state quantum emitters to integrated plasmonic waveguide structures.

  13. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles

    CERN Document Server

    Pennanen, Antti M; 10.1364/OE.21.000A23

    2012-01-01

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  14. F2-laser writing of silica optical waveguides in silicone rubber

    Science.gov (United States)

    Okoshi, Masayuki; Li, Jianzhao; Herman, Peter R.

    2005-04-01

    F2-laser writing of silica (SiO2) optical waveguides has been successfully demonstrated on the surface of silicone [(SiO(CH3)2)n] rubber by the photochemical modification of silicone into silica. The 2-mm-thick silicone rubber was exposed to the 157-nm F2-laser beam through a thin (~0.2 mm) air layer. A proximity Cr-on-CaF2 photomask with 8- to 16-micron-wide slits controlled the exposure size to define the width of the silica waveguide. Optimum laser conditions to generate crack-free waveguides with good transparency were found by varying the laser fluence, pulse repetition rate and total exposure. The optimized waveguides were found to guide both red (~635-nm) and infrared (~1550-nm) wavelengths with light end-fired from standard single-mode fiber.

  15. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    CERN Document Server

    Abaie, Behnam

    2016-01-01

    The intention of this manuscript is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered one dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information ...

  16. Simultaneous high-capacity optical and microwave data transmission over metal waveguides.

    Science.gov (United States)

    Banan, Behnam; Hai, Mohammed Shafiqul; Berini, Pierre; Liboiron-Ladouceur, Odile

    2015-06-01

    The implementation of power efficient and high throughput chip-to-chip interconnects is necessary to keep pace with the bandwidth demands in high-performance computing platforms. In recent years, considerable effort has been made to optimize inter-chip communications using traditional copper waveguides. Also, optical links are extensively investigated as an alternative technology for fast and efficient data routing. For the first time, we experimentally demonstrate simultaneous microwave and optical high-speed data transmission over metallic waveguides embedded in polymer. The demonstration is significant as it merges two layers of communications onto the same structure towards increased aggregated bandwidth, and energy-efficient data movement. PMID:26072782

  17. Planar optical waveguides fabricated by Ag+/K+-Na+ ion exchange in soda lime glass

    Science.gov (United States)

    Marzuki, Ahmad; Gregorius, Seran Daton; Widhianingsih, Ika; Lestari, Siti; Suryawan, Joko

    2015-12-01

    This paper reports the optical properties of the optical planar waveguides in a soda lime glass fabricated by ion exchange. Planar waveguide fabrication was carried out by immersing the soda lime glass in molten 100 % AgNO3 bath for different duration (ranging from 15 minutes to 735 minutes) and at temperature of 280°C. The results show that the surface refractive index values of the ion exchanged glasses are independent of both the ion exchange duration and temperature. The number of modes and the effective diffusion depth, however, increase with increasing the duration of ion exchange process.

  18. Optical microwave generation using two parallel DFB lasers integrated with Y-branch waveguide coupler

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Yun; Wang Lu; Zhao Ling-Juan; Zhu Hong-Liang; Wang Wei

    2007-01-01

    A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.

  19. Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides

    Science.gov (United States)

    Ghosh, S. N.; Chong, Y. D.

    2016-04-01

    Non-Hermitian systems host unconventional physical effects that be used to design new optical devices. We study a non-Hermitian system consisting of 1D planar optical waveguides with suitable amount of simultaneous gain and loss. The parameter space contains an exceptional point, which can be accessed by varying the transverse gain and loss profile. When light propagates through the waveguide structure, the output mode is independent of the choice of input mode. This “asymmetric mode conversion” phenomenon can be explained by the swapping of mode identities in the vicinity of the exceptional point, together with the failure of adiabatic evolution in non-Hermitian systems.

  20. Optical channel waveguides in $KY(WO_4)_2:Yb^{3+}$

    NARCIS (Netherlands)

    Borca, C.N.; Romanyuk, Y.E.; Gardillou, F.; Pollnau, M.; Bernal, M.P.; Moretti, P.

    2006-01-01

    First channel waveguide emission from Yb-doped $KY(WO_4)_2$ has been demonstrated. Two different methods have been used to fabricate micron-size active-guiding structures, namely reactive ion etching and ion implantation.

  1. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    Science.gov (United States)

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  2. Physics and applications of slow and fast light in semiconductor optical waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yaohui; Ek, Sara;

    We review the physics of slow and fast light based on coherent population oscillations in active semiconductor waveguides. Exploiting these effects, microwave phase shifters realizing 360 degree phase shift and operating at tens of GHz have been realized.......We review the physics of slow and fast light based on coherent population oscillations in active semiconductor waveguides. Exploiting these effects, microwave phase shifters realizing 360 degree phase shift and operating at tens of GHz have been realized....

  3. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    Science.gov (United States)

    Dingeldein, Joseph C.

    Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those

  4. Nano-optical imaging of WS e2 waveguide modes revealing light-exciton interactions

    Science.gov (United States)

    Fei, Z.; Scott, M. E.; Gosztola, D. J.; Foley, J. J.; Yan, J.; Mandrus, D. G.; Wen, H.; Zhou, P.; Zhang, D. W.; Sun, Y.; Guest, J. R.; Gray, S. K.; Bao, W.; Wiederrecht, G. P.; Xu, X.

    2016-08-01

    We report on a nano-optical imaging study of WS e2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WS e2 . By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WS e2 . We found that all the modes interact strongly with WS e2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies, on the other hand, these modes are strongly damped due to adjacent B excitons or band-edge absorptions. The mode-shifting phenomena are consistent with polariton formation in WS e2 .

  5. Low loss Si(3)N(4)-SiO(2) optical waveguides on Si.

    Science.gov (United States)

    Henry, C H; Kazarinov, R F; Lee, H J; Orlowsky, K J; Katz, L E

    1987-07-01

    We have developed an optical integrated circuit waveguide technology based on conventional Si processing. We demonstrate waveguide losses of <0.3 dB/cm in the 1.3-1.6-microm wavelength range. We use a high refractive-index core of Si(3)N(4) surrounded by SiO(2) cladding layers, which provides a highly confined optical mode adequate for butt coupling to channel substrate buried heterostructure lasers. We report the first IR transmission experiments in these waveguides and find two absorption peaks associated with H in SiO(2) and Si(3)N(4) layers at 1.40 and 1.52 microm, respectively. The peak absorptions are 2.2 and 1.2 dB/cm, respectively, and these peaks can be largely removed by annealing at 1100-1200 degrees C. PMID:20489931

  6. 157 nm F2-laser writing of silica optical waveguides in silicone rubber

    Science.gov (United States)

    Okoshi, Masayuki; Li, Jianzhao; Herman, Peter R.

    2005-10-01

    Silica (SiO2) optical waveguides have been fabricated on the surface of silicone [(SiO(CH3)2)n] rubber by photochemical modification of silicone rubber into silica with 157 nmF2-laser radiation. The 2 mm thick silicone was exposed through a thin (˜0.2 mm) air layer to generate oxygen radicals that chemically assisted in the silica transformation. Silica waveguides were defined in 8-16 µm wide exposure strips by a proximity Cr-on-CaF2 photomask. Optimum laser processing conditions are presented for generating crack-free waveguides with good optical transparency at red (635 nm) and infrared (1550 nm) wavelengths. A propagation loss of ˜6 dB/cm is reported at the 1550 nm wavelength.

  7. A simple model for fibre optics: planar dielectric waveguides in rotation

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ocon, F [Departamento de Optica, Universidad de Granada, 18071 Granada (Spain); Pena, A [Valeo Iluminacion, 23600 Martos, Jaen (Spain); Jimenez, J R [Departamento de Optica, Universidad de Granada, 18071 Granada (Spain); Diaz, J A [Departamento de Optica, Universidad de Granada, 18071 Granada (Spain)

    2006-05-01

    In planar dielectric waveguides, there is only one type of propagated ray: the one that crosses the waveguide axis after each total internal reflection. According to the model of geometrical optics, there are two types of guided ray in fibre optics: meridional and skew. Each one is formulated by a suitable mathematical treatment. In this work, we demonstrate that the complex mathematical treatment for the skew rays can be avoided by considering a planar waveguide (with the same refractive index profile as the fibre and thickness equal to its diameter) that rotates around the direction of the axis with angular velocity {omega}. A section of this fibre is inscribed in the hypothetical slab. This model has been successfully introduced to students of engineering and physics.

  8. Semi-Analytical Simulation of Titanium-Indiffused Lithium Niobate-Integrated Optic Directional Couplers Consisting of Curved Waveguides

    Science.gov (United States)

    Ganguly, Pranabendu; Biswas, Juran Chandra; Lahiri, Samir Kumar

    Integrated optic directional couplers consisting of curved waveguides are simulated analytically by solving the Riccati equation. The coupling coefficient between the curved waveguides with a parabolically varying gap and the condition of total power transfer between the waveguides are derived. In order to compute the overall coupling coefficient and hence the power distribution along the waveguides for Ti:LiNbO3 curved waveguide directional couplers, the coupling coefficient for straight waveguide couplers is computed for different gaps using the effective-index-based matrix method (EIMM). Finally, the power distribution in the curved waveguides along the length is computed. The method is mostly analytical except the effective-index method and is computationally simple.

  9. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    Science.gov (United States)

    Wang, Guanghui; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-01

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators.

  10. Optical biosensing transducer based on silicon waveguide structure coated with polyelectrolyte nano layers

    Science.gov (United States)

    Haron, Saharudin; Nabok, Alexey V.; Ray, Asim K.

    2003-04-01

    An optical biosensor based on attenuation of the light intensity during multiple reflections in a planar waveguide has been developed for water pollution monitoring. The planar waveguide consists of a 190 nanometer thick silicon nitride (Si3N4) core layer sandwiched between 1.5 micrometer thick silicon dioxide (SiO2) cladding layers. Composite polyelectrolyte self-assembled membranes containing Cyclotetrachromotropylene (CTCT) as an indicator and enzymes, such as Urease or Acetylcholine Esterase (AChE) were deposited on top of silicon nitride core layer within a 4 × 6 mm sensing window. Experimental studies on the light propagation through the planar waveguide show the advantages of this method over conventional UV-visible absorption spectroscopy. It was found that the planar waveguide sensitivity is higher by several orders of magnitude than that for UV-visible absorption spectroscopy. The respective enzyme reactions as well as their inhibition by heavy metal ions were studied by monitoring the light intensity in the planar waveguide. Cadmium (Cd2+) and lead (Pb2+) ions were registered in very low concentrations down to 1 ppb with the planar waveguide transducer. The enzymes used were inhibited differently by the above pollutants, which is promising for the development of enzyme sensor arrays.

  11. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    Science.gov (United States)

    Abaie, Behnam; Mafi, Arash

    2016-08-01

    The intention of this paper is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered quasi-one-dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information is generally obscured when disordered waveguides are analyzed using other techniques such as the beam propagation method. As an example of the utility of the mode-width PDF, it is shown that the cladding refractive index can be used to quench the number of extended modes, hence improving the contrast in image transport properties of disordered waveguides.

  12. Athermal narrow-band optical filter at 1.55μm wavelength by silica-based athermal waveguide

    OpenAIRE

    Kokubun, Yasuo; Yoneda, Shigeru; Matsuura, Shinnosuke

    1998-01-01

    The temperature dependence of central wavelength of optical filters is a serious problem for the dense WDM systems. This dependence is owing to the temperature dependence of optical path-length of the waveguide. In this study, we realized a temperature independent silica-based optical filter at 1.55μm wavelength using an athermal waveguide, in which optical pathlength is independent of temperature. First, we designed a silica-based athermal waveguide, and next we designed and fabricated a rin...

  13. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.

    Science.gov (United States)

    Ooi, Kelvin J A; Bai, Ping; Gu, Ming Xia; Ang, Lay Kee

    2011-08-29

    A novel plasmonic waveguide-coupled nanocavity with a monopole antenna is proposed to localize the optical power from a hybrid plasmonic waveguide and subsequently convert it into electrical current. The nanocavity is designed as a Fabry-Pérot waveguide resonator, while the monopole antenna is made of a metallic nanorod directly mounted onto the metallic part of the waveguide terminal which acts as the conducting ground. The nanocavity coincides with the antenna feed sandwiched in between the antenna and the ground. Maximum power from the waveguide can be coupled into, and absorbed in the nanocavity by means of the field resonance in the antenna as well as in the nanocavity. Simulation results show that 42% optical power from the waveguide can be absorbed in a germanium filled nanocavity with a nanoscale volume of 220 × 150 × 60 nm3. The design may find applications in nanoscale photo-detection, subwavelength light focusing and manipulating, as well as sensing. PMID:21935068

  14. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties

    Science.gov (United States)

    Cao, Tianlin; Zhao, Fanyu; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong; Zhao, Zerun; Li, Jiaxin; Guo, Xiaotong

    2016-10-01

    In this work, a novel graphene oxide-polyimide (GOPI) as optical waveguide material was prepared. The structure, mechanical, thermal property and morphology of the GOPI was characterized by using fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope and transmission electron microscopy. The thermo-optic coefficients (dn/dT) are -9.16 × 10-4 (532 nm), -7.56 × 10-4 (650 nm) and -4.82 × 10-4 (850 nm) °C-1, respectively. Based on the thermo-optic effect of prepared GOPI as waveguide material, a Y-branch with branching angle of 0.143° and Mach-Zehnder thermo-optic switches were designed. Using finite difference beam propagation method (FD-BPM) method, the simulation results such as power consumptions and response times of two different thermo-optic switches were obtained.

  15. Single-mode optical waveguides on native high-refractive-index substrates

    Science.gov (United States)

    Grote, Richard R.; Bassett, Lee C.

    2016-10-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs). However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  16. Orientation-patterned II-VI semiconductor waveguides for quasi-phasematched nonlinear optics

    Science.gov (United States)

    Angell, Marilyn Joy

    1999-10-01

    The ability to grow epitaxial layers of II-VI compound semiconductors on GaAs substrates, the transparency of these materials to a broad range of visible wavelengths, and their strong second order susceptibility suggest that these materials should be promising for efficient nonlinear frequency conversion by on-chip integration with III-V pump lasers. This work investigates the use of semiconductor microfabrication techniques to create II-VI waveguides with laterally-patterned crystal orientation for quasi-phasematched second harmonic generation. The fabrication of periodically-patterned / CdTe on GaAs substrates, using epitaxial growth by metalorganic chemical vapor deposition and a lithographic patterning process, is demonstrated. This process is adapted to create ZnTe/ZnSe waveguides with periodic lateral patterning of the crystal orientation. The optical properties of planar waveguides with orientation-patterned ZnTe core layers are characterized. Second harmonic generation is measured, but does not appear to be quasi-phasematched at the test wavelength. High optical losses are observed in the patterned waveguides, and the mechanism of the loss is investigated using X-ray diffractometry, atomic force microscopy, and angle-resolved scatterometry. These measurements suggest that the losses are primarily due to bulk defects in the -oriented material. Waveguide patterning using -oriented anti-phase domains, which have a single axis of crystal growth, is recommended in order to overcome this problem.

  17. Photochemical writing of silica optical waveguides in silicone rubber by F2 laser

    International Nuclear Information System (INIS)

    Photochemical writing of silica (SiO2) optical waveguides in silicone [(SiO(CH3)2)n] rubber has been successfully demonstrated by 157-nm F2 laser-induced photochemical modification of silicone into silica. The 2-mm-thick or ∼40- m-thick silicone rubber was exposed to F2 laser through a thin (∼0.2 mm) air layer. A proximity Cr-on-CaF2 photomask with 8- to 16- m-wide slits controlled the exposure size to define the width of the silica waveguides. A laser processing window to generate crack-free waveguides with good optical transparency was found by varying the number laser pulse, pulse repetition rate and single pulse laser fluence. Otherwise, rapid or excess exposure of the F2 laser caused cracking of the silica waveguides. The waveguides were found to guide both red (635-nm) and infrared (1550- nm) wavelength light with propagation loss estimated to be ∼15 and ∼6 dB/cm, respectively. Most of the loss originates in Rayleigh scattering from numerous inclusions originally present in the commercial 2-mm-thick silicone rubber

  18. Photochemical writing of silica optical waveguides in silicone rubber by F2 laser

    Science.gov (United States)

    Okoshi, M.; Li, J.; Herman, P. R.; Inoue, N.

    2007-04-01

    Photochemical writing of silica (SiO2) optical waveguides in silicone [(SiO(CH3)2)n] rubber has been successfully demonstrated by 157-nm F2 laser-induced photochemical modification of silicone into silica. The 2-mm-thick or ~40- m-thick silicone rubber was exposed to F2 laser through a thin (~0.2 mm) air layer. A proximity Cr-on-CaF2 photomask with 8- to 16- m-wide slits controlled the exposure size to define the width of the silica waveguides. A laser processing window to generate crack-free waveguides with good optical transparency was found by varying the number laser pulse, pulse repetition rate and single pulse laser fluence. Otherwise, rapid or excess exposure of the F2 laser caused cracking of the silica waveguides. The waveguides were found to guide both red (635-nm) and infrared (1550- nm) wavelength light with propagation loss estimated to be ~15 and ~6 dB/cm, respectively. Most of the loss originates in Rayleigh scattering from numerous inclusions originally present in the commercial 2-mm-thick silicone rubber.

  19. Optical properties of ion beam modified waveguide materials doped with erbium and silver

    NARCIS (Netherlands)

    Strohhöfer, C. (Christof)

    2002-01-01

    In the first part of this thesis we investigate codoping of erbium-doped waveguide materials with different ions in order to increase the efficiency of erbium-doped optical amplifiers. Codoping with ytterbium can overcome the limitations due to the small absorption cross section of Er3+ in Al2O3 at

  20. Fano resonance in two-dimensional optical waveguide arrays with a bi-modal defect

    OpenAIRE

    Vicencio, R.; Gorbach, A.; Flach, S.

    2005-01-01

    We study the two-dimensional extension of the Fano-Anderson model on the basis of a two-dimensional optical waveguide array with a bi-modal defect. We demonstrate numerically the persistence of the Fano resonance in wavepacket scattering process by the defect. An analytical approximation is derived for the total scattered light power.

  1. Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide.

    Science.gov (United States)

    Chen, Fan; Cao, Zhuangqi; Shen, Qishun; Deng, Xiaoxu; Duan, Biming; Yuan, Wen; Sang, Minghuang; Wang, Shengqian

    2005-12-12

    An improved scheme for displacement measurement using the ultrahigh-order guided modes in a symmetrical metal-cladding optical waveguide is proposed. Based on this idea together with the lock-in amplification technique, a sensor with a stable displacement resolution of 3.3 pm is experimentally demonstrated without any complicated servo system.

  2. All-optical broadcast and multicast technologies based on PPLN waveguide

    DEFF Research Database (Denmark)

    Ye, Lingyun; Wang, Ju; Hu, Hao;

    2013-01-01

    All-optical 1×4 broadcast and 1×3 multicast experiments of a 40-Gb/s return-to-zero on-off keying (RZ-OOK) signal based on a periodically poled lithium niobate (PPLN) waveguide are demonstrated in this letter. Clear opened eye diagrams and error-free performance are achieved for the broadcast...

  3. Photonic Quantum Computation with Waveguide-Linked Optical Cavities and Quantum Dots

    CERN Document Server

    Yamaguchi, Makoto; Sato, Yoshiya; Noda, Susumu

    2011-01-01

    We propose a new scheme for solid-state photonic quantum computation in which trapped photons in optical cavities are taken as a quantum bit. Quantum gates can be realized by coupling the cavities with quantum dots through waveguides. The proposed scheme allows programmable and deterministic gate operations and the system can be scaled up to many quantum bits.

  4. Grated waveguide optical cavity as a compact sensor for sub-nanometre cantilever deflections

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, H.J.W.M.; Dijkstra, M.; Ridder, de R.M.; Krijnen, G.J.M.; Leijtens, X.J.M.

    2008-01-01

    We propose a novel and highly sensitive integrated read-out scheme, capable of detecting sub-nanometre deflections of a cantilever in close proximity to a grated waveguide structure. We discuss modelling results for an $SiO_2$ cantilever to be integrated with an optical cavity defined by a grated $S

  5. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels;

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  6. Considerations on material composition for low-loss hollow-core integrated optical waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, H.J.W.M.; Groesen, van E.

