WorldWideScience

Sample records for active nuclear receptors

  1. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  2. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  3. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  4. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  5. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  6. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  7. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  8. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  10. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  11. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  12. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  13. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  14. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  15. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  16. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  17. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  18. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in the bone loss developed in this disease. PMID:23559954

  19. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?

    Hinds, Terry D; Adeosun, Samuel O; Alamodi, Abdulhadi A; Stec, David E

    2016-10-01

    Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals.

    Susanne Vogeler

    Full Text Available Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT. Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l, all-trans retinoic acid (ATRA (0.06 mg/L and perfluorooctanoic acid (20 mg/L showed high effects on development (>74% abnormal developed D-shelled larvae, while rosiglitazone (40 mg/L showed no effect. The results are discussed in relation to a putative direct (TBT disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests

  1. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  2. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  3. Meeting report: nuclear receptors

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...... the world covering a wide spectrum from fundamental mechanistic studies to metabolism, clinical studies, and drug development. In this report, we summarize the recent and exciting findings presented by the speakers at the meeting....

  4. Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis

    Rakić Mia

    2013-01-01

    Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.

  5. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  6. Lymphotoxin β receptor activation promotes bladder cancer in a nuclear factor-κB-dependent manner.

    Shen, Mo; Duan, Xiuzhi; Zhou, Ping; Zhou, Wu; Wu, Xiuling; Xu, Siqi; Chen, Yuhua; Tao, Zhihua

    2015-02-01

    Bladder cancer (BCa) is the most common tumor of the urinary system. Chronic inflammation in the papillary urothelial neoplasm of low malignant potential (PUNLMP)may contribute to carcinogenesis, including that of BCa, via poorly understood mechanisms. In this study, we show that the lymphotoxin β receptor (LTβR) is upregulated in BCa via activation of the canonical and non-canonical nuclear factor-κB (NF-κB) pathways. The mRNA expression of LTβR in 81 BCa, 10 chronic cystitis and 23 healthy bladder mucosa tissues was investigated by reverse transcription-fluorescent quantitative polymerase chain reaction (RT-FQ-PCR), and protein expression was studied in 73 BCa, 30 cystitis and 15 healthy paraffin-embedded tissue sections by immunohistochemistry. Both LTβR mRNA and protein were upregulated in BCa and cystitis compared to the healthy group (P<0.05). The mRNA level of the downstream NF-κB canonical pathway p65 gene and of the non-canonical pathway RelB gene were higher in the BCa and cystitis groups compared to the healthy one. The level of phosphorylated p65 (p-p65) protein of the canonical NF-κB pathway and that of p52, a protein of the non-canonical NF-κB pathway, were also higher in the BCa and cystitis group compared to the healthy group. The levels of these proteins significantly correlated to the pathological grade, clinical stage and lymph node metastasis of BCa patients (P<0.05). In addition, there was a positive correlation between LTβR and NF-κB pathway proteins. Thus, LTβR signaling may be involved in promoting BCa through the NF-κB pathway, and which may represent the molecular link between inflammation and BCa.

  7. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  8. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J.; Willson, Timothy M.; Edwards, Peter A.

    2006-01-01

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus. glucose | GW4064 | farnesoid X receptor-VP16 | triglyceride | cholesterol

  9. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  10. Nuclear Receptor Signaling Atlas (NURSA)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  11. Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.

    Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav

    2017-11-09

    PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.

  12. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  14. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C

    2015-01-01

    in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin...... of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc...... transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose...

  15. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  16. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    W. Todd Penberthy

    2009-01-01

    Full Text Available Acute attacks of multiple sclerosis (MS are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA is now known to involve induction of indoleamine 2,3-dioxygenase (IDO and interleukin-10 (IL-10, where IL-10 requires subsequent heme oxygenase-1 (HMOX-1 induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2 can prevent demyelination in experimental autoimmune encephalomyelitis (EAE animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD, without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPAR-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic

  17. Nuclear receptors and nonalcoholic fatty liver disease1

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  18. Technetium-99 conjugated with methylene diphosphonate inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis.

    Gong, Wei; Dou, Huan; Liu, Xianqin; Sun, Lingyun; Hou, Yayi

    2012-10-01

    1. In the present study, we investigated the effects of technetium-99 conjugated with methylene diphosphonate ((99)Tc-MDP), an agent used in radionuclide therapy, on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and explored the underlying mechanisms. 2. The murine macrophage cell line RAW264.7 and bone marrow-derived-macrophages from C57BL/6 mice (BMM) were used as models for osteoclastogenesis in vitro. The expression of some key factors in RANKL (50 ng/mL)-induced osteoclastogenesis in RAW264.7 cells was investigated by flow cytometry and real-time reverse transcription-polymerase chain reaction (RT-PCR). To detect multinucleated osteoclast formation, RAW264.7 cells were induced with RANKL for 4 days, whereas BMM were induced by 50 ng/mL RANKL and 20 ng/mL macrophage colony-stimulating factor for 7 days, before being stained with tartrate-resistant acid phosphatase. 3. Osteoclastogenesis was evaluated using the osteoclast markers CD51, matrix metalloproteinase (MMP)-9 and cathepsin K. At 0.01 μg/mL, (99)Tc-MDP significantly inhibited RANKL-induced osteoclastogenesis without any cytotoxicity. In addition, (99)Tc-MDP abolished the appearance of multinucleated osteoclasts. 4. Real-time RT-PCR analysis of transcription factor expression revealed that (99)Tc-MDP inhibited the expression of c-Fos and nuclear factor of activated T cells. In addition, (99)Tc-MDP inhibited the expression of the inflammatory factors interleukin (IL)-6, tumour necrosis factor-α and IL-1β. Finally, (99)Tc-MDP inhibited the activation of mitogen-activated protein kinases in RAW264.7 cells following RANKL stimulation. 5. In conclusion, (99)Tc-MDP possesses anti-osteoclastogenic activity against RANKL-induced osteoclast formation. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  19. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  20. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  1. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  2. Nuclear Receptors, RXR, and the Big Bang.

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The orphan nuclear receptor LRH-1 and ERα activate GREB1 expression to induce breast cancer cell proliferation.

    Ashwini L Chand

    Full Text Available BACKGROUND: Liver Receptor Homolog 1 (LRH-1, NR5A2 is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα positive breast cancer cells. RESULTS: The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1 in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2 promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. CONCLUSIONS: We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively

  4. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  5. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  6. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer.

    Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter

    2014-01-01

    Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

  7. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    Compagnucci, Claudia; Barresi, Sabina [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Petrini, Stefania [Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy); Zanni, Ginevra, E-mail: ginevra.zanni@opbg.net [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome (Italy)

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  8. Immunohistochemical detection of receptor activator nuclear κB ligand and osteoprotegerin in odontogenic cysts and tumors.

    de Matos, Felipe Rodrigues; de Moraes, Maiara; das Neves Silva, Emília Beatriz; Galvão, Hébel Cavalcanti; de Almeida Freitas, Roseana

    2013-11-01

    The aim of the present study was to compare the immunohistochemical detection of receptor activator nuclear κB ligand (RANKL) and osteoprotegerin (OPG) in radicular cysts (RCs), dentigerous cysts (DCs), solid ameloblastomas (SAs), and keratocystic odontogenic tumors (KOTs). A total of 20 RCs, 20 DCs, 20 KOTs, 14 dental follicles (DFs), and 18 SAs were evaluated by immunohistochemistry using anti-RANKL and anti-OPG antibodies. The analysis was quantitative, and the number of positive cells was counted in 10 microscopic high-power fields (400×). The DFs, KOTs, and SAs showed higher expression of RANKL than did the RCs and DCs in the epithelium (P < .05). The epithelial expression of OPG was higher in the DFs, KOTs, RCs, and DCs than in the SAs (P < .05). The ratio of OPG less than RANKL was more frequent in SAs and OPG greater than RANKL in DCs (P < .05). Our results have shown differences in RANKL and OPG detection in the odontogenic cysts and tumors studied. The higher RANKL and lower OPG detection in SA could play a role in bone resorption, compatible with the tumor's biologic behavior. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. The Relationship Between Vitamin D Levels and Receptor Activator of Nuclear Factor Ligand in Hashimoto’s Thyroiditis

    Hakan Yavuzer

    2017-12-01

    Full Text Available Aim: In order to analyze the relationship of Hashimoto’s thyroiditis with vitamin D and osteoclastogenic markers, we investigated vitamin D, osteoprotegerin (OPG and receptor activator of nuclear factor ligand (RANKL levels in patients over 60 years with and without Hashimoto’s thyroiditis. Methods: Eighty three female patients (49 with and 34 without Hashimoto’s thyroiditis, who attended the endocrinology and geriatrics departments between May 2013 and October 2013 were included in the study. Results: There was no statistically significant difference in the levels of vitamin D, OPG and RANKL between the groups. Vitamin D was significantly correlated with OPG and RANKL in patients with Hashimoto’s thyroiditis. In addition, a significant relationship was found between OPG and RANKL levels. Of the patients with Hashimoto’s thyroiditis, 33 were autoantibody-positive and 16 were negative. Vitamin D, OPG and RANKL levels were significantly lower in antibody-positive patients than in negative subjects. Conclucion: There were no differences in vitamin D, OPG and RANKL levels between patients with and without Hashimoto’s thyroidits. Autoantibody-positive Hashimoto’s thyroiditis group had statistically significantly lower vitamin D, OPG and RANKL levels. This reverse correlation suggests that autoantibodies may have an effect on osteoclastogenesis.

  10. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  11. Expression of Toll-like receptors and their detection of nuclear self-antigen leading to immune activation in JSLE.

    Midgley, Angela; Thorbinson, Colin; Beresford, Michael W

    2012-05-01

    Toll-like receptors (TLRs) essential in the functioning of the immune system have been implicated in the development of autoimmunity. TLR3, 7, 8 and 9 are capable of recognizing nucleic autoantigens typical of SLE. Their expression correlates positively with disease activity in adult-onset SLE. This study aimed to determine the role of TLRs in JSLE and whether apoptotic neutrophils are a source of nuclear autoantigen being detected through TLR3, 7, 8 and 9, leading to an inflammatory response. TLR3, 7, 8 and 9 mRNA and protein expression were measured in peripheral blood mononuclear cells (PBMCs) in JSLE patients compared with JIA and non-inflammatory controls. Activation of the TLRs by JSLE serum-induced apoptotic neutrophils was detected by measuring IFN-α mRNA and protein expression, and confirmed using myeloid differentiation factor 88 (MyD88) and TIR domain-containing adapter-inducing IFN-β (TRIF) inhibitors. JSLE patients have increased TLR3, 8 and 9 mRNA and protein expression compared with controls (P < 0.05). Incubation of PBMCs with apoptotic neutrophils demonstrated a dose-response relationship for IFN-α mRNA expression. Inhibition of TLR signalling by blocking MyD88 and TRIF signalling decreased IFN-α mRNA expression in PBMCs incubated with apoptotic neutrophils (P < 0.05). This study demonstrated significantly increased TLR expression in JSLE compared with controls. Our data indicate that apoptotic neutrophils trigger TLR activation through their presentation of autoantigens. The role of TLRs in this inflammatory response was demonstrated by a dose-response relationship to apoptotic neutrophil concentration and confirmed by a decrease in IFN-α production after inhibition of TLR signalling.

  12. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-01-01

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  13. Activation of the nuclear receptor PPARgamma by metabolites isolated from sage (Salvia officinalis L.)

    Christensen, K B; Jørgensen, M.; Kotowska, D

    2010-01-01

    ETHNOPHARMACOLOGICAL RELEVANCE: Salvia officinalis has been used as a traditional remedy against diabetes in many countries and its glucose-lowering effects have been demonstrated in animal studies. The active compounds and their possible mode of action are still unknown although it has been sugg...

  14. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner.

    Bridi, Morgan S; Hawk, Joshua D; Chatterjee, Snehajyoti; Safe, Stephen; Abel, Ted

    2017-05-01

    Nr4a nuclear receptors contribute to long-term memory formation and are required for long-term memory enhancement by a class of broad-acting drugs known as histone deacetylase (HDAC) inhibitors. Understanding the molecular mechanisms that regulate these genes and identifying ways to increase their activity may provide novel therapeutic approaches for ameliorating cognitive dysfunction. In the present study, we find that Nr4a gene expression after learning requires the cAMP-response element binding (CREB) interaction domain of the histone acetyltransferase CREB-binding protein (CBP). These gene expression deficits emerge at a time after learning marked by promoter histone acetylation in wild-type mice. Further, mutation of the CREB-CBP interaction domain reduces Nr4a promoter acetylation after learning. As memory enhancement by HDAC inhibitors requires CREB-CBP interaction and Nr4a gene function, these data support the notion that the balance of histone acetylation at the Nr4a promoters is critical for memory formation. NR4A ligands have recently been described, but the effect of these drugs on synaptic plasticity or memory has not been investigated. We find that the 'C-DIM' NR4A ligands, para-phenyl substituted di-indolylmethane compounds, enhance long-term contextual fear memory and increase the duration of long-term potentiation (LTP), a form of hippocampal synaptic plasticity. LTP enhancement by these drugs is eliminated in mice expressing a dominant negative form of NR4A and attenuated in mice with mutation of the CREB-CBP interaction domain. These data define the molecular connection between histone acetylation and Nr4a gene expression after learning. In addition, they suggest that NR4A-activating C-DIM compounds may serve as a potent and selective means to enhance memory and synaptic plasticity.

  15. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-01-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed

  16. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Amaya, Esperanza [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Grimaldi, Marina [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Sáenz, José-María; Real, Macarena; Fernández, Mariana F. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Balaguer, Patrick [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Olea, Nicolás [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain)

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  17. NRSAS: Nuclear Receptor Structure Analysis Servers.

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  18. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  19. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  20. NR4A nuclear receptors are orphans but not lonesome.