    2006-01-01

    The role of cladding bilayer material compositions to obtain low-loss hollow-core integrated optical waveguides was studied. Using the simple Fresnel reflection formulae, the optimal material composition was determined. It is shown that using bilayers with higher index-contrast does not always lead

  7. Ultrafast Optical Switching Using Photonic Molecules in Photonic Crystal Waveguides

    CERN Document Server

    Zhao, Yanhui; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-01-01

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a p...

  8. Synthesis and characterization of cross-linkable polyurethane-imide electro-optic waveguide polymer

    Science.gov (United States)

    Wang, Long-De; Tang, Jie; Li, Ruo-Zhou; Zhang, Tong; Tong, Ling; Tang, Jing

    2016-01-01

    The novel electro-optic (EO) polymers of fluorinated cross-linkable polyurethane-imides (CLPUI) were designed and synthesized by polycondensation of azo chromophore C1 and C2, diisocyanate MDI, and aromatic dianhydride 6FDA. Molecular structural characterization for the resulting polymers was achieved by 1HNMR, FT-IR, elemental analysis, and gel permeation chromatography. The polymers exhibit good film-forming properties, high glass transition temperature ( T g) in the range of 193-200 °C, and thermal stability up to 290 °C. The polymers that possess a high EO coefficient (γ_{33} = 48 and 56 pm/V) at 1550 nm for poled polymer thin films were measured by the simple reflection technique. Excellent temporal stability and low optical losses in the range of 1.1-1.7 dB/cm at 1550 nm were observed for these polymers. Using the synthesized side-chain electro-optic CLPUI as the active core material and of a fluorinated polyimide as cladding material, we have designed and successfully fabricated the high-performance polymer waveguide Mach-Zehnder EO modulators.

  9. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    International Nuclear Information System (INIS)

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n0) and extraordinary (ne) refractive indices of etched structures. We report here the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n0 is 2.293 for a bulk layer and n0 is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices

  10. Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates

    CERN Document Server

    Madani, Abbas; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G

    2015-01-01

    We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step towards 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO2 nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out of plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick walled microcavities. Moreover, an array of microtube cavities is prepared and each microtube cavity is integrated with multiple waveguides which opens up interesting perspectives towards parallel and multi-routing through a ...

  11. Tunable hybridization at midzone and anomalous Bloch-Zener oscillations in optical waveguide ladders.

    Science.gov (United States)

    Zheng, Ming Jie; Wang, Gang; Yu, Kin Wah

    2010-12-01

    We have studied the optical oscillation and tunneling of light waves in optical waveguide ladders (OWLs) formed by two coupled planar optical waveguide arrays. For the band structure, a midzone gap is formed owing to band hybridization, and its wavenumber position can be tuned throughout the whole Brillouin zone, which is different from the Bragg gap. By imposing a gradient in the propagation constant in each array, Bloch-Zener oscillation (BZO) is realized with Zener tunneling between the bands occurring at the midzone, which is contrary to the common BZO with tunneling at the center or edge of the Brillouin zone. The occurrence of BZO is demonstrated by using the field-evolution analysis. The tunable hybridization at the midzone enhances the tunability of BZO in the OWLs. This Letter may offer new insights into the coherent phenomena in optical lattices.

  12. Proposal for a simple polarization converter based on integrated optical ion exchanged waveguide

    OpenAIRE

    Wang, Pengfei; Brambilla, G; Semenova, Y.; Wu, Qiang; Zheng, Jie; Farrell, G.

    2010-01-01

    A simple, compact, low-cost electro-optic polarization converter based on a nematic liquid crystal (LC) sandwiched between two ion-exchanged glass channel waveguides is proposed. A three-dimensional (3D) fully-vectorial (FV) finite difference beam propagation method (FDBPM) is used to simulate this optical device. The performance of the proposed polarization converter is analyzed numerically at zero and 5 V applied voltage for the case of strong anchoring of LC molecules to the surface of the...

  13. Optical Microring Resonators based on ion-implanted LiNbO3 ridge waveguides

    OpenAIRE

    Montanari, Giovanni Battista

    2010-01-01

    The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks describ...

  14. Optical waveguides in Er3+/Yb3+-codoped silicate glasses fabricated by proton implantation

    Science.gov (United States)

    Liu, Chun-Xiao; Fu, Li-Li; Zhu, Xu-Feng; Guo, Hai-Tao; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-07-01

    In this work, a planar waveguide was fabricated by proton implantation in Er3+/Yb3+-codoped silicate glasses with energies of (500 + 550) keV and fluences of (1 + 2) × 1016 ions/cm2. The end-face coupling method was employed to determine whether the light could be confined in the waveguide or not. The prism coupling technique was applied to measure the guided mode spectrum and the intensity calculation method was used to construct the refractive index profile. With the profile, a near-field intensity distribution was calculated by the finite difference beam propagation method. The obtained results may be helpful in developing integrated optical devices.

  15. Techniques of surface optical breakdown prevention for low-depths femtosecond waveguides writing

    Science.gov (United States)

    Bukharin, M. A.; Skryabin, N. N.; Ganin, D. V.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-08-01

    We demonstrated technique of direct femtosecond waveguide writing at record low depth (2-15 μm) under surface of lithium niobate, that play a key role in design of electrooptical modulators with low operating voltage. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light and non-thermal regime of inscription in contrast to widespread femtosecond writing technique at depths of tens micrometers or higher. Surface optical breakdown threshold was measured for both x- and z- cut crystals. Inscribed waveguides were examined for intrinsic microstructure. It also reported sharp narrowing of operating pulses energy range with writing depth under the surface of crystal, that should be taken in account when near-surface waveguides design. Novelty of the results consists in reduction of inscription depth under the surface of crystals that broadens applications of direct femtosecond writing technique to full formation of near-surface waveguides and postproduction precise geometry correction of near-surfaces optical integrated circuits produced with proton-exchanged technique.

  16. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  17. Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network.

    Science.gov (United States)

    Kurt, H; Giden, I H; Citrin, D S

    2011-12-19

    Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm×4.096μm region, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network. PMID:22274265

  18. Fluorescence coupling into structured waveguide as platform for optical portable sensors

    Science.gov (United States)

    Seiler, Anne-Laure; Labeye, Pierre; Pouteau, Patrick; Mallard, Frédéric; Hugon, Xavier; Benech, Pierre

    2005-11-01

    Optical chemical sensors and biosensors are attracting research interest in applications such as environmental monitoring and biomedical diagnostics. Structured Integrated Optical Waveguide is one solution to reduce the reader's cost and size. The principle is the capture of fluorescence emitted by Qdots at the surface of a rib waveguide, which collects then guides it at the end-face of the chip to be detected. However, fluorescence coupling into a waveguide is still not easy to predict as it depends on fluorophore's environment and dipole's orientation and location. We report here the validation of a simple theory concerning optimization of optical waveguide's thickness considering a fluorophore's position. Optimisation of coupling power between a dipole and a guided mode can be simplified by the optimisation of the guided mode's intensity ratio integrated in the 5 nm region over the guide's core surface (where QDots are supposed to settle) divided by the whole guided intensity. A model has been developed from the work of Marcuse1: coupled power is proportional to the square of the electrical field of the guided wave. As a result, this model gives an optimal core's thickness and efficiency of coupling depends on polarisation. Moreover, FDTD simulations do complete this study. Three thicknesses have been therefore experimentally deposited: 100 nm, 125 nm and 150 nm. To conclude, experimentation corresponds to the model. A new, sensitive and potentially low cost portable transducer for the analysis of all kinds of biomolecular affinity systems has been developed and validated.

  19. Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network.

    Science.gov (United States)

    Kurt, H; Giden, I H; Citrin, D S

    2011-12-19

    Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm×4.096μm region, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network.

  20. Electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system

    Science.gov (United States)

    Chang, Kao-Der; Liu, Cheng-Yang

    2014-04-01

    The electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system is reported. The line waveguide is formed by removing a single row of dielectric cylinders. The twin optical microcavities side coupled between linear waveguides is studied by solving Maxwell's equations. We determine the general characteristics of the coupling element required to achieve channel drop tunneling. By modulating the conductance of the twin microcavities, the electrical tunability of the resonant modes is observed in the transmission spectrum. The spectral characteristics suggest a potential application for this switching device as an efficient multichannel optical switch in the photonic integrated circuits.

  1. The role of local heating in the formation process of UV written optical waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    A behavior is reported where the index change process used for UV writing of integrated optical waveguides in deuterium loaded Ge:SiO2 glass can become unstable and suddenly switch off or on. It is shown that such discontinuities are associated with abrupt changes in the amount of absorbed UV power....... We suggest that these events are controlled by a coupling between UV absorption, local heating and the D2-GeO2 reaction rate. From our findings we predict, and confirm experimentally, that strong waveguides can not be fabricated under normal UV writing conditions in thin core layers with a low...... initial UV absorption. Our findings show that an improved understanding of the waveguide formation process and future process development requires that thermal effects are taken into account....

  2. Efficient optical coupling into ultra-compact plasmonic slot waveguides using dipole nanoantennas

    Science.gov (United States)

    Gao, Qian; Ren, Fanghui; Wang, Alan X.

    2016-03-01

    Nanoantenna is used for coupling free space radiation to subwavelength plasmonic waveguide. We provide a theoretical design of ultra-compact dipole nanoantennas --- Yagi-Uda antenna with a reflector in telecom range and experimentally demonstrate efficient optical coupling between lensed fiber and plasmonic slot waveguide by utilizing our designed nanoantenna. We also prove that the couple-in efficiency of 8% from the lensed fiber does not equal to the couple-out efficiency of 50% from the plasmonic slot waveguide using the same nanoantenna design, which is different than many published and experimental results. We also study the relationship between couple in efficiency and the incident light spot size, which is experimentally characterized.

  3. Small slot waveguide rings for on-chip quantum optical circuits

    CERN Document Server

    Rotenberg, Nir; Haakh, Harald; Martin-Cano, Deigo; Goetzinger, Stephan; Sandoghdar, Vahid

    2016-01-01

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 $\\mu$m (Q = 27,900), near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  4. Prism coupling characterization of planar optical waveguides made by silver ion exchange in glass

    Science.gov (United States)

    Hidalgo, O.; Berencén, Y.; Rodríguez, J.

    2005-08-01

    A modified dark-lines method of prism-coupling technique is utilized for the experimental determination of the effective index of propagating modes in a glass planar waveguide. We use to make the waveguides a silver-sodium ion exchange in a nitrate solution and sodalime glass as substrate (microscope slides). The measurements were accomplished by direct HeNe laser beam incidence and sensing the reflected light by a Thorlabs Dec110 optical detector linked to a Protek500 digital multimeter. A LabView virtual instrument was implemented for the automation of the measurement process. The effective indexes measured have been used to calculate the refractive index profile by IWKB method. A comparison with other results shows that our experimental setup is suitable for slab waveguide modes characterization.

  5. Discourse on the Characterization of Waveguide Distributed Bragg Reflectors for Application to Nonlinear Optics

    Science.gov (United States)

    Grieco, Andrew Lewis

    Precise characterization of waveguide parameters is necessary for the successful design of nonlinear photonic devices. This dissertation contains a description of methods for the experimental characterization of distributed Bragg reflectors for use in nonlinear optics and other applications. The general coupled-mode theory of Bragg reflection arising from a periodic dielectric perturbation is developed from Maxwell's equations. This theory is then applied to develop a method of characterizing the fundamental parameters that describe Bragg reflection by comparing the spectral response of Bragg reflector resonators. This method is also extended to characterize linear loss in waveguides. A model of nonlinear effects in Bragg reflector resonators manifesting in bistability is also developed, as this phenomenon can be detrimental to the characterization method. Specific recommendations are made regarding waveguide fabrication and experimental design to reduce sources of experimental error.

  6. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides

    OpenAIRE

    Jonas, Alexandr; Karadağ, Yasin ; Kiraz, Alper; Mestre, Michael

    2012-01-01

    We report measurements of ultrahigh quality factors (Q-factors) of the optical whispering-gallery modes excited via a tapered optical-fiber waveguide in single glycerol-water microdroplets standing on a superhydrophobic surface in air. Owing to the high contact angle of the glycerol-water mixture on the superhydrophobic surface (>155 degrees), microdroplets with the geometry of a truncated sphere minimally distorted by gravity and contact line pinning effects could be generated. Q-factors up ...

  7. Development of high-density single-mode polymer waveguides with low crosstalk for chip-to-chip optical interconnection.

    Science.gov (United States)

    Sugama, Akio; Kawaguchi, Kenichi; Nishizawa, Motoyuki; Muranaka, Hidenobu; Arakawa, Yasuhiko

    2013-10-01

    High-density single-mode polymer waveguides were fabricated for chip-to-chip optical interconnection. The waveguides were designed as minimized mode field diameters for the lowest inter-channel crosstalk caused by mode coupling. The optimum relative index difference chosen was 1.2% to ensure compatibility with low crosstalk and wide fabrication tolerances. The 60-mm-length linear waveguides demonstrated a low propagation loss of 0.6 dB/cm and -45 dB crosstalk at 1310 nm. Also, a new crosstalk mechanism for a curved waveguide was revealed.

  8. Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the Mosquito method

    Science.gov (United States)

    Suganuma, D.; Ishigure, T.

    2015-02-01

    A fan-in/out polymer optical waveguide is fabricated for connecting multimode multicore (7 cores) fiber with onedimensionally aligned parallel optical components such as a VCSEL/PD array or a multimode fiber ribbon, which is fabricated using the Mosquito method. The Mosquito method we have proposed is a fabrication technique for circular and graded index (GI) cores. One of the unique characteristics of the Mosquito method is a capability of forming threedimensional wirings. In the fan-in/out waveguides, high-density hexagonal alignment of 7 cores at one end is converted to one dimensional alignment with a wider pitch at the other end. For realizing the fan-in/out waveguides, we have issues about low insertion loss, low crosstalk, and the connectability with multicore fibers and optical components. In this paper, we focus in the pitch accuracy of the fan-in/out waveguide. In the Mosquito method, the viscosities of the core and cladding monomers are an important factor of the core figure and the core alignment because the viscosities have a relation to monomer liquid-flow, which could devastate the core alignment. Hence, we investigate the influence of the viscosities of the core and cladding monomers on the interchannel pitch accuracy of the fabricated fan-in/out polymer optical waveguide. With increasing the viscosities of core and cladding monomers, the pitch accuracy is improved, while the appropriate monomer viscosity conditions that can fix all the issues: core circularity and pitch accuracy in both ends still needs to be investigated.

  9. Light coupling between vertical III-As nanowires and planar Si photonic waveguides for the monolithic integration of active optoelectronic devices on a Si platform.

    Science.gov (United States)

    Giuntoni, Ivano; Geelhaar, Lutz; Bruns, Jürgen; Riechert, Henning

    2016-08-01

    We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform. PMID:27505805

  10. Optical Waveguide Lightmode Spectroscopy (OWLS as a Sensor for Thin Film and Quantum Dot Corrosion

    Directory of Open Access Journals (Sweden)

    Jinke Tang

    2012-12-01

    Full Text Available Optical waveguide lightmode spectroscopy (OWLS is usually applied as a biosensor system to the sorption-desorption of proteins to waveguide surfaces. Here, we show that OWLS can be used to monitor the quality of oxide thin film materials and of coatings of pulsed laser deposition synthesized CdSe quantum dots (QDs intended for solar energy applications. In addition to changes in data treatment and experimental procedure, oxide- or QD-coated waveguide sensors must be synthesized. We synthesized zinc stannate (Zn2SnO4 coated (Si,TiO2 waveguide sensors, and used OWLS to monitor the relative mass of the film over time. Films lost mass over time, though at different rates due to variation in fluid flow and its physical effect on removal of film material. The Pulsed Laser Deposition (PLD technique was used to deposit CdSe QD coatings on waveguides. Sensors exposed to pH 2 solution lost mass over time in an expected, roughly exponential manner. Sensors at pH 10, in contrast, were stable over time. Results were confirmed with atomic force microscopy imaging. Limiting factors in the use of OWLS in this manner include limitations on the annealing temperature that maybe used to synthesize the oxide film, and limitations on the thickness of the film to be studied. Nevertheless, the technique overcomes a number of difficulties in monitoring the quality of thin films in-situ in liquid environments.

  11. Mimicking the nonlinear dynamics of optical fibers with waveguide arrays: towards a spatiotemporal supercontinuum generation

    CERN Document Server

    Tran, Truong X

    2013-01-01

    We numerically demonstrate the formation of the spatiotemporal version of the so-called diffractive resonant radiation generated in waveguide arrays with Kerr nonlinearity when a long pulse is launched into the system. The phase matching condition for the diffractive resonant radiation that we have found earlier for CW beams also works well in the spatiotemporal case. By introducing a linear potential, one can introduce a continuous shift of the central wavenumber of a linear pulse, whereas in the nonlinear case one can demonstrate that the soliton self-wavenumber shift can be compensated by the emission of diffractive resonant radiation, in a very similar fashion as it is done in optical fibers. This work paves the way for designing unique optical devices that generate spectrally broad supercontinua with a controllable directionality by taking advantage of the combined physics of optical fibers and waveguide arrays.

  12. Novel Electro-Optical Modulator Utilizing GeO2-Doped Silica Waveguide

    Institute of Scientific and Technical Information of China (English)

    LI Jiusheng; JIA Dagong

    2009-01-01

    In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz-cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below -20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match.

  13. Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics

    Science.gov (United States)

    Sung, Sang-Yeob; Sharma, Anirudh; Block, Andrew; Keuhn, Katherine; Stadler, Bethanie J. H.

    2011-04-01

    Garnet films with thicknesses of 100-1000 nm and waveguides with widths of 700-2000 nm were grown onto Si to characterize the mechanical stresses that occurred upon crystallization (700-800 °C) by rapid thermal annealing. These magneto-optical garnet films and also photonic crystals have proposed uses in magnetic flux indicator films, integrated photonic devices, such as isolators, circulators, and polarization transformers, because their Verdet constants per unit loss are orders of magnitude better than other magneto-optical materials. However, garnet does not match Si-based materials mechanically with thermal expansion coefficients of 10.4 ppm/°C. These waveguides were optimized to have low losses in the near infrared, including the telecommunication wavelengths (1.0-2.3 dB/mm at 1.3 μm and 0.9-1.7 at 1.55 μm). The waveguide losses increased with waveguide width. Finite difference time domain simulations were used to estimate the number, effective index, and profile of modes in each guide. The polarization and localization of modes near guide surfaces effectively explain the trend in losses versus width. With Faraday rotations of 0.2 dB/μm and 1.0 dB/mm loss, this integrated garnet has great potential for a multitude of photonic devices, including isolators, circulators, and mode converters.

  14. Electric Field-Induced Second Order Nonlinear Optical Effects in Silicon Waveguides

    CERN Document Server

    Timurdogan, E; Watts, M R

    2016-01-01

    The demand for nonlinear effects within a silicon platform to support photonic circuits requiring phase-only modulation, frequency doubling, and/or difference frequency generation, is becoming increasingly clear. However, the symmetry of the silicon crystal inhibits second order optical nonlinear susceptibility, $\\chi^{(2)}$. Here, we show that the crystalline symmetry is broken when a DC field is present, inducing a $\\chi^{(2)}$ in a silicon waveguide that is proportional to the large $\\chi^{(3)}$ of silicon. First, Mach-Zehnder interferometers using the DC Kerr effect optical phase shifters in silicon ridge waveguides with p-i-n junctions are demonstrated with a $V_{\\pi}L$ of $2.4Vcm$ in telecom bands $({\\lambda}_{\\omega}=1.58{\\mu}m)$ without requiring to dope the silicon core. Second, the pump and second harmonic modes in silicon ridge waveguides are quasi-phase matched when the magnitude, spatial distribution of the DC field and $\\chi^{(2)}$ are controlled with p-i-n junctions. Using these waveguides, sec...

  15. Analytical solutions for optical forces between two dielectric planar waveguides immersed in dielectric fluid media

    CERN Document Server

    Rodrigues, Janderson Rocha

    2016-01-01

    We investigate optical (transverse gradient) forces between two high-index dielectric planar waveguides immersed in low-index dielectric fluid media. Complimentary to previous studies, we extend optical forces calculations, in order to take into account a non-vacuum (and non-air) background medium, by using the Minkowski stress tensor formulation; we derived a very simple set of equations in terms of the effective refractive indexes of the waveguide eigenmodes. We also used a normalized version of the dispersion relation method to calculate the optical forces, in order to validate our results for different dielectric fluid media. Excellent agreement between the two methods was obtained for all analyzed cases. We show that, due to slot-waveguide effect, the TM modes are more sensitive to changes in the fluid refractive index than the TE ones. Furthermore, the repulsive optical force of the antisymmetric TM1 mode becomes stronger for higher refractive indexes, whereas the attractive force of the symmetric TM0 m...

  16. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors

    CERN Document Server

    Schuck, Carsten; Ma, Xiaosong; Tang, Hong X

    2013-01-01

    We demonstrate optical time domain reflectometry over 200 km of optical fiber using low-noise NbTiN superconducting single-photon detectors integrated with Si3N4 waveguides. Our small detector footprint enables high timing resolution of 50ps and a dark count rate of 3 Hz with unshielded fibers, allowing for identification of defects along the fiber over a dynamic range of 37.4 dB. Photons scattered and reflected back from the fiber under test can be detected in free-running mode without showing dead zones or other impairments often encountered in semiconductor photon-counting optical time domain reflectometers.

  17. Optical Waveform Sampling of a 320 Gbit/s Serial Data Signal using a Hydrogenated Amorphous Silicon Waveguide

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao;

    2011-01-01

    We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency.......We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency....

  18. PDMS-based Optical Leaky Waveguide Coated with Self-assemble Au-NPs for Bio-analytical Detections

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Chen

    2012-03-01

    Full Text Available This paper presents a novel method for fabricating PDMS-based optical leaky waveguides coated with self-assembled gold nano-particles (Au-NP for bio-analytical detection utilizing the localized surface plasmon resonance (LSPR effect. In the presented method, a PDMS optical waveguide is first cast in Teflon tubing to form a cylindrical leaky waveguide structure. The de-molded PDMS optical waveguide is then modified with PDDA molecules and coated with a layer of 13 nm Au-NPs for inducing the LSPR effect. The fabricated LSPR sensor is finally connected to multi-mode optic fibers for guiding the detection light. The measured sensitivity of the PDMS waveguide based LSPR sensor for detecting diluted glycerol solutions was 7.25 AU/RIU and 325.97 nm/RIU. Experimental results of a label-free detection of DNA hybridization show that the presented PDMS waveguide based LSPR sensor has a good linear response and has a detection limit of about 10pM, confirming the detection performance of the developed PDMS waveguide-based LSPR sensor.

  19. Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography

    Science.gov (United States)

    Elmogi, Ahmed; Bosman, Erwin; Missinne, Jeroen; Van Steenberge, Geert

    2016-02-01

    This paper reports on the fabrication and characterization of single-mode polymer optical waveguides at telecom and SOI compatible wavelengths; by making a comparison between an epoxy and a siloxane polymer waveguide material system (both commercially-available). The proposed waveguides can be used in short-reach optical interconnects targeting chip-to-chip communication on the interposer level or providing a coupling interface between single-mode optical fibers and photonic integrated circuits (PICs). This technology enables the integration of optoelectronic chips for photonic packaging purposes. First, the single-mode dimensions (4 × 4 μm2 and 5 × 5 μm2) for both materials at selected wavelengths (1.31 μm and 1.55 μm) were determined based on the refractive index measurements. Then, the waveguides were patterned by a direct-write lithography method. The fabricated waveguides show a high-quality surface with smooth sidewalls. The optical propagation losses were measured using the cut-back method. For the siloxane-based waveguides, the propagation losses were found to be 0.34 dB/cm and 1.36 dB/cm at 1.31 μm and 1.55 μm respectively while for the epoxy-based waveguides the losses were 0.49 dB/cm and 2.23 dB/cm at 1.31 μm and 1.55 μm respectively.

  20. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide.

    Science.gov (United States)

    Long, Yun; Liu, Jun; Hu, Xiao; Wang, Andong; Zhou, Linjie; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Wang, Jian

    2015-12-01

    We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2  dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide.

  1. Si3N4 Grated Waveguide Optical Cavity based Sensors for Bulk-index Concentration, Label-free Protein, and Mechano-Optical Gas Sensing

    NARCIS (Netherlands)

    Pham, S.V.; Dijkstra, M.; Hollink, A.J.F.; Ridder, de R.M.; Pollnau, M.; Hoekstra, H.J.W.M.

    2011-01-01

    A grated waveguide (GWG), which is a waveguide with a finite-length grated section, acts as an optical resonator, showing sharp fringes in the transmission spectrum near the stop-band edges of the grating. These oscillations are due to Fabry-Perot resonances of Bloch modes propagating in the cavity

  2. Optical amplification of the cutoff mode in planar asymmetric polymer waveguides

    Science.gov (United States)

    Pauchard, M.; Vehse, M.; Swensen, J.; Moses, D.; Heeger, A. J.; Perzon, E.; Andersson, M. R.

    2003-12-01

    Modes with low threshold for optical gain were observed at wavelengths close to the cutoff in experiments probing the amplified spontaneous emission of light-emitting polymer thin films. The polymer was the semiconductor layer in a multilayer semiconductor-insulator-metal structure that simulates the one-dimensional waveguide characteristics in the channel of a field-effect transistor. The "cutoff" mode propagates at the polymer/gate-insulator interface, has an optical gain threshold of approximately 10 kW/cm2, and is not influenced by absorption of the gate electrode. The wavelength of the amplified emission tracks the cutoff wavelength of the asymmetric double-waveguide structure and the cutoff mode is, therefore, tunable in wavelength. Our results suggest that the light-emitting field-effect transistor architecture is a promising route for the construction of an injection laser.

  3. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    Science.gov (United States)

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-01

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged

  4. Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;

    2011-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....

  5. Optical waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange

    Institute of Scientific and Technical Information of China (English)

    LI ShiLing

    2008-01-01

    The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, re-spectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evo-lution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms.

  6. Numerical Simulation of Bell Inequality's Violation Using Optical Transverse Modes in Multimode Waveguides

    Institute of Scientific and Technical Information of China (English)

    FU Jian; GAO Shu-Juan

    2008-01-01

    We numerically demonstrate that 'mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violatc Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.

  7. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Rui; FENG Guo-Ying; ZHANG Yi; MA Zi; WANG Jian-Jun

    2012-01-01

    A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally. The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films, which serve as the coupling layer and reflecting panel, respectively. The sensitivity of this sensor of 9.08×10-2 deg/℃, 6.6 ×10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order, 3237-order and 3236-order modes, respectively, are obtained. Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.%A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally.The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films,which serve as the coupling layer and reflecting panel,respectively.The sensitivity of this sensor of 9.08 × 10-2 deg/℃,6.6 × 10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order,3237-order and 3236-order modes,respectively,are obtained.Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.

  8. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation

    Science.gov (United States)

    Lv, Jinman; Cheng, Yazhou; Lu, Qingming; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2016-07-01

    We report on the fabrication of the dual-line waveguides and cladding waveguide in z-cut MgO:LiNbO3 crystal by femtosecond laser inscription. Due to the diverse modification of refractive index along TE/TM polarization induced by femtosecond laser pulses, the two geometries exhibit different guiding performances: the dual-line waveguides only support extraordinary index polarization, whilst the depressed cladding waveguide supports guidance along both extraordinary and ordinary index polarizations. The measured optical damage of these waveguides at the wavelength of 532 nm is higher than that of the previously reported ion-implanted waveguides in Zr-doped LiNbO3. The propagation loss of depressed cladding waveguide is measured as low as 0.94 dB/cm at 632.8 nm wavelength. It is found that the optical damage threshold (∼105 W/cm2) of the dual-line waveguide is one order of magnitude higher than that of the cladding waveguide (∼104 W/cm2).

  9. Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

    Science.gov (United States)

    Ye, Han; Zhang, Jin-Qian-Nan; Yu, Zhong-Yuan; Wang, Dong-Lin; Chen, Zhi-Hui

    2015-09-01

    We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).

  10. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    Science.gov (United States)

    Butement, Jonathan T.; Hunt, Hamish C.; Rowe, David J.; Sessions, Neil P.; Clark, Owain; Hua, Ping; Senthil Murugan, G.; Chad, John E.; Wilkinson, James S.

    2016-10-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µm fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated.

  11. A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture

    Science.gov (United States)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-08-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  12. Characterization of optical strain sensors based on silicon waveguides

    NARCIS (Netherlands)

    Westerveld, W.J.; Pozo Torres, J.M.; Muilwijk, P.M.; Leinders, S.M.; Harmsma, P.J.; Tabak, E.; Dool, T.C. van den; Dongen, K.W.A. van; Yousefi, M.; Urbach, H.P.

    2013-01-01

    Strain gauges are widely employed in microelectromechanical systems (MEMS) for sensing of, for example, deformation, acceleration, pressure, or sound [1]. Such gauges are typically based on electronic piezoresistivity. We propose integrated optical sensors which have particular benefits: insensitivi

  13. A Compact, Waveguide Based Programmable Optical Comb Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based...

  14. Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review

    Directory of Open Access Journals (Sweden)

    Franck Chollet

    2016-01-01

    Full Text Available The convergence of Micro Electro Mechanical Systems (MEMS and optics was, at the end of the last century, a fertile ground for a new breed of technological and scientific achievements. The weightlessness of light has been identified very early as a key advantage for micro-actuator application, giving rise to optical free-space MEMS devices. In parallel to these developments, the past 20 years saw the emergence of a less pursued approach relying on guided optical wave, where, pushed by the similarities in fabrication process, researchers explored the possibilities offered by merging integrated optics and MEMS technology. The interest of using guided waves is well known (absence of diffraction, tight light confinement, small size, compatibility with fiber optics but it was less clear how they could be harnessed with MEMS technology. Actually, it is possible to use MEMS actuators for modifying waveguide properties (length, direction, index of refraction or for coupling light between waveguide, enabling many new devices for optical telecommunication, astronomy or sensing. With the recent expansion to nanophotonics and optomechanics, it seems that this field still holds a lot of promises.

  15. A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film

    Science.gov (United States)

    Jin, Zhao; Guan, Weiming; Liu, Chang; Xue, Tianyu; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-07-01

    Optical waveguide (OWG) biosensor has attracted much attention according to the high sensitivity and resolution compared with conventional surface plasmon resonance (SPR) biosensor. Nanoporous materials are usually used as the waveguide layer for absorbing analytes into the porous structure and enhancing the sensor signal. However, this kind of waveguide layer provides poor protection to the metal film and leads to the damage of the biosensor. Ag film can provide great sensitivity in SPR sensing comparing to other metal but was rarely used because of its poor chemical stability. Fabricating high stability Ag based SPR biosensor is still a challenge. In this work we produce an OWG biosensor using a dense TiO2 film as the waveguide layer which provides high resolution and remarkable protection to the metal film. This waveguide structure makes long time detection possible using Ag as the metal layer and is able to lead an enhancement of sensitivity comparing to the Au-based biosensor.

  16. Waveguide electro-optic modulators based on self-assembled material systems

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-fu; MA Jing; SUN De-gui; XU Guo-yang; HO Seng-Tiong; ZHU Pei-wang; KANG Hu; Antonio Facchetti; Tobin J. Marks

    2005-01-01

    Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.

  17. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat;

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...... of the system and characterisation of the read-out method....

  18. Single quantum dot spectroscopy using a fiber taper waveguide near-field optic

    OpenAIRE

    Srinivasan, Kartik; Stintz, Andreas; Krishna, Sanjay; Painter, Oskar

    2007-01-01

    Photoluminescence spectroscopy of single InAs quantum dots at cryogenic temperatures (~14 K) is performed using a micron-scale optical fiber taper waveguide as a near-field optic. A lower bound on the measured collection efficiency of quantum dot spontaneous emission into the fundamental guided mode of the fiber taper is estimated at 0.1%, and spatially resolved measurements with ~600 nm resolution are obtained by varying the taper position with respect to the sample and using the fiber taper...

  19. Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides

    OpenAIRE

    Srinivasan, Kartik; Stintz, Andreas; Krishna, Sanjay; Painter, Oskar

    2005-01-01

    Optical fiber taper waveguides are used to improve the efficiency of room temperature photoluminescence measurements of AlGaAs microdisk resonant cavities with embedded self-assembled InAs quantum dots. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers by a factor of ∼15–100 times in comparison to conventional normal incidence free-space collection techniques. In addition, the fiber taper can serve as an efficient means for pumping thes...

  20. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg;

    2001-01-01

    . The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 mum long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U......-cell, tapering of the separation channel from a width of 120 down to 30 mum was employed. Electrical insulation was achieved by a 13 mum thermally grown. silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3...

  1. Radiation control with the use of glass optical fiber waveguides

    International Nuclear Information System (INIS)

    Full text: In work the description of a way of measurement of radiation in a wide range of doses ∼ 0.1-10 Gray developed by the author is given. The doze of an irradiation was estimated on measurement of factor of absorption at passage through an optical glass of probing light with a various combination of lengths of waves. The comparative data of various methods used for dosimetry of radiation are submitted. Advantages glass optical fibers in comparison with massive sample of glasses are shown

  2. Formation of color centers optical waveguide in LN crystal by implanting it with 3 MeV oxygen ions

    International Nuclear Information System (INIS)

    Optical waveguide was fabricated by implanting 3 MeV oxygen ions of 5×1014 and 1.5×1015 ions/cm2 into congruent lithium niobate (LN) crystals and annealing them at 200℃-500℃. Optical spectrum was used to investigation defects in the optical waveguide. The results revealed the reduction of Li ions in the implanted LN crystals. The absorption of LN crystal increased with the dose of oxygen ion. This showed that the color centers were formed increasingly with the oxygen ion dose. The color centers and defects affecting the optical absorption include oxygen vacancy, exciton, interstitial atoms and electrons captured by Nb ions occupying the Li ion site. The color centers and defects caused increase of the absorption in the implanted the LN crystals. The annealing temperature seemed to have little effect on reduction of color centers. The optical waveguide of the implanted LN crystal exhibits high temperature stability. (authors)

  3. Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides

    NARCIS (Netherlands)

    Westerveld, W.J.; Leinders, S.M.; Muilwijk, P.M.; Pozo, J.

    2013-01-01

    Microscale strain gauges are widely used in micro electro-mechanical systems (MEMS) to measure strains such as those induced by force, acceleration, pressure or sound. We propose all-optical strain sensors based on micro-ring resonators to be integrated with MEMS. We characterized the strain-induced

  4. Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects

    NARCIS (Netherlands)

    Schipper, E.F.; Kooyman, R.P.H.; Heideman, R.G.; Greve, J.

    1995-01-01

    The feasibility of detecting small molecules such as pesticides using optical evanescent-wave sensors is discussed with emphasis on the Mach-Zehnder sensor and a newly developed sensor called a ‘critical’ sensor. For direct detection of an estimated average pesticide layer growth of 2×10−4 nm, the s

  5. Photonic Crystal Fibres: A New Calss of Optical Waveguides

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevstev, D.; Barkou, Stig Eigil;

    1999-01-01

    Remarkable properties of optical fibers with a high-index core region and sorrounding silica/ air photonic crystal cladding have recently been reported. Here we discuss the physics, the special guiding properties, and the theoretical tools developed for the modeling of these photonic crystal fibers...

  6. Influence of parameters on light propagation dynamics in optically induced planar waveguide arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency.In this paper,by employing the equation governing the nonlinear light propagations in photorefractive crystals,we study the photonic band-gap structures, Bloch modes,and light transmission properties of optically induced planar waveguide arrays.The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail.Then the influence of the parameters of planar waveguide arrays on the band-gaps structures,Bloch modes,and linear light transmissions is analyzed.It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures.And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes.Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions.Furthermore,the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle.Additionally,with the increase of the intensity of the array writing beams,the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.

  7. Influence of parameters on light propagation dynamics in optically induced planar waveguide arrays

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng; ZHANG Peng; XIAO FaJun; YANG DeXing; ZHAO JianLin

    2009-01-01

    The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency. In this paper, by employing the equation governing the nonlinear light propagations in photorefractive crystals, we study the photonic band-gap structures,Bloch modes, and light transmission properties of optically induced planar waveguide arrays. The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail. Then the influence of the parameters of planar waveguide arrays on the band-gaps structures, Bloch modes, and linear light transmissions is analyzed. It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures. And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes. Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions. Furthermore, the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle. Additionally, with the increase of the intensity of the array writing beams, the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.

  8. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications

    Science.gov (United States)

    Grivas, Christos

    2016-01-01

    The field of optically pumped planar waveguide lasers has seen a rapid development over the last two decades driven by the requirements of a range of applications. This sustained research effort has led to the demonstration of a large variety of miniature highly efficient laser sources by combining different gain media and resonator geometries. One of the most attractive features of waveguide lasers is the broad range of regimes that they can operate, spanning from continuous wave and single frequency through to the generation of femtosecond pulses. Furthermore, their technology has experienced considerable advances to provide increased output power levels, deriving benefits from the relative immunity from the heat generated in the gain medium during laser operation and the use of cladding-pumped architectures. This second part of the review on optically pumped planar waveguide lasers provides a snapshot of the state-of-the-art research in this field in terms of gain materials, laser system designs, and as well as a perspective on the status of their application as real devices in various research areas.

  9. Recording of dynamic gratings in the nonlinear optical coating of a planar waveguide

    Science.gov (United States)

    Kozhevnikov, N. M.; Korolev, A. E.; Koklyushkin, A. V.; Lipovskaya, M. Yu.; Nazarov, V. N.

    2003-04-01

    The possibility of controlled energy exchange between interfering waveguide modes in a singlemode planar waveguide with a nonlinear optical coating is analyzed. As the coating, a suspension of bacteriorhodopsin D96N was used, which makes it possible to realize two spectrally separated mechanisms of recording and controlling dynamic gratings, i.e., the spatial modulation of the trans-cis excitation rate and the spatial modulation of the cis-trans relaxation rate. The method of phase-modulated beams was used to implement the energy exchange. The dynamic gratings in the coating were recorded by using both radiation with a wavelength within the absorption band of the trans state (630 nm) and radiation with a wavelength within the absorption band of the cis state (440 nm). Efficient control of the energy exchange between the waveguide modes by means of uniform exposure of their interference region to radiation with another wavelength was observed. A completely integral geometrical layout for optically controlled energy exchange was realized. The results obtained are compared with known data on energy exchange between beams in the bulk of a similar nonlinear medium.

  10. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide

    Science.gov (United States)

    haq Shaik, Enaul; Rangaswamy, Nakkeeran

    2016-05-01

    We present a new configuration of all-optical AND gate based on two-dimensional photonic crystal composed of Si rods in air. Two AND gate structures with and without probe input are proposed. The proposed structures are designed with T-shaped waveguide without using nonlinear materials and optical amplifiers. The performance of the proposed AND gate structures is analyzed and simulated by plane-wave expansion and finite difference time domain methods. The AND gate without probe input needs only one T-shaped waveguide, whereas the AND gate with probe input needs two T-shaped waveguides. The former AND gate offers a bit rate of 6.26 Tbps with a contrast ratio of 5.74 dB, whereas the latter AND gate offers a bit rate of 3.58 Tbps whose contrast ratio is 9.66 dB. It can be expected that these small size T-shaped structures are suitable for large-scale integration and can potentially be used in on-chip photonic integrated circuits.

  11. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  12. High efficiency all-optical diode based on photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a Fano cavity containing nonlinear Kerr medium and a F-P cavity in PC waveguide. Because of interference between two cavities, Fano peak and F-P peak can both appear in transmission spectra. Working wavelength is set between the two peaks and approaching to Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can be excited. It would result in red shift of Fano peak and achieving forward transmission. But due to the asymmetric design, backward launch need stronger incidence light to excite Kerr effect. This design has many advantages, including high maximum transmittance (>90%), high transmittance contrast ratio, low power threshold, short response time (picosecond level), ease of integration.