    Kurakula, Kondababu; Koenis, Duco S; van Tiel, Claudia M; de Vries, Carlie J M

    2014-11-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  2. Brain nuclear receptors and body weight regulation

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  3. Mediator-dependent Nuclear Receptor Functions

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  4. El coactivador de receptores nucleares RAC3 tiene un rol protector de la Apoptosis inducida por distintos estímulos RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    Georgina P. Coló

    2007-10-01

    Full Text Available RAC3 pertenece a la familia de coactivadores de receptores nucleares p160, y se encuentra sobreexpresado en varios tumores. Demostramos previamente que RAC3 es coactivador del factor de transcripción anti-apoptótico NF-kapa;B. En este trabajo investigamos su rol en la apoptosis inducida por H2O2 en una línea celular no tumoral derivada de riñón embrionario humano (HEK293, y por el ligando inductor de apoptosis relacionado a TNF (TRAIL en una línea de leucemia mieloide crónica humana (K562, naturalmente resistente a la muerte por este estímulo. Observamos que las células tumorales K562 poseen niveles altos de RAC3 comparados con las células no tumorales HEK293. La sobreexpresión normal de coactivador o por transfección, inhibe la apoptosis mediante una disminución de la activación de caspasas, translocación del factor inductor de apoptosis (AIF al núcleo, aumento de la actividad de NF-kapa;B y las quinasas AKT y p38 y disminución de la quinasa ERK. Lo opuesto fue observado por disminución de RAC3 mediante la técnica de ARN interferente (RNAi en K562, aumentando así la apoptosis inducida por TRAIL. Estas evidencias sugieren que una sobreexpresión de RAC3 contribuye al desarrollo de tumores, participando en las cascadas que controlan la muerte celular por mecanismos no estrictamente dependientes de hormonas esteroideas y/o de acetilación, constituyendo esto un posible blanco de ataque para el tratamiento de tumores.RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappa;B coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293, and tumor necrosis factor-related apoptosis inducing ligand (TRAIL in a human chronic myeloid leukemia cell line (K562 naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels

  5. Peroxisome Proliferator-Activated Receptor -β/δ, -γ Agonists and Resveratrol Modulate Hypoxia Induced Changes in Nuclear Receptor Activators of Muscle Oxidative Metabolism

    Timothy R. H. Regnault

    2010-01-01

    Full Text Available PPAR-α, PPAR-β, and PPAR-γ, and RXR in conjunction with PGC-1α and SIRT1, activate oxidative metabolism genes determining insulin sensitivity. In utero, hypoxia is commonly observed in Intrauterine Growth Restriction (IUGR, and reduced insulin sensitivity is often observed in these infants as adults. We sought to investigate how changes in oxygen tension might directly impact muscle PPAR regulation of oxidative genes. Following eight days in culture at 1% oxygen, C2C12 muscle myoblasts displayed a reduction of PGC-1α, PPAR-α, and RXR-α mRNA, as well as CPT-1b and UCP-2 mRNA. SIRT1 and PGC-1α protein was reduced, and PPAR-γ protein increased. The addition of a PPAR-β agonist (L165,041 for the final 24 hours of 1% treatment resulted in increased levels of UCP-2 mRNA and protein whereas Rosiglitazone induced SIRT1, PGC-1α, RXR-α, PPAR-α, CPT-1b, and UCP-2 mRNA and SIRT1 protein. Under hypoxia, Resveratrol induced SIRT1, RXR-α, PPAR-α mRNA, and PPAR-γ and UCP-2 protein. These findings demonstrate that hypoxia alters the components of the PPAR pathway involved in muscle fatty acid oxidative gene transcription and translation. These results have implications for understanding selective hypoxia adaptation and how it might impact long-term muscle oxidative metabolism and insulin sensitivity.

  6. Relationship between circulating serum osteoprotegerin and total receptor activator of nuclear κ-B ligand levels, triglycerides, and coronary calcification in postmenopausal women.

    Poornima, Indu G; Mackey, Rachel H; Buhari, Alhaji M; Cauley, Jane A; Matthews, Karen A; Kuller, Lewis H

    2014-07-01

    This study evaluates the relationship of blood osteoprotegerin (OPG) and receptor activator of nuclear κ-B ligand (RANKL) levels with coronary artery calcium (CAC) and cardiovascular risk factors in two studies of postmenopausal women. OPG, a marker of bone turnover, and its ligand, RANKL, may contribute to cardiovascular disease risk. We tested the hypothesis that serum OPG and RANKL levels were associated with CAC and cardiovascular disease risk factors among postmenopausal women in the Women On the Move through Activity and Nutrition Study (WOMAN Study; n = 86; mean [SD], age 58 [2.9] y) and replicated our findings in the Healthy Women Study (HWS; n = 205; mean [SD] age, 61 [2.3] y). Serum OPG, total RANKL, and CAC were measured at baseline and 48 months in the WOMAN Study and on the eighth postmenopausal visit in the HWS. In the WOMAN Study, higher OPG was associated with higher CAC, and higher total RANKL was associated with lower CAC and triglycerides. In the HWS, higher total RANKL was also associated with lower CAC and triglycerides. In logistic regression models adjusted for body mass index and triglycerides, the odds ratios (95% CIs) for CAC per unit increase in OPG were 1.78 (1.17-2.73) for the WOMAN Study and 1.02 (0.84-1.24) for the HWS, and the odds ratios (95% CIs) for CAC per unit increase in log total RANKL were 0.86 (0.64-1.17) for the WOMAN Study and 0.83 (0.72-0.96) for the HWS. The inverse association of total RANKL with CAC and triglycerides is a new finding and may have important implications given the increasing use of drugs that modify total RANKL and its receptor, receptor activator of nuclear κ-B.

  7. Androgen insensitivity syndrome: gonadal androgen receptor activity

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  8. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.

    Zhang, Yan; Igwe, Orisa J

    2018-01-01

    Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The urinary metabolites of DINCH® have an impact on the activities of the human nuclear receptors ERα, ERβ, AR, PPARα and PPARγ.

    Engel, Anika; Buhrke, Thorsten; Kasper, Stefanie; Behr, Anne-Cathrin; Braeuning, Albert; Jessel, Sönke; Seidel, Albrecht; Völkel, Wolfgang; Lampen, Alfonso

    2018-05-01

    DINCH ® (di-isononyl cyclohexane-1,2-dicarboxylate) is a non-phthalate plasticizer that has been developed to replace phthalate plasticizers such as DEHP (di-2-ethylhexyl phthalate) or DINP (di-isononyl phthalate). DINCH ® is metabolized to its corresponding monoester and subsequently to oxidized monoester derivatives. These are conjugated to glucuronic acid and subject to urinary excretion. In contrast to DINCH ® , there are almost no toxicological data available regarding its primary and secondary metabolites. The present study aimed at the characterization of potential endocrine properties of DINCH ® and five DINCH ® metabolites by using reporter gene assays to monitor the activity of the human nuclear receptors ERα, ERβ, AR, PPARα and PPARγ in vitro. DINCH ® itself did not have any effect on the activity of these receptors whereas DINCH ® metabolites were shown to activate all these receptors. In the case of AR, DINCH ® metabolites predominantly enhanced dihydrotestosterone-stimulated AR activity. In the H295R steroidogenesis assay, neither DINCH ® nor any of its metabolites affected estradiol or testosterone synthesis. In conclusion, primary and secondary DINCH ® metabolites exert different effects at the molecular level compared to DINCH ® itself. All these in vitro effects of DINCH ® metabolites, however, were only observed at high concentrations such as 10 μM or above which is about three orders of magnitude above reported DINCH ® metabolite concentrations in human urine. Thus, the in vitro data do not support the notion that DINCH ® or any of the investigated metabolites may exert considerable endocrine effects in vivo at relevant human exposure levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  12. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells.

    Matulis, Christina K; Mayo, Kelly E

    2012-08-01

    Nuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators. The LIM domain protein four and a half LIM domain 2 (FHL2) was identified as interacting with the NR5A receptors in a yeast two-hybrid screen of a human ovary cDNA library. FHL2, and the closely related FHL1, are both expressed in the rodent ovary and in granulosa cells. Small interfering RNA-mediated knockdown of FHL1 and FHL2 in primary mouse granulosa cells reduced expression of the NR5A target genes encoding inhibin-α and P450scc. In vitro assays confirmed the interaction between the FHL and NR5A proteins and revealed that a single LIM domain of FHL2 is sufficient for this interaction, whereas determinants in both the ligand binding domain and DNA binding domain of NR5A proteins are important. FHL2 enhances the ability of both liver receptor homolog 1 and steroidogenic factor 1 to activate the inhibin-α subunit gene promoter in granulosa cells and thus functions as a transcriptional coactivator. FHL2 also interacts with cAMP response element-binding protein and substantially augments activation of inhibin gene expression by the combination of NR5A receptors and forskolin, suggesting that FHL2 may facilitate integration of these two signals. Collectively these results identify FHL2 as a novel coactivator of NR5A nuclear receptors in ovarian granulosa cells and suggest its involvement in regulating target genes important for mammalian reproduction.

  13. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts*

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-01-01

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  14. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  16. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  17. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    Ingrid Richter

    2014-11-01

    Full Text Available Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.

  19. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  20. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  2. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia.

    Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2013-03-01

    KCNK1, a member of the family of two-pore K(+) ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (-2441/-2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 ( -/- ) male mice compared with those of Kcnk1 ( +/+ ) males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 ( -/- ) mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice.

  3. [The expression and significance of receptor activator of nuclear factor kappaB ligand and osteoprotegerin in periapical cyst and periapical granuloma].

    Zhang, Meihua; Yu, Yunzhi; Miao, Yu

    2012-08-01

    To investigate the expression of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) in periapical cyst and periapical granuloma by comparison with the expression in the normal periodontal tissue as control, and to identify their functional mechanism in the bone destruction of periapical cyst and granuloma. 20 periapical cyst tissues (cyst group), 20 periapical granuloma tissues (granuloma group), and 20 normal periodontal tissues (control group) were collected respectively. Immunohistochemical technology was performed to detect the expression of RANKL and OPG in above three groups. In cyst group, granuloma group and control group, the expression of RANKL were 75.00 +/- 7.54, 68.40 +/- 6.74 and 29.40 +/- 2.46, respectively. The expression of OPG were 38.10 +/- 7.09, 47.65 +/- 13.85 and 58.60 +/- 5.88, respectively. The differences among the three groups were statistically significant (Pcysts group were negatively correlated (r=-0.56, P=0.01) and were not correlated with granuloma and control group (P>0.05). RANKL and OPG play roles in the bone absorption of periapical disease. In periapical disease, abnormal expression of RANKL and OPG are detected, RANKL significantly increase, OPG decrease, bone absorption accelerate and osteolytic lesion are observed. In periapical cyst, the bone absorption is more active compared with periapical granuloma.

  4. Nuclear hormone receptors in parasitic helminths

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in p...

  5. Stimulation of monocytes by placental microparticles involves Toll-like receptors and nuclear factor kappa-light-chain-enhancer of activated B cells

    Marianne Simone Joerger-Messerli

    2014-04-01

    Full Text Available Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggests a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro.STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR and fluorescence microscopy.STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation was blocked.Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

  6. A Comprehensive Nuclear Receptor Network for Breast Cancer Cells

    Ralf Kittler

    2013-02-01

    Full Text Available In breast cancer, nuclear receptors (NRs play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer.

  7. Worker in nuclear activity

    Goes Fischer, M.D. de; Associacao Brasileira de Direito Nuclear, Rio de Janeiro)

    1984-01-01

    Juridical aspects with respect to the workers in nuclear activity are presented. Special emphasis is given to the clauses of the statute of workers (Consolidacao das Leis do Trabalho) the rules of the Ministerio do Trabalho and the rules of the Comissao Nacional de Energia Nuclear. The performance of the international authorities is also emphasized such as the International Labour Organization, the International Atomic Energy Agency and the International Radiological Protection Commission. (Author) [pt

  8. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  9. Maturing of the nuclear receptor family.

    Lazar, Mitchell A

    2017-04-03

    Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

  10. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  11. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  12. [Immunoexpression and clinical significance of interleukin-21 and receptor activator of nuclear factor κB ligand in human periapical granulomas and radicular cysts].

    Hu, Juhua; Li, Qian; Wang, Yanqing; Li, Song

    2015-06-01

    This study aimed to detect the immunoexpression of interleukin-21 (IL-21) and receptor activator. of nuclear factor KB ligand (RANKL) in periapical granulomas (PGs) and radicular cysts (RCs). The interaction of IL-21 with RANKL and its role in periapical pathogenesis were also speculated. A total of 32 PGs and 23 RCs were selected as experimental samples. Lesion size and occurrence of tenderness were recorded. Up to 10 healthy gingival tissues were collected as normal control samples. All tissues were subjected to immunohistocheincal analysis with anti-human IL-21 and RANKL polyclonal antibodies. The correlations of IL-21 with RANKL, lesion size, and the occurrence of tenderness of the PGs and RCs were evaluated. IL-21-positive cells were detected in all periapical lesion tissues but not in normal tissues. In the cyst group and granuloma group, the corresponding expression levels of IL-21 were 59.92±6.57 and 36.80± 6.81, whereas those of RANKL were 68.81±18.59 and 36.12±14.87, respectively. Moreover, t-test revealed a significantly higher expression of IL-21 and RANKL in RCs than in PGs (P<0.05). IL-21 and RANKL were positively correlated in both PGs and RCs (P<0.05). Furthermore, IL-21 was correlated with lesion size (P<0.05). This study demonstrated that IL-21 is potentially involved in the pathogenesis of apical periodontitis lesions. A role in the exacerbation of chronic inflammation, as well as in bone resorption, is suspected. Further studies are required to elucidate the specific functions of IL-21 in periradicular inflammatory processes.

  13. Nuclear triiodothyronine receptors in rabbit heart

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1986-01-01

    Nuclear triiodothyronine receptors from rat liver have been characterized in detail by several investigators. However, little work has been done in this area using heart tissue. In this study they examined and characterized the triiodothyronine binding in rabbit hearts. Nuclei have been prepared from ventricular muscle cells of normal and thyrotoxic rabbits as well as from atrial muscle cells of normal rabbit. Hearts were perfused with a minimum essential medium containing collagenase and bovine serum albumin. Myocardial cells were isolated and then disrupted by sonication and washing with a Triton X-100 buffer solution. A discontinuous sucrose density gradient was then used to isolate the mycoardial nuclei. Radiolabelled triiodothyronine (T 3 ) binding to nuclei was examined using conditions described by established procedures. Scatchard analysis of the binding data yields maximum binding capacity (B/sub max/) of 0.17 +/- 0.2 pmol/mg DNA and apparent dissociation constant (K/sub d/) of 400 +/- 50 pM for normal heart T 3 -receptors. The apparent capacity for T 3 binding is approximately 40% greater in myocardial nuclei prepared from hearts of hyperthyroid rabbits. The binding capacity of atrial muscle nuclei is about fourfold lower than ventricular cell nuclei. The results suggest that binding capacity for T 3 -receptor in the atrium is considerably lower than that found in the ventricle

  14. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  15. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'

    Kurakula, Kondababu; Hamers, Anouk A. J.; de Waard, Vivian; de Vries, Carlie J. M.

    2013-01-01

    Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in

  16. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group.

    Vogeler, Susanne; Galloway, Tamara S; Lyons, Brett P; Bean, Tim P

    2014-05-15

    Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

  17. Nuclear Receptor TLX in Development and Diseases.

    Sun, Guoqiang; Cui, Qi; Shi, Yanhong

    2017-01-01

    The nuclear receptor TLX (NR2E1) is a transcription factor that is critical for neural development and adult neurogenesis through its actions in regulating neural stem cell proliferation, self-renewal, and fate determination. These roles are primarily executed by regulating TLX downstream target genes involved in myriad pathways such as cell cycle progression, RNA processing, angiogenesis, and senescence. Recent studies suggest that dysregulation of TLX pathways plays an important role in the pathogenesis of human neurological disorders and brain tumors. Here, we will highlight recent progress in the roles of TLX in brain development and adult neurogenesis, and the relevance of TLX to neurological diseases and brain tumors. We will also discuss the potential of TLX as a therapeutic target for these disorders. © 2017 Elsevier Inc. All rights reserved.

  18. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer.

    Mohan, Helen M

    2012-06-15

    Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A\\/CREB, NF-κB, phosphoinositide 3-kinase\\/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and\\/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.

  19. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  20. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism

    Fernando Lizcano

    2013-01-01

    Full Text Available The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluated the differential effects of various ligands on the binding of certain cofactors associated with PPARγ. The ligands used were rosiglitazone for treating type 2 diabetes and telmisartan for treating arterial hypertension. Functional, phenotypic, and molecular studies were conducted on pre-adipocyte 3T3-L1 and functional studies in U2OS cells. The moderating influence of various cofactor families was evaluated using transient transfection assays. Our findings confirm that telmisartan has a partial modulating effect on PPARγ activity compared to rosiglitazone. The cofactors SRC1 and GRIP1 mediate the activity of telmisartan and rosiglitazone and partially determine the difference in their effects. Studying the modulating activity of these cofactors can provide interesting insights for developing new therapeutic approaches for certain metabolic diseases.

  1. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  2. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K.

    2006-01-01

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function

  3. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  4. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  5. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  6. Genome inventory and analysis of nuclear hormone receptors in ...

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome ... Gene structure analysis shows strong conservation of exon structures among orthologoues. ..... earlier subfamily classification of NRs (Nuclear Receptors.

  7. NR4A nuclear receptors are orphans but not lonesome

    Kurakula, Kondababu; Koenis, Duco S.; van Tiel, Claudia M.; de Vries, Carlie J. M.

    2014-01-01

    The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that

  8. Nuclear Activities (Prohibitions) Act 1983

    1983-01-01

    The purpose of this Act is to protect the health and safety of the people of Victoria and its environment by prohibiting nuclear activities from being carried out and regulating the possession of certain nuclear material in a manner consistent with assisting Australia in meeting its international nuclear non-proliferation objectives. (NEA) [fr

  9. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  10. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Karimullina, Elina; Li Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2012-01-01

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  11. Nuclear fuel activities in Belgium

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  12. Chapter 8. Activation mechanisms of chemokine receptors

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  13. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  14. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  15. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  16. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    Emily Powell

    2007-01-01

    Full Text Available Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators.

  17. Activation of liver X receptor suppresses the production of the IL-12 family of cytokines by blocking nuclear translocation of NF-κBp50.

    Canavan, Mary; McCarthy, Ciara; Larbi, Nadia Ben; Dowling, Jennifer K; Collins, Laura; O'Sullivan, Finbarr; Hurley, Grainne; Murphy, Carola; Quinlan, Aoife; Moloney, Gerry; Darby, Trevor; MacSharry, John; Kagechika, Hiroyuki; Moynagh, Paul; Melgar, Silvia; Loscher, Christine E

    2014-10-01

    There is now convincing evidence that liver X receptor (LXR) is an important modulator of the inflammatory response; however, its mechanism of action remains unclear. This study aimed to examine the effect of LXR on the IL-12 family of cytokines and examined the mechanism by which LXR exerted this effect. We first demonstrated that activation of murine-derived dendritic cells (DC) with a specific agonist to LXR enhanced expression of LXR following activation with LPS, suggesting a role in inflammation. Furthermore, we showed LXR expression to be increased in vivo in dextrane sulphate sodium-induced colitis. LXR activation also suppressed production of IL-12p40, IL-12p70, IL-27 and IL-23 in murine-derived DC following stimulation with LPS, and specifically targeted the p35, p40 and EBI3 subunits of the IL-12 cytokine family, which are under the control of the NF-κB subunit p50 (NF-κBp50). Finally, we demonstrated that LXR can associate with NF-κBp50 in DC and that LXR activation prevents translocation of the p50 subunit into the nucleus. In summary, our study indicates that LXR can specifically suppress the IL-12 family of cytokines though its association with NF-κBp50 and highlights its potential as a therapeutic target for chronic inflammatory diseases. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  19. Nuclear Activities in Argentina, 2010

    Ferreri, J.C.; Ferreri, J.C.; Clausse, A.; Clausse, A.; Clausse, A.; Ordonez, J.P.; Mazzantini, O.A.

    2011-01-01

    Nuclear activities in Argentina are restarted. After almost two decades of near stagnation, the governments political decision of August 2006 regarding electrical energy production, considered the nuclear option as a valid one to solve the problems of the growing demand of electrical energy. This decision triggered again the activities related to the finalization of the third nuclear power reactor (Atucha-II), now actively progressing, the construction of a prototype of the CAREM integral advanced reactor, the life extension of the Embalse CANDU nuclear power plant (NPP) and the studies for the emplacement of a fourth NPP in an appropriate site. In all those years of near stagnation, there were notable exceptions related to the design and construction of experimental and radioisotope production reactors, led by INVAP, a state-owned industry, which exported its production. The accompanying industries of nuclear fuel elements production also remained active, given the demand of the two active NPPs. Meanwhile, the National Atomic Energy Commission of Argentina continued the efforts on research and development that were at the base of the technological achievements of the nuclear activities in Argentina. Nuclear safety studies associated with Atucha II and Embalse NPPs and radiological safety were also a substantive part of the continued efforts by Nucleo-Electrica de Argentina SA and the Nuclear Regulatory Authority of Argentina

  20. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Mark D. Long

    2015-12-01

    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  1. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  2. Public acceptance in nuclear activities

    Paunescu, A.; Stiopol, M.; Manole, F.; Petran, C.; Chiper, L.

    1998-01-01

    All over the world the most part of population considers nuclear power as the energy of the future. To reinforce this opinion some fundamental requirements should be met, namely: - nuclear facilities and power plants should be safe and competitive in point of costs; - nuclear activity should record no severe accidents; - to make actual progress in the field of radwaste management and disposal; - to actually witness and increase of electric power demands. In Romania the activities related to the nuclear research and power sum-up about 40 years of experience and these can be structured as per the following directions: - nuclear power and related activities (industrial, mining, processing, storage); - research reactors; - nuclear sciences and techniques and their applications. Public opinion information is aimed at assisting such activities and make the public familiar with the concepts typical for the nuclear field. Generally, there is a feeling of fear on the part of the officials in supporting the nuclear. The basic cause would be application of on incomplete and obsolete model when educating the public opinion. That model leads to the conclusion that the open expression of one's support in favour of nuclear is a political risk. A new, more, comprehensive model leading to different conclusions was conceived and finalized lately. The two models are different from each other by 3 characteristic elements: - influence of perception; - approach of the opinion; - definition of the support. The paper describes the actions undertaken in Romania in order to fulfill these requirements

  3. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  4. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  5. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  6. Peroxisome proliferators-activated receptor (PPAR) regulation in cardiac metabolism and disease

    el Azzouzi, H.

    2009-01-01

    Peroxisome proliferators-activated receptors (PPARs) are members of the nuclear receptor family of ligand activated transcription factors and consist of the three isoforms, PPAR, PPAR/ and PPAR. Considerable evidence has established the importance of PPARs in myocardial lipid homeostasis and

  7. Military nuclear activities. Strategic prospects

    Coldefy, Alain; Wodka-Gallien, Philippe; Tertrais, Bruno; Rouillard, Gwendal; Widemann, Thierry; Guillaume, Louis-Michel; Steininger, Philippe; Guillemette, Alain; Amabile, Jean-Christophe; Granger-Veyron, Nicolas; Carbonnieres, Hubert de; Roche, Nicolas; Guillou, Herve; Bouvier, Antoine; Pastre, Bertrand; Baconnet, Alexis; Monsonis, Guillem; Brisset, Jean-Vincent; Hemez, Remy; Tchernega, Vladimir; Wedin, Lars; Dumoulin, Andre; Razoux, Pierre; Migault, Philippe; Wilson, Ward; Maillard, Benjamin de; Aichi, Leila; Charvoz, Ivan; Rousset, Valery; Lespinois, Jerome de; Kempf, Olivier; Dufourcq, Jean; Gere, Francois; Mauro, Frederic; Delort Laval, Gabriel; Charaix, Patrick; Norlain, Bernard; Collin, Jean-Marie; Jourdier, Francois

    2015-01-01

    This special dossier aims at providing some key articles about France's deterrence doctrine. It provides a comprehensive overview of the challenges and questions about military nuclear activities and opens up some future prospects about this question. The dossier comprises 37 papers dealing with: 1 - Military nuclear activities: yesterday, today, tomorrow (Coldefy, A.); 2 - Deterrence according to French President Francois Hollande: continuation, precision and inflexions (Tertrais, B.); 3 - French deterrence warrantor of our independence in the 21. century (Rouillard, G.); 4 - The deterrence concept prior to the nuclear weapon era (Widemann, T.); 5 - France: the strategic marine force in operation (Guillaume, L.M.); 6 - Relevance of the airborne component in the nuclear deterrence strategy (Steininger, P.); 7 - Deterrence stakes for the Directorate General of Armaments (Guillemette, A.); 8 - The Charles-de-Gaulle aircraft carrier: the deterrence voice from the sea (Wodka-Gallien, P.); 9 - Deterrence: missions of the army's radiation protection department (Amabile, J.C.; Granger-Veyron, N.; Carbonnieres, H. de); 10 - The French Atomic Energy Commission (CEA) and the French defense strategy (Roche, N.); 11 - DCNS, general contractor in the service of deterrence (Guillou, H.); 12 - The airborne nuclear component for MBDA (Bouvier, A.); 13 - Ballistic missile of the marine nuclear component: industrial stakes (Pastre, B.); 14 - Beyond defense against missiles: a US anti-deterrence strategy (Baconnet, A.); 15 - Deterrence dynamics in South Asia (Monsonis, G.); 16 - Military nuclear activities in East Asia (Brisset, J.V.); 17 - North Korea would own nuclear weapons, so what? (Hemez, R.); 18 - About the risk of nuclear warfare in Europe (Tchernega, V.); 19 - Present day nuclear activities: deterrence and gesticulation (Wedin, L.); 20 - Belgian F-16 replacement: nuclear dimension (Dumoulin, A.); 21 - Israel and nuclear deterrence (Razoux, P.); 22 - Nuclear

  8. Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

    Jong Min Baek

    2014-08-01

    Full Text Available Aconitum pseudo-laeve var. erectum (APE has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL/osteoprotegerin (OPG ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.

  9. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  10. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  11. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  12. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  13. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  14. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  15. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  16. Handbook on nuclear activation data

    1987-01-01

    This Handbook is being issued for the particular benefit of scientists working in the fields of education and industrial applications using nuclear activation methods, as well as in basic research. The content of the report is divided into four parts: standard reference data, neutron activation data, charged particle activation data and photonuclear activation data. The emphasis is on evaluated or recommended values rather than on an exhaustive presentation of all experimental results

  17. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities. © 2013 FEBS.

  18. Transparency of nuclear regulatory activities

    2007-01-01

    One of the main missions of nuclear regulators is to protect the public, and this cannot be completely achieved without public confidence. The more a regulatory process is transparent, the more such confidence will grow. Despite important cultural differences across countries, a number of common features characterise media and public expectations regarding any activity with an associated risk. A common understanding of transparency and main stakeholders' expectations in the field of nuclear safety were identified during this workshop, together with a number of conditions and practices aimed at improving the transparency of nuclear regulatory activities. These conditions and practices are described herein, and will be of particular interest to all those working in the nuclear regulatory field. Their implementation may, however, differ from one country to another depending on national context. (authors)

  19. Neurokinin-1 receptor activation in globus pallidus

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  20. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  1. Nuclear fuel activities in Canada

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  2. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors

    Bianco, A.C.; Silva, J.E.

    1988-01-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3'-triiodothyronine (T 3 ), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T 4 ) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T 3 levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5'-deiodinase resulted in high levels of nuclear T 3 receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T 3 or T 4 in rats exposed to 4 degree C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear [ 125 I]T 3 derived from the tracer [ 125 I]T 4 injections (T 3 [T 4 ]) and a significant reduction in the nuclear [ 125 I]T 3 derived from [ 125 I]T 3 injections (T 3 [T 3 ]). The number of BAT nuclear T 3 receptors did not increase for up to 3 wk of observation at 4 degree C. The mass of nuclear-bound T 3 was calculated from the nuclear tracer [ 125 I]T 3 [T 3 ] and [ 125 I]T 3 [T 4 ] at equilibrium and the specific activity of serum T 3 and T 4 , respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T 3 receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism

  3. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  4. Exclusive nuclear location of estrogen receptors in Squalus testis.

    Callard, G V; Mak, P

    1985-01-01

    An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265

  5. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  6. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Van Gilst, Marc R; Hadjivassiliou, Haralambos; Jolly, Amber; Yamamoto, Keith R

    2005-02-01

    Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  7. Organization of nuclear regulatory activities

    Blidaru, Valentin

    2008-01-01

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  8. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  9. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  10. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  11. Human pregnane X receptor is activated by dibenzazepine carbamate-based inhibitors of constitutive androstane receptor.

    Jeske, Judith; Windshügel, Björn; Thasler, Wolfgang E; Schwab, Matthias; Burk, Oliver

    2017-06-01

    Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors. However, their potential to activate PXR was not thoroughly investigated, even if the lead compound was named "CAR inhibitor not PXR activator 1" (CINPA1). Thus, we performed a comprehensive analysis of the interaction of CINPA1 and four analogs with PXR. Cellular assays were used to investigate intra- and intermolecular interactions and transactivation activity of PXR as a function of the compounds. Modulation of PXR target gene expression was analyzed in primary human hepatocytes. Ligand binding to PXR was investigated by molecular docking and limited proteolytic digestion. We show here that CINPA1 induced the assembly of the PXR ligand-binding domain, released co-repressors from and recruited co-activators to the receptor. CINPA1 and its analogs induced the PXR-dependent activation of a CYP3A4 reporter gene and CINPA1 induced the expression of endogenous cytochrome P450 genes in primary hepatocytes, while not consistently inhibiting CAR-mediated induction. Molecular docking revealed favorable binding of CINPA1 and analogs to the PXR ligand-binding pocket, which was confirmed in vitro. Altogether, our data provide consistent evidence that compounds with a dibenzazepine carbamate scaffold, such as CINPA1 and its four analogs, bind to and activate PXR.

  12. Civil liability on nuclear activities

    Bittar, C.A.

    1982-01-01

    The civil liability theory in the actual context is shown in the first and second part of this thesis, including some considerations about concepts and types of liability in dangerous and not dangerous activities. In the third part, the legal aspects of civil liability for the nuclear activities are analyzed, with a brief description of the history evolution, standard systems, inspection corporation and juridical regulation. (C.G.C.). 239 refs

  13. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects.

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L; Busby, Scott A; Griffin, Patrick R; Pathak, Manish C; Ortlund, Eric A; Moore, David D

    2011-05-25

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.

  14. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis

    Han, Sang Jun; O'Malley, Bert W.

    2014-01-01

    BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR

  15. Nuclear data activities in Korea

    Chang, Jonghwa; Lee, Young-Ouk

    2002-01-01

    The situation of the nuclear data project in Korea is reviewed in this paper. The results of the first stage from 1997 - 2000 are reviewed with associated application projects such as a test reactor HANARO, a light water reactor project SMART, a liquid metal reactor project KALIMER, an ADS project KOMAC, a waste project, medial application, and electron linac application. The strategy for setting up the second stage, during 2001 - 2004, are introduced. The user requirement, quality assurance, nuclear data processing, service, and measurement activity are reviewed. (author)

  16. Effect of lifestyle interventions with or without metformin therapy on serum levels of osteoprotegerin and receptor activator of nuclear factor kappa B ligand in patients with prediabetes.