  13. High-speed waveguide electro-optic polarization modulator.

    Science.gov (United States)

    Alferness, R C; Buhl, L L

    1982-10-01

    By careful electrode design we have achieved a 1.7-GHz modulation bandwidth for a Ti:LiNbO(3) integrated-optic TE ? TM mode-converter modulator. Because of the wavelength selectivity of this modulator, it is an attractive device for simultaneously providing multiplexing and signal encoding in future wavelength-multiplexed single-mode light-wave systems. PMID:19714070

  14. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  15. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil

    2009-02-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  16. Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides

    OpenAIRE

    Kangwen Li; Xunpeng Ma; Zuyin Zhang; Lina Wang; Haifeng Hu; Yun Xu; Guofeng Song

    2013-01-01

    A highly tunable terahertz (THz) filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides is proposed and demonstrated numerically by means of the Finite Element Method. The results reveal that a sharp peak with high Q-value presents in the band gap of Bragg grating waveguide with a defect, and the position of the sharp peak can be modified greatly by changing the intensity of the transverse magnetic field applied to the device. Compared to the situ...

  17. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities.

    Science.gov (United States)

    van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Aspetti, Carlos; Wirshba, Aaron D; Agarwal, Ritesh

    2011-04-28

    Semiconductor nanowire waveguide cavities hold promise for nanophotonic applications such as lasers, waveguides, switches, and sensors due to the tight optical confinement in these structures. However, to realize their full potential, high quality nanowires, whose emission at low temperatures is dominated by free exciton emission, need to be synthesized. In addition, a proper understanding of their complex optical properties, including light-matter coupling in these subwavelength structures, is required. We have synthesized very high-quality wurztite CdS nanowires capped with a 5 nm SiO(2) conformal coating with diameters spanning 100-300 nm using physical vapor and atomic layer deposition techniques and characterized their spatially resolved photoluminescence over the 77-298 K temperature range. In addition to the Fabry-Pérot resonator modulated emission from the ends of the wires, the low temperature emission from the center of the wire shows clear free excitonic peaks and LO phonon replicas, persisting up to room-temperature in the passivated wires. From laser scanning measurements we determined the absorption in the vicinity of the excitonic resonances. In addition to demonstrating the high optical quality of the nanowire crystals, these results provide the fundamental parameters for strong light-matter coupling studies, potentially leading to low threshold polariton lasers, sensitive sensors and optical switches at the nanoscale. PMID:21214218

  18. Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Turko, Nir; Rosenman, Gil

    2016-01-01

    Unique linear and nonlinear optical properties of bioinspired peptide nanostructures such as wideband transparency and high second-order nonlinear optical response, combined with elongated tubular shape of variable size and rapid self-assembly fabrication process, make them promising for diverse bio-nano-photonic applications. This new generation of nanomaterials of biological origin possess physical properties similar to those of biological structures. Here, we focus on new specific functionality of ultrashort peptide nanotubes to guide light at fundamental and second-harmonic generation (SHG) frequency in horizontal and vertical peptide nanotubes configurations. Conducted simulations and experimental data show that these self-assembled linear and nonlinear optical bio-waveguides provide strong optical power confinement factor, demonstrate pronounced directionality of SHG and high conversion efficiency of SHG ∼10(-5). Our study gives new insight on physics of light propagation in nanostructures of biological origin and opens the avenue towards new and unexpected applications of these waveguiding effects in bio-nanomaterials both for biomedical nonlinear microscopy imaging recognition and development of novel integrated nanophotonic devices.

  19. Coplanar-waveguide-based silicon Mach-Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading.

    Science.gov (United States)

    Dong, Po; Sinsky, Jeffrey H; Gui, Chengcheng

    2016-09-15

    We demonstrate a silicon Mach-Zehnder modulator with a coplanar waveguide transmission-line electrode structure using a meandering optical waveguide and alternating-side PN junction loading of the electrodes, which helps suppress the signal distortion caused by the parasitic slot-line mode and improves the electro-optic (EO) bandwidth. The silicon MZM exhibits a π-phase-shift voltage (Vπ) of 4.5 V with an EO 3 dB bandwidth of ∼20  GHz for a 5 mm long phase shifter. This achieved Vπ is among the lowest for silicon-only modulators with a bandwidth of more than 20 GHz. PMID:27628408

  20. Coplanar-waveguide-based silicon Mach-Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading.

    Science.gov (United States)

    Dong, Po; Sinsky, Jeffrey H; Gui, Chengcheng

    2016-09-15

    We demonstrate a silicon Mach-Zehnder modulator with a coplanar waveguide transmission-line electrode structure using a meandering optical waveguide and alternating-side PN junction loading of the electrodes, which helps suppress the signal distortion caused by the parasitic slot-line mode and improves the electro-optic (EO) bandwidth. The silicon MZM exhibits a π-phase-shift voltage (Vπ) of 4.5 V with an EO 3 dB bandwidth of ∼20  GHz for a 5 mm long phase shifter. This achieved Vπ is among the lowest for silicon-only modulators with a bandwidth of more than 20 GHz.

  1. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  2. Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization

    DEFF Research Database (Denmark)

    Chen, Yaohui; Wang, Fengwen; Ek, Sara;

    2011-01-01

    of the Lorentz reciprocity theorem. We highlight topology optimization as a systematic and robust design methodology considering manufacturing imperfections in optimizing active photonic crystal device performances, and compare the performance of standard photonic crystal waveguides with optimized structures....

  3. Optical fiber waveguide sensor for the colorimetric detection of ammonia

    Science.gov (United States)

    Schmitt, Katrin; Rist, Jonas; Peter, Carolin; Wöllenstein, Jürgen

    2011-06-01

    We present the development and characterization of a fiber-optic colorimetric gas sensor combined with the electronic circuitry for measurement control and RFID communication. The gas sensor detects ammonia using a 300 μm polyolefin fiber coated with a gas-sensitive polymer film. The spectral and time-dependent sensitivity of various polymer films was tested in transmission measurements. Light from a standard LED at λ = 590 nm was coupled into the polyolefin fiber through the front face. A prototype of the gas sensor with the direct coupling method was tested under realistic measurement conditions, i.e. battery-driven and in a completely autonomous mode. The sensor system showed good sensitivity to the ammonia concentrations and response times in the order of minutes. The achievable power consumption was below 100μW.The films contained the pH-sensitive dyes bromocresol purple or bromophenol blue embedded in either ethyl cellulose or polyvinyl butyral, and optionally tributyl phosphate as plasticizer. The bromophenol blue based films showed a strong reaction to ammonia, with saturation concentrations around 1000 ppm and response times of about 15 seconds to 100ppm. The colorimetric reaction was simulated using a simple kinetic model which was in good agreement with the experimental results.

  4. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    Science.gov (United States)

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  5. Ultrabroadband Electro-Optic Modulator Based on Hybrid Silicon-Polymer Dual Vertical Slot Waveguide

    Directory of Open Access Journals (Sweden)

    Shouyuan Shi

    2011-01-01

    Full Text Available We present a novel hybrid silicon-polymer dual slot waveguide for high speed and ultra-low driving voltage electro-optic (EO modulation. The proposed design utilizes the unique properties of ferroelectric materials such as LiNbO3 to achieve dual RF and optical modes within a low index nanoslot. The tight mode concentration and overlap in the slot allow the infiltrated organic EO polymers to experience enhanced nonlinear interaction with the applied electric field. Half-wavelength voltage-length product and electro-optic response are rigorously simulated to characterize the proposed design, which reveals ultrabroadband operation, up to 250 GHz, and subvolt driving voltage for a 1 cm long modulator.

  6. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.

    Science.gov (United States)

    Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang

    2015-06-01

    Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529

  7. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    Science.gov (United States)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  8. Nonlinear conversion in optical waveguide filled with NaNO2

    International Nuclear Information System (INIS)

    This paper contains the first experimental results of nonlinear conversion in optical waveguide filled with solid nonlinear media. The experimental sample was made from SiO2 fiber of the 1.6 cm length. During the pumping of the sample by the pulse laser, the generation of second harmonic radiation was observed at the whole length of the sample filled with NaNO2. Despite the visibility of this effect, the detected signal was rather weak due to the scattering inside the fiber. Nevertheless, the successful experiment presented in this work may lead to the future development of new nonlinear devices using photonic crystal fiber filled with solid nonlinear medium

  9. SOI-Based 16×16 Thermo-Optic Waveguide Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-Yuan; LI Yan-Ping; SUN Fei; YANG Di; CHEN Shao-Wu; YU Jin-Zhong

    2006-01-01

    @@ A 16 × 16 thermo-optic waveguide switch matrix has been designed and fabricated on silicon-on-insulator wafer.For reducing device length, blocking switch matrix configuration is chosen. The building block of the matrix is a 2 × 2 switch cell with a Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitter/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220mW. The switching time of a switch cell is less than 3 μs.

  10. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  11. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Mortensen, Asger

    2006-01-01

    We present a method for calculating the transmission spectra, dispersion, and time delay characteristics of optical-waveguide gratings based on Green's functions and Dyson's equation. Starting from the wave equation for transverse electric modes we show that the method can solve exactly both...... the problems of coupling of counterpropagating waves (Bragg gratings) and co-propagating waves (long-period gratings). In both cases the method applies for gratings with arbitrary dielectric modulation, including all kinds of chirp and apodization and possibly also imperfections in the dielectric modulation...

  12. A variational mode solver for optical waveguides based on quasi-analytical vectorial slab mode expansion

    CERN Document Server

    V., O; Stoffer, Remco; Hammer, Manfred

    2013-01-01

    A flexible and efficient method for fully vectorial modal analysis of 3D dielectric optical waveguides with arbitrary 2D cross-sections is proposed. The technique is based on expansion of each modal component in some a priori defined functions defined on one coordinate axis times some unknown coefficient-functions, defined on the other axis. By applying a variational restriction procedure the unknown coefficient-functions are determined, resulting in an optimum approximation of the true vectorial mode profile. This technique can be related to both Effective Index and Mode Matching methods. A couple of examples illustrate the performance of the method.

  13. High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System

    Science.gov (United States)

    Nakamura, T.; Case, J. A.; Timmons, M. L.

    2004-01-01

    This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

  14. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  15. Photobleaching of polydiacetylene waveguides: a characterization of the process and patterning of optical elements

    Science.gov (United States)

    Palchetti, Luca; Li, Qu; Giorgetti, Emilia; Grando, Daniela; Sottini, Stefano

    1997-02-01

    The photobleaching process of poly-3butoxyl-carbonyl-methyl-urethane (poly-3BCMU) waveguides by means of an UV lamp and the 488-nm line of an Ar laser is characterized and modeled. The limits of the theory are discussed in light of experimental results, and we stress the role of the oxygen diffusion rate on the process. Finally, we adopt the photobleaching method to pattern a guided-wave micro-optic device and holographic diffraction gratings on spun poly-3BCMU films.

  16. Extraction of optical Bloch modes in a photonic-crystal waveguide

    CERN Document Server

    Huisman, S R; Stobbe, S; Herek, J L; Lodahl, P; Vos, W L; Pinkse, P W H

    2011-01-01

    We perform phase-sensitive near-field scanning optical microscopy on photonic-crystal waveguides. The observed intricate field patterns are analyzed by spatial Fourier transformations, revealing several guided TE- and TM-like modes. Using the reconstruction algorithm proposed by Ha, et al. (Opt. Lett. 34 (2009)), we decompose the measured two-dimensional field pattern in a superposition of propagating Bloch modes. This opens new possibilities to study specific modes in near-field measurements. We apply the method to study the transverse behavior of a guided TE-like mode, where the mode extends deeper in the surrounding photonic crystal when the band edge is approached.

  17. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; CHEN Bin; XU Wei-Dong

    2012-01-01

    We theoretically investigate the single-photon transport properties in an optical waveguide embedded with a V-type three-level atom (VTLA) based on symmetric and asymmetric couplings between the photon and the VTLA.Our numerical results show that the transmission spectrum of the incident photon can be well controlled by virtue of both symmetric and asymmetric coupling interactions.A multifrequency photon attenuator is realized by controlling the asymmetric coupling interactions.Furthermore,the influences of dissipation of the VTLA for the realistic physical system on single-photon transport properties are also analyzed.

  18. Integration of silicon-loaded nanoplasmonic waveguides onto a micro-machined characterization beam for nonlinear optics applications

    Science.gov (United States)

    Sederberg, S.; Elezzabi, A. Y.

    2015-10-01

    Silicon-loaded nanoplasmonic waveguides were integrated onto a micron-scale characterization beam to allow for accurate and efficient nonlinear optical characterization. The waveguides consist of a 95 nm × 340 nm silicon core that is capped by a 60 nm thick gold film. The characterization beam is formed by precision cleaving one waveguide end facet and by deep silicon etching the substrate area adjacent to the other end facet. This configuration allows input radiation to be coupled directly to the waveguides using a microscope objective and output radiation to be out-coupled with a lensed single-mode optical fiber. The fabrication steps are characterized via scanning electron microscopy at various points throughout the process. The fabricated devices are optically characterized using an ultrafast nonlinear pump-probe time-domain spectroscopy setup. Ultrafast all-optical modulation is measured in the waveguides on two timescales: τ1 = 1.98 ± 0.40 ps and τ2 = 17.9 ± 6.8 ps.

  19. Optical modulation at around 1550 nm in a InGaAlAs optical waveguide containing a InGaAs/AlAs resonant tunnelling diode

    CERN Document Server

    Figueiredo, J M L; Stanley, C R; Ironside, C N; McMeekin, S G; Leite, A M P

    1999-01-01

    We report electro-absorption modulation of light at around 1550 nm in a unipolar InGaAlAs optical waveguide containing a InGaAs/AlAs double-barrier resonant tunneling diode (DB-RTD). The RTD peak-to-valley transition increases the electric field across the waveguide, which shifts the core material absorption band-edge to longer wavelengths via the Franz-Keldysh effect, thus changing the light-guiding characteristics of the waveguide. Low-frequency characterisation of a device shows modulation up to 28 dB at 1565 nm. When dc biased close to the negative differential conductance (NDC) region, the RTD optical waveguide behaves as an electro-absorption modulator integrated with a wide bandwidth electrical amplifier, offering a potential advantage over conventional pn modulators.

  20. Optical modulation at around 1550 nm in an InGaAlAs optical waveguide containing an InGaAs/AlAs resonant tunneling diode

    OpenAIRE

    Figueiredo, J.M.L.; Boyd, A.R.; Stanley, C.R.; Ironside, C. N.; McMeekin, S.G.; Leite, A. M. P.

    1999-01-01

    We report electroabsorption modulation of light at around 1550 nm in a unipolar InGaAlAs optical waveguide containing an InGaAs/AlAs double-barrier resonant tunneling diode ~RTD!. The RTD peak-to-valley transition increases the electric field across the waveguide, which shifts the core material absorption band edge to longer wavelengths via the Franz–Keldysh effect, thus changing the light-guiding characteristics of the waveguide. Low-frequency characterization of a device shows...

  1. Waveguide device and method for making same

    Science.gov (United States)

    Forman, Michael A.

    2007-08-14

    A monolithic micromachined waveguide device or devices with low-loss, high-power handling, and near-optical frequency ranges is set forth. The waveguide and integrated devices are capable of transmitting near-optical frequencies due to optical-quality sidewall roughness. The device or devices are fabricated in parallel, may be mass produced using a LIGA manufacturing process, and may include a passive component such as a diplexer and/or an active capping layer capable of particularized signal processing of the waveforms propagated by the waveguide.

  2. Integrating III-V, Si, and polymer waveguides for optical interconnects: RAPIDO

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Offrein, Bert-Jan; Caër, Charles; Neumeyr, Christian; Malacarne, Antonio; Guina, Mircea; Sheehan, Robert N.; Peters, Frank H.; Melanen, Petri

    2016-03-01

    We present a vision for the hybrid integration of advanced transceivers at 1.3 μm wavelength, and the progress done towards this vision in the EU-funded RAPIDO project. The final goal of the project is to make five demonstrators that show the feasibility of the proposed concepts to make optical interconnects and packet-switched optical networks that are scalable to Pb/s systems in data centers and high performance computing. Simplest transceivers are to be made by combining directly modulated InP VCSELs with 12 μm SOI multiplexers to launch, for example, 200 Gbps data into a single polymer waveguide with 4 channels to connect processors on a single line card. For more advanced transceivers we develop novel dilute nitride amplifiers and modulators that are expected to be more power-efficient and temperatureinsensitive than InP devices. These edge-emitting III-V chips are flip-chip bonded on 3 μm SOI chips that also have polarization and temperature independent multiplexers and low-loss coupling to the 12 μm SOI interposers, enabling to launch up to 640 Gbps data into a standard single mode (SM) fiber. In this paper we present a number of experimental results, including low-loss multiplexers on SOI, zero-birefringence Si waveguides, micron-scale mirrors and bends with 0.1 dB loss, direct modulation of VCSELs up to 40 Gbps, +/-0.25μm length control for dilute nitride SOA, strong band edge shifts in dilute nitride EAMs and SM polymer waveguides with 0.4 dB/cm loss.

  3. Optical Waveguide Property of Nd-doped Laser Materials Ndx Y1-x A13(BO3) 4 and Nd∶MgO∶LiNbO3

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd-doped crystal NdxY1-xA13(BO3)4 and Nd∶MgO∶LiNbO3 are made in this paper, followed by introduction of the methods of experimentation and theoretical calculation for the planar optical waveguides. The refractive index profiles of the optical waveguides are analyzed. The above work offers useful information for study on new type materials for optical communications.

  4. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    OpenAIRE

    Jae-Sung Lee; Na-Rae Yoon; Byoung-Ho Kang; Sang-Won Lee; Sai-Anand Gopalan; Hyun-Min Jeong; Seung-Ha Lee; Dae-Hyuk Kwon; Shin-Won Kang

    2014-01-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber us...

  5. Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    Science.gov (United States)

    Rezem, Maher; Kelb, Christian; Günther, Axel; Rahlves, Maik; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing.

  6. Sensitive detection of beryllium using a fiber optic liquid waveguide cell.

    Science.gov (United States)

    Deng, Gang; Wei, Lily; Collins, Greg E

    2003-05-28

    The metallochromic chelating agent, Chromazurol S, has been utilized in conjunction with a fiber optic liquid waveguide capillary cell to enable the sensitive detection of beryllium in solution (30 ng l(-1) detection limit) and following extraction from a contaminated plexiglas surface (0.5 ng cm(-2) detection limit). The addition of a cationic surfactant, cetylpyridinium chloride, to Chromazurol S at pH 10 in Tris-HCl buffer results in the formation of two bathochromic peaks in the visible spectrum following metal chelation by beryllium. The first absorbance band, at 515 nm, is intermediate in nature, permitting maximal sensitivity for low beryllium concentrations, but diminishing in intensity at concentrations above 100 mug l(-1). The second absorbance band, centered at 610 nm, dominates for beryllium concentrations of 100 mug l(-1) and above. Experimental conditions including pH, buffer type, additive surfactants, masking agents, and dye concentration were investigated in order to optimize detection sensitivity and selectivity. A fiber optic spectrometer is used with both a liquid waveguide capillary cell and 1 cm cuvette cell, to give a sensitive and broad dynamic range for beryllium detection that capitalizes on both beryllium metal chelate absorbance bands formed under these conditions.

  7. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique

    Science.gov (United States)

    Liang, Ning; Lijun, Guo; Mei, Kong; Tuoyuan, Chen

    2014-12-01

    This paper reports the experimental results of silica on a silicon ring resonator in a resonator micro optic gyroscope based on the frequency modulation spectroscopy technique by our research group. The ring resonator is composed of a 4 cm diameter silica waveguide. By testing at λ = 1550 nm, the FSR, FWHM and the depth of resonance are 3122 MHz, 103.07 MHz and 0.8 respectively. By using a polarization controller, the resonance curve under the TM mode can be inhibited. The depth of resonance increased from 0.8 to 0.8913, namely the finesse increase from 30.33 to 33.05. In the experiments, there is an acoustic-optical frequency shifter (AOFS) in each light loop. We lock the lasing frequency at the resonance frequency of the silica waveguide ring resonator for the counterclockwise lightwave; the frequency difference between the driving frequencies of the two AOFS is equivalent to the Sagnac frequency difference caused by gyro rotation. Thus, the gyro output is observed. The slope of the linear fit is about 0.330 mV/(°/s) based on the -900 to 900 kHz equivalent frequency and the gyro dynamic range is ±2.0 × 103 rad/s.

  8. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  9. Symmetric two dimensional photonic crystal coupled waveguide with point defect for optical switch application

    CERN Document Server

    Hardhienata, Hendradi

    2012-01-01

    Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.

  10. Femtosecond Laser Induced Optical Waveguides and Micro-mirrors Inside Glasses

    Institute of Scientific and Technical Information of China (English)

    高仁喜; 张家骅; 张立功; 孙江亭; 孔祥贵; 宋宏伟; 郑杰

    2002-01-01

    Optical waveguides and micro-mirrors have been successfully induced inside fused silica glass and k9 glass, respec-tively, by focusing a 800 nm femtosecond (fs) pulsed laser with a repetition rate of I kHz. The change of refractiveindex was determined to be 0.001-0.008 in the fused silica glass and 0.006 in the k9 glass. The refractive indexchange is dependent on both the dose of irradiation and the power density of the fs pulsed laser. Photolumines-cence was observed in the irradiated region, and was attributed to the defects induced by fs laser irradiation. Wediscuss the relationship between the optical property and the luminescent property of the irradiated region.

  11. Ultra-high speed all-optical signal processing using silicon waveguides and a carbon nanotubes based mode-locked laser

    DEFF Research Database (Denmark)

    Ji, Hua

    This thesis concerns the use of nano-engineered silicon waveguides for ultra-high speed optical serial data signal processing. The fundamental nonlinear properties of nano-engineered silicon waveguides are characterized. Utilizing the nonlinear effect in nano-engineered silicon waveguides...... for demultiplexing of 1.28 Tbit/s optical time division multiplexing data signal is investigated. A sampling system for ultra-high speed signal waveforms based on nano-engineered silicon waveguide is explored. To set up a sampling source, using carbon nanotubes for generating ultra-short pulses is pursued. A silicon...

  12. Terahertz spin-wave waveguides and optical magnonics in one-dimensional NiO nanorods

    Science.gov (United States)

    Patil, Ranjit A.; Su, Chiung-Wu; Chuang, Chin-Jung; Lai, Chien-Chih; Liou, Yung; Ma, Yuan-Ron

    2016-06-01

    The two-magnon (2M) spin waves with a magnon frequency of 43 THz, generated by a polarized laser, were first observed in one-dimensional (1D) NiO nanorods. The 1D NiO nanorods of ~700 nm length, which have perfectly in-plane antiferromagnetic spins lying on the (200) and (100) faces, are the smallest spin-wave waveguides. Due to the magneto-optical Faraday effect (MOFE), the significant change in the Faraday intensity can show the 2M information in the NiO nanorods. There are only two 2M-on and 2M-off states at various applied alternating-current magnetic fields and laser-incident angles, which make the 1D NiO nanorods excellent optical nanomagnonics.The two-magnon (2M) spin waves with a magnon frequency of 43 THz, generated by a polarized laser, were first observed in one-dimensional (1D) NiO nanorods. The 1D NiO nanorods of ~700 nm length, which have perfectly in-plane antiferromagnetic spins lying on the (200) and (100) faces, are the smallest spin-wave waveguides. Due to the magneto-optical Faraday effect (MOFE), the significant change in the Faraday intensity can show the 2M information in the NiO nanorods. There are only two 2M-on and 2M-off states at various applied alternating-current magnetic fields and laser-incident angles, which make the 1D NiO nanorods excellent optical nanomagnonics. Electronic supplementary information (ESI) available: Cubic crystal structure and Raman scattering of 1D NiO nanorods. See DOI: 10.1039/c6nr02531e

  13. Research and Design of Ge0.6Si0.4/Si Strained-layer Superlattice Planar Optical Waveguide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calculation shows that the refraction index of Ge0.6Si0.4/Si strained-layer superlattice n≈3.64, when Lw=9nm and Lb=24nm. An algorithm of numerical iteration for effective refraction index is employed to obtain different effective refraction indexes at different thickness (L). As a result, the thickness of Ge0.6Si0.4/Si strained-layer superlattice optical waveguide, L≤363nm, can be determined, which is very important for designing waveguide devices. An optical waveguide can be made into a nanometer device by using Ge0.6Si0.4/Si strained-layer superlattice.

  14. Dynamics of LiNbO/sub 3/ optical waveguide formation by CO/sub 2/ laser annealing

    International Nuclear Information System (INIS)

    In comparison with conventional heating in a furnace, surface heating with 10.6 μm radiation from a CO/sub 2/ laser can reduce by an order of magnitude the time required for formation of optical waveguides by diffusion of Ti into LiNbO/sub 3/ crystals. Waveguides formed this way have similar properties to those produced by other methods. To elucidate the dynamics of waveguide formation by laser heating, the authors investigated the temperature distribution in X-cut LiNbO/sub 3/ plates during the titanium oxide indiffusion process. The temperature distribution was determined from a combination of thermocouple, narrow-band infrared probe, optical pyrometer, and surface melting observations. For a nominal (pyrometer) temperature of 1000 C, the surface temperature does not exceed 1090 C

  15. Thermo-optic Imbert-Fedorov effect in a prism-waveguide coupling system with silicon-on-insulator

    Science.gov (United States)

    Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Yuan, Quan

    2016-07-01

    In this paper, a prism-waveguide coupling system based on silicon-on-insulator (SOI) is revisited. We find that thermo-optic Imbert-Fedorov (TOIF) effect displays in this four-layer optical system which has not been proposed before. Furthermore, we discuss the TOIF shifts in prism/SiO2/Si/SiO2 and prism/Au/Si/SiO2 waveguides with different parameters and study the observed phenomena from physical point of view. It is shown that the maximum IF shift can achieve 140 μm in a prism/Au/Si/SiO2 waveguide which is large enough to be directly measured by the calculation results. Accordingly, TOIF shift provides a temperature control method for the enhancement and modulation of IF shift.

  16. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer.

    Science.gov (United States)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars H

    2016-07-25

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (~80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high as 775 pm/°C. The proposed design is found to be design-flexible and robust to fabrication errors. PMID:27464088

  17. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches

    CERN Document Server

    Bruck, Roman

    2013-01-01

    The performance of plasmonic nanoantenna structures on top of SOI wire waveguides as coherent perfect absorbers for modulators and all-optical switches is explored. The absorption, scattering, reflection and transmission spectra of gold and aluminum nanoantenna-loaded waveguides were calculated by means of 3D finite-difference time-domain simulations for single waves propagating along the waveguide, as well as for standing wave scenarios composed from two counterpropagating waves. The investigated configurations showed losses of roughly 1% and extinction ratios greater than 25 dB for modulator and switching applications, as well as plasmon effects such as strong field enhancement and localization in the nanoantenna region. The proposed plasmonic coherent perfect absorbers can be utilized for ultracompact all-optical switches in coherent networks as well as modulators and can find applications in sensing or in increasing nonlinear effects.

  18. Sensitivity enhancement of evanescent waveguide optical sensor for detecting adulterant traces in petroleum products using SiON technology

    Science.gov (United States)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha Pratim

    2013-11-01

    The development of an evanescent waveguide optical sensor incorporating planar waveguide geometry using silicon oxynitride as the core layer on silica-silicon wafer and its implementation for detection of adulterant traces in petroleum products is presented in this paper. This work focuses on enhancement of sensitivity and analyzed by using Simple Effective Index Method (SEIM), based on sinusoidal modes. The embedded waveguide of length ~ 10,000 μm and core width ~ 50 μm have been developed using SiON technology and applied for checking adulteration so as to ensure the purity of the fuel such that the engine will give the desired performance including low emissions yielding better accuracy and high sensitivity within a very short pulse. The thin cladding layer acts as the analytes (mixture of adulterated fuel) that supports the waveguiding film having a refractive index smaller than that of the core. The main aim of this present work is to encompass a speedy choice to the time-consuming existing methods for detecting adulterated fuels, which generally requires some time to give the consequence. The developed sensor allows spot determination of the percentage concentration of adulterant in pure petrol without involving any chemical analysis. The waveguide based sensor is polarization independent and the sensitivity of the waveguide sensor is ~10 times more than that of the existing planar waveguide sensors and also 5 times more than that of asymmetric waveguide structure. Advantages include high sensitivity, simple fabrication and easy interrogation without involving the use of solvents or toxic chemicals.

  19. Analysis of light propagation for a crossing of thin silicon wires using vertical tunnelling coupling with a thick optical channel waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Tsarev, A V; Kolosovskii, E A [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-08-31

    Using silicon photonic wires in a silicon-on-insulator structure as an example, we examine the problem of crossings of thin, high-index-contrast channel waveguides. To ensure high optical wave transmission efficiency at as low a level of parasitic scattering as possible, we propose using a structure with vertical coupling between a thin tapered silicon waveguide and a thick polymer waveguide, separated by a thin buffer oxide layer. Numerical simulation is used to find conditions under which such a structure (3 × 90 μm in dimensions) ensures 98 % and 99 % transmission efficiency at ∼1.55 μm in 35- and 26-nm spectral ranges, respectively, for direct propagation and 99.99 % transmission in the transverse direction. The optical element in question is proposed for use in optical microchips with multiple channel waveguide crossings. (integrated optical waveguides)

  20. Polarization-insensitive, shallow Ti-diffused near-stoichiometric LiTaO3 strip waveguide for integrated optics.

    Science.gov (United States)

    Yang, Xiao-Fei; Zhang, Zi-Bo; Du, Wan-Ying; Zhang, Qun; Wong, Wing-Han; Yu, Dao-Yin; Pun, Edwin Yue-Bun; Zhang, De-Long

    2016-06-01

    We report on a Ti-diffused near-stoichiometric (NS) LiTaO3 strip waveguide fabricated by diffusion of an 8 μm wide, 160 nm thick Ti-strip followed by Li-rich vapor transport equilibration. It is found that the waveguide surface caves in ∼60  nm below the crystal surface. X-ray single-crystal diffraction shows that the indentation is due to Ti-induced lattice contraction. Optical studies show that the waveguide is in an NS composition environment, supports TE and TM single-mode propagation at 1.5 μm wavelength, is polarization insensitive, and has a shallow mode field profile and a loss of 0.2/0.3 dB/cm for the TE/TM mode. Secondary ion mass spectrometry analysis shows that the Ti profile follows a sum of two error functions in the width direction and a Gaussian function in the depth direction of the waveguide. With the optimized fabrication condition, the waveguide is promising for developing an optical-damage-resistant device that requires a shallow mode field profile.

  1. High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process

    Directory of Open Access Journals (Sweden)

    Gianlorenzo Masini

    2008-01-01

    Full Text Available We discuss our approach to monolithic intergration of Ge photodectors with CMOS electronics for high-speed optical transceivers. Receivers based on Ge waveguide photodetectors achieve a sensitivity of −14.2 dBm (10−12 bit error rate (BER at 10 Gbps and 1550 nm.

  2. Polarization diversity circuit for a silicon optical switch using silica waveguides integrated with photonic crystal thin film waveplates

    Science.gov (United States)

    Sugiyama, Koki; Chiba, Takafumi; Kawashima, Takayuki; Kawakami, Shojiro; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2016-03-01

    We propose a compact polarization diversity optical circuit using silica waveguides and photonic crystal waveplates. By setting these circuits at the front and rear of the silicon optical devices, the polarization dependence of the silicon devices can be suppressed. Photonic crystals can be produced artificially using nanolithography, so that the retardation and orientation of the photonic crystal waveplate can be locally varied on a single chip. This enables to dramatically reduce the size of the polarization diversity circuit, which consists of a 1x2 multimode interference (MMI) coupler, two arm waveguides with quarter-waveplates (QWPs), a 2x2 MMI coupler, and output waveguides with half-waveplates (HWPs). The input light, including the transverse electric (TE) and transverse magnetic (TM) modes, is split by the 1x2 MMI coupler. The optical axes of the two QWPs, spaced 125 μm apart, are set to be orthogonal to each other, so that the phases of the TE modes in the two arm waveguides differ by 90 degrees, and those of the TM modes differ by -90 degrees. The TE mode and the TM mode are separated at the outputs of the 2x2 MMI coupler, and the polarization of the light at one of the outputs is aligned to that at the other output by the HWP. In this paper, we designed a 4x8 polarization diversity circuit for a 4x4 silicon optical switch.

  3. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  4. Fabrication of a miniaturized capillary waveguide integrated fiber-optic sensor for fluoride determination.

    Science.gov (United States)

    Xiong, Yan; Wang, Chengjie; Tao, Tao; Duan, Ming; Tan, Jun; Wu, Jiayi; Wang, Dong

    2016-05-10

    Fluoride concentration is a key aspect of water quality and essential for human health. Too much or too little fluoride intake from water supplies is harmful to public health. In this study, a capillary waveguide integrated fiber-optic sensor was fabricated for fluoride measurement in water samples. The sensor was modularly designed with three parts, i.e., a light source, capillary flow cell and detector. When light propagated from a light emitting diode (LED) to the capillary waveguide cell through an excitation fiber, it interacted with the sensing reagent, and its intensity changed with different fluoride concentrations. Then, the light propagated to the detector through a detection fiber for absorption determination of fluoride according to Beer's law. This miniaturized sensor showed advantages of fast analysis (9.2 s) and small reagent demand (200 μL) per sample, and it also had a low detection limit (8 ppb) and high selectivity for fluoride determination. The sensor was applied to fluoride determination in different water samples. The results obtained were compared with those obtained by conventional spectrophotometry and ion chromatography, showing agreement and validating the sensor's potential application. PMID:27067512

  5. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide.

    Science.gov (United States)

    Yu, Tianyi; Li, Honggen; Cao, Zhuangqi; Wang, Yi; Shen, Qishun; He, Ying

    2008-05-01

    An oscillating wave displacement sensor based on the enhanced Goos-Hänchen (G-H) effect in a symmetrical metal-cladding optical waveguide is proposed. Since the detected signal is irrelevant to the power fluctuation of the incident light and the magnitude of the G-H shift is enhanced to hundreds of micrometers, a 40 pm resolution is demonstrated in our experiment without employing any complicated optical equipment and servo techniques.

  6. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    OpenAIRE

    Weijie Nie; Yuechen Jia; Vázquez de Aldana, Javier R.; Feng Chen

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 ×...

  7. An Electro-Optic Modulator Based on GeO2-Doped Silica Ridge Waveguides with Thermal Poling

    Institute of Scientific and Technical Information of China (English)

    曹霞; 何赛灵

    2003-01-01

    A Mach-Zehnder electro-optic modulator is designed and fabricated based on upper-clad GeO2-doped silica ridge waveguides with thermal poling. The electro-optic coefficient obtained is about 0.05 pm/V and is polarizationinsensitive. An extinction ratio of over 17dB is achieved. The transmission loss of the modulator for the TE mode is 2-3 dB higher than that for the TM mode after the poling.

  8. Multiple slow light bands in photonic crystal coupled resonator optical waveguides constructed with a portion of photonic quasicrystals

    International Nuclear Information System (INIS)

    Coupled resonator optical waveguides (CROWs) in complex two-dimensional (2D) photonic crystals (PCs) constructed with a portion of 12-fold photonic quasicrystals (PQs) are proposed. We show that enhanced transmission and slow light can be simultaneously achieved in such waveguides as well as general CROWs. Moreover, due to higher degree of flexibility and tunability of PQs for defect mode properties compared to conventional periodic PCs, multiple slow light bands can be flexibly obtained in CROWs constructed with complex 2D PCs. Our results may lead to the development of a variety of novel ultracompact devices for photonic integrated circuits.

  9. Direct milling and casting of polymer-based optical waveguides for improved transparency in the visible range

    DEFF Research Database (Denmark)

    Snakenborg, Detlef; Perozziello, Gerardo; Klank, Henning;

    2006-01-01

    Polymer waveguides fabricated from photoresist have an inherent high propagation loss in the short visible wavelength range caused by absorption due to the added photosensitizers. We have addressed this problem by development of two novel methods for the fabrication of microfluidic systems...... properties. Direct micromilling enabled us to fabricate 100 mu m wide optical waveguides. Propagation losses of less than 1 dB cm(-1) could be achieved throughout the entire visual range down to a wavelength of 400 nm. A casting process amenable to high number production of such devices was furthermore...

  10. Nonclassical statistics of intracavity coupled chi((2)) waveguides: The quantum optical dimer

    DEFF Research Database (Denmark)

    Bache, Morten; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2003-01-01

    A model is proposed where two chi((2)) nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives...

  11. All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays.

    Science.gov (United States)

    Al Khawaja, U; Al-Marzoug, S M; Bahlouli, H

    2016-05-16

    We propose a mechanism by which a number of useful all-optical operations, such as switches, diodes, and logic gates, can be performed with a single device. An effective potential well is obtained by modulating the coupling between the waveguides through their separations. Depending on the power of a control soliton injected through the potential well, an incoming soliton will either completely transmit or reflect forming a controllable switch. We show that two such switches can work as AND, OR, NAND, and NOR logic gates. Furthermore, the same device may also function as a perfect soliton diode with adjustable polarity. We discuss the feasibility of realising such devices with current experimental setups. PMID:27409929

  12. Silicon-on-insulator 1×2 Y-junction Optical Switch Based on Waveguide-vanishing Effect①②

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The silicon-on-insulator(SOI)1×2Y-junction optical waveguide switch has been proposed and fabricated,which is based on the large cross-section single-mode rib waveguide condition,the waveguide-vanishing effect and the free-carrier plasma dispersion effect.In the switch,the SOI technique utilizer silicon and silicon dioxide thermal bonding and back-polishing.The insertion loss and extinction ratio of the device are measured to be less than 4.78dB and 20.8dB respectively at a wavelength of 1.3μm and an injection current of 45mA.Response time is about 160ns.

  13. Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip;

    2008-01-01

    A theoretical analysis of slow and fast light effects in semiconductor optical amplifiers based on coherent population oscillations and including the influence of optical filtering is presented. Optical filtering is shown to enable a significant increase of the controllable phase shift experienced...

  14. Active Optical Lattice Filters

    OpenAIRE

    Gary Evans; MacFarlane, Duncan L.; Govind Kannan; Jian Tong; Issa Panahi; Vishnupriya Govindan; L. Roberts Hunt

    2005-01-01

    Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal processing is also provided.

  15. The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide

    Science.gov (United States)

    Yue-Yang, Yu; Xiao-Qiang, Sun; Lan-Ting, Ji; Guo-Bing, He; Xi-Bin, Wang; Yun-Ji, Yi; Chang-Ming, Chen; Fei, Wang; Da-Ming, Zhang

    2016-05-01

    Visible light variable optical attenuators (VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber (POF) transmission systems. In this paper, a polymer/silica hybrid waveguide thermo-optic attenuator based on multimode interference (MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time-stability measurement results prove its working reliability. Project supported by the National Natural Science Foundation of China (Grant Nos. 61205032, 61475061, 61405070, 61177027, 61275033, and 61261130586) and the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519006JH).

  16. Electro-optical logic gates based on graphene-silicon waveguides

    Science.gov (United States)

    Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi

    2016-08-01

    In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.

  17. M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N+ ion irradiation for telecom applications

    International Nuclear Information System (INIS)

    Irradiation with N+ ions of the 1.5–3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten–tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi4Ge3O12 (eulytine) and Bi12GeO20 (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten–tellurite glass using irradiation with N+ ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N+ ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm. - Highlights: ► Waveguides were fabricated in glass and crystals using MeV energy N+ ions. ► SRIM simulation and spectroscopic ellipsometry yielded similar waveguide structures. ► Multi-wavelength m-line spectroscopy was used to study the waveguides. ► Waveguides fabricated in an Er-doped tungsten–tellurite glass worked up to 1.5 μm. ► Waveguides in Bi12GeO20 remained operative up to 1.5 μm

  18. Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the dev......Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation...

  19. Active Optics in Modern, Large Optical Telescopes

    OpenAIRE

    Noethe, Lothar

    2001-01-01

    Active optics is defined as the control of the shape and the alignment of the components of an optical system at low temporal frequencies. For modern large telescopes with flexible monolithic or segmented primary mirrors and also flexible structures this technique is indispensable to reach a performance which is either diffraction limited for an operation in space or limited by the atmosphere for an operation on the ground. This article first describes the theory of active optics, both of the...