    Arslan, Muyesser Sayki; Tutal, Esra; Sahin, Mustafa; Karakose, Melia; Ucan, Bekir; Ozturk, Gulfer; Cakal, Erman; Biyikli Gencturk, Zeynep; Ozbek, Mustafa; Delibasi, Tuncay

    2017-02-01

    Osteoprotegerin has been shown to be increased in cardiovascular disorders and type 2 diabetes mellitus. Prediabetes represents a high risk condition for diabetes and diabetic complications. Therefore, we aimed to find the relationship between prediabetes and osteoprotegerin with nuclear factor-B ligand, carotid intima media thickness, and metabolic markers. A total of 54 participants with prediabetes including impaired fasting glucose (n = 21), impaired glucose tolerance (n = 8), impaired fasting glucose and impaired glucose tolerance (n = 25), and 60 healthy individuals as a control were admitted to the study. Metabolic and anthropometric parameters, insulin resistance variables, osteoprotegerin, and nuclear factor-B ligand markers, carotid intima media thickness were examined at baseline for all participants. To evaluate the effect of therapy we determined the same parameters after the end of the study. Measurements of waist circumference, body mass index, body fat percentage and levels of fasting blood glucose, fasting insulin, homeostatic model assessment of insulin resistance, triglyceride levels and hsCRP and carotid intima media thickness were significantly higher in patients with prediabetes (p  0.05). Patients with prediabetes were under lifestyle interventions with (group 1, n = 33) or without metformin (group 2, n = 21) therapy. Baseline anthropometric and metabolic characteristics were not found statistically different in group 1 and group 2. Mean follow up period of the patients were 7.9 ± 2.2 month (min-max: 6-12 months). After the follow up period we evaluated the same parameters and found significant differences between waist circumference, body mass index, body fat percentage, fasting insulin, homeostatic model assessment of insulin resistance, and osteoprotegerin levels (p prediabetes was associated with a significant decrease in osteoprotegerin and certain metabolic variables together with an increase in nuclear

  17. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  18. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Status of nuclear data activities in Korea

    Lee, Young-Ouk; Chang, Jonghwa [Nuclear Data Evaluation Lab., Korea Atomic Energy Research Inst., Yusung, Taejon 305-600 (Korea, Republic of)

    1998-03-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as `Development of Nuclear Data System`. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are (1) to establish nuclear data system, (2) to build up the infra-structure for utilization of nuclear data and (3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  20. Status of nuclear data activities in Korea

    Lee, Young-Ouk; Chang, Jonghwa

    1998-01-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as 'Development of Nuclear Data System'. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are 1) to establish nuclear data system, 2) to build up the infra-structure for utilization of nuclear data and 3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  1. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators

    Lazennec, Gwendal; Canaple, Laurence; Saugy, Damien; Wahli, Walter

    2000-01-01

    The nuclear peroxisome proliferator-activated receptors (PPARs) α, β and γ activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. The activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas the activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase dependent induction of PPARs but also their ligand-dependent induction, suggesting that the ligands may also mobilize the PKA pathway to lead to maximal transcriptional induction by PPARs. Moreover, comparing PPARα KO with PPARα wild-type mice, we show that the expression of the ACO gene can be regulated by PKA-activated PPARα in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity and we propose a model associating this pathway in the control of fatty acid β-oxidation under conditions of fasting, stress and exercise. PMID:11117527

  2. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  3. The Nuclear Receptor, Nor-1, Markedly Increases Type II Oxidative Muscle Fibers and Resistance to Fatigue

    Pearen, Michael A.; Eriksson, Natalie A.; Fitzsimmons, Rebecca L.; Goode, Joel M.; Martel, Nick; Andrikopoulos, Sofianos; Muscat, George E. O.

    2012-01-01

    Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal...

  4. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample.

    Zhao, Lan-Juan; Guo, Yan-Fang; Xiong, Dong-Hai; Xiao, Peng; Recker, Robert R; Deng, Hong-Wen

    2006-11-01

    In light of findings that osteoporosis and obesity may share some common genetic determination and previous reports that RANK (receptor activator of nuclear factor-kappaB) is expressed in skeletal muscles which are important for energy metabolism, we hypothesize that RANK, a gene essential for osteoclastogenesis, is also important for obesity. In order to test the hypothesis with solid data we first performed a linkage analysis around the RANK gene in 4,102 Caucasian subjects from 434 pedigrees, then we genotyped 19 SNPs in or around the RANK gene. A family-based association test (FBAT) was performed with both a quantitative measure of obesity [fat mass, lean mass, body mass index (BMI), and percentage fat mass (PFM)] and a dichotomously defined obesity phenotype-OB (OB if BMI > or = 30 kg/m(2)). In the linkage analysis, an empirical P = 0.004 was achieved at the location of the RANK gene for BMI. Family-based association analysis revealed significant associations of eight SNPs with at least one obesity-related phenotype (P obesity phenotype. The P value is 0.126 for OB, 0.033 for fat mass, 0.021 for lean mass, 0.016 for BMI, and 0.006 for PFM. The haplotype data analyses provide further association evidence. In conclusion, for the first time, our results suggest that RANK is a novel candidate for determination of obesity.

  5. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...

  6. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  7. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  8. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  9. Activity of Armenian Nuclear Authority

    Martirosyan, A.; Kurghinyan, V.

    2001-01-01

    The activities of the Armenian regulatory body (ANRA) during 2000 includes: development of normative documents in the field of the peaceful use of atomic energy; supervision for nuclear and radiation safety; personnel training and international co-operation. In the field of nuclear legislation a project of a decree of RA Government 'About making scientific and technical center on nuclear and radiation safety' and 'Requirements to a format and content of the safety analysis report for the unit 2 of ANPP' are prepared. During the year 13 inspections have been carried out in the following direction: modernization, performance of measures re-apprising of seismic safety; performance of the operational control of metal of equipment and tubes, observation of radiation safety, safety control of radioactive waste, emergency preparedness. A statistics of the incidents after the starting-up with INES rating (1995) is presented. In 2000 3 events (2 of level 0 and 1 of level 1) took place. The training activities include the set-up of a new multifunctional simulator, personnel training and examinations. The international co-operation activities connected with IAEA, NRC, European Commission and other countries are presented

  10. Activities report in nuclear physics

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are

  11. Peroxisome Proliferator-activated Receptor gamma Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

    Jeninga, E.H.; Bugge, A.; Nielsen, R.; Kersten, A.H.; Hamers, N.; Dani, C.; Wabitsch, M.; Berger, R.; Stunnenberg, H.G.; Mandrup, S.; Kalkhoven, E.

    2009-01-01

    The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma

  12. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations...

  13. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  14. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  15. In vitro nuclear receptor inhibition and cytotoxicity of hydraulic fracturing chemicals and their binary mixtures.

    Bain, Peter A; Kumar, Anu

    2018-05-01

    The widespread use of hydraulic fracturing (HF) in oil and gas extraction operations has led to concern over environmental risks posed by chemicals used in HF fluids. Here we employed a suite of stable luciferase reporter gene assays to investigate the potential for selected HF chemicals or geogenics to activate or antagonise nuclear receptor signalling. We screened three biocides (bronopol [BP], glutaraldehyde [GA], and tetrakis(hydroxymethyl)phosphonium sulfate [THPS]), a surfactant (2-butoxyethanol), a friction reducer (polyacrylamide), and a coal seam geogenic (o-cresol) for their potential to act as agonists or antagonists of the estrogen receptor, androgen receptor, progesterone receptor (PR), glucocorticoid receptor or peroxisome proliferator-activated receptor gamma (PPARγ). None of the chemicals induced luciferase activity in any of assays used in the study. In antagonistic mode, BP, GA and THPS caused reductions in luciferase activity in the reporter assays at higher concentrations (50-100 μM), while at low concentrations (2-10 μM) GA and THPS enhanced luciferase activity in some assays relative to controls. None of the other tested chemicals exhibited antagonism in the selected assays. In most cases, altered receptor signalling only occurred at concentrations exhibiting cytotoxicity. However, PPARγ activity, and to a lesser extent PR activity, were inhibited by THPS at sub-cytotoxic concentrations. The majority of binary combinations tested exhibited significantly less-than-additive cytotoxicity, and none of the combinations exhibited synergistic cytotoxicity. In summary, the results of the present study indicate that the selected chemicals are not likely to function as direct agonists of the nuclear receptors tested, and only one chemical, THPS was an apparent partial antagonist of two nuclear receptors. Copyright © 2017. Published by Elsevier Ltd.

  16. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  17. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  18. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  19. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. RECEPTORES NUCLEARES: DEL NÚCLEO AL CITOPLASMA

    Bibiana Ortega-Domínguez

    2015-01-01

    Full Text Available Los receptores nucleares (RNs constituyen una familia de factores transcripcionales activados por ligando que regulan la expresión de un gran número de genes de forma dependiente del tipo y contexto celular. La localización subcelular de los RNs es altamente dinámica y repercute sobre sus funciones como factores transcripcionales. En presencia de su ligando específico, los RNs se acumulan en el núcleo para modular la expresión de sus genes blanco. Por ende, la salida desde el núcleo a citoplasma de los RNs disminuye su acumulación nuclear y abate su actividad transcripcional. Por lo tanto, la exportación nuclear constituye un importante mecanismo de regulación de la actividad de los RNs. A pesar de su importancia, el proceso de exportación nuclear de los RNs no ha sido completamente explorado, sin embargo, los estudios que se tienen hasta ahora sugieren la participación de las proteínas CRM–1 y la Calreticulina (CRT como mediadoras de este proceso. En esta revisión se destaca la exportación nuclear como un mecanismo regulador de las funciones de los RNs y se discuten las características estructurales y funcionales de las exportinas CRM–1 y CRT.

  1. MTA family of coregulators in nuclear receptor biology and pathology

    Manavathi, Bramanandam; Singh, Kamini; Kumar, Rakesh

    2007-01-01

    Nuclear receptors (NRs) rely on coregulators (coactivators and corepressors) to modulate the transcription of target genes. By interacting with nucleosome remodeling complexes, NR coactivators potentiate transcription, whereas corepressors inhibit transcription of the target genes. Metastasis-associated proteins (MTA) represent an emerging family of novel NR coregulators. In general, MTA family members form independent nucleosome remodeling and deacetylation (NuRD) complexes and repress the transcription of different genes by recruiting histone deacetylases onto their target genes. However, MTA1 also acts as a coactivator in a promoter-context dependent manner. Recent findings that repression of estrogen receptor transactivation functions by MTA1, MTA1s, and MTA2 and regulation of MTA3 by estrogen signaling have indicated the significance of these proteins in NR signaling. Here, we highlight the action of MTA proteins on NR signaling and their roles in pathophysiological conditions. PMID:18174918

  2. IAEA activities on nuclear fuel cycle 1997

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  3. IAEA activities on nuclear fuel cycle 1997

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  4. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  5. Expression and Localization of Peroxisome Proliferator-Activated Receptors and Nuclear Factor κB in Normal and Lesional Psoriatic Skin

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus

    2003-01-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent...... activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei...... in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology...

  6. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  7. CERAPP: Collaborative estrogen receptor activity prediction project

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    ). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...... States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical......: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. conclusion: This project demonstrated...

  8. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  9. Ligands specify estrogen receptor alpha nuclear localization and degradation

    Caze-Subra Stéphanie

    2010-12-01

    Full Text Available Abstract Background The estrogen receptor alpha (ERα is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2, and pure antagonists (selective estrogen regulator disruptor; SERD, ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM, 4-hydroxytamoxifen (OHT or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on

  10. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  11. Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low dimensional molecular descriptors

    Filip eStefaniak

    2015-12-01

    Full Text Available Toxicity evaluation of newly synthesized or used compounds is one of the main challenges during product development in many areas of industry. For example, toxicity is the second reason - after lack of efficacy - for failure in preclinical and clinical studies of drug candidates. To avoid attrition at the late stage of the drug development process, the toxicity analyses are employed at the early stages of a discovery pipeline, along with activity and selectivity enhancing. Although many assays for screening in vitro toxicity are available, their massive application is not always time and cost effective. Thus the need for fast and reliable in silico tools, which can be used not only for toxicity prediction of existing compounds, but also for prioritization of compounds planned for synthesis or acquisition. Here I present the benchmark results of the combination of various attribute selection methods and machine learning algorithms and their application to the data sets of the Tox21 Data Challenge. The best performing method: Best First for attribute selection with the Rotation Forest/ADTree classifier offers good accuracy for most tested cases. For 11 out of 12 targets, the AUROC value for the final evaluation set was ≥0.72, while for three targets the AUROC value was ≥ 0.80, with the average AUROC being 0.784±0.069. The use of two-dimensional descriptors sets enables fast screening and compound prioritization even for a very large database. Open source tools used in this project make the presented approach widely available and encourage the community to further improve the presented scheme.

  12. Structural basis for activation of G-protein-coupled receptors

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine

    2002-01-01

    into conformational changes accompanying GPCR activation and the underlying molecular mechanism governing transition of the receptor between its active and inactive states. Using the beta2-adrenergic receptor as a model system we have obtained evidence for an evolutionary conserved activation mechanism where...... changes and receptor activation. At the current stage we are exploring the possibility of reaching this goal by direct in situ labeling of the beta2-adrenergic receptor in Xenopus laevis oocytes with conformationally sensitive fluorescent probes and parallel detection of receptor activation by co...

  13. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set...... in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip...... of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact...

  14. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    Zhang AL

    2017-02-01

    Full Text Available Ailiang Zhang, Kun Wang, Lianghua Ding, Xinnan Bao, Xuan Wang, Xubin Qiu, Jinbo Liu Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China Abstract: Lumbar disc herniation (LDH is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP was implanted in the left L5 dorsal root ganglion (DRG to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC, caspase-1, interleukin (IL-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. Keywords: pain, NLRP3, NF-κB, dorsal root ganglion, nucleus pulposus

  15. Cross-talk between the NR3B and NR4A families of orphan nuclear receptors

    Lammi, Johanna; Rajalin, Ann-Marie; Huppunen, Johanna; Aarnisalo, Piia

    2007-01-01

    Estrogen-related receptors (NR3B family) and Nurr1, NGFI-B, and Nor1 (NR4A family) are orphan nuclear receptors lacking identified natural ligands. The mechanisms regulating their transcriptional activities have remained elusive. We have previously observed that the members of NR3B and NR4A families are coexpressed in certain cell types such as osteoblasts and that the ability of Nurr1 to transactivate the osteopontin promoter is repressed by ERRs. We have now studied the cross-talk between NR3B and NR4A receptors. We show that NR3B and NR4A receptors mutually repress each others' transcriptional activity. The repression involves intact DNA-binding domains and dimerization interfaces but does not result from competition for DNA binding or from heterodimerization. The activation functions of NR3B and NR4A receptors are dispensable for the cross-talk. In conclusion, we report that cross-talk between NR3B and NR4A receptors is a mechanism modulating the transcriptional activities of these orphan nuclear receptors

  16. The role of nuclear hormone receptors in cutaneous wound repair.

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Role of nuclear receptors in breast cancer stem cells

    Alessio; Papi; Marina; Orlandi

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.

  18. General overview of nuclear activities in Morocco

    Karouani, K.

    1998-01-01

    Nuclear activities have been introduced in Morocco since the early seventies. These activities concern the utilization of nuclear techniques in medicine, food and agriculture as well as training and research in nuclear physics. In 1984, Morocco decided to undertake a technical and economic feasibility study as well as the site study of the first nuclear power plant. Two years after, he decided to create the ''Centre National de l'Energie des Sciences et des Techniques Nucleaires'' as a technical and research support for the nuclear power program and as a promoting institute of nuclear techniques. Obviously, he also decided to set up a regulatory framework. (author)

  19. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  20. Termination of past nuclear activities at the nuclear research institute

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  1. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  2. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Nuclear energy Division - 2011 Activity report

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  4. Spatial profiling of nuclear receptor transcription patterns over the course of Drosophila development.