  20. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    Science.gov (United States)

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  1. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    CERN Document Server

    Simandoux, Olivier; Gateau, Jerome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-01-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 \\mu m inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \\mu m diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  2. Influence of SiO2/In2O3 film acoustical waveguide on the mode index of Ti:LiNbO3 optical waveguide in acousto-optical mode converter

    Science.gov (United States)

    Lin, Hang-you; Ning, Ji-ping; Geng, Fan

    2004-04-01

    TE/TM mode converter is a key element of integrated acoustooptical tunable filter (AOTF). Employing SiO2/In2O3 film as acoustical waveguide can suppress sidelobes effectively and simplify fabrication technique in integrated quasi-collinear AOTF. In this report, the eigenvalue equation and the field solution of such configuration has been obtained by using modified Wenzel-Kramers-Brillouin (WKB) method. The results are compared with those by using vector finite element method (VFEM). When the optical waveguides are covered by such oxide film, the difference of mode indices of both polarizations and the effective propagation velocity of surface acoustical wave (SAW) will decrease, and these decreases lead the shift of optical wavelength, which mainly results in the change of the former.

  3. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    Science.gov (United States)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  4. Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer

    Science.gov (United States)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2000-01-01

    Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is

  5. Femtosecond writing of near-surface waveguides in lithium niobate for low-loss electro-optical modulators of broadband emission

    Science.gov (United States)

    Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-05-01

    In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.

  6. Step Index Optical Waveguides In Automated Concrete And Concrete Elements Production Requirements Results Of Application And Experience

    Science.gov (United States)

    Habel, Wolfgang

    1990-01-01

    As is the case in other industrial branches, automation of production flow lines in the building industry also requires an interference-proof and reliable data communication between hardware installed close to the production proceess and the control units in the control room area. In particular, the presence of electromagnetically inteference-intensive plants compels to utilize the optical waveguide technique for an economically justifiable solution to the communication problem. The special question will be whether the optical waveguide with its advantageous properties as well as the components pertinent to them in the raw ambient process fields of the building production plants will be employable with a permanent operational reliability and how the technological particularities of assembly and commissioning may be accomplished under these conditions. As a result of investigations into selected application cases an optical waveguide communication module was developed and tested within the framework of applied research for being utilized under the hard conditions typical for production. The same applies to necessary assembling applicances which allow a qualitative glueing of optical fibres under more difficult assembly conditions.

  7. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    Science.gov (United States)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  8. Summary of radiation-induced transient absorption and recovery in fiber optic waveguides. [Pulsed electrons and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, C.D.

    1976-11-01

    The absorption induced in fiber optic waveguides by pulsed electron and X-ray radiation has been measured as a function of optical wavelength from 450 to 950 nm, irradiation temperature from -54 to 71/sup 0/C, and dose from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers (Corning Low Loss), ''pure'' vitreous silica core fibers (Schott, Bell Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethyl-methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core fibers (International Fiber Optics and Polyoptics). Models that have been developed to account for the observed absorption recovery are also summarized.

  9. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    Science.gov (United States)

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  10. SEMICONDUCTOR DEVICES: Analysis of the thermo-optic effect in lateral-carrier-injection SOI ridge waveguide devices

    Science.gov (United States)

    Jiate, Zhao; Yong, Zhao; Wanjun, Wang; Yinlei, Hao; Qiang, Zhou; Jianyi, Yang; Minghua, Wang; Xiaoqing, Jiang

    2010-06-01

    The thermo-optic effect in the lateral-carrier-injection pin junction SOI ridge waveguide is analyzed according to the thermal field equation. Numerical analysis and experimental results show that the thermo-optic effect caused by carrier injection is significant in such devices, especially for small structure ones. For a device with a 1000 μm modulation length, the refractive index rise introduced by heat accounts for 1/8 of the total effect under normal working conditions. A proposal of adjusting the electrode position to cool the devices to diminish the thermal-optic effect is put forward.

  11. Low loss optical waveguide crossing based on octagonal resonant cavity coupling

    Institute of Scientific and Technical Information of China (English)

    Mohd. Zahed M. Khan

    2009-01-01

    A waveguide crossing utilizing a high index contrast material system is presented. The structure is based on coupling with an octagonal resonant cavity inscrted at the waveguide junction. It also employs four identical square metal strips placed at the four comers of the waveguide crossing. The spectral response of the structure calculated using the method of line numerical technique, in general, shows a high power transmission in the forward arm with sufficiently low crosstalk and fraction of radiated power.

  12. General and efficient method for calculating modulation ressponses and noise spectra of active semiconductor waveguides

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We present a theoretical method for obtaining small-signal responses in a spatially resolved active semiconductor waveguide including finite end-facet reflectivities and amplified spontaneous emission. RF-modulation responses and output noise spectra of an SOA are shown....

  13. Modeling of gain saturation effects in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated....

  14. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  15. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  16. Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes

    Energy Technology Data Exchange (ETDEWEB)

    Benayas, A.; Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain); Silva, W.F.; Jacinto, C. [Universidade Federal de Alagoas, Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Maceio, Alagoas (Brazil); Rodenas, A.; Thomsom, R.R.; Psaila, N.D.; Reid, D.T.; Kar, A.K. [Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh (United Kingdom); Vazquez de Aldana, J. [Universidad de Salamanca, Grupo de Optica, Departamento de Fisica Aplicada, Facultad de Ciencias Fisicas, Salamanca (Spain); Chen, F.; Tan, Y. [Shandong University, School of Physics, Jinan (China); Torchia, G.A. [CONICET-CIC, Centro de Investigaciones Opticas, La Plata (Argentina)

    2011-07-15

    We report the improvement of ultrafast laser written optical waveguides in Yb:YAG ceramics by tailoring the presence of heat accumulation effects. From a combination of ytterbium micro-luminescence and micro-Raman structural analysis, maps of lattice defects and stress fields have been obtained. We show how laser annealing can strongly reduce the concentration of defects and also reduce compressive stress, leading to an effective 50% reduction in the propagation losses and to more extended and symmetric propagation modes. (orig.)

  17. Norm-Conserving Finite-Difference Beam-Propagation Method for TM Wave Analysis in Step-Index Optical Waveguides

    OpenAIRE

    Yamauchi, Junji; Matsubara, Kenji; Tsuda, Takeshi; Nakano, Hisamatsu

    2000-01-01

    Nonconservation of power is a perplexing problemin the propagating beam analysis of transverse magnetic (TM)waves in a -variant step-index optical waveguide. To conservethe power in terms of a squared norm, a modified finite-difference(FD) formula is introduced that allows a general positionof a core-cladding interface. The use of the modified formulacontributes to a reduction in a field profile error caused by astaircase approximation with subsequent conservation of power,particularly for a ...

  18. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates.

    Science.gov (United States)

    Shui, Keyi; Nie, Lixia; Zhang, Yan; Peng, Bo; Xie, Jianliang; Deng, Longjiang; Bi, Lei

    2016-06-13

    We report the design of a waveguide optical isolator based on multimode interferometer (MMI) structure using silicon on insulator (SOI) and deposited magneto-optical (MO) thin films. The optical isolator is based on a vertical 1 × 2 SOI MMI utilizing the nonreciprocal phase shift (NRPS) difference of different TM modes of the MO garnet thin film/SOI waveguide. By constructing a silicon/MO thin film/silicon structure, we demonstrate that the NRPS of the fundamental and first order TM modes can show opposite signs for certain device dimensions, therefore significantly reduce the device length. For a 310.42 μm long device, 20 dB isolation bandwidth larger than 1.6 nm with total insertion loss of 0.817 dB is achieved at 1550 nm wavelength. The fabrication tolerances and materials losses are also discussed to satisfy the state-of-the-art fabrication technology and material properties. PMID:27410305

  19. Calculation of BER in multi-channel silicon optical interconnects: comparative analysis of strip and photonic crystal waveguides

    Science.gov (United States)

    You, Jie; Lavdas, Spyros; Panoiu, Nicolae C.

    2016-05-01

    We present an effective approach to evaluate the performance of multi-channel silicon (Si) photonic systems. The system is composed of strip Si photonic waveguides (Si-PhWs) with uniform cross-section or photonic-crystal (PhC) Si waveguides (Si-PhCWs), combined with a set of direct-detection receivers. Moreover, the optical field in each channel is the superposition of a continuous-wave nonreturn-to-zero ON-OFF keying modulated signal and a white Gaussian noise. In order to characterize the optical signal propagation in the waveguides, an accurate mathematical model describing all relevant linear and nonlinear optical effects and its linearized version is employed. In addition, two semi-analytical methods, time- and frequency-domain Karhunen-Loève series expansion, are used to assess the system bit-error-rate (BER). Our analysis reveals that Si-PhCWs provide similar performance as Si-PhWs, but for 100× shorter length. Importantly, much worse BER is achieved in Si-PhCWs when one operates in slow-light regime, due to the enhanced linear and nonlinear effects.

  20. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Science.gov (United States)

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  1. SOLITONS: Dark spatial optical solitons in planar gradient waveguides in the Z-cut of the 3m symmetry crystals

    Science.gov (United States)

    Frolova, M. N.; Borodin, M. V.; Shandarov, S. M.; Shandarov, V. M.; Larionov, Yu M.

    2003-11-01

    The propagation of light beams is studied in a planar photorefractive waveguide fabricated by high-temperature diffusion of metal ions in the Z-cut substrate of the 3m symmetry crystal. The wave equations are obtained for single-mode light beams with TE and TM polarisations in planar diffusion waveguides, which take into account the two-dimensional distribution of the optical field. Expressions are found for a nonlinear change in the refractive index when the photovoltaic mechanism makes a dominant contribution to the photorefractive effect. The propagation of single-mode light beams is analysed numerically for a Ti:Fe:LiNbO3 waveguide fabricated by the successive diffusion of titanium and iron into lithium niobate. It is shown that single-mode light beams with a smooth amplitude envelope can propagate without significant changes in the region of a dip in the intensity modelling a dark soliton. The relations between the amplitude and width of a dark spatial soliton are obtained for the TM modes of a photorefractive planar waveguide.

  2. Characterization of Annealed, Proton Exchange Optical Waveguides in Y-cut MgO∶LiNbO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    CAO Xia; XIA Yuxing; YANG Yi; WANG Pinghe; CHEN Xianfeng

    2000-01-01

    It is reported the results of a systematic study on planar waveguides fabricated in Y-cut MgO∶LiNbO3 crystal. The index profile of the as-exchanged waveguide can be modeled as a step-like one. It is deduced the diffusion coefficient and the activation energy for the proton exchange process. The surface index increases Δne of around 0.127 after proton exchange can be reduced by post thermal annealing. The effects of the annealing on the index profile and guide depth were found not as fast as it does on a pure LiNbO3 crystal.

  3. On Stability of Flat Band Modes in a Rhombic Nonlinear Optical Waveguide Array

    CERN Document Server

    Maimistov, Andrey I

    2016-01-01

    The quasi-one-dimensional rhombic array of the waveguides is considered. In the nonlinear case the system of equations describing coupled waves in the waveguides has the solutions that represent the superposition of the flat band modes. The property of stability of these solutions is considered. It was found that the flat band solution is unstable until the power threshold be attained.

  4. Electromagnetic Wave Propagation in a Quasi-1D Rhombic Linear Optical Waveguide Array

    CERN Document Server

    Maimistov, Andrey I

    2016-01-01

    The quasi-one-dimensional rhombic array of the waveguides is considered. System of equations describing coupled waves in the waveguide in the linear limit is solved exactly. The electric field distribution was found both for the diffractionless (or dispersionless) flat band modes and for the dispersive modes.

  5. Reduction of insertion loss after annealing of silicon oxynitride optical waveguides

    Institute of Scientific and Technical Information of China (English)

    He De-Yan(贺德衍); K.A.Mc-Greer

    2002-01-01

    The insertion losses of silicon oxynitride (SiON) waveguides have been measured in the 1550 nm wavelength region.The waveguide structure consisted of a 2.0μm SiON waveguide core with a refractive index of 1.50, a 0.5μm SiO2 uppercladding and a 5.0μm SiO2 lower cladding with a refractive index of 1.45. It was found that the wavelength-dependentinsertion losses of the waveguide were greatly reduced by annealing, and the loss was decreased more than 5.7 dB/cm at1550 nm after annealing at optimum conditions. The former was attributed to the reduction of the absorption caused by N-H and Si-H vibration modes, and the latter was due to the improvement of the interface roughness and homogeneity in the waveguides after annealing.

  6. Optical switching of electron transport in a waveguide-QED system

    Science.gov (United States)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-10-01

    Electron switching in waveguides coupled to a photon cavity is found to be strongly influenced by the photon energy and polarization. Therefore, the charge dynamics in the system is investigated in two different regimes, for off-resonant and resonant photon fields. In the off-resonant photon field, the photon energy is smaller than the energy spacing between the first two lowest subbands of the waveguide system, the charge splits between the waveguides implementing a √{ NOT }-quantum logic gate action. In the resonant photon field, the charge is totally switched from one waveguide to the other due to the appearance of photon replica states of the first subband in the second subband region instigating a quantum-NOT transition. In addition, the importance of the photon polarization to control the charge motion in the waveguide system is demonstrated. The idea of charge switching in electronic circuits may serve to built quantum bits.

  7. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  8. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  9. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Shinbo, Kazunari, E-mail: kshinbo@eng.niigata-u.ac.j [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Otuki, Shunya; Kanbayashi, Yuichi [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Ohdaira, Yasuo [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Baba, Akira [Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Kato, Keizo; Kaneko, Futao [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Miyadera, Nobuo [Hitachi Chemical Co., Ltd., 48 Wadai, Tsukuba City, Ibaraki 300-4247 (Japan)

    2009-11-30

    In this study, slab and ridge optical waveguides (OWGs) made of fluorinated polyimides were deposited on a quartz crystal microbalance (QCM), and hybrid sensors using OWG spectroscopy and the QCM technique were prepared. Polyvinyl alcohol (PVA) film with CoCl{sub 2} was deposited on the OWGs, and the characteristics of humidity sensing were investigated. A prism coupler was used to enter a He-Ne laser beam ({lambda} = 632.8 nm) to the slab OWG. The output light intensity markedly changed due to chromism of the CoCl{sub 2} as a result of humidity sorption, and this change was dependent on the incident angle of the laser beam to the slab OWG. During the measurement of output light, the QCM frequency was simultaneously monitored. The humidity dependence of the sensor with the slab OWG was also investigated in the range from 15 to 85%. For the sensor with the ridge OWG, white light was entered by butt-coupling, and the characteristics of humidity sensing were investigated by observing the output light spectrum and the QCM frequency.

  10. Integrated optical devices based on sol – gel waveguides using the temperature dependence of the effective refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, S V; Trofimov, N S; Chekhlova, T K [Peoples' Friendship University of Russia, Moscow (Russian Federation)

    2014-07-31

    A possibility of designing optical waveguide devices based on sol – gel SiO{sub 2} – TiO{sub 2} films using the temperature dependence of the effective refractive index is shown. The dependences of the device characteristics on the parameters of the film and opticalsystem elements are analysed. The operation of a temperature recorder and a temperature limiter with a resolution of 0.6 K mm{sup -1} is demonstrated. The film and output-prism parameters are optimised. (fibreoptic and nonlinear-optic devices)

  11. High Speed Signal Wavelength Conversion Using Stimulated Raman Effect in Ultrasmall Silicon-on-Insulator Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    WU Jian-Wei; LUO Feng-Guang; GALLEP Cristiano de Mello

    2008-01-01

    We propose the high speed signal wavelength conversion based on stimulated Raman effect on silicon waveguides.Simulation results of non-return-to-zero(NRZ)pseudorandom bit sequence(27-1 code)at 500-Gb/s rate of conversion in an ultrasmall silicon-on-insulator(SOI)optical wavegnide are presented by co-propagating pump optical field.The most attractive issue is that the inverted converted signal can be obtained at the same wavelength as that of primary signal.In addition,the conversion performances,including extinction ratio(ER)and average peak power of conversion signal,depend strongly on the launching pump intensity.

  12. Three-component hybrid-integrated optical accelerometer based on LiNbO3 photoelastic waveguide

    Institute of Scientific and Technical Information of China (English)

    Donglin Tang; Zheng Liang; Xiaodong Zhang; Shan He; Feng Guo

    2009-01-01

    A novel three-component hybrid-integrated optical accelerometer based on LiNbO3 photoelastic waveguide is presented. The photoelasitcity of LiNbO3 due to three-dimensional stress states is obtained analytically. We analyze the level of sensitivity to cross-axis accelerations which is a very important parameter for three-component accelerometer. Theoretically, the designed three-component hybrid-integrated optical accelerometer has a transverse sensitivity ratio (TSR) of zero. The sensor has a high natural frequency of 3.5 kHz and a linear broad working frequency.

  13. Integrated Optical Switching Matrices Constructed from Digital Optical Switches Based on Polymeric Rib Waveguides

    OpenAIRE

    Hauffe, Ralf

    2002-01-01

    Die Arbeit beschäftigt sich mit dem Design und der Realisierung von photonischen Schaltmatrizen für "Optical Cross Connects", die in optisch transparenten Telekommunikationsnetzen benötigt werden, um eine dynamische Umkonfiguration der Netze bei gleichzeitiger Erhaltung von Bitraten-, Wellenlängen- und Protokoll-Transparenz zu ermöglichen. Insbesondere wurden 4x4 Schaltmatrizen basierend auf polymeren Wellenleiterstrukturen untersucht und deren Nebensprechen minimiert. Das Hauptergebnis diese...

  14. Active Optics in LAMOST

    Institute of Scientific and Technical Information of China (English)

    Ding-Qiang Su; Xiang-Qun Cui

    2004-01-01

    Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here,however, we use this technology to realize the configuration of LAMOST, -a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary;the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.

  15. Hybrid graphene plasmonic waveguide modulators

    Science.gov (United States)

    Ansell, D.; Radko, I. P.; Han, Z.; Rodriguez, F. J.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2015-11-01

    The unique optical and electronic properties of graphene make possible the fabrication of novel optoelectronic devices. One of the most exciting graphene characteristics is the tunability by gating which allows one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with subwavelength field confinement of plasmonic waveguides remains largely unexplored. Here we report fabrication and study of hybrid graphene-plasmonic waveguide modulators. We consider several types of modulators and identify the most promising one for telecom applications. The modulator working at the telecom range is demonstrated, showing a modulation depth of >0.03 dB μm-1 at low gating voltages for an active device area of just 10 μm2, characteristics which are already comparable to those of silicon-based waveguide modulators while retaining the benefit of further device miniaturization. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  16. Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides

    Directory of Open Access Journals (Sweden)

    Kangwen Li

    2013-06-01

    Full Text Available A highly tunable terahertz (THz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides is proposed and demonstrated numerically by means of the Finite Element Method. The results reveal that a sharp peak with high Q-value presents in the band gap of Bragg grating waveguide with a defect, and the position of the sharp peak can be modified greatly by changing the intensity of the transverse magnetic field applied to the device. Compared to the situation without magnetic field applied, the shift of the filtered frequency (wavelength reaches up to 36.1 GHz (11.4 μm when 1 T magnetic field is applied. In addition, a simple model to predict the filtered frequency and an effective way to improve the Q-value of the filter are proposed by this paper.

  17. High-speed electro-optic switch using buried electrode structure in polymer Mach-Zehnder waveguide

    Science.gov (United States)

    Sun, Jingwen; Sun, Jian; Yi, Yunji; Qv, Lucheng; Sun, Shiqi; Wang, Fei; Wang, Xibin; Zhang, Daming

    2016-02-01

    A low-cost and high-speed electro-optic (EO) switch using the guest-host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach-Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.

  18. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.

    Science.gov (United States)

    Wang, Xin; Madsen, Christi K

    2014-11-01

    Based on arsenic tri-sulfide films on titanium-diffused lithium niobate, we designed a hybrid optical waveguide for efficient mid-infrared emission by phase-matched difference frequency generation (DFG). The hybrid waveguide structure possesses a low-index magnesium fluoride buffer layer sandwiched between two high-index As(2)S(3) slabs, so that pump and signal waves are tightly confined by titanium-diffused waveguide while the DFG output idler wave at mid-infrared is confined by the whole hybrid waveguide structure. On a 1 mm-long hybrid waveguide pumped at 50 mW powers, a normalized power conversion efficiency of 20.52%W(-1)cm(-2) was theoretically predicted, which is the highest record for mid-infrared DFG waveguides based on lithium niobate crystal, to the best of our knowledge. Using a tunable near-infrared pump laser at 1.38-1.47 µm or a tunable signal laser at 1.95-2.15 µm, a broad mid-infrared tuning range from 4.0 µm to 4.9 µm can be achieved. Such hybrid optical waveguides are feasible for mid-infrared emission with mW powers and sub-nanometer linewidths.

  19. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    Science.gov (United States)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  20. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei;

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  1. Low-repetition rate femtosecond laser writing of optical waveguides in water-white glass slides.

    Science.gov (United States)

    Lazcano, H E; Vázquez, G V

    2016-04-20

    Energy dose ranges for fabrication of subsurface and ablated ridge waveguides were defined using a low repetition rate femtosecond laser. The waveguides were written along the width of water-white glass slides. The buried waveguides written between 0.23 and 0.62  μJ/μm3 energy dose show strong guidance at 633 nm, reaching in the best cases propagation losses of 0.7 dB/cm. Meanwhile, the ridge waveguides were fabricated between 2.04 and 31.9  μJ/μm3, with a best case of 3.1 dB/cm. Outcomes of this study are promising for use in the manufacturing of sensing devices.

  2. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  3. Improved design of a polarization converter based on semiconductor optical waveguide bends.

    Science.gov (United States)

    Obayya, S S; Rahman, B M; Grattan, K T; El-Mikati, H A

    2001-10-20

    By using an efficient vector finite-element-based beam-propagation method, we present an improved design of a polarization converter. This design relies on the use of a single-section deeply etched bent semiconductor waveguide with slanted sidewalls. By careful adjustment of the bend radius, the waveguide width, and the sidewall angle we obtained a nearly 100% polarization conversion ratio with no appreciable radiation loss and a bending angle of less than 180 degrees . PMID:18364819

  4. Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides

    OpenAIRE

    Liu, Lewis Z.; O'Keeffe, Kevin; Hooker, Simon M.

    2013-01-01

    A scheme for quasi-phase-matching high-harmonic generation is proposed in which polarization beating within a hollow core birefringent waveguide modulates the generation of harmonics. The evolution of the polarization of a laser pulse propagating in a birefringent waveguide is calculated and is shown to periodically modulate the harmonic generation process. The optimum conditions for achieving quasi-phase-matching using this scheme are explored and the growth of the harmonic intensity as a fu...

  5. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    Science.gov (United States)

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  6. M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N{sup +} ion irradiation for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Berneschi, S. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Fried, M.; Lohner, T. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Conti, G. Nunzi; Righini, G.C.; Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Zolnai, Z. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary)

    2013-08-31

    Irradiation with N{sup +} ions of the 1.5–3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten–tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi{sub 4}Ge{sub 3}O{sub 12} (eulytine) and Bi{sub 12}GeO{sub 20} (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten–tellurite glass using irradiation with N{sup +} ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N{sup +} ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm. - Highlights: ► Waveguides were fabricated in glass and crystals using MeV energy N{sup +} ions. ► SRIM simulation and spectroscopic ellipsometry yielded similar waveguide structures. ► Multi-wavelength m-line spectroscopy was used to study the waveguides. ► Waveguides fabricated in an Er-doped tungsten–tellurite glass worked up to 1.5 μm. ► Waveguides in Bi{sub 12}GeO{sub 20} remained operative up to 1.5 μm.

  7. Effect of optical waveguiding mechanism on the lasing action of chirped InAs/AlGaInAs/InP quantum dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-03-04

    We report on the atypical emission dynamics of InAs/AlGaInAs/InP quantum dash (Qdash) lasers employing varying AlGaInAs barrier thickness (multilayer-chirped structure). The analysis is carried out via fabry-perot (FP) ridge (RW) and stripe waveguide (SW) laser characterization corresponding to the index and gain guided waveguiding mechanisms, respectively, and at different current pulse width operations. The laser emissions are found to emerge from the size dispersion of the Qdash ensembles across the four Qdash-barrier stacks, and governed by their overlapping quasi-zero dimensional density of states (DOS). The spectral characteristics demonstrated prominent dependence on the waveguiding mechanism at quasi-continuous wave (QCW) operation (long pulse width). The RW geometry showed unusual spectral split in the emission spectra on increasing current injection while the SW geometry showed typical broadening of lasing spectra. These effects were attributed to the highly inhomogeneous active region, the nonequilibrium carrier distribution and the energy exchange between Qdash groups across the Qdash-barrier stacks. Furthermore, QCW operation showed a progressive red shift of emission spectra with injection current, resulted from active region heating and carrier depopulation, which was observed to be minimal in the short pulse width (SPW) operation. Our investigation sheds light on the device physics of chirped Qdash laser structure and provides guidelines for further optimization in obtaining broad-gain laser diodes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  8. Hybrid grapheme plasmonic waveguide modulators

    Science.gov (United States)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  9. Low-loss polymer optical waveguides with graded-index perfect circular cores for on-board interconnection

    Science.gov (United States)

    Saito, Yuki; Fukagata, Koji; Ishigure, Takaaki

    2016-02-01

    Using the Mosquito method, we fabricate low-loss multimode polymer optical waveguides with graded-index (GI) perfect circular cores for the applications to on-board optical interconnection. We already developed the Mosquito method utilizing a microdispenser, as a fabrication technique for GI circular core polymer waveguides. In the Mosquito method, a liquid-state core monomer is dispensed from a syringe needle into a liquid-state cladding monomer while the needle horizontally scans. Originally we used siloxane based monomers. In this paper, novel organic-inorganic hybrid materials (SUNCONNECT®) are selected to confirm the applicability of wide-range polymers to the Mosquito method. Here, a dip is observed on the upper perimeter of the obtained core cross-sections particularly when using a straight needle. Such a core-shape deformation increases the coupling loss with circular-core optical fibers. So, the flow of core and cladding monomers while dispensing the core with the needle scan is visually observed. It is confirmed that the edge of the straight needle chips off the upper perimeter of the core when the core monomer is dispensed, leading to the dip. Therefore, the straight needle is replaced for a curved one to change the dispensing direction for eliminating the dip. It is experimentally found that an almost circular core (50-μm diameter with 1.09 vertical to horizontal ratio of diameter) is formed when a curved needle is used. Finally, we successfully demonstrate a 1.73-dB lower loss in a 5-cm long waveguide compared to the one having the core with a dip.

  10. Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems

    International Nuclear Information System (INIS)

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We have investigated the electro-optical resonant switching in two-dimensional photonic crystal structures. The optical microcavity side coupled with a waveguide composed of a dielectric cylinder in air is studied by solving Maxwell's equations using the plane wave expansion method and finite-difference time-domain method. The switching mechanism is a change in the conductance of the microcavity and hence modulating the resonant mode and eventually resonant switching is achieved. Such a mechanism of switching should open up a new application for designing components in photonic integrated circuits. -- Highlights: → We report the electro-optical resonant switching in 2-D photonic crystal structures. → The defect modes are made by reducing the radius of a single rod in the microcavity. → The switching mechanism is a change in the conductance of the microcavity.

  11. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, M.B.J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D.N.; Leinse, A.; Sidorin, Y.; Waechter, C.A.

    2006-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which

  12. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    Science.gov (United States)

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-01

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  13. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Adanyi, Nora [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)]. E-mail: n.adanyi@cfri.hu; Nemeth, Edina [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Halasz, Anna [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Szendro, Istvan [MicroVacuum Ltd., H-1147 Budapest, Kerekgyarto u. 10 (Hungary); Varadi, Maria [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method.

  14. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    International Nuclear Information System (INIS)

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method

  15. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires.

    Science.gov (United States)

    Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H

    2016-06-27

    We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed. PMID:27410555

  16. A Silicon-on-Insulator-Based Thermo-Optic Waveguide Switch with Low Insertion Loss and Fast Response

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Ping; YU Jin-Zhong; CHEN Shao-Wu

    2005-01-01

    @@ A silicon-on-insulator-based thermo-optic waveguide switch integrated with spot size converters is designed and fabricated by inductively coupled plasma reactive ion etching. The device shows good characteristics, including low insertion loss of 8 ± 1 dB for wavelength 1530-1580nm and fast response times of 4.6 μs for rising edge and 1.9μs for falling edge. The extinction ratios of the two channels are 19.1 and 18 dB, respectively.

  17. Two-dimensional complex source point solutions: application to propagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices.

    Science.gov (United States)

    Sheppard, Colin J R; Kou, Shan S; Lin, Jiao

    2014-12-01

    Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes. PMID:25606756

  18. On-chip positionable photonic waveguides for chip-to-chip optical interconnects

    Science.gov (United States)

    Peters, Tjitte-Jelte; Tichem, Marcel

    2016-05-01

    This paper reports on the progress related to a multichannel photonic alignment concept, aiming for sub-micrometer precision in the alignment of the waveguides of two photonic integrated circuits (PICs). The concept consists of two steps: chip-to-chip positioning and chip bonding provide a coarse alignment after which waveguide-to-waveguide positioning and fixing result in a fine alignment. For the waveguide-to-waveguide alignment, an alignment functionality is developed and integrated in one of the PICs, consisting of mechanically flexible waveguides and MEMS actuators. This paper reports on the fabrication and characterization of a mechanically flexible waveguide array that can be positioned by two out-of-plane actuators. Thermal actuators are integrated with mechanically flexible waveguide beams to enable positioning them with high precision. By adding a poly-Si pattern on top of SiO2 beams, an out-of-plane bimorph actuator can be realized. An analytical model enables estimating the curvature and the deflection of a single bimorph beam. Acquiring a small initial deflection while having a large motion range of the actuator proves to have conflicting demands on the poly-Si/SiO2 thickness ratio. In this paper, we show that suspended waveguide arrays with integrated alignment functionality have an initial deflection- they curl up- due to residual stress in the materials. The actuators can be operated using a driving voltage between 0V to 45V, corresponding to ~50mW. Using higher voltages brings the risk of permanently changing the material properties of the heaters. The actuators can accomplish an out-of-plane crossbar translation up to 6.5 μm at ~50mW as well as a rotation around the propagation direction of the light ranging from -0:1° to 0.1°. At a constant actuation power of ~50mW, the crossbar shows a drift in vertical deflection of 0.16 μm over a time of 30 min.

  19. An optoelectronic circuit with a light source, an optical waveguide and a sensor all on silicon: Results and analysis of a novel system

    Science.gov (United States)

    Alarcón-Salazar, J.; Zaldívar-Huerta, I. E.; Aceves-Mijares, M.

    2016-10-01

    A full analysis of an optoelectronic circuit on silicon composed by a light emitter, an optical waveguide and a photodetector is achieved. The light emitter is based on silicon rich oxide multilayers. The multilayer structure exhibits an electroluminescence spectra from 400 nm to 800 nm. Light emitter and optical waveguide are located next to each other in a novel topology that allows the direct impact of the photons to the depletion layer of the sensor, increasing the efficiency. An optical rib-type waveguide and multi-modal, using Si3N4 and SiO2 as core and cladding materials, is considered to propagate the light from the light emitter to the sensor. Analysis of the waveguide reveals that the optimal height is 1.25 μm, when a width of 5 μm and a fractional height of 0.8 are used. A relative transmittance of the optical waveguide shows that the propagated light maintains the wide spectrum. A planar diode is used as photodetector. The proposal-integrated structure shows that light impinges directly on the depleted zone, improving detection and performance of the diode. Finally, a description of the novel optoelectronic circuit is addressed.

  20. Waveguide invariant active sonar target detection and depth classification in shallow water

    Science.gov (United States)

    Goldhahn, Ryan A.

    Reverberation and clutter are two of the principle obstacles to active sonar target detection in shallow water. Diffuse seabed backscatter can obscure low energy target returns, while clutter discretes, specific features of the sea floor, produce temporally compact returns which may be mistaken for targets of interest. Detecting weak targets in the presence of reverberation and discriminating water column targets from bottom clutter are thus critical to good performance in active sonar. Both problems are addressed in this thesis using the time-frequency interference pattern described by a constant known as the waveguide invariant which summarizes in a scalar parameter the dispersive properties of the ocean environment. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading in a wideband pulse caused by multipath propagation. An alternative to conventional reverberation estimation is presented, motivated by striations observed in time-frequency analysis of active sonar data. A mathematical model for these reverberation striations is derived using waveguide invariant theory. This model is then used to motivate waveguide invariant reverberation estimation which involves averaging the time-frequency spectrum along these striations. An evaluation of this reverberation estimate using real Mediterranean data is given and its use in a generalized likelihood ratio test (GLRT) based CFAR detector is demonstrated. CFAR detection using waveguide invariant reverberation estimates is shown to out-perform conventional cell-averaged and frequency-invariant CFAR detection methods in shallow water environments producing strong reverberation returns which exhibit the described striations. Results are presented on simulated and real Mediterranean data from the SCARAB98 experiment. The ability to discriminate between water column targets and clutter discretes is

  1. Optical waveguide formed in Yb:GdCOB and Yb:YCOB crystals by 3.0MeV O{sup +} implantation

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang, E-mail: sdujy@163.com [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)

    2013-07-15

    Planar optical waveguides were formed in Yb:GdCOB and Yb:YCOB crystals by 3.0 MeV O{sup +} ion implantation at fluence of 2 × 10{sup 15} ions/cm{sup 2} at room temperature, respectively. The prism coupling method was performed to characterize the dark-mode property of the waveguides. The refractive index profiles in the waveguides were reconstructed by reflectivity calculation method (RCM). The results show that after the implantation, a 1.5 μm-wide region with enhanced refractive-index was formed beneath the sample surfaces to act as waveguide structures for both Yb:GdCOB and Yb:YCOB.

  2. Planar optical waveguides formed in β-BBO by MeV O+ implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Xuelin; WANG Keming; CHEN Feng; LU Qingming; MA Hongji; NIE Rui

    2007-01-01

    The planar waveguides have been fabricated in z-cutβ-B2O4 crystal by 2.8 MeV O+ion implantation with the doses of 8×1014 and 2×1015ions/cm2 at room temperature.The waveguides were characterized by the prismcoupling method.The dark modes are measured before and after the annealing at 300℃ for 20 and 40 min in air.The refractive index profile is reconstructed Using the reflectivity calculation method.It is found that relatively 1arge positive changes of extraordinary refractive indices happen in the guiding regions,and a slight change increases with the doses,which are different from most of the observed ion-implanted waveguides.

  3. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  4. Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao; LIU Dan; PAN Anlian; FANG Zheyu; HUANG Shan; ZHU Xing

    2009-01-01

    The optical waveguide behaviors of CdS and CdSxSe1-x nanostructures are studied using near-field optical microscopy. Optical measurements demonstrate that light may be guided on sub-wavelength scales along CdS nanoribbons in straight or bent structures. The photoluminescence (PL) spectra from nanoribbon emission using scanning near-field optical microscopy are analyzed under different inci-dent laser intensities. The PL spectra along Se-doped and undoped CdS nanoribbons at different propagation distances are investigated. Both the guided PL spectra of Se-doped and undoped CdS nanoribbons show red-shifts because of the band-edge absorption. Our results are useful for the de-velopment of new kinds of functional nano devices.

  5. Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber

    Institute of Scientific and Technical Information of China (English)

    Jian Fu; Xiang Yin; Ningyuan Li; Limin Tong

    2008-01-01

    We propose a two-color scheme of atom waveguides and one-dimensional(1D)optical lattices using evanescent wave fields of different transverse modes around an optical micro/nano-fiber.The atom guide potential can be produced when the optical fiber carries a red-detuned light with TE01 mode and a blue-detuned light with HE11 mode,and the 1D optical lattice potential can be produced when the red-detuned light is transformed to the superposition of the TE01 mode and HE11 mode.The two trapping potentials can be transformed to each other for accurately controlling mode transformation for the red-detuned light.This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.

  6. Microfabrication with femtosecond laser processing : (A) laser ablation of ferrous alloys, (B) direct-write embedded optical waveguides and integrated optics in bulk glasses.

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junpeng; McDaniel, Karen Lynn; Palmer, Jeremy Andrew; Yang, Pin; Griffith, Michelle Lynn; Vawter, Gregory Allen; Harris, Marc F.; Tallant, David Robert; Luk, Ting Shan; Burns, George Robert

    2004-11-01

    At Sandia National Laboratories, miniaturization dominates future hardware designs, and technologies that address the manufacture of micro-scale to nano-scale features are in demand. Currently, Sandia is developing technologies such as photolithography/etching (e.g. silicon MEMS), LIGA, micro-electro-discharge machining (micro-EDM), and focused ion beam (FIB) machining to fulfill some of the component design requirements. Some processes are more encompassing than others, but each process has its niche, where all performance characteristics cannot be met by one technology. For example, micro-EDM creates highly accurate micro-scale features but the choice of materials is limited to conductive materials. With silicon-based MEMS technology, highly accurate nano-scale integrated devices are fabricated but the mechanical performance may not meet the requirements. Femtosecond laser processing has the potential to fulfill a broad range of design demands, both in terms of feature resolution and material choices, thereby improving fabrication of micro-components. One of the unique features of femtosecond lasers is the ability to ablate nearly all materials with little heat transfer, and therefore melting or damage, to the surrounding material, resulting in highly accurate micro-scale features. Another unique aspect to femtosecond radiation is the ability to create localized structural changes thought nonlinear absorption processes. By scanning the focal point within transparent material, we can create three-dimensional waveguides for biological sensors and optical components. In this report, we utilized the special characteristics of femtosecond laser processing for microfabrication. Special emphasis was placed on the laser-material interactions to gain a science-based understanding of the process and to determine the process parameter space for laser processing of metals and glasses. Two areas were investigated, including laser ablation of ferrous alloys and direct

  7. Infrared nanoantenna couplers for plasmonic slot waveguide

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    A slot plasmonic waveguide is promising solution as a replacement of electrical interconnects in the future optical integrated circuits. In this contribution we consider a set of compact solutions for coupling the infrared light from free space to the plasmonic slot waveguide. We systematically...... study various designs: dipole antennas outside the waveguide, antennas inside the waveguide and bow-tie antennas in the slots....

  8. Effect of D2 outdiffusion on direct writing of optical waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    1999-01-01

    It is shown that the performance of UV written waveguides can be influenced strongly by the outdiffusion of molecular deuterium during fabrication. By cooling the sample to -33 °C, the time available for UV writing may be increased to > 10 h, compared to ~15 min at room temperature....

  9. Giant optical gain in a rare-earth-ion-doped waveguide

    NARCIS (Netherlands)

    Geskus, Dimitri; Aravazhi, Shanmugam; Garcia Blanco, Sonia M.; Pollnau, Markus

    2011-01-01

    By exploiting large transition cross-sections, high dopant concentration, and strong light confinement, a gain of 950 dB/cm is demonstrated in a large-refractive-index-contrast KGdxLu1-x(WO4)2:Yb3+ channel waveguide, representing a two-orders-of-magnitude improvement over previous results in rare-ea

  10. Giant optical gain in rare-earth-ion-doped thin films and waveguides

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; Garcia Blanco, S.M.; Pollnau, M.

    2011-01-01

    In a rare-earth-ion-doped double tungstate channel waveguide amplifier, we demonstrate an ultra-high modal gain of 950 dB/cm, two order of magnitude higher than in other rare-earth-ion-doped materials and comparable to modal gain in semiconductors.