    Wilk, Ronit; Hu, Jack; Krause, Henry M

    2013-07-08

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands.

  5. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  6. Protease activated receptors (PARS) mediation in gyroxin biological activity

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  7. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  8. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  9. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  10. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion

    Karvonen, Ulla; Jaenne, Olli A.; Palvimo, Jorma J.

    2006-01-01

    In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner

  11. Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix.

    Ali, Neserin; Ljunggren, Stefan; Karlsson, Helen M; Wierzbicka, Aneta; Pagels, Joakim; Isaxon, Christina; Gudmundsson, Anders; Rissler, Jenny; Nielsen, Jörn; Lindh, Christian H; Kåredal, Monica

    2018-01-01

    Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m 3 ) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The

  12. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  13. Nuclear power development and nuclear data activities in Malaysia

    Gui Ah Auu [Malaysian Institute for Nuclear Technology Research, Ministry of Science, Technology and the Environment, Selangor (Malaysia)

    1999-03-01

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  14. Nuclear power development and nuclear data activities in Malaysia

    Gui Ah Auu

    1999-01-01

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  15. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ in vitro

    Dionisi Mauro

    2012-05-01

    Full Text Available Abstract Background Oleamide (ODA is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. Conclusions We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  16. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  17. Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction

    Fuchs, S.; Nguyen, H.D.; Phan, T.T.T.; Burton, M.F.; Nieto, L.; Vries-van Leeuwen, I.J. de; Schmidt, A.; Goodarzifard, M.; Agten, S.M.; Rose, R.; Ottmann, C.; Milroy, L.G.; Brunsveld, L.

    2013-01-01

    Nuclear receptor binding to coactivator proteins is an obligate first step in the regulation of gene transcription. Nuclear receptors preferentially bind to an LXXLL peptide motif which is highly conserved throughout the 300 or so natural coactivator proteins. This knowledge has shaped current

  18. Nuclear receptor 4A (NR4A) family - orphans no more.

    Safe, Stephen; Jin, Un-Ho; Morpurgo, Benjamin; Abudayyeh, Ala; Singh, Mandip; Tjalkens, Ronald B

    2016-03-01

    The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  20. Annual report on nuclear physics activities

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  1. Activities planning of Nuclear Data Center - 1980

    Nair, R.P.K.

    1980-01-01

    The main process systems of nuclear data files and the actual nuclear data processing implantation in the Instituto de Estudos Avancados, are presented. The research activities of Nuclear Data Center during 1980 in relation to the implantation of file process systems for multigroup cross sections, and the calculations of integral reactor parameters, are described. (M.C.K.) [pt

  2. Nuclear receptors and metabolism: from feast to famine.

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.

  3. Activity transport in nuclear reactors

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  4. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells

    Desch, Michael; Schreiber, Andrea; Schweda, Frank

    2010-01-01

    We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse re...

  5. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Jernberg-Wiklund, Helena [Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala (Sweden); Sehat, Bita [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden); Larsson, Olle, E-mail: olle.larsson@ki.se [Department of Oncology and Pathology, The Karolinska Institute, Cancer Center Karolinska, SE-17176 Stockholm (Sweden)

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over

  6. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    Deng, Hua; Lin, Yingbo; Badin, Margherita; Vasilcanu, Daiana; Stroemberg, Thomas; Jernberg-Wiklund, Helena; Sehat, Bita; Larsson, Olle

    2011-01-01

    Research highlights: → SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. → Here we show that nuclear IGF-1R over-accumulates in tumor cells. → This requires overexpression of the receptor that is a common feature in tumor cells. → An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the β-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R

  7. Cyprodinil as an activator of aryl hydrocarbon receptor

    Fang, Chien-Chung; Chen, Fei-Yun; Chen, Chang-Rong; Liu, Chien-Chiang; Wong, Liang-Chi; Liu, Yi-Wen; Su, Jyan-Gwo Joseph

    2013-01-01

    Highlights: ► Cyprodinil activated the aryl hydrocarbon receptor (AHR). ► Cyprodinil induced nuclear translocation of the AHR, and the expression of CYP1A1. ► Cyprodinil enhanced dexamethasone-induced gene expression. ► Cyprodinil phosphorylated ERK, indicating its deregulation of ERK activity. -- Abstract: Cyprodinil is a pyrimidinamine fungicide, used worldwide by agriculture. It is used to protect fruit plants and vegetables from a wide range of pathogens. Benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are toxic environmental pollutants and are prototypes of aryl hydrocarbon receptor (AHR) ligands. Although the structure of cyprodinil distinctly differs from those of BaP and TCDD, our results show that cyprodinil induced nuclear translocation of the AHR, and induced the transcriptional activity of aryl hydrocarbon response element (AHRE). Cyprodinil induced the expression of cytochrome P450 (CYP) 1A1, a well-known AHR-targeted gene, in ovarian granulosa cells, HO23, and hepatoma cells, Hepa-1c1c7. Its induction did not appear in AHR signal-deficient cells, and was blocked by the AHR antagonist, CH-223191. Cyprodinil decreased AHR expression in HO23 cells, resulting in CYP1A1 expression decreasing after it peaked at 9 h of treatment in HO23 cells. Dexamethasone is a synthetic agonist of glucocorticoids. Cyprodinil enhanced dexamethasone-induced gene expression, and conversely, its induction of CYP1A1 expression was decreased by dexamethasone in HO23 cells, indicating its induction of crosstalk between the AHR and glucocorticoid receptor and its role as a potential endocrine disrupter. In addition to BaP, TCDD, and an AHR agonist, β-NF, cyprodinil also phosphorylated extracellular signal-regulated kinase (ERK) in HO23 and Hepa-1c1c7 cells, indicating its deregulation of ERK activity. In summary, our results demonstrate that cyprodinil, similar to BaP, acts as an AHR activator, a potential endocrine disrupter, and an ERK disrupter

  8. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7-Induced Nuclear Factor-Kappa B (NF-κB Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC Therapy

    Vincent Wing Sun Liu

    2017-05-01

    Full Text Available A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7, nuclear factor-kappa B (NF-κB was activated and could result in up-regulated interleukin (IL-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  9. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  10. Epigenetic Basis for the Regulation of Estrogen Receptor Alpha Activity in Breast Cancer Cells

    2009-04-01

    Contreras, J.I., Prescott , M.S., Dagenais, S.L., Wu, R., Yee, J., Orringer, M.B., Misek, D.E., Hanash, S.M., et al. (2002). The hepatocyte nuclear... Microbiology . All Rights Reserved. Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome† Mathieu Lupien,1‡ Jérôme Eeckhoute,1

  11. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  12. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control

    Jihan Youssef

    2004-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ. Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα,δ,γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases.

  13. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  14. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  15. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-01-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene d...

  16. Nuclear desalination activities in India

    Bhattacharjee, B.

    1999-01-01

    The main emphasis of this article is on utilization of nuclear energy for desalination. Nuclear desalination is cheaper, eco-friendly and assists in sustainable growth of total energy generation programme in a country. PHWR type reactors are the main stay of nuclear energy programme in India. Nuclear waste heat for desalination is available in the moderator system of the 220 MW(e) and 500 MW(e) PHWRs. The low temperature evaporation technology (LET) for producing pure water from sea water is also discussed

  17. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  18. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma

    Christensen, Kathrine B; Petersen, Rasmus K; Kristiansen, Karsten

    2010-01-01

    Obesity is one of the predisposing factors for the development of overt Type 2 diabetes (T2D). T2D is caused by a combination of insulin resistance and beta-cell failure and can be treated with insulin sensitizing drugs that target the nuclear receptor peroxisome proliferator-activated receptor (...

  19. Nuclear Energy Division. 2009 Activity report

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  20. The juridical issues of nuclear activities

    Guillaume, M.; Kerever, A.; Pasquier, J.L.; Brillanceau, F.; Besson, J.P.; Chaumette, L.; Niel, J.C.; Reculeau, Y.; Treflez, M.; Pezennec, D.; Cochaud, J.F.; Phan Van, L.; Cormis, F. de; Galmot, Y.; Saint-Raymond, P.; Blanchard, P.; Robert, J.H.

    1997-01-01

    This issue is dedicated to the juridical aspects of civil nuclear activities. It comprises 3 parts and 16 papers. Radiation protection law is dealt with in part 1: prevention of risks due to ionizing radiations in occupational environment; sources and men; the regulation of radioactive materials transport; the regulation of the rejection of gaseous and liquid radioactive effluents. Part 2 tackles the question of checking the pacific uses of nuclear energy, that is the juridical consequences of the non-proliferation and physical protection policies are reviewed: international efforts that aim to limit the military uses of nuclear energy; the juridical and practical aspects of non-proliferation rules and international controls; the national control of radioactive materials. The juridical framing of nuclear activities, nuclear civil liability and infraction of the law are gathered in part 3: the CIINB and its contribution to the safety of nuclear installations; the mining law; the control of nuclear installations safety; the influence of the realization of the nuclear program on the evolution of the French law; the intervention of the administrative judge in nuclear affairs; the protection of population against nuclear risk - statement of existing provisions and new trends; the special regime of the civil nuclear responsibility - at the time of change; the penal infractions of the nuclear law. (J.S.)

  1. Application of nuclear activation analysis

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  2. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  3. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.

  4. Argentine nuclear energy standardization activities

    Boero, Norma; Corcuera, Roberto; Palacios, Tulio A.; Hey, Alfredo M.; Berte, G.; Trama, L.

    2004-01-01

    The International Organization for Standardization (ISO) has more than 200 Technical Committees that develop technical standards. During April 2004 took place in Buenos Aires the 14th Plenary of the ISO/TC 85 Nuclear Energy Committee. During this Plenary issues as Nuclear Terminology, Radiation Protection, Nuclear Fuels, Nuclear Reactors and Irradiation Dosimetry was dealt with. 105 International delegates and 45 National delegates (belonging to CNEA, ARN, NASA, INVAP, CONUAR, IONICS and other organizations) attended the meetings. During this meeting ISO/TC 85 changed its scope; the new scope of the Committee is 'Standardization in the fields of peaceful applications of nuclear energy and of the protection of individuals against all sources of ionizing radiations'. This work summarizes the most important advances and resolutions about the development of standards taken during this meeting as well as the main conclusions. (author) [es

  5. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Wen-feng Shi

    2009-10-01

    Full Text Available The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE.AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  6. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  7. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Song, Kwang-Hoon

    2010-01-01

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  8. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  9. Nuclear information: An overview of IAEA's activities

    Marchesi, I.H.; Konstantinov, L.V.

    1986-01-01

    As stated in this overview of IAEA nuclear information activities the Agency's role in information services is rapidly evolving and multifaceted. The Agency maintains more than 200 computerized files of information. Some 60 of these are part of systems directly related to nuclear activities. Some of these are briefly profiled in this overview such as INIS, the IAEA Nuclear Data Programme, the IAEA Incident Reporting System, the IAEA Energy and Economic Databank, the IAEA Power Reactor Information System, the Nuclear Fuel Cycle Information System, and the International Uranium Geology Information System. Future directions are pointed out. Different ways to upgrade information systems are listed

  10. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  11. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  12. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  13. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  14. Nuclear data: IAEA activity overview

    Marchezi, A.Kh.; Konstantinov, L.V.

    1986-01-01

    The IAEA data banks, aimed at expanding information exchange and maintaining science and technology development in the whole world are briefly described. The following items are are considered: INIS; power reactor information system (PRIS); NPP incident information system (IRS); research reactor data base (RRDB); nuclear fuel cycle information system (NFCIS); nuclear data system (NDS); International uranium geology information system (INTURGEO); power engineering and economy data bank (PEEDB); radioactive material shipment data base; isotopic hydrology data base

  15. Recent Activities on Global Nuclear Safety Regime

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  16. Activities of the Nuclear Data Center

    Fuketa, Toyojiro

    1978-01-01

    The present status of international cooperation system for the nuclear data activities is introductorily explained in outline. The Nuclear Data Center of Japan Atomic Energy Research Institute is presently the only public data center in the field of nuclear data in Japan, and it has the following scope of the works: evaluation of the nuclear data, compilation of the Japanese Evaluated Nuclear Data Library (JENDL), application of the data including benchmark tests, development of the data storage, retrieval and processing systems, data service to the users, secretariat of the Japanese Nuclear Data Committee, and international cooperation. An introduction to the use of nuclear data is given with a brief information on the availability of the data and with some matters that demand special attention. (auth.)

  17. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  18. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  19. Activities of IPEN Nuclear Metrology Laboratory

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  20. Family C 7TM receptor dimerization and activation

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors.......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...

  1. Defining the Strategy of Nuclear Activity

    Racana, R.

    2006-01-01

    This article presents nuclear activity as defined within the field of the nuclear industry, which is studied from its capacity to generate electric power to its application in industry and medicine as well as a source for weapons of mass destruction. These fields of analysis introduce some problems that the nuclear activity itself must know how to confront employing action strategies aimed at becoming an activity to be kept in mind when making use of the benefits that its peaceful use contributes to human life. (Author)

  2. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  3. Regulation of behaviour by the nuclear receptor TLX.

    O'Leary, J D; O'Leary, O F; Cryan, J F; Nolan, Y M

    2018-03-01

    The orphan nuclear receptor Tlx (Nr2e1) is a key regulator of both embryonic and adult hippocampal neurogenesis. Several different mouse models have been developed which target Tlx in vivo including spontaneous deletion models (from birth) and targeted and conditional knockouts. Although some conflicting findings have been reported, for the most part studies have demonstrated that Tlx is important in regulating processes that underlie neurogenesis, spatial learning, anxiety-like behaviour and interestingly, aggression. More recent data have demonstrated that disrupting Tlx during early life induces hyperactivity and that Tlx plays a role in emotional regulation. Moreover, there are sex- and age-related differences in some behaviours in Tlx knockout mice during adolescence and adulthood. Here, we discuss the role of Tlx in motor-, cognitive-, aggressive- and anxiety-related behaviours during adolescence and adulthood. We examine current evidence which provides insight into Tlx during neurodevelopment, and offer our thoughts on the function of Tlx in brain and behaviour. We further hypothesize that Tlx is a key target in understanding the emergence of neurobiological disorders during adolescence and early adulthood. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Annual report on nuclear physics activities

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  5. Annual report on nuclear physics activities

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  6. IAEA activities on nuclear fuel

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  7. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Hong-Yan Zhou

    2015-08-01

    Full Text Available Fungal keratitis (FK is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α, retinoic acid receptor γ (RAR γ, and retinoid X receptor α (RXR α are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  8. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    Le Douarin, B; You, J; Nielsen, Anders Lade

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  9. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  10. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  11. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  12. CEA nuclear energy Directorate - Activity report 2012

    2013-01-01

    After an overview of the activities of the Directorate at the international level, of its scientific activities, and of the consideration given to quality, and a presentation of the transverse program on advanced materials, this report proposes presentations of activities in different domains: future nuclear industrial systems (reactors of 4. generation, back-end of the future cycle, sustainable management of nuclear materials, fundamental scientific and technological research), optimization of the present industrial nuclear activity (reactors of 2. and 3. generation, front-end and back-end of the fuel cycle), the main tools for nuclear development (numerical simulation, the Jules Horowitz reactor), valorisation, economic support of Haute-Marne and Meuse territories (the Syndiese project), nuclear dismantling and decontamination (dismantling projects, projects and works in Fontenay-aux-Roses, Grenoble and Saclay, waste and material flow management, nuclear service facilities, transports). It also presents the activities of some specific CEA centres like Marcoule (R and D in fuel cycle), Cadarache (future energies) and Saclay (nuclear sciences and simulation of reactors and fuel cycle)

  13. Future financial liabilities of nuclear activities

    1996-01-01

    This report deals with future financial liabilities arising from nuclear activities, in particular electricity generation. Future financial liabilities are defined as costs which an organisation or company is expected to meet beyond some five years as a consequence of its current and past activities. The study provides a comprehensive picture on policies for recognizing and funding future financial liabilities arising from nuclear activities and their implementation schemes in Nea Member countries. Mechanisms for reporting and funding future financial liabilities are described, analysed and compared. The report offers some findings, conclusions and recommendations for consideration by Member countries. The nuclear activities considered in the report include nuclear research and development, nuclear industry sectors such as uranium mining and milling, conversion and enrichment, nuclear fuel fabrication, nuclear power plant operation and maintenance, and radioisotopes production. Future financial liabilities arising from these activities cover management and disposal of radioactive wastes, reprocessing of spent fuels when applicable and decommissioning of facilities at the end of their life time. 12 refs., 14 figs., 16 tabs

  14. Nuclear activities and the Pacific islanders

    Dyke, J. Van; Smith, K.R.; Siwatibau, S.