  11. High-power single-transverse-mode ridge optical waveguide semiconductor lasers

    NARCIS (Netherlands)

    Popovichev, VV; Davydova, EI; Marmalyuk, AA; Simakov, A; Uspenskii, MB; Chel'nyi, AA; Bogatov, AP; Drakin, AE; Plisyuk, SA; Sratonnikov, AA

    2002-01-01

    More than 200 mW of a single-transverse-mode cw output power is obtained from a semiconductor heterolaser by optimising the waveguide properties of its ridge structure. e laser-beam divergence is close to the diffraction limit and its brightness exceeds 5 x 10(7) W cm(-2) sr(-1). The calculated and

  12. Mechano-optical switching in a mems integrated photonic crystal slab waveguide

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Kauppinen, L.J.; Dijkstra, M.A.; Berenschot, J.W.; Boer, de M.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2011-01-01

    A photonic crystal slab waveguide (PhC-WG) with an integrated MEMS bimorph cantilever actuator has been successfully fabricated using deep UV lithography and surface micromaching techniques. The cantilever is equipped with tips that are self-aligned with respect to the holes of the PhC-WG such that

  13. Strongly asymmetric waveguide laser diodes for high brightness picosecond optical pulses generation by gain switching at GHz repetition rates

    International Nuclear Information System (INIS)

    Rate equations analysis, supported by travelling wave simulations, is used to show that a diode laser design with a very low (<1%) confinement factor is optimal for generating streams of high energy optical pulses for nonlinear applications by large-signal modulation with both existing and potentially improved ac current generators. An asymmetric waveguide laser design is proposed to realize this low confinement factor while simultaneously maintaining good beam properties in a single transverse mode. The rate equations model complemented by transport equations is used to quantify the effects of transport in the broad optical confinement layer(s) on the laser dynamics, and it is shown that in the proposed laser construction the detrimental effects of transport are weak. (paper)

  14. The effect of different background beams on the optical rogue waves generated in a graded-index waveguide

    Science.gov (United States)

    Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2016-04-01

    We analytically explore optical rogue waves in a nonlinear graded-index waveguide, with spatially modulated dispersion, nonlinearity, and linear refractive-index. We study the evolution of first-order rogue wave and rogue wave triplet on Airy-Bessel, sech2, and tanh background beams, and reveal that the characteristics of RWs are well maintained while the amplitude of the first-order RW gets enhanced three times the maximum value of the Airy-Bessel and sech2 background beams and five times in the case of RW triplet. These results could be of great interest in realizing the RWs in experimentally realizable situations on small-amplitude background beams in nonlinear optics.

  15. Modulation Depth Based on Frequency-shift Characteristic of LiNbO3 Waveguide Electro-optic Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    Hui-juan ZHOU; Zhou MENG; Yi LIAO

    2010-01-01

    The modulation depth,defined according to practical mod-ulation results,which changes with the microwave power and its fre-quency,is significant for systems utilizing the frequency-shift charac-teristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM).By analyzing the impedance mismatch between the micro-wave source and the EOIM,the effective voltage applied to the RF port of the EOIM is deprived frcm the microwave power and its fre-quency.Associating with analyses of the phase velocity mismatch be-tween the microwave and the optical wave,the theoretical modulation depth has been obtained,which is verified by experimental results.We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias far the system based an the frequency-shift characteristic of the EOIM.

  16. Electric field sensor based on electro-optic polymer refilled silicon slot photonic crystal waveguide coupled with bowtie antenna

    CERN Document Server

    Zhang, Xingyu; Xu, Xiaochuan; Wang, Shiyi; Zhan, Qiwen; Zou, Yi; Chakravarty, Swapnajit; Chen, Ray T

    2014-01-01

    We present the design of a compact and highly sensitive electric field sensor based on a bowtie antenna-coupled slot photonic crystal waveguide (PCW). An electro-optic (EO) polymer with a large EO coefficient, r33=100pm/V, is used to refill the PCW slot and air holes. Bowtie-shaped electrodes are used as both poling electrodes and as receiving antenna. The slow-light effect in the PCW is used to increase the effective in-device r33>1000pm/V. The slot PCW is designed for low-dispersion slow light propagation, maximum poling efficiency as well as optical mode confinement inside the EO polymer. The antenna is designed for operation at 10GHz.

  17. Self-organization of coupling optical waveguides by the "pulling water" effect of write beam reflections in photo-induced refractive-index increase media

    Science.gov (United States)

    Yoshimura, Tetsuzo; Kaburagi, Hiroshi

    2009-02-01

    To reduce efforts for optical assembly, we developed the reflective self-organized lightwave network (R-SOLNET). In R-SOLNET, optical devices with wavelength filters on their core facets are distributed in photo-induced refractive-index increase (PRI) media such as photo-polymers. Write beams from some devices and reflected write beams from the wavelength filters of the other devices overlap. In the overlap regions, the refractive index increases, pulling the write beams to the wavelength filter locations (the "pulling water" effect). By self-focusing, self-aligned optical waveguide networks are formed between the optical devices. Simulations based on the finite difference time domain method revealed that self-aligned optical waveguides of R-SOLNET are formed between cores with 2-μm and 0.5-μm widths including Y-branching waveguides. Experiments demonstrated that R-SOLNET is formed between an optical fiber and a micro-mirror placed with ~800-μm gap. For angular misalignment of 3o between the optical fiber and the micro-mirror, a bow-shaped R-SOLNET was observed. For lateral misalignment of 30 μm, an S-shaped R-SOLNET was observed. These results suggest that by placing reflective elements in PRI media, optical waveguides can be lead to the elements to form R-SOLNET. This enables self-aligned optical couplings for optoelectronic boards, intra-chip optical circuits, VCSELs/PDs, optical switches, and so on.

  18. Optically Active Organic Microrings

    DEFF Research Database (Denmark)

    Balzer, Frank; Beermann, J.; Bozhevolnyi, S.I.;

    2003-01-01

    -hexaphenyl molecules are generated on mica surfaces, possessing narrow size distributions with mean diameters of a few micrometers, wall widths of 100 to 200 nm, and wall heights of several hundred nanometers. Polarized linear and nonlinear optics reveals that the rings are made up of radially o...

  19. Optical Design and Active Optics Methods in Astronomy

    OpenAIRE

    Lemaitre, Gerard R.

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deforma...

  20. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    Science.gov (United States)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  1. Optical properties of organic films, multilayers and plasmonic metal-organic waveguides fabricated by organic molecular beam deposition

    Science.gov (United States)

    Wickremasinghe, Niranjala D.

    In this thesis, the optical properties of tris (8-hydroxyquinoline) aluminum (Alq3) and 3,5,9,10-perylentetracarboxylic dianhydride (PTCDA) organic films, PTCDA/ Alq3 multilayers and plasmonic Alq3 -metal waveguides are investigated. The organic films and heterostructures used for this work were fabricated by organic molecular beam deposition (OMBD). We investigated the quenching of the light emission in Alq3 films grown on a Si substrate as a function of cw laser excitation intensity at varying temperatures from 15 to 300 K. The saturation of the singlet-singlet annihilation coefficient was measured with spectrally-integrated (SI) photoluminescence (PL) using a photodiode. The bimolecular quenching coefficient was further studied with time-resolved (TR) PL as a function of 100 fs pulse fluences. The PL quenching is attributed to the annihilation of trapped excitons at Alq3 nanocrystal grain boundaries. The saturation is explained by the limited density of available trapping states at the grain boundaries. Our interpretation is supported by structural investigations of ultrathin Alq3 films with atomic force microscopy (AFM), scanning electron microscopy (SEM) and by comparing the experimental data with calculations using a coupled rate equation model. The wavelength dispersion of the refractive indices of PTCDA and Alq 3 layers and of PTCDA/Alq3 multilayer waveguides grown on Pyrex substrates was investigated. The m-line technique, an evanescent prism coupling technique, was used to determine the layers' thickness and the in-plane (TE modes) and normal (TM modes) refractive indices. The potential for controlling the refractive index dispersion and anisotropy by tailored organic multilayer waveguides is discussed.

  2. A note on ultra-short pulses compression in silicon optical waveguides under fourth-order dispersion

    Science.gov (United States)

    Mandeng Mandeng, L.; Fewo Ibraid, S.; Tchawoua, C.; Kofané, T. C.

    2014-08-01

    We present an overview of the pulse compression phenomenon obtained during the propagation of ultra-short pulses in common used optical waveguides. In the case of the silicon-on-insulator (SOI) waveguides, using the modified and realistic variational approach (MVA) that involves the Rayleigh's dissipation function (RDF), we conduct the analysis of the compression mechanism on different input profiles. This study allows to show the effects of fourth-order dispersion (FOD), the nonlinear coefficients of absorption (nonlinear absorption) and the chirp, not only on symmetric and compact pulses but also on those with asymmetric profile as the Airy pulses. Indeed, considering the case of linear compression, the conditions of their occurrence are obtained. A relation between the FOD, the group-velocity dispersion (GVD) and the chirp is proposed in this way. In the nonlinear case, using the symmetric profiles as input pulses, we demonstrate a periodic compression induced by the interplay between the self-phase modulation (SPM) and the FOD. This appears as a new mode to generate the pulse compression phenomenon. Then, we show that when large values of the initial chirp and absorption coefficients as the two-photon absorption (TPA) present in these waveguides are considered, the compression mechanism is completely destroyed with at least the observation of one pulse amplification over a short distance of propagation before the pulse broadening. Finally, the study relating to the Airy pulses, leads rather to the reduction of the compression length induced by the SPM, the TPA and the free-carrier absorption (FCA) showing the pulse asymmetry influence.

  3. Active Faraday optical frequency standards

    CERN Document Server

    Zhuang, Wei

    2014-01-01

    We propose the mechanism of active Faraday optical clock, and experimentally demonstrate active Faraday optical frequency standards based on 852 nm narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standards is determined by the cesium 6 $^{2}S_{1/2}$ $F$ = 4 to 6 $^{2}P_{3/2}$ $F'$ = 4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 996(26) Hz, which is 5.3 $\\times$ 10$^{3}$ times smaller than the natural linewidth of the cesium 852 nm transition line. The maximum emitted light power reaches 75 $\\upmu$W. The active Faraday optical frequency standards reported here have advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for...

  4. Focused ion beam nano-structuring of photonic Bragg gratings in $Al_2O_3$ waveguides

    NARCIS (Netherlands)

    Uranga, Amaia; Ay, Feridun; Bradley, Jonathan D.B.; Ridder, de René M.; Wörhoff, Kerstin; Pollnau, Markus; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaart, P.; Leijtens, X.

    2007-01-01

    Focused ion beam (FIB) etching is receiving increasing attention for the fabrication of active integrated optical components such as waveguide amplifiers and lasers. Si-technology compatible low-loss $Al_2O_3$ channel waveguides grown on thermally oxidized silicon substrates have been reported recen

  5. Experimental Study on Near-IR Nonlinear Optical Waveguide Sensor for Refractive Index of Liquids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-rong; WANG Dong; CAO Chang-xiu; ZHUANG Ling

    2007-01-01

    To determine the refractive index of liquids in near infrared(IR),a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide.The system configuration and the principle of the method are analyzed and some experimental results are given out.Both the experimental result and simulation show that this method is simple,rapid and of sufficient precision.

  6. Wavelength-dependent optical gain in a $KGd_xLu_{1-x}(WO_4)_2:Yb^{3+}$ waveguide amplifier

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; Garcia Blanco, S.M.; Pollnau, M.

    2011-01-01

    The gain of $KGd_{0.447}Lu_{0.078}Yb_{0.475}(WO_4)_2$ waveguide optical amplifiers in the wavelength range from 980 nm to 1023 nm is reported. Values above 150 dB/cm were obtained with peak gain of 935 dB/cm at 981 nm.

  7. High Power 940 nm Al-free Active Region Laser Diodes and Bars with a Broad Waveguide

    Institute of Scientific and Technical Information of China (English)

    FANG Gaozhan; XIAO Jianwei; MA Xiaoyu; XU Zuntu; ZHANG Jinming; TAN Manqing; LIU Zongshun; LIU Suping; FENG Xiaoming

    2002-01-01

    The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 μm broad-area laser diodes has been measured, and is 2.5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1.7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19% fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.

  8. Optical Design and Active Optics Methods in Astronomy

    CERN Document Server

    Lemaitre, Gerard R

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis. Keywords: active optics, optical design, elasticity theory, astronomical optics, diffractive optics, X-ray optics

  9. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide.

    Science.gov (United States)

    Xiong, Yan; Wang, Cheng-Jie; Tao, Tao; Duan, Ming; Fang, Shen-Wen; Zheng, Min

    2016-05-01

    A microfluidic-capillary-waveguide-coupled fiber-optic sensor was developed for colorimetric determination of hazardous nitrite based on the Griess-Ilosvay reaction. The sensor was modularly designed by use of a light-emitting diode as the light source, silica fiber as the light transmission element, and a capillary waveguide tube as the light reaction flow cell. With the light interacting with the azo dye generated by the Griess-Ilosvay reaction between nitrite and Griess reagents, nitrite could be determined by a colorimetric method according to Beer's law. By use of the inexpensive and micro-sized elements mentioned above, the sensor provided a new low-cost and portable method for in situ and online measurement of nitrite. The sensor had a wide linear range for nitrite from 0.02 to 1.8 mg L(-1) and a low detection limit of 7 μg L(-1) (3σ), with a relative standard deviation of 0.37% (n = 10). With a low reagent demand of 200 μL, a short response time of 6.24 s, and excellent selectivity, the sensor is environmentally friendly and has been applied to nitrite determination in different water samples. The results were compared with those obtained by conventional spectrophotometry and ion chromatography, indicating the sensor's potential for practical applications. PMID:26939671

  10. Electrooptical and optical evaluation of Pb(Zr,Ti)O{sub 3} thin films using waveguide refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Potter, B.G. Jr.; Sinclair, M.B.; Dimos, D.; Tuttle, B.A.; Schwartz, R.W.

    1993-12-31

    Prism-coupled, waveguide refractometry was utilized to independently monitor electric field-induced changes in the extraordinary and ordinary refractive indices of a Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}(PZT 53/47) thin film. Under an electric field, applied normal to the film plane and corresponding to saturation of the electric polarization, ratio of the extraordinary to ordinary refractive index change ({Delta}n{sub e}/{Delta}n{sub o}) is found to be {minus}4/1, contributing to a net birefringence change ({Delta}n{sub e}-n{sub o}) of {minus}0.021. The technique, thus, accesses both diagonal and off-diagonal elements of the electrooptic response tensor describing the macroscopic behavior of the polycrystalline film. In addition, the widths of waveguide mode reflectivity minima were sensitive to variation in the microstructure of several PZT (40/60) films, indicating that the refractometry technique can provide information helpful in evaluating optical quality in these films.

  11. Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide.

    Science.gov (United States)

    Huang, Qingzhong; Jie, Kun; Liu, Qiang; Huang, Ying; Wang, Yi; Xia, Jinsong

    2016-09-01

    In this paper, ultra-compact, broadband tunable optical bandstop filters (OBSFs) based on a multimode one-dimensional photonic crystal waveguide (PhCW) are proposed and systematically investigated. For the wavelengths in the mini-stopband, the input mode is coupled to a contra-propagating higher order mode by the PhCW and then radiates in a taper, resulting in a stopband at the output with low backreflection at the input. Three-dimensional finite-difference time-domain method is employed to study the OBSFs. The influence of main structural parameters is analyzed, and the design is optimized to reduce the back-reflection and band sidelobes. Using localized heating, we can shift the stopband and tune the bandwidth continuously by cascading the proposed structures. Due to the strong grating strength, our device provides a more compact footprint (40 μm × 1 μm) and much broader stopband (bandwidth of up to 84 nm), compared to the counterparts based on microrings, long-period waveguide gratings, and multimode two-dimensional PhCWs. PMID:27607658

  12. Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er3+ or Nd3+ ions dopants

    CERN Document Server

    Cardin, Julien; Dufour, Christian; Gourbilleau, Fabrice

    2015-01-01

    A comparative study of the gain achievement is performed in a waveguide optical amplifier whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd 3+) or erbium ions (Er 3+). Due to the large difference between population levels characteristic times (ms) and finite-difference time step (10 --17 s), the conventional auxiliary differential equation and finite-difference time-domain (ADE-FDTD) method is not appropriate to treat such systems. Consequently, a new two loops algorithm based on ADE-FDTD method is presented in order to model this waveguide optical amplifier. We investigate the steady states regime of both rare earth ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 10 4 mW.mm-2. Furthermore, the three dimensional distribution of achievable gain per unit length has been estimated in this pumping range. The Nd 3+ doped waveguide shows a higher gross...

  13. Buried planar and channel waveguides in sapphire and Ti:sapphire by proton implantation

    NARCIS (Netherlands)

    Laversenne, Laetitia; Hoffmann, Patrik; Pollnau, Markus; Moretti, Paul

    2004-01-01

    Buried, stacked planar, and channel waveguides fabricated by proton implantation into sapphire are demonstrated for the first time. The good control of implantation parameters is promising to achieve active integrated optics devices Ti3+:sapphire.

  14. BRIEF COMMUNICATIONS: Influence of γ irradiation on the temperature dependence of the optical losses in quartz glass-polymer fiber waveguides

    Science.gov (United States)

    Andreev, A. Ts; Borkina, G. Yu; Bubnov, M. M.; Voĭtsekhovskiĭ, V. V.; Dianov, Evgenii M.; Kotov, V. M.; Pryakhina, Tatiana A.

    1981-08-01

    A study was made of the influence of γ irradiation on the temperature dependences of the optical losses in quartz glass-polymer fiber waveguides. The working temperature range was extended by γ irradiation to subzero temperatures in the case of two types of waveguide: those with a cladding made of SIÉL commercial silicone rubber and those made by the Quartz-Silice firm. The results obtained were explained by changes in the structure of silicone rubber under the action of γ irradiation.

  15. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide

    Science.gov (United States)

    Muziol, Grzegorz; Turski, Henryk; Siekacz, Marcin; Grzanka, Szymon; Perlin, Piotr; Skierbiszewski, Czesław

    2016-09-01

    A novel design consisting of a thick InGaN waveguide is proposed to fully eliminate leakage to the GaN substrate in nitride laser diodes. The design is based on the effective refractive index engineering and does not require the commonly used thick AlGaN claddings. The conditions required to fully eliminate the optical leakage are discussed. Experimental results from eight blue laser diodes with different indium contents and thicknesses of the InGaN waveguide grown by plasma-assisted molecular beam epitaxy are presented to validate the theoretical results.

  16. Optical E-field probe using LiNbO3 M-Z waveguides in the electromagnetic compatibility measurements

    Institute of Scientific and Technical Information of China (English)

    Yongjun Yang; Fushen Chen; Bao Sun

    2006-01-01

    An integrated optical E-field probe with the segmented electrode using LiNbOs Mach-Zehnder (M-Z)waveguides is proposed and an equivalent circuit of the segmented electrode is given. According to thecircuit theory, the electrode structure of the probe is designed. The unpackaged size of the fabricatedprobe is as small as 60 x 6 x 0.5 (mm). The measured results show that the half wavelength voltage is7.7 V, the ±5 dB baseband range is 3 GHz, and the minimum detectable field is lower than 90 dB.μV/m(bandwidth 100 Hz). Therefore it can be used in the electromagnetic compatibility (EMC) measurements.

  17. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples.

    Science.gov (United States)

    Majer-Baranyi, Krisztina; Zalán, Zsolt; Mörtl, Mária; Juracsek, Judit; Szendrő, István; Székács, András; Adányi, Nóra

    2016-11-15

    Optical waveguide lightmode spectroscopy (OWLS) technique has been applied to label-free detection of aflatoxin B1 in a competitive immunoassay format, with the aim to compare the analytical goodness of the developed OWLS immunosenor with HPLC and enzyme-linked immunosorbent assay (ELISA) methods for the detection of aflatoxin in spice paprika matrix. We have also assessed applicability of the QuEChERS method prior to ELISA measurements, and the results were compared to those obtained by traditional solvent extraction followed by immunoaffinity clean-up. The AFB1 content of sixty commercial spice paprika samples from different countries were measured with the developed and optimized OWLS immunosensor. Comparing the results from the indirect immunosensor to that obtained by HPLC or ELISA provided excellent correlation (with regression coefficients above 0.94) indicating that the competitive OWLS immunosensor has a potential for quick determination of aflatoxin B1 in paprika samples. PMID:27283719

  18. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  19. On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide

    Science.gov (United States)

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Sang, Xinzhu; Wang, Kuiru; Wu, Qiang; Yan, Binbin; Li, Feng; Zhou, Xian; Zhong, Kangping; Zhou, Guiyao; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.

    2016-01-01

    High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W-1/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit.

  20. Writing Waveguide in LN With fs Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We investigated the waveguide formation in Lithium Niobate with Femtosecond laser pulse writing directly. The output optical field through waveguide has been observed and refractive-index change was characterized by using grating method.