    1984-01-01

    Although to outsiders the Pacific islands may seem far removed from the center of activities and controversies related to nuclear energy, this area has had more direct and negative experiences with nuclear issues than any other area in the world. These experiences have led to a deep-rooted skepticism of all nuclear activities in which distinctions between civilian and military activities, weapons and power, and low-and high-level waste bear little relation to the important Pacific concerns. Antinuclear sentiments are intimately linked to anticolonialism, growing regionalism and emerging cultural pride. Opposition and concern have been expressed in a number of international, regional, national and nongovernmental forums. In this climate, arguments about the relative safety of various waste disposal operations and other nuclear activities are not likely to be meaningful. (author)

  15. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  16. Direction of Nuclear Energy. Activity report 2010

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  17. Ignition properties of nuclear grade activated carbons

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  18. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules.

    Masoodi, Khalid Z; Xu, Yadong; Dar, Javid A; Eisermann, Kurtis; Pascal, Laura E; Parrinello, Erica; Ai, Junkui; Johnston, Paul A; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2017-10-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5 H -pyrrolo[1,2- a ]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.

    Zhang, Chun-Li; Zou, Yuhua; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2006-05-15

    During mammalian embryogenesis, precise coordination of progenitor cell proliferation and differentiation is essential for proper organ size and function. The involvement of TLX (NR2E1), an orphan nuclear receptor, has been implicated in ocular development, as Tlx-/- mice exhibit visual impairment. Using genetic and biochemical approaches, we show that TLX modulates retinal progenitor cell proliferation and cell cycle re-entry by directly regulating the expression of Pten and its target cyclin D1. Additionally, TLX finely tunes the progenitor differentiation program by modulating the phospholipase C and mitogen-activated protein kinase (MAPK) pathways and the expression of an array of cell type-specific transcriptional regulators. Consequently, Tlx-/- mice have a dramatic reduction in retina thickness and enhanced generation of S-cones, and develop severe early onset retinal dystrophy. Furthermore, TLX interacts with atrophin1 (Atn1), a corepressor that is involved in human neurodegenerative dentatorubral-pallidoluysian atrophy (DRPLA) and that is essential for development of multiple tissues. Together, these results reveal a molecular strategy by which an orphan nuclear receptor can precisely orchestrate tissue-specific proliferation and differentiation programs to prevent retinal malformation and degeneration.

  20. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  1. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism.

    Rollins, David A; Coppo, Maddalena; Rogatsky, Inez

    2015-04-01

    Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.

  2. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation

    Lafont, Anne Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna

    2016-01-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleo...

  3. The nuclear receptor NR2E1/TLX controls senescence

    Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M.; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2014-01-01

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumours including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that Polycomb repressive complexes (PRC) also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the Polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence (OIS). The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of Polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer. PMID:25328137

  4. The nuclear receptor NR2E1/TLX controls senescence.

    O'Loghlen, Ana; Martin, Nadine; Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2015-07-30

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.

  5. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-05

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Tiefenbach, Jens; Moll, Pamela R; Nelson, Meryl R; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M

    2010-03-22

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  7. A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery.

    Jens Tiefenbach

    2010-03-01

    Full Text Available Nuclear receptors (NRs belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio. The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1 respond as expected to endogenous zebrafish hormones and cofactors, 2 facilitate efficient receptor and cofactor purification, 3 respond robustly to NR hormones and drugs and 4 yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.

  8. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  9. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  10. Civil liability on nuclear activities; Responsabilidade civil nas atividades nucleares

    Bittar, C A

    1983-12-31

    The civil liability theory in the actual context is shown in the first and second part of this thesis, including some considerations about concepts and types of liability in dangerous and not dangerous activities. In the third part, the legal aspects of civil liability for the nuclear activities are analyzed, with a brief description of the history evolution, standard systems, inspection corporation and juridical regulation. (C.G.C.). 239 refs.

  11. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements.

    Keller, H; Givel, F; Perroud, M; Wahli, W

    1995-07-01

    Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.

  12. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. A 'Swinging Cradle' model for in vitro classification of different types of response elements of a nuclear receptor

    Malo, Madhu S.; Pushpakaran, Premraj; Hodin, Richard A.

    2005-01-01

    Nuclear receptors are hormone-activated transcription factors that bind to specific target sequences termed hormone-response element (HRE). A HRE usually consists of two half-sites (5'-AGGTCA-3' consensus sequence) arranged as a direct, everted or inverted repeat with variable spacer region. Assignment of a HRE as a direct, everted or inverted repeat is based on its homology to the consensus half-site, but minor variations can make such an assignment confusing. We hypothesize a 'Swinging Cradle' model for HRE classification, whereby the core HRE functions as the 'sitting platform' for the NR, and the extra nucleotides at either end act as the 'sling' of the Cradle. We show that in vitro binding of the thyroid hormone receptor and 9-cis retinoic acid receptor heterodimer to an everted repeat TRE follows the 'Swinging Cradle' model, whereas the other TREs do not. We also show that among these TREs, the everted repeat mediates the highest biological activity

  14. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  15. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  16. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Development of a Systems Computational Model to Investigate Early Biological Events in Hepatic Activation of Constitutive Androstane Receptor (CAR) by Phenobarbital

    Activation of the nuclear receptor CAR (constitutive active/androstane receptor) is implicated in the control several key biological events such as metabolic pathways. Here, we combined data from literature with information obtained from in vitro assays in the US EPA ToxCast dat...

  18. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  19. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  20. Transcriptional peroxisome proliferator-activated receptor γ ...

    user

    regulates slow fiber type formation during the transformation of muscle fiber type in S. prenanti. Key words: PGC-1ɑ, ... a master regulator of energy metabolism. PGC-1ɑ is identified ..... which is involved in hormone receptor families, such as ...

  1. Globalization of nuclear activities and global governance

    Sefidvash, Farhang

    1997-01-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  2. Globalization of nuclear activities and global governance

    Sefidvash, Farhang [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear

    1997-07-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  3. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  4. Mincle suppresses Toll-like receptor 4 activation.

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  5. Fusion Nuclear Data activities at FNL, IPR

    P. M. Prajapati; B. Pandey; S. Jakhar; C.V. S. Rao; T. K. Basu; B. K. Nayak; S. V. Suryanarayana; A. Saxena

    2015-01-01

    This paper briefly describes the current fusion nuclear data activities at Fusion Neutronics Laboratory, Institute for Plasma Research. It consist of infrastructure development for the cross-section measurements of structural materials with an accelerator based 14 MeV neutron generator and theoretical study of the cross-section using advanced nuclear reaction modular codes EMPIRE and TALYS. It will also cover the proposed surrogate experiment to measure 55Fe (n, p) 55Mn using BARC-TIFR Pel...

  6. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  7. Nuclear exportin receptor CAS regulates the NPI-1-mediated nuclear import of HIV-1 Vpr.

    Eri Takeda

    Full Text Available Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74 contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74 to the nuclear envelope and then imported into the nucleus by importin α (Impα alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM region (which is also essential for the binding of CAS, the export receptor for Impα in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.

  8. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis.

    Misra, Jagannath; Kim, Don-Kyu; Jung, Yoon Seok; Kim, Han Byeol; Kim, Yong-Hoon; Yoo, Eun-Kyung; Kim, Byung Gyu; Kim, Sunghoon; Lee, In-Kyu; Harris, Robert A; Kim, Jeong-Sun; Lee, Chul-Ho; Cho, Jin Won; Choi, Hueng-Sik

    2016-10-01

    Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis. © 2016 by the American Diabetes Association.

  9. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine

    Wu, Shaoping; Liao, Anne P.; Xia, Yinglin; Li, Yan Chun; Li, Jian-Dong; Sartor, R. Balfour; Sun, Jun

    2010-01-01

    Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-κB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-κB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR−/− mice exhibited a pro-inflammatory bias. After ...

  10. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  11. Inhibitors for Androgen Receptor Activation Surfaces

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  12. Modulation of β-catenin signaling by glucagon receptor activation.

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  13. Managing Siting Activities for Nuclear Power Plants

    NONE

    2012-06-15

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  14. Managing Siting Activities for Nuclear Power Plants

    2012-01-01

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  15. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug ...

  16. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus.

    Kozareva, Danka A; Hueston, Cara M; Ó'Léime, Ciarán S; Crotty, Suzanne; Dockery, Peter; Cryan, John F; Nolan, Yvonne M

    2017-08-20

    The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nuclear activated cw chemical laser

    Roberts, T.G.

    1982-01-01

    A cw chemical laser which uses processed radioactive waste to produce active atoms from a chemically inactive gas before being mixed with another molecule such as hydrogen or deuterium is disclosed. This laser uses no toxic or corrosive fuels and does not require any electrical or other type of auxiliary power supply. The energy released by the radioactive material is used to produce the active atoms such as fluorine. This is accomplished by using the radiation products from processed radioactive waste to dissociate the inert gas in the plenum of the laser. The radioactive material is held in the passageway walls of a device similar to a heat exchanger. The exchanger device may be located in the gas generator section of a chemical laser. The inactive gas is passed through the exchanger device and while passing through it the radiation from the radioactive material dissociates the gas, producing a concentration of free active atoms. This active atom generator then feeds the nozzle bank or mixing section of a laser to produce a lasing action

  18. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  19. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus.

    Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-18

    Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.

  20. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  1. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  2. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas.

    Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia

    2006-04-01

    Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.

  3. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  5. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  6. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  7. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  8. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  9. Assembly and activation of neurotrophic factor receptor complexes.

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  10. Biochemical characterization of nuclear receptors for vitamin D3 and glucocorticoids in prostate stroma cell microenvironment

    Hidalgo, Alejandro A.; Montecinos, Viviana P.; Paredes, Roberto; Godoy, Alejandro S.; McNerney, Eileen M.; Tovar, Heribelt; Pantoja, Diego; Johnson, Candace; Trump, Donald; Onate, Sergio A.

    2011-01-01

    Highlights: → Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. → Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D 3 in stromal cell microenvironment prostate cancer. → 1a,25-Dyhidroxyvitamin D 3 (1,25D 3 ) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1α,25-Dihydroxyvitamin D 3 (1,25D 3 ) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D 3 is mediated by the 1,25D 3 nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D 3 in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D 3 action. Conversely, VDR-mediated transcriptional activity was more efficient in 4 out of 13 CAS (30

  11. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  12. Nuclear thyroid hormone receptors in rabbit heart: reduced triiodothyronine binding in atrium compared with ventricle

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1988-01-01

    Radiolabeled triiodothyronine (T3) binding to isolated nuclei was measured to compare the binding characteristics of the nuclear receptors in rabbit ventricular and atrial muscle cells. Scatchard analysis of the binding data yielded a maximum binding capacity of 170 +/- 20 fmol per mg DNA and apparent dissociation constant of 525 +/- 100 pM for ventricular nuclei. The binding capacity and the dissociation constant for the atrial muscle cell nuclei were 55 +/- 10 fmol per mg DNA and 500 +/- 75 pM, respectively. The results suggest that the binding capacity for T3 receptor in the atrium is considerably lower than that found in the ventricle. The reduced binding capacity of the T3 receptor in the atrium might reflect differences in the nuclear T3 receptors between ventricle and atrium

  13. Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis.

    Guillaume, Maeva; Montagner, Alexandra; Fontaine, Coralie; Lenfant, Françoise; Arnal, Jean-François; Gourdy, Pierre

    2017-01-01

    Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.

  14. Nuclear data for proton activation analysis

    Mukhammedov, S; Vasidov, A [Institute of Nuclear Physics of Academy of Sciences of Uzbekistan, 702132 Ulugbek, Tashkent (Uzbekistan); Comsan, M N.H. [Nuclear Research Centre, Inshas Cyclotron Facility, AEA 13759 Cairo (Egypt)

    2000-11-15

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy.

  15. Status of nuclear data activities at Karlsruhe

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    This is a brief introduction to nuclear data activity at Karlsruhe Research Center. Some URLs concerned are given. Topics mentioned here are, the FENDL and JEF/EFF project at INR, and measurements of neutron capture cross sections at IK III. (author)

  16. Nuclear data for proton activation analysis

    Mukhammedov, S.; Vasidov, A.; Comsan, M.N.H.

    2000-01-01

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy

  17. Disposal of high-activity nuclear wastes

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  18. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  19. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  20. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  1. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  2. OECD Nuclear Energy Agency. 5 activity report. 1976

    1977-01-01

    The main activities of the Agency are reviewed: nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation; gas-cooled fast reactors, isotopic batteries; nuclear data Centers

  3. OECD Nuclear Energy Agency. 3. Activity report, 1974

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  4. Advancing capabilities for detecting undeclared nuclear activities

    Baute, J.

    2013-01-01

    When a country presents a consistent, transparent and predictable picture of its nuclear programme that is supported by the analysis of all information, IAEA inspectors do not need to go there as frequently for routine verification activities. Rather IAEA can redirect those resources to addressing safeguards issues in the state posing real proliferation concerns. The point is how to establish a coherent picture of a nuclear program and how to identify early warnings of safeguard breaches. A key element is the exploitation of all the information available (open sources, inspection report, satellite imagery, state declarations,...) through effective and quick information analysis. This document is made up of the slides of the presentation

  5. Activation Analysis and Nuclear Research in Burma

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  6. Impaired peroxisome proliferator-activated receptor γ function through mutation of a conserved salt bridge (R425C) in familial partial lipodystrophy

    Jeninga, E.H.; van Beekum, P.O; van Dijk, A.D.J.; Hamers, N.; Bonvin, A.M.J.J.; Berger, R.; Kalkhoven, E.

    2007-01-01

    The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays a key role in the regulation of glucose and lipid metabolism in adipocytes by regulating their differentiation, maintenance, and function. A heterozygous mutation in the PPARG gene, which changes an arginine residue at

  7. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  8. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  9. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  10. Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells.

    Gawlas, K.; Stunnenberg, H.G.

    2001-01-01

    An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no

  11. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity.

    La Rosa, Piergiorgio; Pesiri, Valeria; Leclercq, Guy; Marino, Maria; Acconcia, Filippo

    2012-05-01

    The estrogen receptor-α (ERα) is a transcription factor that regulates gene expression through the binding to its cognate hormone 17β-estradiol (E2). ERα transcriptional activity is regulated by E2-evoked 26S proteasome-mediated ERα degradation and ERα serine (S) residue 118 phosphorylation. Furthermore, ERα mediates fast cell responses to E2 through the activation of signaling cascades such as the MAPK/ERK and phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog 1 pathways. These E2 rapid effects require a population of the ERα located at the cell plasma membrane through palmitoylation, a dynamic enzymatic modification mediated by palmitoyl-acyl-transferases. However, whether membrane-initiated and transcriptional ERα activities integrate in a unique picture or represent parallel pathways still remains to be firmly clarified. Hence, we evaluated here the impact of ERα palmitoylation on E2-induced ERα degradation and S118 phosphorylation. The lack of palmitoylation renders ERα more susceptible to E2-dependent degradation, blocks ERα S118 phosphorylation and prevents E2-induced ERα estrogen-responsive element-containing promoter occupancy. Consequently, ERα transcriptional activity is prevented and the receptor addressed to the nuclear matrix subnuclear compartment. These data uncover a circuitry in which receptor palmitoylation links E2-dependent ERα degradation, S118 phosphorylation, and transcriptional activity in a unique molecular mechanism. We propose that rapid E2-dependent signaling could be considered as a prerequisite for ERα transcriptional activity and suggest an integrated model of ERα intracellular signaling where E2-dependent early extranuclear effects control late receptor-dependent nuclear actions.

  12. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  13. Scientific activities 1980 Nuclear Research Center ''Democritos''

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  14. Outreach activity by using three-dimensional nuclear chart. Understanding nuclear physics and nuclear energy

    Koura, Hiroyuki

    2015-01-01

    A three-dimensional nuclear chart is constructed with toy blocks for usage of outreach activity related on nuclear physics and atomic energy. The height of each block represents quantities like atomic mass per nucleon, the total half-life, etc. The bulk properties of the nuclei can be easily understood by using these charts. Explanations for the energy generation of nuclear fusion and fission are visually given. In addition, we newly set another chart with blocks of fission fragment mass distribution from U-235 + a thermal neutron. As an example, the origin of abundances of rather radioactive isotopes like Sr-90 and Cs-137 is explained which created in nuclear reactor and also distributed in the eastern side of Fukushima prefecture due to the accident of Fukushima-Daiichi Nuclear Power Plant. Using our charts, lectures entitled 'Alchemy of the Universe' were delivered to high schools and public places. (author)

  15. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors.

    Wang, Luqiao; Nanayakkara, Gayani; Yang, Qian; Tan, Hongmei; Drummer, Charles; Sun, Yu; Shao, Ying; Fu, Hangfei; Cueto, Ramon; Shan, Huimin; Bottiglieri, Teodoro; Li, Ya-Feng; Johnson, Candice; Yang, William Y; Yang, Fan; Xu, Yanjie; Xi, Hang; Liu, Weiqing; Yu, Jun; Choi, Eric T; Cheng, Xiaoshu; Wang, Hong; Yang, Xiaofeng

    2017-10-24

    Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.

  16. Experimental Nuclear Physics Activity in Italy

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  17. Induction of the nuclear IκB protein IκB-ζ upon stimulation of B cell antigen receptor

    Hijioka, Kuniaki; Matsuo, Susumu; Eto-Kimura, Akiko; Takeshige, Koichiro; Muta, Tatsushi

    2007-01-01

    The nuclear IκB protein IκB-ζ is barely detectable in resting cells and is induced in macrophages and fibroblasts following stimulation of innate immunity via Toll-like receptors. The induced IκB-ζ associates with nuclear factor (NF)-κB in the nucleus and plays crucial roles in its transcriptional regulation. Here, we examined the induction of IκB-ζ in B lymphocytes, one of the major players in adaptive immunity. Upon crosslinking of the surface immunoglobulin complex, IκB-ζ mRNA was robustly induced in murine B-lymphoma cell line A20 cells. While the crosslinking activated NF-κB and induced its target gene, IκB-α, co-crosslinking of Fcγ receptor IIB to the surface immunoglobulin complex inhibited NF-κB activation and the induction of IκB-ζ and IκB-α, suggesting critical roles for NF-κB in the induction. These results indicate that IκB-ζ is also induced by stimulation of B cell antigen receptor, suggesting that IκB-ζ is involved in the regulation of adaptive immune responses

  18. Nuclear activation techniques in the life sciences

    NONE

    1978-08-15

    The analysis of the elemental composition of biological materials is presently undertaken on a large scale in many countries around the world One recent estimate puts the number of such analyses at six thousand million single-element determinations per year, of which about sixteen million are for the so-called trace elements. Since many of these elements are known to play an important role in relation to health and disease, there is considerable interest in learning more about the ways in which they function in living organisms. Nuclear activation techniques, generally referred to collectively as 'activation analysis' constitute an important group of methods for the analysis of the elemental composition of biological materials. Generally they rely on the use of a research nuclear reactor as a source of neutrons for bombarding small samples of biological material, followed by a measurement of the induced radioactivity to provide an estimate of the concentrations of elements. Other methods of activation with Bremsstrahlung and charged particles may also be used, and have their own special applications. These methods of in vitro analysis are particularly suitable for the study of trace elements. Another important group of methods makes use of neutrons from isotopic neutron sources or neutron generators to activate the whole body, or a part of the body, of a living patient. They are generally used for the study of major elements such as Ca, Na and N. All these techniques have previously been the subject of two symposia organised by the IAEA in 1967 and 1972. The present meeting was held to review some of the more recent developments in this field and also to provide a viewpoint on the current status of nuclear activation techniques vis-a-vis other competing non-nuclear methods of analysis.

  19. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  20. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased

  1. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is involved in regulation of energy homeostasis. Activation of PPARdelta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary

  2. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  3. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  4. Nuclear Forensics' role in analyzing nuclear trafficking activities

    Hrnecek, E.; Mayer, K.; Schubert, A.; Wallenius, M.

    2010-01-01

    Nuclear forensics aims at identifying origin and intended use of nuclear material using information inherent to the nuclear material.The information gathered in nuclear forensics include isotopic composition, elemental composition, impurities and age of the material, macroscopic appearance and microstructure. The information so collected helps to solve criminal cases and put the individuals involved in nuclear trafficking in jails. The information also helps to improve safeguards and physical protection measures at place of theft or diversion to prevent future thefts or diversions.

  5. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  6. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  7. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  8. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  9. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  10. Applied nuclear physics group - activities report. 1977-1997

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997

  11. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  12. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  13. Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases

    Su Zhang

    2015-01-01

    Full Text Available Peroxisome proliferator-activated receptor γ (PPAR γ, a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPAR γ in antiangiogenesis, antifibrosis, anti-inflammation effects and in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-related macular degeneration (AMD, diabetic retinopathy (DR, keratitis, and optic neuropathy, often involve neoangiogenesis and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPAR γ to improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPAR γ in the ocular pathophysiological processes and PPAR γ agonists as novel adjuvants in the treatment of eye diseases.

  14. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  15. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  16. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.

    López-Oliva, María Elvira; Garcimartin, Alba; Muñoz-Martínez, Emilia

    2017-12-01

    The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.

  17. Nuclear Power and Safety Division activity

    Pazdera, F.

    1991-01-01

    History of the Division is briefly described. Present research is centered on reliability analyses and thermal hydraulic analyses of transients and accidents. Some results of the safety analyses have been applied at nuclear power plants. A characterization is presented of computer codes for analyzing the behavior of fuel in normal and accident conditions. Research activities in the field of water chemistry and corrosion are oriented to the corrosion process at high temperatures and high pressures, and the related mass and radioactivity transfer; the effect of some chemical processes on primary coolant circuit materials; optimization of PWR filtration systems; and the development of the requisite monitoring instrumentation. A computerized operator support system has been developed, and at present it is tested at the Dukovany nuclear power plant. A program of nuclear fuel cycle strategy and economy has been worked out for nuclear fuel performance evaluation. Various options for better fuel exploitation, alternatives for advanced fuelling, and fuel cycle costs are assessed, and out-of-reactor fuel cycle options are compared. (M.D.). 7 refs., 32 refs

  18. Regulation of nuclear and radiological activities; Reglementarea activitatilor nucleare si radiologice

    Sidorencu, Angela; Vasilieva, Natalia; Buzdugan, Artur; Balan, Ionel [Agentia Nationala de Reglementare a Activitatilor Nucleare si Radiologice, Alecu Russo, 1, MD 2068, Chisinau (Moldova, Republic of)

    2012-08-15

    The paper presents a review of the Moldovan regulatory framework regarding nuclear and radiological activities and of the competence of state regulatory authority - the National Agency for the Regulation of Nuclear and Radiological Activities.

  19. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  20. Structure-activity relationships of strychnine analogues at glycine receptors

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  1. Diabetes and obesity treatment based on dual incretin receptor activation

    Skow, M A; Bergmann, N C; Knop, F K

    2016-01-01

    , whereas GIP seems to affect lipid metabolism. The introduction of selective GLP-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has increased the scientific and clinical interest in incretins. Combining the body weight-lowering and glucose-lowering effects of GLP-1...... with a more potent improvement of β cell function through additional GIP action could potentially offer a more effective treatment of diabetes and obesity, with fewer adverse effects than selective GLP-1R agonists; therefore, new drugs designed to co-activate both the GIP receptor (GIPR) and the GLP-1R...

  2. Influence of phasic and tonic dopamine release on receptor activation

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  3. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively r...

  4. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors

    Piau Siong Tan

    2018-03-01

    Full Text Available Summary: Phenylalanine-glycine-rich nucleoporins (FG-Nups are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC. Previous studies showed that nuclear transport receptors (NTRs were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked β-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell. : Archetypal-fuzzy complexes found in most FG-Nucleoporin⋅nuclear transport receptor complexes allow fast yet specific nuclear transport. Tan et al. show that FG-Nup214, located at the periphery of the nuclear pore complex, binds to CRM1⋅RanGTP via a coupled reconfiguration-binding mechanism, which can enable different functionalities e.g., cargo release. Keywords: intrinsically disordered protein, glycosylation, FG-Nup, nuclear transport receptors, binding mechanism, single-molecule FRET, molecular dynamics simulations

  5. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  6. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  7. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Boulanger, Ana; Farge, Morgane; Ramanoudjame, Christophe; Wharton, Kristi; Dura, Jean-Maurice

    2012-01-01

    Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  8. Building Public Confidence in Nuclear Activities

    Isaacs, T

    2002-01-01

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site. Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence and some of

  9. Building Public Confidence in Nuclear Activities

    Isaacs, T

    2002-01-01

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence, and some of

  10. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  11. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  13. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  14. The human orphan nuclear receptor tailless (TLX, NR2E1) is druggable.

    Benod, Cindy; Villagomez, Rosa; Filgueira, Carly S; Hwang, Peter K; Leonard, Paul G; Poncet-Montange, Guillaume; Rajagopalan, Senapathy; Fletterick, Robert J; Gustafsson, Jan-Åke; Webb, Paul

    2014-01-01

    Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.

  15. The human orphan nuclear receptor tailless (TLX, NR2E1 is druggable.

    Cindy Benod

    Full Text Available Nuclear receptors (NRs are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1, a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD. Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP. Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3 that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.

  16. Nuclear data project evaluation activity report. October 1998 - October 2000

    Akovali, Y.; Blackmon, J.; Radford, D.; Smith, M.

    2001-01-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report

  17. Nuclear data project evaluation activity report. October 1998 - October 2000

    Akovali, Y; Blackmon, J; Radford, D; Smith, M [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2001-02-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report.

  18. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 attenuates Neointima Formation Following Vascular Injury

    Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis

    2009-01-01

    Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266

  19. Interleukin (IL) 36 gamma induces mucin 5AC, oligomeric mucus/gel-forming expression via IL-36 receptor-extracellular signal regulated kinase 1 and 2, and p38-nuclear factor kappa-light-chain-enhancer of activated B cells in human airway epithelial cells.

    Bae, Chang Hoon; Choi, Yoon Seok; Na, Hyung Gyun; Song, Si-Youn; Kim, Yong-Dae

    2018-03-01

    Mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression is significantly increased in allergic and inflammatory airway diseases. Interleukin (IL) 36 gamma is predominantly expressed in airway epithelial cells and plays an important role in innate and adaptive immune responses. IL-36 gamma is induced by many inflammatory mediators, including cytokines and bacterial and viral infections. However, the association between IL-36 gamma and mucin secretion in human airway epithelial cells has not yet been fully investigated. The objective of this study was to determine whether IL-36 gamma might play a role in the regulation of mucin secretion in airway epithelial cells. We investigated the effect and brief signaling pathway of IL-36 gamma on MUC5AC expression in human airway epithelial cells. Enzyme immunoassay, immunoblot analysis, immunofluorescence staining, reverse transcriptase-polymerase chain reaction (PCR), and real-time PCR were performed in mucin-producing human airway epithelial NCI-H292 cells and in human nasal epithelial cells after pretreatment with IL-36 gamma, several specific inhibitors, or small interfering RNAs (siRNA). IL-36 gamma induced MUC5AC expression and activated the phosphorylation of extracellular signal regulated kinase (ERK) 1 and 2, p38, and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kappa B). IL-36 receptor antagonist significantly attenuated these effects. The specific inhibitor and siRNA of ERK1, ERK2, p38, and NF-kappa B significantly attenuated IL-36 gamma induced MUC5AC expression. These results indicated that IL-36 gamma induced MUC5AC expression via the IL-36 receptor-mediated ERK1/2 and p38/NF-kappa B pathway in human airway epithelial cells.

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  1. Common structural basis for constitutive activity of the ghrelin receptor family

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G...... demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically...

  2. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  3. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  4. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  5. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  6. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.

  7. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    Agarwal, Swati; Yadav, Anuradha; Chaturvedi, Rajnish Kumar

    2017-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.

  8. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  9. New activities in nuclear power plants maintenance

    Mico, F.; Specht, J.

    2006-01-01

    This article addresses the consequences of the progressive deregulation of the electricity market of several key countries on the maintenance practices and techniques face to the growing pressures on O and M costs. The responses of the nuclear maintenance industry to make maintenance activities more efficient maintaining if not enhancing the safety of NPP's are briefly described. The article also analyses the potential impact of shortage of experience maintenance personnel to serve the NPP's in the future as some countries are already experiencing. (Author)

  10. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Patricia C. Brum

    2006-09-01

    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  11. Salmon trypsin stimulates the expression of interleukin-8 via protease-activated receptor-2

    Larsen, Anett K.; Seternes, Ole-Morten; Larsen, Merethe; Aasmoe, Lisbeth; Bang, Berit

    2008-01-01

    In this study, we focus on salmon trypsin as an activator of inflammatory responses in airway cells in vitro. The rationale behind the investigation is that salmon industry workers are exposed to aerosols containing enzymes, which are generated during industrial processing of the fish. Knowing that serine proteases such as trypsin are highly active mediators with diverse biological activities, the stimulation of nuclear factor-kappa B (NF-κB) and interleukin (IL)-8 and the role of protease-activated receptors (PAR) in inflammatory signal mediation were investigated. Protease-activated receptors are considered important under pathological situations in the human airways, and a thorough understanding of PAR-induced cellular events and their consequences in airway inflammation is necessary. Human airway epithelial cells (A549) were exposed to trypsin isolated from fish (Salmo salar), and we observed that purified salmon trypsin could generate secretion of IL-8 in a concentration-dependent manner. Furthermore, we demonstrate that PAR-2 activation by salmon trypsin is coupled to an induction of NF-κB-mediated transcription using a PAR-2 transfected HeLa cell model. Finally, we show that the release of IL-8 from A549 following stimulation with purified salmon trypsin is mediated through activation of PAR-2 using specific small interfering RNAs (siRNAs). The results presented suggest that salmon trypsin, via activation of PAR-2, might influence inflammation processes in the airways if inhaled in sufficient amounts

  12. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  13. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  14. Activities of the USSR Nuclear Data Center

    Usachev, L.M.; Popov, V.J.

    1972-01-01

    In any activity, one must start with the determination of its usefulness: in the field of nuclear data, this consists in the compilation of request lists, analogous to the RENDA list, issued in cooperation by the CCDN and the Nuclear Data Center of the N. D. S. At Obninsk, we have a somewhat different approach for our RENDA entries. We do not ask our reactor physicists to formulate their requests for concrete microscopic measurements or to share the requested accuracies between the different needed cross sections, because they are not really specialists in this field. We ask them to formulate their requirements, based on technical and economical considerations, for the tolerable uncertainties on the reactor parameters which are, of course, linked to the uncertainties on nuclear data. In addition, we ask them to give us the sensitivity coefficients for the values of reactor parameters as a function of modifications of the nuclear data. These sensitivity coefficients include all the needed information concerning the reactor in view of the determination of the requirements on nuclear data. The problem of the determination of the set of measurements necessary to obtain the reactor parameters with the required accuracies must, from our point of view be treated mathematically by specialists of the planification theory, working in close connection with specialists of microscopic data measurements and of integral experiments. In order to work out an optimal planing, it is necessary to evaluate the relative costs of the experiments; it is also essential to evaluate correctly the correlations between the uncertainties of the measurements and the estimation of their costs. Moreover, we may know all the information concerning the present accuracy on the measurements of a given type, first of all for a comparative evaluation of the costs of the experiments and, secondly, for drawing conclusions on the possible necessity for more accurate values by comparing the accuracies which

  15. Requirement and prospect of nuclear data activities for nuclear safety

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  16. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  17. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy

    Lei Zhang

    2018-03-01

    Full Text Available Medullary thyroid cancer (MTC is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1 plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K, which is the key enzyme in the mammalian target of rapamycin (mTOR pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53-sestrins-AMPK-mTOR signaling pathway.

  18. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy.

    Zhang, Lei; Liu, Wen; Wang, Qun; Li, Qinpei; Wang, Huijuan; Wang, Jun; Teng, Tieshan; Chen, Mingliang; Ji, Ailing; Li, Yanzhang

    2018-03-02

    Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.

  19. Activities of nuclear human resource development in nuclear industry

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  1. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging.

  2. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  3. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina.

    Miyawaki, Takaya; Uemura, Akiyoshi; Dezawa, Mari; Yu, Ruth T; Ide, Chizuka; Nishikawa, Shinichi; Honda, Yoshihito; Tanabe, Yasuto; Tanabe, Teruyo

    2004-09-15

    Tlx belongs to a class of orphan nuclear receptors that underlies many aspects of neural development in the CNS. However, the fundamental roles played by Tlx in the control of eye developmental programs remain elusive. By using Tlx knock-out (KO) mice, we show here that Tlx is expressed by retinal progenitor cells in the neuroblastic layer during the period of retinal layer formation, and it is critical for controlling the generation of appropriate numbers of retinal progenies through the activities of cell cycle-related molecules, cyclin D1 and p27Kip1. Tlx expression is restricted to Müller cells in the mature retina and appears to control their proper development. Furthermore, we show that Tlx is expressed by immature astrocytes that migrate from the optic nerve onto the inner surface of the retina and is required for their generation and maturation, as assessed by honeycomb network formation and expression of R-cadherin, a critical component for vasculogenesis. The impaired astrocyte network formation on the inner retinal surface is accompanied by the loss of vasculogenesis in Tlx KO retinas. Our studies thus indicate that Tlx underlies a fundamental developmental program of retinal organization and controls the generation of the proper numbers of retinal progenies and development of glial cells during the protracted period of retinogenesis.

  4. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  7. A neutron irradiator to perform nuclear activation

    Zamboni, C. B.; Zahn, G.S.; Figueredo, A. M. G.; Madi, T. F.; Yoriyaz, H.; Lima, R. B.; Shtejer, K.; Dalaqua Jr, L.

    2001-01-01

    The development of appropriate nuclear instrumentation to perform neutron activation analyze (NAA), using thermal and fast neutrons, can be useful to investigate materials outside the reactor premises. Considering this fact, a small size neutron irradiator prototype was developed at IPEN facilities (Instituto de Pesquisas Energeticas e Nucleares - Brazil). Basically, this prototype consists of a cylinder of 1200 mm long and 985 mm diameter (filled with paraffin) with two Am-Be sources (600GBq each) arranged in the longitudinal direction of its geometric center. The material to be irradiated is positioned at a radial direction of the cylinder between the two Am-Be sources. The main advantage of this irradiator is a very stable neutron flux eliminating the use of standard material (measure of the induced activity in the sample by comparative method). This way the process became agile, practical and economic, but quantities at mg levels of samples are necessary to achieve good sensitivity, when the material has a low microscopy neutron cross section. As fast and thermal neutron can be used, the flux distribution, for both, were calculated and the prototype performance is discussed

  8. Reviewing surveillance activities in nuclear power plants

    1989-03-01

    This document provides guidance to Operational Safety Review Teams (OSARTs) for reviewing surveillance activities at a nuclear power plant. In addition, the document contains reference material to support the review of surveillance activities, to assist within the Technical Support area and to ensure consistency between individual reviews. Drafts of the document have already been used on several OSART missions and found to be useful. The document first considers the objectives of an excellent surveillance programme. Investigations to determine the quality of the surveillance programme are then discussed. The attributes of an excellent surveillance programme are listed. Advice follows on how to phrase questions so as to obtain an informative response on surveillance features. Finally, specific equipment is mentioned that should be considered when reviewing functional tests. Four annexes provide examples drawn from operating nuclear power plants. They were selected to supplement the main text of the document with the best international practices as found in OSART reviews. They should in no way limit the acceptance and development of alternative approaches that lead to equivalent or better results. Refs, figs and tabs

  9. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily......The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  10. Peroxisome proliferator-activated receptor: effects on nutritional homeostasis, obesity and diabetes mellitus Receptores activados por los proliferadores de peroxisomas: implicaciones sobre la homeostasis nutricional, en la obesidad y en la diabetes mellitus

    M. Viana Abranches; F. C. Esteves de Oliveira; J. Bressan

    2011-01-01

    The obesity and the metabolic disorders associated characterize the metabolic syndrome, which has increased at an alarming rate around the world. It is known that environmental and genetic factors are involved in the genesis of obesity. Peroxisome Proliferator-Activated Receptors (PPARs) stand out among these factors. They compose the nuclear receptor superfamily and there are in three isoforms (PPARα,PPARβ/δ and PPARγ), which play an important role in the regulation of...

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  12. Summary of nuclear fuel reprocessing activities around the world

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  13. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  14. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  15. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  16. Antidiabetic actions of a phosphatidylcholine ligand for nuclear receptor LRH-1

    Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L.; Busby, Scott A.; Griffin, Patrick R.; Pathak, Manish C.; Ortlund, Eric A.; Moore, David D.

    2011-01-01

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis. PMID:21614002

  17. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action.

    Alison M Anderson

    Full Text Available BACKGROUND: Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS: The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE: This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.

  18. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  19. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  20. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  1. 1984 Act on nuclear activities (1984:3)

    1984-01-01

    This 1984 Act on Nuclear Activities (1984:3) replaces the 1956 Atomic Energy Act as well as the 1977 Act on special permits to charge nuclear reactors with nuclear fuel and the 1980 Act on Public Insight into the Safety Work at Nuclear Power Plants. Like the 1956 Act, the 1984 Act in a safety legislation, which is based on a system of licensing conditions and supervision. According to the fundamental provisions of the 1984 Act, nuclear activities should be conducted in such a way as to meet safety requirements and fulfil the obligations that follow from Sweden's international agreements for the purpose of preventing the proliferation of nuclear weapons. (NEA) [fr

  2. Identification of an Activating Chicken Ig-like Receptor Recognizing Avian Influenza Viruses

    Jansen, Christine A; van Haarlem, Daphne A; Sperling, Beatrice; van Kooten, Peter J; de Vries, Erik; Viertlboeck, Birgit C; Vervelde, Lonneke; Göbel, Thomas W

    2016-01-01

    Chicken Ig-like receptors (CHIRs) represent a multigene family encoded by the leukocyte receptor complex that encodes a variety of receptors that are subdivided into activating CHIR-A, inhibitory CHIR-B, and bifunctional CHIR-AB. Apart from CHIR-AB, which functions as an Fc receptor, CHIR ligands

  3. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  4. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases

    Wang, Tao; Xiong, Jian-Qiong

    2016-01-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated...

  5. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75

    Cáceres, Lucía; Necakov, Aleksandar S.; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J.H.; Krause, Henry M.

    2011-01-01

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer part...

  6. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  7. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  8. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2017-01-01

    Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973

  9. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Finland

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Trade and Industry - KTM; Ministry of Social Affairs and Health; Ministry of the Interior; Ministry of the Environment; Ministry of Foreign Affairs); 2. Advisory bodies (Advisory Committee on Nuclear Energy; Advisory Committee on Nuclear Safety); 3. Public and semi-public agencies (Finnish Radiation and Nuclear Safety Authority - STUK; State Nuclear Waste Management Fund)

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  12. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  13. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  14. An overview on the activities of Pacific Nuclear Council

    Akiyama, Mamoru

    2003-01-01

    Pacific Nuclear Council (PNC) is a non-governmental organization (NGO) for cooperation and exchange of information on the nuclear science and technologies and its use in the Pacific basin countries to be established in November, 1989. The charter members are Canadian Nuclear Society, Canada Nuclear Association, Atomic Energy Society of Japan, Japan Atomic Industrial Forum, Inc., Korea Atomic Industrial Forum, Inc., and Mexico Nuclear Society. The activities of PNC are stated as followings; a charter, rules, objects, construction, management, activities for a member organization, Pacific Basin Nuclear Conference, foreign activities, social trend as back ground and future activities. As the activities for a member organization, eight working groups such as training of people, nuclear safety, public acceptances, reorganization of system, control of radioactive waste, public information and out reach, next generation reactor and rules and standards had been worked and the last four groups are working now. (S.Y.)

  15. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  16. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  17. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  18. Basic principles for regulating nuclear activities

    NONE

    1996-03-01

    The AECB has developed as its mission statement: `To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment`. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs.

  19. Basic principles for regulating nuclear activities

    1996-03-01

    The AECB has developed as its mission statement: 'To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment'. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs

  20. Deflation-activated receptors, not classical inflation-activated receptors, mediate the Hering-Breuer deflation reflex.

    Yu, Jerry

    2016-11-01

    Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.

  1. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease

    Eric R Kallwitz; Alan McLachlan; Scott J Cotler

    2008-01-01

    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisorne proliferators- activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPARγ to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH.

  2. Advanced nuclear fuel cycles activities in IAEA

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Australia

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Bilateral safeguards agreements; International Atomic Energy Agency Safeguards Agreement; The South Pacific Nuclear Free Zone Treaty Act; The Comprehensive Nuclear Test-Ban Treaty Act; The Nuclear Non-Proliferation (Safeguards) Act); 9. Transport; 10. Nuclear third party liability; II) - Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Health and Ageing; Minister for Foreign Affairs; Minister for the Environment, Heritage and the Arts; Minister for, Resources, Energy and Tourism); 2. Advisory bodies (Radiation Health and Safety Advisory Council; Advisory Committees); 3. Public and semi-public agencies (Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); Australian Safeguards and Non-Proliferation Office; Australian Nuclear Science and Technology Organisation (ANSTO); Supervising Scientist)

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  5. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    Jian Yongzhi; Yan Jun; Wang Hanzhou; Chen Chen; Sun Maoyun; Jiang Jianhai; Lu Jieqiong; Yang Yanzhong; Gu Jianxin

    2005-01-01

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  6. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β.

    Jana, Malabendu; Pahan, Kalipada

    2012-08-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.

  8. The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1

    Bertin, Benjamin; Caby, Stephanie; Oger, Frederik; Sasorith, Souphatta; Wurtz, Jean-Marie; Pierce, Raymond J.

    2005-01-01

    In an attempt to understand development and differentiation processes of the parasitic blood fluke Schistosoma mansoni, several members of the nuclear receptor superfamily were cloned, including SmFtz-F1 (S. mansoni Fushi Tarazu-factor 1). The Ftz-F1 nuclear receptor subfamily only contains orphan receptors that bind to their response element as monomers. Whereas SmFtz-F1 displays these basic functional properties, we have identified an original and specific interaction between SmFtz-F1 and the schistosome RXR homologue, SmRXR1. The mammalian two-hybrid assay showed that the D, E, and F domains of SmFtz-F1 were capable of interacting specifically with the E domain of SmRXR1 but not with that of mouse RXRα. Using three-dimensional LBD homology modelling and structure-guided mutagenesis, we were able to demonstrate the essential role of exposed residues located in the dimerization interfaces of both receptors in the maintenance of the interaction. Cotransfection experiments with constructions encoding full-length nuclear receptors show that SmRXR1 potentiates the transcriptional activity of SmFtz-F1 from various promoters. Nevertheless, the lack of identification of a dimeric response element for this SmFtz-F1/SmRXR1 heterodimer seems to indicate a 'tethering' mechanism. Thus, our results suggest for the first time that a member of the Ftz-F1 family could heterodimerize functionally with a homologue of the universal heterodimerization partner of nuclear receptors. This unique property confirms that SmFtz-F1 may be involved in the development and differentiation of schistosome-specific structures

  9. Nuclear air cleaning activities in Germany

    Wilhelm, J.

    1991-01-01

    The discussion is limited to nuclear air cleaning activities in the Federal Republic of Germany. Work is underway on containment venting with regard to filtration based on a combination of stainless steel roughing and fine filters with a decontamination factor similar to or better than that achieved with high-efficiency particulate air filters. The main point of interest is the development of relatively small filter units that can be located inside the containment. The concept of a new design for double containment having annular rooms between the steel containment and the concrete containment is discussed. Work related to the dismantling of decommissioned reactors and limited research for fuel reprocessing facilities are also noted

  10. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α

    Theofilatos, Dimitris; Anestis, Aristomenis [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece); Hashimoto, Koshi [Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-city, Tokyo, 113-8510 (Japan); Kardassis, Dimitris, E-mail: kardasis@imbb.forth.gr [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece)

    2016-01-15

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  11. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α

    Theofilatos, Dimitris; Anestis, Aristomenis; Hashimoto, Koshi; Kardassis, Dimitris

    2016-01-01

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  12. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  13. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  14. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  15. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuc