WorldWideScience

Sample records for active learning al

  1. Active Learning with Statistical Models.

    Science.gov (United States)

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  2. The (kinetic) theory of active particles applied to learning dynamics. Comment on "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    Science.gov (United States)

    Nieto, J.

    2016-03-01

    The learning phenomena, their complexity, concepts, structure, suitable theories and models, have been extensively treated in the mathematical literature in the last century, and [4] contains a very good introduction to the literature describing the many approaches and lines of research developed about them. Two main schools have to be pointed out [5] in order to understand the two -not exclusive- kinds of existing models: the stimulus sampling models and the stochastic learning models. Also [6] should be mentioned as a survey where two methods of learning are pointed out, the cognitive and the social, and where the knowledge looks like a mathematical unknown. Finally, as the authors do, we refer to the works [9,10], where the concept of population thinking was introduced and which motivate the game theory rules as a tool (both included in [4] to develop their theory) and [7], where the ideas of developing a mathematical kinetic theory of perception and learning were proposed.

  3. The International Active Learning Space

    DEFF Research Database (Denmark)

    Manners, Ian James

    2015-01-01

    -Danish students receive the basic international and intercultural skills and knowledge they need in current society. The English-language masters’ seminars I teach at the Department of Political Science are international in terms of students and teacher, but they are also Active Learning seminars......-Danish students (and sometimes teachers) rarely speak to each other or learn each other’s names. In the international AL spaces I create, students must work together on joint tasks which require interaction to address tasks and integration in order to benefit from the multinational activity groups. Planning AL...... that complete the seminar soon become vocal advocates of international AL. Ultimately, enriching student learning through immersing Danish and international students in an international AL space is, for me, the best way of ensuring an internationalised learning outcome, rather than just international mobility....

  4. Interpretable Active Learning

    OpenAIRE

    Phillips, Richard L.; Chang, Kyu Hyun; Friedler, Sorelle A.

    2017-01-01

    Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. W...

  5. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  6. ‘Bomb-Making for Beginners’: Inside al Al-Qaeda E-Learning Course

    OpenAIRE

    Anne Stenersen

    2013-01-01

    This study explores how terrorists utilise the Internet to learn bomb-making skills. Unlike previous studies, it does not focus on assessing the quality of online bomb recipes. Rather, it discusses the efforts being made by on-line jihadists to help others learn by providing so-called “e-learning courses.” As of today, such courses have few active participants yet they tend to attract large interest – indicating that there is a demand among Al-Qaeda’s online sympathise...

  7. ‘Bomb-Making for Beginners’: Inside al Al-Qaeda E-Learning Course

    Directory of Open Access Journals (Sweden)

    Anne Stenersen

    2013-03-01

    Full Text Available This study explores how terrorists utilise the Internet to learn bomb-making skills. Unlike previous studies, it does not focus on assessing the quality of online bomb recipes. Rather, it discusses the efforts being made by on-line jihadists to help others learn by providing so-called “e-learning courses.” As of today, such courses have few active participants yet they tend to attract large interest – indicating that there is a demand among Al-Qaeda’s online sympathisers for developing this concept further. 

  8. From learning objects to learning activities

    DEFF Research Database (Denmark)

    Dalsgaard, Christian

    2005-01-01

    This paper discusses and questions the current metadata standards for learning objects from a pedagogical point of view. From a social constructivist approach, the paper discusses how learning objects can support problem based, self-governed learning activities. In order to support this approach......, it is argued that it is necessary to focus on learning activities rather than on learning objects. Further, it is argued that descriptions of learning objectives and learning activities should be separated from learning objects. The paper presents a new conception of learning objects which supports problem...... based, self-governed activities. Further, a new way of thinking pedagogy into learning objects is introduced. It is argued that a lack of pedagogical thinking in learning objects is not solved through pedagogical metadata. Instead, the paper suggests the concept of references as an alternative...

  9. Theoretical Foundations of Active Learning

    Science.gov (United States)

    2009-05-01

    I study the informational complexity of active learning in a statistical learning theory framework. Specifically, I derive bounds on the rates of...convergence achievable by active learning , under various noise models and under general conditions on the hypothesis class. I also study the theoretical...advantages of active learning over passive learning, and develop procedures for transforming passive learning algorithms into active learning algorithms

  10. Minimax bounds for active learning

    NARCIS (Netherlands)

    Castro, R.M.; Nowak, R.

    2008-01-01

    This paper analyzes the potential advantages and theoretical challenges of "active learning" algorithms. Active learning involves sequential sampling procedures that use information gleaned from previous samples in order to focus the sampling and accelerate the learning process relative to "passive

  11. Using e-learning for maintenance of ALS competence

    DEFF Research Database (Denmark)

    Jensen, Morten Lind; Mondrup, Frederik; Lippert, Freddy

    2009-01-01

    CONTEXT: A well-suited e-learning program might be a feasible strategy to maintain competence following a resuscitation course. AIM: This study had 2 aims: (1) to examine the effect of an e-learning program as a booster of competence acquired from an Advanced Life Support (ALS) course. (2...... one year and effect was measured as ALS-competence, a composite of a knowledge and skills test. The second part was a telephone interview of the intervention group. An interview guide was constructed based on existing knowledge of e-learning. In order to identify factors explaining the use of e....... There was no difference between the groups with regards to ALS competence. Only 'social interaction' was an individually significant factor influencing the use of the e-learning program. CONCLUSIONS: This study did not demonstrate an effect of an e-learning program as a booster of competence acquired from an ALS course...

  12. Active Math Learning

    DEFF Research Database (Denmark)

    The presentation is concerned with general course planning philosophy and a specific case study (boomerang flight geometro-dynamics) for active learning of mathematics via computer assisted and hands-on unfolding of first principles - in this case the understanding of rotations and Eulers equatio...

  13. Flipped Classroom, active Learning?

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Levinsen, Henrik; Philipps, Morten

    2015-01-01

    Action research is conducted in three physics classes over a period of eighteen weeks with the aim of studying the effect of flipped classroom on the pupils agency and learning processes. The hypothesis is that flipped classroom teaching will potentially allocate more time to work actively...

  14. Learning Activity Package, Algebra.

    Science.gov (United States)

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  15. Grooming. Learning Activity Package.

    Science.gov (United States)

    Stark, Pamela

    This learning activity package on grooming for health workers is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  16. Active Learning Using Hint Information.

    Science.gov (United States)

    Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien

    2015-08-01

    The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.

  17. Active inference and learning.

    Science.gov (United States)

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Using e-learning for maintenance of ALS competence.

    Science.gov (United States)

    Jensen, Morten Lind; Mondrup, Frederik; Lippert, Freddy; Ringsted, Charlotte

    2009-08-01

    A well-suited e-learning program might be a feasible strategy to maintain competence following a resuscitation course. This study had 2 aims: (1) to examine the effect of an e-learning program as a booster of competence acquired from an Advanced Life Support (ALS) course. (2) To identify factors related to the use of the e-learning program. The study contained two parts pertaining to the two aims. The first part was a prospective single blinded randomised controlled study on junior doctors. The intervention was the monthly use of an e-learning program during one year and effect was measured as ALS-competence, a composite of a knowledge and skills test. The second part was a telephone interview of the intervention group. An interview guide was constructed based on existing knowledge of e-learning. In order to identify factors explaining the use of e-learning a univariate correlation was used to select significant variables to be included in a multiple regression analysis. Of the 134 invited to participate, 103 accepted the invitation. There were 79/103 (77%) participants, 40/51 in the intervention group and 39/52 in the control group. There was no difference between the groups with regards to ALS competence. Only 'social interaction' was an individually significant factor influencing the use of the e-learning program. This study did not demonstrate an effect of an e-learning program as a booster of competence acquired from an ALS course. The primary factor influencing the use of e-learning was the lack of social interaction.

  19. Re-imagining Active Learning

    DEFF Research Database (Denmark)

    Dall'Alba, Gloria; Bengtsen, Søren Smedegaard

    2018-01-01

    is largely lacking in the literature on active learning. In this article, we explore the possibility of re-imagining, or at least extending, the meaning of active learning by drawing out dimensions that are neither readily visible nor instrumental, as much of this literature implies. Drawing from educational......Ample attention is being paid in the higher education literature to promoting active learning among students. Where studies on active learning report student outcomes, they indicate improved or equivalent outcomes when compared with traditional lectures, which are considered more passive...... philosophy and, in particular, existential philosophies, we argue that active learning may also be partly invisible, unfocused, unsettling, and not at all instrumentalsometimes even leaving the learner more confused and (temporarily) incompetent. However, such forms of undisclosed or ‘dark’ learning, we...

  20. Student Perceptions of Active Learning

    Science.gov (United States)

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  1. Learning and Active Aging

    Science.gov (United States)

    Boulton-Lewis, Gillian M.; Buys, Laurie; Lovie-Kitchin, Jan

    2006-01-01

    Learning is an important aspect of aging productively. This paper describes results from 2645 respondents (aged from 50 to 74+ years) to a 165-variable postal survey in Australia. The focus is on learning and its relation to work; social, spiritual, and emotional status; health; vision; home; life events; and demographic details. Clustering…

  2. Agnostic Active Learning Without Constraints

    OpenAIRE

    Beygelzimer, Alina; Hsu, Daniel; Langford, John; Zhang, Tong

    2010-01-01

    We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning f...

  3. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg

    International Nuclear Information System (INIS)

    Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity; Rohatgi, Aashish

    2016-01-01

    Vacancy-mediated diffusion of an Al atom in the pure Mg matrix is studied using the atomistic, on-lattice self-learning kinetic Monte Carlo (SLKMC) method. Activation barriers for vacancy-Mg and vacancy-Al atom exchange processes are calculated on the fly using the climbing image nudged-elastic-band method and binary Mg–Al modified embedded-atom method interatomic potential. Diffusivities of an Al atom obtained from SLKMC simulations show the same behavior as observed in experimental and theoretical studies available in the literature; that is, an Al atom diffuses faster within the basal plane than along the c-axis. Although the effective activation barriers for an Al atom diffusion from SLKMC simulations are close to experimental and theoretical values, the effective prefactors are lower than those obtained from experiments. We present all the possible vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers identified in SLKMC simulations. A simple mapping scheme to map an HCP lattice onto a simple cubic lattice is described, which enables simulation of the HCP lattice using the on-lattice framework. We also present the pattern recognition scheme which is used in SLKMC simulations to identify the local Al atom configuration around a vacancy. (paper)

  4. Active Learning Using Arbitrary Binary Valued Queries

    Science.gov (United States)

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  5. Active Learning Through Discussion in E-Learning

    OpenAIRE

    Daru Wahyuningsih

    2016-01-01

    Active learning is generally made by a lecturer in learning face to face. In the face to face learning, lecturer can implement a variety of teaching methods to make students actively involved in learning. This is different from learning that is actuating in e-learning. The main characteristic of e-learning is learning that can take place anytime and anywhere. Special strategies are needed so that lecturer can make students play an active role in the course of e-learning. Research in order to ...

  6. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  7. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    Science.gov (United States)

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  8. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  9. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...... that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  10. Active Learning versus Traditional Teaching

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2009-05-01

    Full Text Available In traditional teaching most of the class time is spent with the professor lecturing and the students watching and listening. The students work individually, and cooperation is discouraged. On the other hand,  active learning  changes the focus of activity from the teacher to the learners, in which students solve problems, answer questions, formulate questions of their own, discuss, explain, debate during class;  moreover, students work in teams on problems and projects under conditions that assure positive interdependence and individual accountability. Although student-centered methods have repeatedly been shown to be superior to the traditional teacher-centered approach to instruction, the literature regarding the efficacy of various teaching methods is inconclusive. The purpose of this study was to compare the student perceptions of course and instructor effectiveness, course difficulty, and amount learned between the active learning and lecture sections  in Health Sciences´ courses by statistical data from Anhembi Morumbi University. Results indicated significant  difference between active  learning and traditional  teaching. Our conclusions were that strategies promoting  active  learning to  traditional lectures could increase knowledge and understanding.

  11. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  12. Active learning for Corsika

    Energy Technology Data Exchange (ETDEWEB)

    Baack, Dominik; Temme, Fabian; Buss, Jens; Noethe, Max; Bruegge, Kai [TU Dortmund, Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    Modern Cosmic-Ray experiments need a huge amount of simulated data. In many cases, only a portion of the data is actually needed for following steps in the analysis chain, for example training of different machine learning algorithms. The other parts are thrown away by the trigger simulation of the experiment or so not increase the quality of following analysis steps. In this talk, I present a new developed package for the air shower simulation software CORSIKA. This extension includes different approaches to reduce the amount of unnecessary computation. One approach is a new internal particle stack implementation that allows to priorize the processing of special intermediate shower particles and the removal of not needed shower particles. The second approach is the possibility to sent various information of the initial particle and parameters of the status of the partial simulated event to an external application to approximate the information gain of the current simulator event. If the information gain is to low, the current event simulation gets terminated and all information get stored into a central database. For the Simulation - Server communication a simple network protocol has been developed.

  13. Lectures Abandoned: Active Learning by Active Seminars

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Corry, Aino Vonge

    2012-01-01

    Traditional lecture-based courses are widely criticised for be- ing less eective in teaching. The question is of course what should replace the lectures and various active learning tech- niques have been suggested and studied. In this paper, we report on our experiences of redesigning a software ......- tive seminars as a replacement of traditional lectures, an activity template for the contents of active seminars, an ac- count on how storytelling supported the seminars, as well as reports on our and the students' experiences....

  14. Active Learning in Introductory Climatology.

    Science.gov (United States)

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  15. Oral Hygiene. Learning Activity Package.

    Science.gov (United States)

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  16. Minimax bounds for active learning

    NARCIS (Netherlands)

    Castro, R.M.; Nowak, R.; Bshouty, N.H.; Gentile, C.

    2007-01-01

    This paper aims to shed light on achievable limits in active learning. Using minimax analysis techniques, we study the achievable rates of classification error convergence for broad classes of distributions characterized by decision boundary regularity and noise conditions. The results clearly

  17. Engaging Students' Learning Through Active Learning

    Directory of Open Access Journals (Sweden)

    Margaret Fitzsimons

    2014-06-01

    Full Text Available This paper discusses a project carried out with thirty six final year undergraduate students, studying the Bachelor of Science in Business and Management and taking the module Small Business Management during the academic year 2012 and 2013 in Dublin Institute of Technology. The research had two separate objectives, 1 to engage in active learning by having students work on a consulting project in groups for a real life business and 2 to improve student learning. The Small Business Management previously had a group assignment that was to choose an article related to entrepreneurship and critic it and present it to the class. Anecdotally, from student feedback, it was felt that this process did not engage students and also did not contribute to the key competencies necessary in order to be an entrepreneur. The desire was for students on successful completion of this module to have better understood how business is conducted and equip them with core skills such as innovation, critical thinking, problem solving and decision making .Student buy in was achieved by getting the students to select their own groups and also work out between each group from a one page brief provided by the businesses which business they would like to work with. It was important for the businesses to also feel their time spent with students was worthwhile so they were presented with a report from the students at the end of the twelve weeks and invited into the College to hear the presentations from students. Students were asked to provide a reflection on their three key learning points from the assignment and to answer specific questions designed to understand what they learnt and how and their strengths and weaknesses. A survey was sent to the businesses that took part to understand their experiences. The results were positive with student engagement and learning rating very highly and feedback from the businesses demonstrated an appreciation of having a different

  18. Applying active learning to supervised word sense disambiguation in MEDLINE

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  19. Applying active learning to supervised word sense disambiguation in MEDLINE.

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  20. Active Learning with Irrelevant Examples

    Science.gov (United States)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item

  1. Stimulating Deep Learning Using Active Learning Techniques

    Science.gov (United States)

    Yew, Tee Meng; Dawood, Fauziah K. P.; a/p S. Narayansany, Kannaki; a/p Palaniappa Manickam, M. Kamala; Jen, Leong Siok; Hoay, Kuan Chin

    2016-01-01

    When students and teachers behave in ways that reinforce learning as a spectator sport, the result can often be a classroom and overall learning environment that is mostly limited to transmission of information and rote learning rather than deep approaches towards meaningful construction and application of knowledge. A group of college instructors…

  2. Using IMS Learning Design to model collaborative learning activities

    NARCIS (Netherlands)

    Tattersall, Colin

    2006-01-01

    IMS Learning Design provides a counter to the trend towards designing for lone-learners reading from screens. It guides staff and educational developers to start not with content, but with learning activities and the achievement of learning objectives. It recognises that learning can happen without

  3. Could Sirtuin Activities Modify ALS Onset and Progression?

    Science.gov (United States)

    Tang, Bor Luen

    2017-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.

  4. Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    Science.gov (United States)

    McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer

    2017-01-01

    The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…

  5. IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

    Data.gov (United States)

    National Aeronautics and Space Administration — IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING ISAAC PERSING AND VINCENT NG Abstract. Active learning has been successfully applied to many natural language...

  6. History and Evolution of Active Learning Spaces

    Science.gov (United States)

    Beichner, Robert J.

    2014-01-01

    This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.

  7. Active Learning for Text Classification

    OpenAIRE

    Hu, Rong

    2011-01-01

    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to cho...

  8. Create a good learning environment and motivate active learning enthusiasm

    Science.gov (United States)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  9. Less is more: Sampling chemical space with active learning

    Science.gov (United States)

    Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas; Isayev, Olexandr; Roitberg, Adrian E.

    2018-06-01

    The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach, we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials outperform the original random sampled ANI-1 potential with only 10% of the data, while the final active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecules or materials, while remaining applicable to the general class of organic molecules composed of the elements CHNO.

  10. Fabrication of CFRP/Al Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  11. Learning activism, acting with phronesis

    Science.gov (United States)

    Lee, Yew-Jin

    2015-12-01

    The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of enabling factors acting in concert, learning about and engagement in practical action for social justice and equity are possible. An alternative but highly compatible framework is now introduced—phronetic social research—as an action-oriented, wisdom-seeking research stance for the social sciences. By so doing, it is hoped that forms of phronetic social research can gain wider currency among those that promote activism as one of many valued outcomes of an education in science.

  12. Developing metacognition: a basis for active learning

    NARCIS (Netherlands)

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of Active Learning in Engineering (ALE) like project work, problem based learning, use of cases, etc., are mostly based on practical experience and sometimes from applied research on teaching and learning. Such research shows that students learn more and different

  13. Journaling; an active learning technique.

    Science.gov (United States)

    Blake, Tim K

    2005-01-01

    Journaling is a method frequently discussed in nursing literature and educational literature as an active learning technique that is meant to enhance reflective practice. Reflective practice is a means of self-examination that involves looking back over what has happened in practice in an effort to improve, or encourage professional growth. Some of the benefits of reflective practice include discovering meaning, making connections between experiences and the classroom, instilling values of the profession, gaining the perspective of others, reflection on professional roles, and development of critical thinking. A review of theory and research is discussed, as well as suggestions for implementation of journaling into coursework.

  14. Reinforcement learning or active inference?

    Science.gov (United States)

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  15. Reinforcement learning or active inference?

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2009-07-01

    Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  16. Research on Mobile Learning Activities Applying Tablets

    Science.gov (United States)

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  17. Active Learning in the Middle Grades

    Science.gov (United States)

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  18. Incorporating active learning in psychiatry education.

    Science.gov (United States)

    Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith

    2017-06-01

    We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.

  19. An integrative review of in-class activities that enable active learning in college science classroom settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-10-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.

  20. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  1. Changing University Students’ Alternative Conceptions of Optics by Active Learning

    Directory of Open Access Journals (Sweden)

    Zalkida Hadžibegović

    2013-01-01

    Full Text Available Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the truly impressive implementation results of theSCALE-UP learning environment suggest that such beliefs are false (Beichner et al., 2000. In this study, we present a design of an active learning environment with positive effect on students. The design is based on the following elements: (1 helping students to learn from interactive lecture experiment; (2 guiding students to use justified explanation and prediction after observing and exploring a phenomenon; (3 developing a conceptual question sequencedesigned for use in an interactive lecture with students answering questions in worksheets by writing and drawing; (4 evaluating students’ conceptual change and gains by questions related to light reflection, refraction, and image formation in an exam held a week after the active learning session. Data were collected from 95 science freshmen with different secondary school backgrounds. They participated in geometrical optics classes organized for collecting research results during and after only one active learning session.The results have showed that around 60% of the students changed their initial alternative conceptions of vision and of image formation. It was also found that a large group of university students is likely to be engaged in active learning, shifting from a passive role they usually play during teacher’s lectures.

  2. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  3. Implementing and Sustaining Higher Education Service-Learning Initiatives: Revisiting Young et al.'s Organizational Tactics

    Science.gov (United States)

    Bennett, Dawn; Sunderland, Naomi; Bartleet, Brydie-Leigh; Power, Anne

    2016-01-01

    Although the value of service-learning opportunities has long been aligned to student engagement, global citizenship, and employability, the rhetoric can be far removed from the reality of coordinating such activities within higher education. This article stems from arts-based service-learning initiatives with Indigenous communities in Australia.…

  4. Doing physical activity – not learning

    DEFF Research Database (Denmark)

    Jensen, Jens-Ole

    2017-01-01

    Introduction In recent years there have been a raising critique concerning PE as a subject which is more concerned with keeping pupils physically active than insuring that they learn something (Annerstedt, 2008). In Denmark, this issue has been actualized in a new sense. In 2014, a new school...... reform with 45 minutes of daily physical activity was introduced to enhance the pupils’ health, well-being and learning capabilities. Instead of focusing on learning bodily skills, physical activities has become an instrument to improve learning in the academic subjects. Physical activities.......g. Biesta, 2010; Standal, 2015) I will argue that the focus on learning outcome and effects on physical activity has gone too far in order to reach the objectives. If the notion of ‘keeping pupils physically active’ is understood as a representation of the core quality of physical activity, it seems...

  5. Student Activity and Learning Outcomes in a Virtual Learning Environment

    Science.gov (United States)

    Romanov, Kalle; Nevgi, Anne

    2008-01-01

    The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…

  6. Captivate: Building Blocks for Implementing Active Learning

    Science.gov (United States)

    Kitchens, Brent; Means, Tawnya; Tan, Yinliang

    2018-01-01

    In this study, the authors propose a set of key elements that impact the success of an active learning implementation: content delivery, active learning methods, physical environment, technology enhancement, incentive alignment, and educator investment. Through a range of metrics the authors present preliminary evidence that students in courses…

  7. Faculty Perceptions about Barriers to Active Learning

    Science.gov (United States)

    Michael, Joel

    2007-01-01

    Faculty may perceive many barriers to active learning in their classrooms. Four groups of participants in a faculty development workshop were asked to list their perceived barriers to active learning. Many of the problems identified were present on more than one list. The barriers fall into three categories: student characteristics, issues…

  8. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  9. Active Ageing, Active Learning: Policy and Provision in Hong Kong

    Science.gov (United States)

    Tam, M.

    2011-01-01

    This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…

  10. LAS METODOLOGÍAS ACTIVAS Y EL FORO PRESENCIAL: SU CONTRIBUCIÓN AL DESARROLLO DEL PENSAMIENTO CRÍTICO (ACTIVE LEARNING METHODOLOGIES AND SYNCRONOUS FORUM: ITS CONTRIBUTION TO THE DEVELOPMENT OF CRITICAL THINKING

    Directory of Open Access Journals (Sweden)

    Lira Valdivia Rosa Inés

    2010-04-01

    Full Text Available Resumen:Este artículo pretende concienciar acerca de la importancia de las metodologías activas y del foro presencial. Ambos términos constituyen estrategias metodológicas aptas para promover el desarrollo del pensamiento crítico en el aula. Mediante la utilización de mecanismos participativos, estas metodologías promueven la eficacia de los mensajes y la asertividad de la comunicación de los estudiantes, durante los procesos de diálogo que se preparan para tal efecto en el aula universitaria. Los hallazgos o formas cognitivas y actitudinales han sido sustentados en un estudio investigativo que sistematizó la opinión y la percepción de los estudiantes en relación con la utilización del foro como metodología que propicia el desarrollo del pensamiento crítico.Abstract:This article aims to raise awareness about the importance of active learning methodologies and the synchronic forum. Both concepts are considered appropriate methodologies to facilitate and promote critical thinking in the classroom. By using participatory mechanisms in the university classroom, these methods promote the effectiveness of messages and assertive communication of students during classroom activities. The cognitive and actitudinal findings have been supported in a research study that systematized the perception and opinion of students regarding the use of synchronous forum as a methodology that fosters the development of critical thinking.

  11. Scene recognition based on integrating active learning with dictionary learning

    Science.gov (United States)

    Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen

    2018-04-01

    Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.

  12. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  13. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  14. The Activity Theory Approach to Learning

    Directory of Open Access Journals (Sweden)

    Ritva Engeström

    2014-12-01

    Full Text Available In this paper the author offers a practical view of the theory-grounded research on education action. She draws on studies carried out at the Center for Research on Activity, Development and Learning (CRADLE at the University of Helsinki in Finland. In its work, the Center draws on cultural-historical activity theory (CHAT and is well-known for the theory of Expansive Learning and its more practical application called Developmental Work Research (DWR. These approaches are widely used to understand professional learning and have served as a theoreticaland methodological foundation for studies examining change and professional development in various human activities.

  15. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  16. Child Development: An Active Learning Approach

    Science.gov (United States)

    Levine, Laura E.; Munsch, Joyce

    2010-01-01

    Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…

  17. Discussing Active Learning from the Practitioner's Perspective

    Science.gov (United States)

    Bamba, Priscilla

    2015-01-01

    The purpose of this paper is to present an overview of how active learning took place in a class containing specific readings,cooperative and collaborative group work, and a writing assignment for college students at a Northern Virginia Community College campus (NVCC). Requisite knowledge, skills, learner characteristics, brain-based learning, and…

  18. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  19. Learning outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities

    OpenAIRE

    Piyaluk Wongsri; Prasart Nuangchalerm

    2010-01-01

    Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade students who were organized between socioscientific issues-based learning and conventional learning activities. Approach: The samples used in research we...

  20. Point-of-Purchase Advertising. Learning Activity.

    Science.gov (United States)

    Shackelford, Ray

    1998-01-01

    In this technology education activity, students learn the importance of advertising, conduct a day-long survey of advertising strategies, and design and produce a tabletop point-of-purchase advertisement. (JOW)

  1. Activating teaching methods, studying responses and learning

    OpenAIRE

    Christensen, Hans Peter; Vigild, Martin E.; Thomsen, Erik; Szabo, Peter; Horsewell, Andy

    2009-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed. Peer Reviewed

  2. Learning Activities in a Sociable Smart City

    Directory of Open Access Journals (Sweden)

    Dimitrios Ringas

    2013-08-01

    Full Text Available We present our approach on how smart city technologies may enhance the learning process. We have developed the CLIO urban computing system, which invites people to share personal memories and interact the collective city memory. Various educational scenarios and activities were performed exploiting CLIO; in this paper we present the methodology we followed and the experience we gained. Learning has always been the cognitive process of acquiring skills or knowledge, while teachers are often eager to experiment with novel technological means and methods; our aim was to explore the effect that urban computing could have to the learning process. We applied our methodology in the city of Corfu inviting schools to engage their students in learning through the collective city memory while exploiting urban computing. Results from our experience demonstrate the potential of exploiting urban computing in the learning process and the benefits of learning out of the classroom.

  3. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  4. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  5. People with Learning Disabilities and "Active Ageing"

    Science.gov (United States)

    Foster, Liam; Boxall, Kathy

    2015-01-01

    Background: People (with and without learning disabilities) are living longer. Demographic ageing creates challenges and the leading policy response to these challenges is "active ageing". "Active" does not just refer to the ability to be physically and economically active, but also includes ongoing social and civic engagement…

  6. Teaching Engineering with Autonomous Learning Activities

    Science.gov (United States)

    Otero, Beatriz; Rodríguez, Eva; Royo, Pablo

    2015-01-01

    This paper proposes several activities that encourage self-learning in engineering courses. For each activity, the context and the pedagogical issues addressed are described emphasizing strengths and weaknesses. Specifically, this work describes and implements five activities, which are: questionnaires, conceptual maps, videos, jigsaw and…

  7. Active Learning through Online Instruction

    Science.gov (United States)

    Gulbahar, Yasemin; Kalelioglu, Filiz

    2010-01-01

    This article explores the use of proper instructional techniques in online discussions that lead to meaningful learning. The research study looks at the effective use of two instructional techniques within online environments, based on qualitative measures. "Brainstorming" and "Six Thinking Hats" were selected and implemented…

  8. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  9. Manifold Regularized Experimental Design for Active Learning.

    Science.gov (United States)

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  10. Understanding Comprehensive Learning Requirements in the Light of al-Zarnūjī’s Ta‘līm al-Muta‘allim

    Directory of Open Access Journals (Sweden)

    Miftachul Huda

    2016-11-01

    Full Text Available This article examines the requirements for quality learning in Islam from the perspective of al-Zarnūjī and according to his book, Ta‘līm al-Muta‘allim. This book has been a source of reference for both students and teachers in many educational institutions in Muslim countries, particularly, the Islamic boarding schools in Indonesia. The article attempts to understand the students’ learning requirements proposed by al-Zarnūjī in the above treatise. It is, therefore, a library-based research. The research tackles many issues. It addresses the need for a broad-based learning process and analyzes the requirements in the light of the modern day learning circumstances. It was found that al-Zarnūjī’s theory of quality learning is conditional on six main principles which are, indeed, determinants of quality student outcomes. These are intelligence or high learning ability; high motivation for learning; patience, emotional stability, and commitment to the learning process; availability of financial support; inspiration of the teachers; and disposition to time management in the learning process. The notion of quality education is fundamental to the classical perspective of learning in Islam.

  11. Quantum Speedup for Active Learning Agents

    Directory of Open Access Journals (Sweden)

    Giuseppe Davide Paparo

    2014-07-01

    Full Text Available Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.

  12. Learning, Learning Analytics, Activity Visualisation and Open learner Model

    DEFF Research Database (Denmark)

    Bull, Susan; Kickmeier-Rust, Michael; Vatrapu, Ravi

    2013-01-01

    This paper draws on visualisation approaches in learning analytics, considering how classroom visualisations can come together in practice. We suggest an open learner model in situations where many tools and activity visualisations produce more visual information than can be readily interpreted....

  13. A Learning Activity Design Framework for Supporting Mobile Learning

    Directory of Open Access Journals (Sweden)

    Jalal Nouri

    2016-01-01

    Full Text Available This article introduces the Learning Activity Design (LEAD framework for the development and implementation of mobile learning activities in primary schools. The LEAD framework draws on methodological perspectives suggested by design-based research and interaction design in the specific field of technology-enhanced learning (TEL. The LEAD framework is grounded in four design projects conducted over a period of six years. It contributes a new understanding of the intricacies and multifaceted aspects of the design-process characterizing the development and implementation of mobile devices (i.e. smart phones and tablets in curricular activities conducted in Swedish primary schools. This framework is intended to provide both designers and researchers with methodological tools that take account of the pedagogical foundations of technologically-based educational interventions, usability issues related to the interaction with the mobile application developed, multiple data streams generated during the design project, multiple stakeholders involved in the design process and sustainability aspects of the mobile learning activities implemented in the school classroom.

  14. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    Science.gov (United States)

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  15. Building Maintenance. Math Learning Activity Packet.

    Science.gov (United States)

    Grant, Shelia I.

    This collection of learning activities is intended for use in reinforcing mathematics instruction as it relates to building maintenance. Fifty activity sheets are provided. These are organized into units on the following topics: numeration, adding whole numbers, subtracting whole numbers, multiplying whole numbers, dividing whole numbers,…

  16. Grooming. Instructor's Packet. Learning Activity Package.

    Science.gov (United States)

    Stark, Pamela

    This instructor's packet accompanies the learning activity package (LAP) on grooming. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to students as an…

  17. Activating Teaching for Quality Learning

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2013-01-01

    Activating teaching is an educational concept which is based on active participation of students in the study process. It is becoming an alternative to more typical approach where the teacher will just lecture and the students will take notes. The study described in this paper considers student...... activating teaching methods focusing on those based on knowledge dissemination. The practical aspects of the implemented teaching method are considered, and employed assessment methods and tools are discussed....

  18. Active learning in practice: Implementation of the principles of active learning in an engineering course

    DEFF Research Database (Denmark)

    Rützou, C.

    2017-01-01

    The most common form of teaching is still the form where a teacher presents the subject of the lecture to a listening audience. During teaching history this has proved to be an effective way of teaching, however the probability of students being inactive is high and the learning outcome may...... through the same curriculum as usual during a term? • Will Active Learning reduce failure rate? • Will Active Learning give a higher learning outcome than traditional teaching? This paper deals with the results of this experiment, answers the mentioned questions and presents a way to implement Active...

  19. Is Peer Interaction Necessary for Optimal Active Learning?

    Science.gov (United States)

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  20. Learning plan applicability through active mental entities

    International Nuclear Information System (INIS)

    Baroni, Pietro; Fogli, Daniela; Guida, Giovanni

    1999-01-01

    This paper aims at laying down the foundations of a new approach to learning in autonomous mobile robots. It is based on the assumption that robots can be provided with built-in action plans and with mechanisms to modify and improve such plans. This requires that robots are equipped with some form of high-level reasoning capabilities. Therefore, the proposed learning technique is embedded in a novel distributed control architecture featuring an explicit model of robot's cognitive activity. In particular, cognitive activity is obtained by the interaction of active mental entities, such as intentions, persuasions and expectations. Learning capabilities are implemented starting from the interaction of such mental entities. The proposal is illustrated through an example concerning a robot in charge of reaching a target in an unknown environment cluttered with obstacles

  1. Exploring Representativeness and Informativeness for Active Learning.

    Science.gov (United States)

    Du, Bo; Wang, Zengmao; Zhang, Lefei; Zhang, Liangpei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2017-01-01

    How can we find a general way to choose the most suitable samples for training a classifier? Even with very limited prior information? Active learning, which can be regarded as an iterative optimization procedure, plays a key role to construct a refined training set to improve the classification performance in a variety of applications, such as text analysis, image recognition, social network modeling, etc. Although combining representativeness and informativeness of samples has been proven promising for active sampling, state-of-the-art methods perform well under certain data structures. Then can we find a way to fuse the two active sampling criteria without any assumption on data? This paper proposes a general active learning framework that effectively fuses the two criteria. Inspired by a two-sample discrepancy problem, triple measures are elaborately designed to guarantee that the query samples not only possess the representativeness of the unlabeled data but also reveal the diversity of the labeled data. Any appropriate similarity measure can be employed to construct the triple measures. Meanwhile, an uncertain measure is leveraged to generate the informativeness criterion, which can be carried out in different ways. Rooted in this framework, a practical active learning algorithm is proposed, which exploits a radial basis function together with the estimated probabilities to construct the triple measures and a modified best-versus-second-best strategy to construct the uncertain measure, respectively. Experimental results on benchmark datasets demonstrate that our algorithm consistently achieves superior performance over the state-of-the-art active learning algorithms.

  2. From Tootsie Rolls to Composites: Assessing a Spectrum of Active Learning Activities in Engineering Mechanics

    Science.gov (United States)

    2009-05-01

    The introduction of active learning exercises into a traditional lecture has been shown to improve students’ learning. Hands-on learning...opportunities in labs and projects provide are additional tools in the active learning toolbox. This paper presents a series of innovative hands-on active ... learning activities for mechanics of materials topics. These activities are based on a Methodology for Developing Hands-on Active Learning Activities, a

  3. Machine learning of molecular properties: Locality and active learning

    Science.gov (United States)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  4. Mind and activity. Psychic mechanism of learning

    Directory of Open Access Journals (Sweden)

    Zoya A. Reshetova

    2017-09-01

    Full Text Available The paper is devoted to the issue of mechanisms of learning for understanding the nature of the human mind. Learning is regarded as a special activity that is important for developing the human mind in a specific cultural and historical setting and indirect activity. The author’s understanding of the ideas developed by the psychological theory of activity for establishing the principles of developing the human mind is highlighted. Interpretation of dialectical connections of brain processes and mind, and also the objective activity that emerges them is provided. According to the activity theory, the causes of the students’ psychological difficulties and the low efficacy of learning within predominant reproductive method or the use of the trial and error method are revealed. Thus, a new understanding of the renowned didactic principles of scientific rigour, accessibility, objectivity, the connection of learning with life and others is offered. The contribution of the psychological theory in organizing and managing the studies, increasing teaching activity and awareness, and the growth of the internal causes of motivation are shown. Particular attention is paid to the issue of intellectual development and creative abilities. The author believes the creative abilities of the student and the way the latter are taught are interconnected. At the same time, the developers and educators should make efforts to develop in the students a systemic orientation in the subject, primarily mastering the method of system analysis. Once the method of system analysis has been mastered, it becomes a general intellectual and developing tool through which activities are organized to solve any teaching problems with whatever type of content and difficulty level. Summing up, the organization and disclosure to the student of the process of learning as an activity with its social, consciously transformative and sense shaping meaning, the conditions of its development

  5. Signs of learning in kinaesthetic science activities

    DEFF Research Database (Denmark)

    Bruun, Jesper; Johannsen, Bjørn Friis

    that students use bodily explorations to construct meaning and understanding from kinaesthetic learning that is relevant to school physics? To answer the question, we employ a semiotics perspective to analyse data from a 1-hour lesson for 8-9th graders which introduced students to kinaesthetic activities, where......?”). The analysis is conducted by searching the data to find episodes that illustrate student activity which can serve as a sign of the object that the ‘experiential gestalt of causation’ is employed in the construction of the intended learning outcome. In essence, we study a chaotic but authentic teaching...

  6. Active learning techniques for librarians practical examples

    CERN Document Server

    Walsh, Andrew

    2010-01-01

    A practical work outlining the theory and practice of using active learning techniques in library settings. It explains the theory of active learning and argues for its importance in our teaching and is illustrated using a large number of examples of techniques that can be easily transferred and used in teaching library and information skills to a range of learners within all library sectors. These practical examples recognise that for most of us involved in teaching library and information skills the one off session is the norm, so we need techniques that allow us to quickly grab and hold our

  7. Astronomy Learning Activities for Tablets

    Science.gov (United States)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  8. Using Oceanography to Support Active Learning

    Science.gov (United States)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  9. Active Learning in Engineering Education: A (Re)Introduction

    Science.gov (United States)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  10. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Background: Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Methods: Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Results: Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. Conclusions: The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction. PMID:29707649

  11. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction.

  12. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  13. Active Collaborative Learning through Remote Tutoring

    Science.gov (United States)

    Gehret, Austin U.; Elliot, Lisa B.; MacDonald, Jonathan H. C.

    2017-01-01

    An exploratory case study approach was used to describe remote tutoring in biochemistry and general chemistry with students who are deaf or hard of hearing (D/HH). Data collected for analysis were based on the observations of the participant tutor. The research questions guiding this study included (1) How is active learning accomplished in…

  14. Active Learning Strategies in Physics Teaching

    Science.gov (United States)

    Karamustafaoglu, Orhan

    2009-01-01

    The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…

  15. World War II Memorial Learning Activities.

    Science.gov (United States)

    Tennessee State Dept. of Education, Nashville.

    These learning activities can help students get the most out of a visit to the Tennessee World War II Memorial, a group of ten pylons located in Nashville (Tennessee). Each pylon contains informational text about the events of World War II. The ten pylons are listed as: (1) "Pylon E-1--Terror: America Enters the War against Fascism, June…

  16. Active Learning Strategies for the Mathematics Classroom

    Science.gov (United States)

    Kerrigan, John

    2018-01-01

    Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…

  17. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  18. Accounting for Sustainability: An Active Learning Assignment

    Science.gov (United States)

    Gusc, Joanna; van Veen-Dirks, Paula

    2017-01-01

    Purpose: Sustainability is one of the newer topics in the accounting courses taught in university teaching programs. The active learning assignment as described in this paper was developed for use in an accounting course in an undergraduate program. The aim was to enhance teaching about sustainability within such a course. The purpose of this…

  19. Supervised machine learning and active learning in classification of radiology reports.

    Science.gov (United States)

    Nguyen, Dung H M; Patrick, Jon D

    2014-01-01

    This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Current issues in ALS epidemiology: Variation of ALS occurrence between populations and physical activity as a risk factor.

    Science.gov (United States)

    Luna, J; Logroscino, G; Couratier, P; Marin, B

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a fatal outcome. This review aims to report key epidemiological features of ALS in relation to the hypothesis of variation between populations, to summarize environmental hypothesis and to highlight current issues that deserve much considerations. Epidemiological ALS studies have shown a variation of incidence, mortality and prevalence between geographical areas and different populations. These data could support the notion that genetic factors, especially populations' ancestries, along with environmental and lifestyle factors, play a significant role in the occurrence of the disease. To date, there is no strong evidence to confirm an association between a particular environmental factor and ALS. Physical activity (PA) has been extensively evaluated. Recent studies support with the best evidence level that PA in general population is not a risk factor for ALS. However, further research is needed to clarify the association of PA in some occupations and some athletic activities. Epidemiological research based on multicenter international collaboration is essential to provide new data on ALS especially in some regions of the world that are to date poorly represented in the ALS literature. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Connecting Informal and Formal Learning Experiences in the Age of Participatory Media: Commentary on Bull et al. (2008)

    Science.gov (United States)

    Greenhow, Christine

    2008-01-01

    The recent editorial in this journal by Bull et al. ("Connecting Informal and Formal Learning Experiences in the Age of Participatory Media" Vol 8, Iss 2) discussed the challenges of bridging formal learning practices and informal learning opportunities within the context of today's Web-enhanced world. In this commentary, Christine…

  2. The double-loop feedback for active learning with understanding

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Learning is an active process, and in engineering education authentic projects is often used to activate the students and promote learning. However, it is not all activity that leads to deep learning; and in a rapid changing society deep understanding is necessary for life-long learning. Empirical...... findings at DTU question the direct link between high activity and a deep approach to learning. Active learning is important to obtain engineering competencies, but active learning requires more than activity. Feedback and reflection is crucial to the learning process, since new knowledge is built...... on the student’s existing understanding. A model for an active learning process with a double-loop feedback is suggested - the first loop gives the student experience through experimentation, the second conceptual understanding through reflection. Students often miss the second loop, so it is important...

  3. Active learning in optics for girls

    Science.gov (United States)

    Ali, R.; Ashraf, I.

    2017-08-01

    Active learning in Optics (ALO) is a self-funded program under the umbrella of the Abdus Salam International Centre for Theoretical Physics (ICTP) and Quaid-i-Azam University (QAU) to bring physical sciences to traditionally underserved Girls high schools and colleges in Pakistan. There is a significant gender disparity in physical Sciences in Pakistan. In Department of Physics at QAU, approximately 10 to 20% of total students were used to be females from past many decades, but now this percentage is increasing. To keep it up at same pace, we started ALO in January 2016 as a way to provide girls an enriching science experiences, in a very friendly atmosphere. We have organized many one-day activities, to support and encourage girls' students of government high schools and colleges to pursue careers in sciences. In this presentation we will describe our experience and lesson learned in these activities.

  4. Incorporation of Socio-scientific Content into Active Learning Activities

    Science.gov (United States)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.

    2014-12-01

    Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to

  5. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  6. The Validation of the Active Learning in Health Professions Scale

    Science.gov (United States)

    Kammer, Rebecca; Schreiner, Laurie; Kim, Young K.; Denial, Aurora

    2015-01-01

    There is a need for an assessment tool for evaluating the effectiveness of active learning strategies such as problem-based learning in promoting deep learning and clinical reasoning skills within the dual environments of didactic and clinical settings in health professions education. The Active Learning in Health Professions Scale (ALPHS)…

  7. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  8. Active Learning in Engineering Education: a (re)introduction

    DEFF Research Database (Denmark)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network ‘Active Learning in Engineering Education’ (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE...... were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can...

  9. Paramedic Learning Style Preferences and Continuing Medical Education Activities: A Cross-Sectional Survey Study.

    Science.gov (United States)

    Staple, Louis; Carter, Alix; Jensen, Jan L; Walker, Mark

    2018-01-01

    Paramedics participate in continuing medical education (CME) to maintain their skills and knowledge. An understanding of learning styles is important for education to be effective. This study examined the preferred learning styles of ground ambulance paramedics and describes how their preferred learning styles relate to the elective CME activities these paramedics attend. All paramedics (n=1,036) employed in a provincial ground ambulance service were invited to participate in a survey containing three parts: demographics, learning style assessed by the Kolb Learning Style Inventory (LSI), and elective CME activity. 260 paramedics (25%) participated in the survey. Preferred learning styles were: assimilator, 28%; diverger, 25%; converger, 24%; and accommodator, 23%. Advanced life support (ALS) providers had a higher proportion of assimilators (36%), and basic life support (BLS) providers had a higher proportion of divergers (30%). The learning style categories of CME activities attended by paramedics were: assimilators, 25%; divergers, 26%; convergers, 25%; and accommodators, 24%. These results suggest that paramedics are a diverse group of learners, and learning style differs within their demographics. Paramedics attend CME activities that complement all learning styles. Organizations providing education opportunities to paramedics should consider paramedics a diverse learning group when designing their CME programs.

  10. Changing University Students' Alternative Conceptions of Optics by Active Learning

    Science.gov (United States)

    Hadžibegovic, Zalkida; Sliško, Josip

    2013-01-01

    Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the…

  11. Faculty motivations to use active learning among pharmacy educators.

    Science.gov (United States)

    Rockich-Winston, Nicole; Train, Brian C; Rudolph, Michael J; Gillette, Chris

    2018-03-01

    Faculty motivations to use active learning have been limited to surveys evaluating faculty perceptions within active learning studies. Our objective in this study was to evaluate the relationship between faculty intrinsic motivation, extrinsic motivation, and demographic variables and the extent of active learning use in the classroom. An online survey was administered to individual faculty members at 137 colleges and schools of pharmacy across the United States. The survey assessed intrinsic and extrinsic motivations, active learning strategies, classroom time dedicated to active learning, and faculty development resources. Bivariate associations and multivariable stepwise linear regression were used to analyze the results. In total, 979 faculty members completed the questionnaire (23.6% response rate). All motivation variables were significantly correlated with percent active learning use (p active learning methods used in the last year (r = 0.259, p active learning use. Our results suggest that faculty members who are intrinsically motivated to use active learning are more likely to dedicate additional class time to active learning. Furthermore, intrinsic motivation may be positively associated with encouraging faculty members to attend active learning workshops and supporting faculty to use various active learning strategies in the classroom. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Active Learning: The Importance of Developing a Comprehensive Measure

    Science.gov (United States)

    Carr, Rodney; Palmer, Stuart; Hagel, Pauline

    2015-01-01

    This article reports on an investigation into the validity of a widely used scale for measuring the extent to which higher education students employ active learning strategies. The scale is the active learning scale in the Australasian Survey of Student Engagement. This scale is based on the Active and Collaborative Learning scale of the National…

  13. Active Learning in ASTR 101 Lectures

    Science.gov (United States)

    Deming, Grace L.

    1998-12-01

    The lecture is the most common teaching method used at colleges and universities, but does this format facilitate student learning? Lectures can be brilliantly delivered, but they are received by a passive audience. As time passes during a lecture, student attention and effective notetaking diminish. Many students become more interested in a subject and retain information longer in courses that rely on active rather than passive teaching methods. Interactive teaching strategies such as the think-pair-share-(write), the 3-minute paper, and the misconception confrontation can be used to actively engage students during lecture. As a cooperative learning strategy, the think-pair-share-(write) technique requires active discussion by everyone in the class. The "write" component structures individual accountability into the activity. The 3-minute paper is an expansion of the standard 1-minute paper feedback technique, but is required of all students rather than voluntary or anonymous. The misconception confrontation technique allows students to focus on how their pre- conceived notions differ from the scientific explanation. These techniques can be easily adopted by anyone currently using a standard lecture format for introductory astronomy. The necessary components are a commitment by the instructor to require active participation by all students and a willingness to try new teaching methods.

  14. Toetsen als Leerinterventie. Samenvatten in het Testing Effect Paradigma [Tests as learning interventions. Summarization in the testing effect paradigma investigated

    NARCIS (Netherlands)

    Dirkx, Kim; Kester, Liesbeth; Kirschner, Paul A.

    2011-01-01

    Dirkx, K. J. H., Kester, L., & Kirschner, P. A. (2011, July). Toetsen als leerinterventie. Samenvatten in het testing effect paradigma onderzocht [Tests as learning interventions. Summarization in the testing effect paradigma investigated]. Presentation for Erasmus University Rotterdam, Rotterdam.

  15. Active Learning in the Era of Big Data

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, IV, Warren L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.

  16. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Understanding Fatty Acid Metabolism through an Active Learning Approach

    Science.gov (United States)

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  19. Active Learning Increases Children's Physical Activity across Demographic Subgroups.

    Science.gov (United States)

    Bartholomew, John B; Jowers, Esbelle M; Roberts, Gregory; Fall, Anna-Mária; Errisuriz, Vanessa L; Vaughn, Sharon

    2018-01-01

    Given the need to find more opportunities for physical activity within the elementary school day, this study was designed to asses the impact of I-CAN!, active lessons on: 1) student physical activity (PA) outcomes via accelerometry; and 2) socioeconomic status (SES), race, sex, body mass index (BMI), or fitness as moderators of this impact. Participants were 2,493 fourth grade students (45.9% male, 45.8% white, 21.7% low SES) from 28 central Texas elementary schools randomly assigned to intervention (n=19) or control (n=9). Multilevel regression models evaluated the effect of I-CAN! on PA and effect sizes were calculated. The moderating effects of SES, race, sex, BMI, and fitness were examined in separate models. Students in treatment schools took significantly more steps than those in control schools (β = 125.267, SE = 41.327, p = .002, d = .44). I-CAN! had a significant effect on MVPA with treatment schools realizing 80% (β = 0.796, SE =0.251, p = .001; d = .38) more MVPA than the control schools. There were no significant school-level differences on sedentary behavior (β = -0.177, SE = 0.824, p = .83). SES, race, sex, BMI, and fitness level did not moderate the impact of active learning on step count and MVPA. Active learning increases PA within elementary students, and does so consistently across demographic sub-groups. This is important as these sub-groups represent harder to reach populations for PA interventions. While these lessons may not be enough to help children reach daily recommendations of PA, they can supplement other opportunities for PA. This speaks to the potential of schools to adopt policy change to require active learning.

  20. The ICAP Active Learning Framework Predicts the Learning Gains Observed in Intensely Active Classroom Experiences

    Directory of Open Access Journals (Sweden)

    Benjamin L. Wiggins

    2017-05-01

    Full Text Available STEM classrooms (science, technology, engineering, and mathematics in postsecondary education are rapidly improved by the proper use of active learning techniques. These techniques occupy a descriptive spectrum that transcends passive teaching toward active, constructive, and, finally, interactive methods. While aspects of this framework have been examined, no large-scale or actual classroom-based data exist to inform postsecondary education STEM instructors about possible learning gains. We describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive in this ecological classroom environment. Students in interactive classrooms demonstrate significantly improved learning outcomes relative to students in constructive classrooms. This improvement in learning is relatively subtle; similar experimental designs without repeated measures would be unlikely to have the power to observe this significance. We discuss the importance of seemingly small learning gains that might propagate throughout a course or departmental curriculum, as well as improvements with the necessity for faculty to develop and implement similar activities.

  1. A Vision and Change Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors’ two-course introductory sequence as outlined by the Vision and Change in Undergraduate Biology Education final report. One goal of the curricular reform was to integrate core biological concepts and competencies into the courses using AL pedagogical approaches. The purpose of this study was to observe the instructional practices used by faculty (N = 10) throughout the 3-year process of reform to determine whether the use of AL strategies (including student collaboration) increased, given that it can maximize student learning gains. Instructors participated in yearly interviews to track any change in their perceptions of AL instruction. Instructors increased their average use of AL by 12% (group AL by 8%) of total class time throughout the 3-year study. Interviews revealed that instructors shifted their definitions of AL and talked more about how to assess student learning over the 3 years of the project. Collaboration, feedback, and time may have been important factors in the reform, suggesting that small shifts over time can accumulate into real change in the classroom. PMID:29146663

  2. Face-to-Face Activities in Blended Learning

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette

    While blended learning combines online and face-to-face teaching, research on blended learning has primarily focused on the role of technology and the opportunities it creates for engaging students. Less focus has been put on face-to-face activities in blended learning. This paper argues...... that it is not only the online activities in blended learning that provide new opportunities for rethinking pedagogy in higher education, it is also imperative to reconsider the face-to-face activities when part of the learning is provided online. Based on a review of blended learning in business and management...... education, we identify what forms of teaching and learning are suggested to take place face-to-face when other activities are moved online. We draw from the Community of Inquiry framework to analyze how face-to-face activities contribute to a blended learning pedagogy and discuss the implications...

  3. Active Metric Learning from Relative Comparisons

    OpenAIRE

    Xiong, Sicheng; Rosales, Rómer; Pei, Yuanli; Fern, Xiaoli Z.

    2014-01-01

    This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet $(x_i,x_j,x_k)$, that instance $x_i$ is more similar to $x_j$ than to $x_k$. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require considerable human effort. This motivates us to study how to select and query the most useful ...

  4. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  5. Strategies for active learning in online continuing education.

    Science.gov (United States)

    Phillips, Janet M

    2005-01-01

    Online continuing education and staff development is on the rise as the benefits of access, convenience, and quality learning are continuing to take shape. Strategies to enhance learning call for learner participation that is self-directed and independent, thus changing the educator's role from expert to coach and facilitator. Good planning of active learning strategies promotes optimal learning whether the learning content is presented in a course or a just-in-time short module. Active learning strategies can be used to enhance online learning during all phases of the teaching-learning process and can accommodate a variety of learning styles. Feedback from peers, educators, and technology greatly influences learner satisfaction and must be harnessed to provide effective learning experiences. Outcomes of active learning can be assessed online and implemented conveniently and successfully from the initiation of the course or module planning to the end of the evaluation process. Online learning has become accessible and convenient and allows the educator to track learner participation. The future of online education will continue to grow, and using active learning strategies will ensure that quality learning will occur, appealing to a wide variety of learning needs.

  6. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  7. STEM learning activity among home-educating families

    Science.gov (United States)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a

  8. Enhancing Learning Outcomes through Application Driven Activities in Marketing

    Science.gov (United States)

    Stegemann, Nicole; Sutton-Brady, Catherine

    2013-01-01

    This paper introduces an activity used in class to allow students to apply previously acquired information to a hands-on task. As the authors have previously shown active learning is a way to effectively facilitate and improve students' learning outcomes. As a result to improve learning outcomes we have overtime developed a series of learning…

  9. Improving active Mealy machine learning for protocol conformance testing

    NARCIS (Netherlands)

    Aarts, F.; Kuppens, H.; Tretmans, J.; Vaandrager, F.; Verwer, S.

    2014-01-01

    Using a well-known industrial case study from the verification literature, the bounded retransmission protocol, we show how active learning can be used to establish the correctness of protocol implementation I relative to a given reference implementation R. Using active learning, we learn a model M

  10. Opportunities to Create Active Learning Techniques in the Classroom

    Science.gov (United States)

    Camacho, Danielle J.; Legare, Jill M.

    2015-01-01

    The purpose of this article is to contribute to the growing body of research that focuses on active learning techniques. Active learning techniques require students to consider a given set of information, analyze, process, and prepare to restate what has been learned--all strategies are confirmed to improve higher order thinking skills. Active…

  11. Telling Active Learning Pedagogies Apart: From Theory to Practice

    Science.gov (United States)

    Cattaneo, Kelsey Hood

    2017-01-01

    Designing learning environments to incorporate active learning pedagogies is difficult as definitions are often contested and intertwined. This article seeks to determine whether classification of active learning pedagogies (i.e., project-based, problem-based, inquiry-based, case-based, and discovery-based), through theoretical and practical…

  12. Effects of Sharing Clickers in an Active Learning Environment

    Science.gov (United States)

    Daniel, Todd; Tivener, Kristin

    2016-01-01

    Scientific research into learning enhancement gained by the use of clickers in active classrooms has largely focused on the use of individual clickers. In this study, we compared the learning experiences of participants in active learning groups in which an entire small group shared a single clicker to groups in which each member of the group had…

  13. Adult Learners' Understanding in Learning Islam Using Andragogy Approach: A Study in Kampung Siglap Mosque and Al-Zuhri Higher Learning Institute

    Science.gov (United States)

    Bin Kadir, Mohd Amin; Arifin, Syamsul; Latipun; Fuad, Ahmad Nur

    2016-01-01

    This study describes adult learners' understanding in learning Islam using andragogy approach in which the study was conducted in Kampung Siglap Mosque and Al-Zuhri Higher Learning Institute. Prophet Muhammad (peace be upon him) educate his companions of who are adults from the shackles of "jahiliyyah," spiritual and intellectual…

  14. Are students' impressions of improved learning through active learning methods reflected by improved test scores?

    Science.gov (United States)

    Everly, Marcee C

    2013-02-01

    To report the transformation from lecture to more active learning methods in a maternity nursing course and to evaluate whether student perception of improved learning through active-learning methods is supported by improved test scores. The process of transforming a course into an active-learning model of teaching is described. A voluntary mid-semester survey for student acceptance of the new teaching method was conducted. Course examination results, from both a standardized exam and a cumulative final exam, among students who received lecture in the classroom and students who had active learning activities in the classroom were compared. Active learning activities were very acceptable to students. The majority of students reported learning more from having active-learning activities in the classroom rather than lecture-only and this belief was supported by improved test scores. Students who had active learning activities in the classroom scored significantly higher on a standardized assessment test than students who received lecture only. The findings support the use of student reflection to evaluate the effectiveness of active-learning methods and help validate the use of student reflection of improved learning in other research projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. "Heart Shots": a classroom activity to instigate active learning.

    Science.gov (United States)

    Abraham, Reem Rachel; Vashe, Asha; Torke, Sharmila

    2015-09-01

    The present study aimed to provide undergraduate medical students at Melaka Manipal Medical College (Manipal Campus), Manipal University, in Karnataka, India, an opportunity to apply their knowledge in cardiovascular concepts to real-life situations. A group activity named "Heart Shots" was implemented for a batch of first-year undergraduate students (n = 105) at the end of a block (teaching unit). Students were divided into 10 groups each having 10-11 students. They were requested to make a video/PowerPoint presentation about the application of cardiovascular principles to real-life situations. The presentation was required to be of only pictures/photos and no text material, with a maximum duration of 7 min. More than 95% of students considered that the activity helped them to apply their knowledge in cardiovascular concepts to real-life situations and understand the relevance of physiology in medicine and to revise the topic. More than 90% of students agreed that the activity helped them to apply their creativity in improving their knowledge and to establish a link between concepts rather than learning them as isolated facts. Based on the feedback, we conclude that the activity was student centered and that it facilitated learning. Copyright © 2015 The American Physiological Society.

  16. Active Affordance Learning in Continuous State and Action Spaces

    NARCIS (Netherlands)

    Wang, C.; Hindriks, K.V.; Babuska, R.

    2014-01-01

    Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action

  17. Teacher Knowledge for Active-Learning Instruction: Expert-Novice Comparison Reveals Differences.

    Science.gov (United States)

    Auerbach, A J; Higgins, M; Brickman, P; Andrews, T C

    2018-01-01

    Active-learning strategies can improve science, technology, engineering, and mathematics (STEM) undergraduates' abilities to learn fundamental concepts and skills. However, the results instructors achieve vary substantially. One explanation for this is that instructors commonly implement active learning differently than intended. An important factor affecting how instructors implement active learning is knowledge of teaching and learning. We aimed to discover knowledge that is important to effective active learning in large undergraduate courses. We developed a lesson-analysis instrument to elicit teacher knowledge, drawing on the theoretical construct of teacher noticing. We compared the knowledge used by expert ( n = 14) and novice ( n = 29) active-learning instructors as they analyzed lessons. Experts and novices differed in what they noticed, with experts more commonly considering how instructors hold students accountable, topic-specific student difficulties, whether the instructor elicited and responded to student thinking, and opportunities students had to generate their own ideas and work. Experts were also better able to support their lesson analyses with reasoning. This work provides foundational knowledge for the future design of preparation and support for instructors adopting active learning. Improving teacher knowledge will improve the implementation of active learning, which will be necessary to widely realize the potential benefits of active learning in undergraduate STEM. © 2018 A. J. Auerbach et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. An Analysis of Learning Activities in a Technology Education Textbook for Teachers : Learning Process Based on Contents Framework and Learning Scene to Develop Technological Literacy

    OpenAIRE

    Yata, Chikahiko; Hamamoto, Kengo; Oguri, Takenori

    2014-01-01

    This study analyzed the learning activities in a textbook on technology education for teachers, in order to examine the learning processes and learning scenes detailed therein. Results of analyzing learning process, primary learning activity found each contents framework. Other learning activities designated to be related to complementary in learning process. Results of analyzing learning scene, 14 learning scenes, among them "Scene to recognize the impact on social life and progress of techn...

  19. Lifeguard Final Exam—Encouraging the Use of Active Learning

    OpenAIRE

    Griswold, Elise N.; Klionsky, Daniel J.

    2015-01-01

    To anyone familiar with the extensive literature on teaching and learning, there is little question that active learning is more effective than passive learning. Thus, we are not directing this letter to that particular audience. Instead, we are attempting to address the question of the best way to convince instructors who have not tried to incorporate elements of active learning into their courses to make such an attempt. There are numerous examples where it becomes immediately clear that ac...

  20. Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes

    Science.gov (United States)

    Smith, C. Veronica; Cardaciotto, LeeAnn

    2011-01-01

    Although research suggests that active learning is associated with positive outcomes (e.g., memory, test performance), use of such techniques can be difficult to implement in large lecture-based classes. In the current study, 1,091 students completed out-of-class group exercises to complement course material in an Introductory Psychology class.…

  1. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    OpenAIRE

    Xiao Wang; Wei Wang; Jingli Wang; Hao Wu; Chang Liu

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgG...

  2. Cooperative activity and its potential for learning in tertiary education

    Directory of Open Access Journals (Sweden)

    Cirila Peklaj

    2007-01-01

    Full Text Available A learning situation can be structured in different ways, as an individual, competitive, or cooperative activity. Each of these structures can be used for different purposes and can lead to different learning outcomes. This paper focuses on cooperative activity and its potential for learning in tertiary education. After defining cooperative activity (or, in a broader sense, learning in interaction and introducing the CAMS theoretical framework to analyse cooperative activity, the main discussion focuses on the theoretical reasons for the usefulness of group learning and on the research of effects of cooperative learning on cognitive (metacognitive, affective-motivational and social processes in university students. The key elements that should be established for successful cooperation are also discussed. At the end, a new direction in using cooperative activity in learning—computer supported collaborative learning (CSCL, which emerged with rapid technology development in the last two decades—is presented and discussed.

  3. Students' Satisfaction on Their Learning Process in Active Learning and Traditional Classrooms

    Science.gov (United States)

    Hyun, Jung; Ediger, Ruth; Lee, Donghun

    2017-01-01

    Studies have shown Active Learning Classrooms [ALCs] help increase student engagement and improve student performance. However, remodeling all traditional classrooms to ALCs entails substantial financial burdens. Thus, an imperative question for institutions of higher education is whether active learning pedagogies can improve learning outcomes…

  4. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  5. Adsorption of cadmium onto Al{sub 13}-pillared acid-activated montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Yan Liangguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Boulevard, South Australia 5095 (Australia)

    2008-08-15

    The optimal preparation conditions for Al{sub 13}-pillared acid-activated Na{sup +}-montmorillonite (Al{sub 13}-PAAMt) were (1) an acid-activated Na{sup +}-montmorillonite (Na{sup +}-Mt) solution of pH 3.0, (2) a OH{sup -}/Al{sup 3+} molar ratio of 2.4 and (3) Al{sup 3+}/Na{sup +}-Mt ratio of 1.0 mmol g{sup -1}. The effects of OH{sup -}/Al{sup 3+} and Al{sup 3+}/Na{sup +}-Mt ratios on the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt were studied. A comparison of the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt, Al{sub 13}-pillared Na{sup +}-montmorillonite (Al{sub 13}-PMt) and Na{sup +}-Mt suggested that Al{sub 13}-PAAMt had higher adsorption affinity for Cd{sup 2+} than the other two adsorbents. A pseudo-second-order model described the adsorption kinetics well. Cadmium adsorption followed the Langmuir two-site equation, while desorption was hysteretic.

  6. Lifeguard Final Exam—Encouraging the Use of Active Learning

    Directory of Open Access Journals (Sweden)

    Elise N. Griswold

    2015-08-01

    Full Text Available To anyone familiar with the extensive literature on teaching and learning, there is little question that active learning is more effective than passive learning. Thus, we are not directing this letter to that particular audience. Instead, we are attempting to address the question of the best way to convince instructors who have not tried to incorporate elements of active learning into their courses to make such an attempt. There are numerous examples where it becomes immediately clear that active learning is preferable to a lecture/note-taking approach. Here, we provide a question for group discussion that can be used as one such illustration.

  7. "Mediman" – Smartphone als Plattform zum Lernen? ["Mediman" – The smartphone as a learning platform?

    Directory of Open Access Journals (Sweden)

    Boeder, Niklas

    2013-02-01

    Full Text Available [english] Mobile devices with a connection to the internet – smartphones – are seen all over the place since the popular introduction of the Apple iPhone. Similar products existed but no company managed to combine simplicity and functionality so seamlesly. Their market share increases constantly and web sites get optimised for the small display sizes (often referred to as „responsive webdesign“ otherwise the usability lacks. Students seem to like smartphones aswell and a good question is if and to what extend those devices can play a role in e-learning.„Mediman“, an adaptation of the common game Hangman has been developed for smartphones. Test users asked to complete an online questionnaire. So far, only few e-learning applications for smartphones seem to exist. This is reflected in the low usage frequency. Especially the fact that most of the test users wear a smartphone with them all the time makes it an ideal learning plattform. Short learning sessions were rated more important than continuous text. The majority of the 11 test users rated Mediman as well developed. The foremost question whether a smartphone e-learning application is feasible must be answered positive – acceptance in the test user group was shown. E-learning applications on smartphones will be an important topic in the future as market shares increase constantly. Further studies are required due to the small number of partitipants in our survey. [german] Mobile Endgeräte mit Internetzugang (Smartphones sind seit Apples revolutionärer iPhone-Markteinführung nicht mehr aus dem Alltag wegzudenken und erfreuen sich ausgesprochener Beliebtheit. Ihr Marktanteil wächst stetig und Webseitenbetreiber kommen nicht umher, ihre Webseiten an die neuen kleinen Displaygrößen und Bedienungstechniken anzupassen – häufig als „Responsive Webdesign“ beschrieben. Anwendungen, die nicht für die Anzeige auf kleinen Bildschirmen optimiert sind, schränken den Bedienkomfort

  8. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  9. Designing Online Teaching and Learning Activities for Higher Education in Hong Kong

    Directory of Open Access Journals (Sweden)

    Kevin Downing

    2008-06-01

    Full Text Available Instruction using the Web as a vehicle for content dissemination has increasingly dominated debates related to online learning (Nash, 2004 and there is little doubt that the exponential growth in the use of the internet and web-based instruction continues to present educators with considerable opportunities and challenges (Boettcher, 1999; McNaught & Lam, 2005. Many teachers and researchers (Wood, 1997; Littlejohn et al., 1999 point out that the organization and reflection necessary to effectively teach online often improves an instructor’s traditional teaching. This is a theme continued by Downing (2001 who identifies the eventual success or failure of online teaching as largely due to the same factors that have always been central to the provision of a quality learning experience. These factors include the energy, commitment and imagination of those responsible for providing the teaching and learning environment, whether it is virtual or actual. It is within this context that the authors of this paper set themselves the task of designing innovative online teaching and learning activities which add value to the student experience and genuinely assist learning traditionally difficult and dynamic concepts. The increasing adoption of outcomes based teaching and learning environments in universities around the world has provided wide-ranging opportunities to reflect on current learning and teaching practice. Whilst outcomes based teaching and learning is not a new idea (Biggs, 1999, many academic colleagues are actively seeking ways to leverage information technology solutions to design constructively aligned online teaching and learning activities which add value to the student learning experience and significantly assist in the understanding of difficult concepts and processes. This paper will describe and demonstrate the innovative development of online teaching and learning activities which adhere to the principles of both outcomes based

  10. Empathy and feedback processing in active and observational learning.

    Science.gov (United States)

    Rak, Natalia; Bellebaum, Christian; Thoma, Patrizia

    2013-12-01

    The feedback-related negativity (FRN) and the P300 have been related to the processing of one's own and other individuals' feedback during both active and observational learning. The aim of the present study was to elucidate the role of trait-empathic responding with regard to the modulation of the neural correlates of observational learning in particular. Thirty-four healthy participants completed an active and an observational learning task. On both tasks, the participants' aim was to maximize their monetary gain by choosing from two stimuli the one that showed the higher probability of reward. Participants gained insight into the stimulus-reward contingencies according to monetary feedback presented after they had made an active choice or by observing the choices of a virtual partner. Participants showed a general improvement in learning performance on both learning tasks. P200, FRN, and P300 amplitudes were larger during active, as compared with observational, learning. Furthermore, nonreward elicited a significantly more negative FRN than did reward in the active learning task, while only a trend was observed for observational learning. Distinct subcomponents of trait cognitive empathy were related to poorer performance and smaller P300 amplitudes for observational learning only. Taken together, both the learning performance and event-related potentials during observational learning are affected by different aspects of trait cognitive empathy, and certain types of observational learning may actually be disrupted by a higher tendency to understand and adopt other people's perspectives.

  11. The colloquial approach: An active learning technique

    Science.gov (United States)

    Arce, Pedro

    1994-09-01

    This paper addresses the very important problem of the effectiveness of teaching methodologies in fundamental engineering courses such as transport phenomena. An active learning strategy, termed the colloquial approach, is proposed in order to increase student involvement in the learning process. This methodology is a considerable departure from traditional methods that use solo lecturing. It is based on guided discussions, and it promotes student understanding of new concepts by directing the student to construct new ideas by building upon the current knowledge and by focusing on key cases that capture the essential aspects of new concepts. The colloquial approach motivates the student to participate in discussions, to develop detailed notes, and to design (or construct) his or her own explanation for a given problem. This paper discusses the main features of the colloquial approach within the framework of other current and previous techniques. Problem-solving strategies and the need for new textbooks and for future investigations based on the colloquial approach are also outlined.

  12. Do International Students Appreciate Active Learning in Lectures?

    Directory of Open Access Journals (Sweden)

    Mauricio Marrone

    2018-03-01

    Full Text Available Active learning has been linked with increased student motivation, engagement and understanding of course material. It promotes deep learning, helping to develop critical thinking and writing skills in students. Less well understood, however, are the responses of international students to active learning. Using social constructivist theory, the purpose of this study is to examine domestic and international student perceptions of active learning introduced into large undergraduate Accounting Information Systems lectures. Several active learning strategies were implemented over one semester and examined through the use of semi-structured interviews as well as pre- and post- implementation surveys. Our results suggest broad improvements for international students in student engagement and understanding of unit material when implementing active learning strategies. Other key implications include international student preference for active learning compared with passive learning styles, and that international students may receive greater benefits from active learning strategies than domestic students due to social factors. Based on these findings this paper proposes that educators should seek to implement active learning to better assist and integrate students of diverse backgrounds.

  13. The Use of "Socrative" in ESL Classrooms: Towards Active Learning

    Science.gov (United States)

    El Shaban, Abir

    2017-01-01

    The online student response system (SRS) is a technological tool that can be effectively implemented in English language classroom contexts and be used to promote students' active learning. In this qualitative study, "Socrative", a Web 2.0 software, was integrated with active learning activities and used as an SRS to explore English…

  14. Active Learning and Teaching: Improving Postsecondary Library Instruction.

    Science.gov (United States)

    Allen, Eileen E.

    1995-01-01

    Discusses ways to improve postsecondary library instruction based on theories of active learning. Topics include a historical background of active learning; student achievement and attitudes; cognitive development; risks; active teaching; and instructional techniques, including modified lectures, brainstorming, small group work, cooperative…

  15. Is engagement with a purpose the essence of active learning?

    OpenAIRE

    Álvarez Mesa, Mauricio

    2009-01-01

    In the 2009 edition of the conference on “Active Learning in Engineering Education”, there were several and fruitful discussions within a small workgroup about the essence of active learning. At the end we came with an attempt to sum up our whole discussion with one question. Our question is the same as the title of this essay. Taking this question as a starting point this article propose a specific purpose from which active learning can be based. Peer Reviewed

  16. Generation of Tutorial Dialogues: Discourse Strategies for Active Learning

    Science.gov (United States)

    1998-05-29

    AND SUBTITLE Generation of Tutorial Dialogues: Discourse Strategies for active Learning AUTHORS Dr. Martha Evens 7. PERFORMING ORGANI2ATION NAME...time the student starts in on a new topic. Michael and Rovick constantly attempt to promote active learning . They regularly use hints and only resort...Controlling active learning : How tutors decide when to generate hints. Proceedings of FLAIRS 󈨣. Melbourne Beach, FL. 157-161. Hume, G., Michael

  17. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Noyori, Amanda; Saiki, Mitiko, E-mail: anoyori@gmail.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring {sup 28}Al and the contribution of P and Si due to {sup 28}Al formed in {sup 31}P(n,α){sup 28}Al and {sup 28}Si(n,p){sup 28}Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring {sup 32}P (pure beta emitter) formed in reaction {sup 31}P(n,γ){sup 32}P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring {sup 29}Al radionuclide formed in {sup 29}Si(n,p){sup 29}Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  18. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Noyori, Amanda; Saiki, Mitiko

    2017-01-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring "2"8Al and the contribution of P and Si due to "2"8Al formed in "3"1P(n,α)"2"8Al and "2"8Si(n,p)"2"8Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring "3"2P (pure beta emitter) formed in reaction "3"1P(n,γ)"3"2P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring "2"9Al radionuclide formed in "2"9Si(n,p)"2"9Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  19. Learning by Doing: Twenty Successful Active Learning Exercises for Information Systems Courses

    Directory of Open Access Journals (Sweden)

    Alanah Mitchell

    2017-01-01

    Full Text Available Aim/Purpose: This paper provides a review of previously published work related to active learning in information systems (IS courses. Background: There are a rising number of strategies in higher education that offer promise in regards to getting students’ attention and helping them learn, such as flipped classrooms and offering courses online. These learning strategies are part of the pedagogical technique known as active learning. Active learning is a strategy that became popular in the early 1990s and has proven itself as a valid tool for helping students to be engaged with learning. Methodology: This work follows a systematic method for identifying and coding previous research based on an aspect of interest. The authors identified and assessed research through a search of ABI/Inform scholarly journal abstracts and keywords, as well as additional research databases, using the search terms “active learning” and “information systems” from 2000 through June 2016. Contribution: This synthesis of active learning exercises provides guidance for information technology faculty looking to implement active learning strategies in their classroom by demonstrating how IS faculty might begin to introduce more active learning techniques in their teaching as well as by presenting a sample teaching agenda for a class that uses a mix of active and passive learning techniques to engage student learning. Findings: Twenty successful types of active learning exercises in IS courses are presented. Recommendations for Practitioners\t: This paper offers a “how to” resource of successful active learning strategies for IS faculty interested in implementing active learning in the classroom. Recommendation for Researchers: This work provides an example of a systematic literature review as a means to assess successful implementations of active learning in IS. Impact on Society: An updated definition of active learning is presented as well as a meaningful

  20. Performance in Physiology Evaluation: Possible Improvement by Active Learning Strategies

    Science.gov (United States)

    Montrezor, Luís H.

    2016-01-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages…

  1. Teacher Feedback during Active Learning: Current Practices in Primary Schools

    Science.gov (United States)

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-01-01

    Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…

  2. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  3. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon. Contributions of /sup 28/Al activities from /sup 31/P (n,. cap alpha. ) /sup 28/Al and /sup 28/Si (n,p) /sup 28/Al reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Yoshihiko (Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology); Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using pneumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the /sup 28/Al activity produced from /sup 27/Al(n, ..gamma..) /sup 28/Al reaction by thermal neutrons to that from /sup 31/P(n, ..cap alpha..)/sup 28/Al reaction by fast neutrons, and to that from /sup 28/Si(n, p)/sup 28/Al reaction were measured by ..gamma..-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the /sup 28/Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of /sup 28/Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined.

  4. Pedagogical Distance: Explaining Misalignment in Student-Driven Online Learning Activities Using Activity Theory

    Science.gov (United States)

    Westberry, Nicola; Franken, Margaret

    2015-01-01

    This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…

  5. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    Science.gov (United States)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  6. Sharing the learning activity using intelligent CAD

    DEFF Research Database (Denmark)

    Duffy, S. M.; Duffy, Alex

    1996-01-01

    In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing ''learning'' assistance in Int.CAD by introducing a new concept called Shared Learning...

  7. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  8. Active Learning for Autonomous Intelligent Agents: Exploration, Curiosity, and Interaction

    OpenAIRE

    Lopes, Manuel; Montesano, Luis

    2014-01-01

    In this survey we present different approaches that allow an intelligent agent to explore autonomous its environment to gather information and learn multiple tasks. Different communities proposed different solutions, that are in many cases, similar and/or complementary. These solutions include active learning, exploration/exploitation, online-learning and social learning. The common aspect of all these approaches is that it is the agent to selects and decides what information to gather next. ...

  9. Impurity diffusion activation energies in Al from first principles

    NARCIS (Netherlands)

    Simonovic, D.; Sluiter, M.H.

    2009-01-01

    Activation energies for vacancy-mediated impurity diffusion in face-centered-cubic aluminum have been computed ab initio for all technologically important alloying elements, as well as for most of the lanthanides. The so-called five-frequency rate model is used to establish the limiting vacancy

  10. Active learning: a step towards automating medical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Enhancing students' learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking

    NARCIS (Netherlands)

    Khoiriyah, U.; Roberts, C.; Jorm, C.; Vleuten, C.P. van der

    2015-01-01

    BACKGROUND: Problem based learning (PBL) is a powerful learning activity but fidelity to intended models may slip and student engagement wane, negatively impacting learning processes, and outcomes. One potential solution to solve this degradation is by encouraging self-assessment in the PBL

  12. Group-Based Active Learning of Classification Models.

    Science.gov (United States)

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  13. A study of active learning methods for named entity recognition in clinical text.

    Science.gov (United States)

    Chen, Yukun; Lasko, Thomas A; Mei, Qiaozhu; Denny, Joshua C; Xu, Hua

    2015-12-01

    Named entity recognition (NER), a sequential labeling task, is one of the fundamental tasks for building clinical natural language processing (NLP) systems. Machine learning (ML) based approaches can achieve good performance, but they often require large amounts of annotated samples, which are expensive to build due to the requirement of domain experts in annotation. Active learning (AL), a sample selection approach integrated with supervised ML, aims to minimize the annotation cost while maximizing the performance of ML-based models. In this study, our goal was to develop and evaluate both existing and new AL methods for a clinical NER task to identify concepts of medical problems, treatments, and lab tests from the clinical notes. Using the annotated NER corpus from the 2010 i2b2/VA NLP challenge that contained 349 clinical documents with 20,423 unique sentences, we simulated AL experiments using a number of existing and novel algorithms in three different categories including uncertainty-based, diversity-based, and baseline sampling strategies. They were compared with the passive learning that uses random sampling. Learning curves that plot performance of the NER model against the estimated annotation cost (based on number of sentences or words in the training set) were generated to evaluate different active learning and the passive learning methods and the area under the learning curve (ALC) score was computed. Based on the learning curves of F-measure vs. number of sentences, uncertainty sampling algorithms outperformed all other methods in ALC. Most diversity-based methods also performed better than random sampling in ALC. To achieve an F-measure of 0.80, the best method based on uncertainty sampling could save 66% annotations in sentences, as compared to random sampling. For the learning curves of F-measure vs. number of words, uncertainty sampling methods again outperformed all other methods in ALC. To achieve 0.80 in F-measure, in comparison to random

  14. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    Science.gov (United States)

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    Science.gov (United States)

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  16. Collegewide Promotion of E-Learning/Active Learning and Faculty Development

    Science.gov (United States)

    Ogawa, Nobuyuki; Shimizu, Akira

    2016-01-01

    Japanese National Institutes of Technology have revealed a plan to strongly promote e-Learning and active learning under the common schematization of education in over 50 campuses nationwide. Our e-Learning and ICT-driven education practiced for more than fifteen years were highly evaluated, and is playing a leading role in promoting e-Learning…

  17. Examining factors affecting beginning teachers' transfer of learning of ICT-enhanced learning activities in their teaching practice

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.

    2014-01-01

    This study examined 100 beginning teachers’ transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by ‘learning technology by

  18. Machine learning-enabled discovery and design of membrane-active peptides.

    Science.gov (United States)

    Lee, Ernest Y; Wong, Gerard C L; Ferguson, Andrew L

    2017-07-08

    Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A simple wavelength division multiplexing system for active learning teaching

    Science.gov (United States)

    Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra

    2009-06-01

    The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple

  20. Orchestration Framework for Learning Activities in Augmented Reality Environments

    OpenAIRE

    Ibáñez, María Blanca; Delgado Kloos, Carlos; Di Serio, Angela

    2011-01-01

    Proceedings of: Across Spaces11 Workshop in conjunction with the EC-TEL2011, Palermo, Italy, September 21, 2011 In this paper we show how Augmented Reality (AR) technology restricted to the use of mobiles or PCs, can be used to develop learning activities with the minimun level of orchestation required by meaningful learning sequences. We use Popcode as programming language to deploy orchestrated learning activities specified with an AR framework. Publicado

  1. Learning a constrained conditional random field for enhanced segmentation of fallen trees in ALS point clouds

    Science.gov (United States)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2018-06-01

    In this study, we present a method for improving the quality of automatic single fallen tree stem segmentation in ALS data by applying a specialized constrained conditional random field (CRF). The entire processing pipeline is composed of two steps. First, short stem segments of equal length are detected and a subset of them is selected for further processing, while in the second step the chosen segments are merged to form entire trees. The first step is accomplished using the specialized CRF defined on the space of segment labelings, capable of finding segment candidates which are easier to merge subsequently. To achieve this, the CRF considers not only the features of every candidate individually, but incorporates pairwise spatial interactions between adjacent segments into the model. In particular, pairwise interactions include a collinearity/angular deviation probability which is learned from training data as well as the ratio of spatial overlap, whereas unary potentials encode a learned probabilistic model of the laser point distribution around each segment. Each of these components enters the CRF energy with its own balance factor. To process previously unseen data, we first calculate the subset of segments for merging on a grid of balance factors by minimizing the CRF energy. Then, we perform the merging and rank the balance configurations according to the quality of their resulting merged trees, obtained from a learned tree appearance model. The final result is derived from the top-ranked configuration. We tested our approach on 5 plots from the Bavarian Forest National Park using reference data acquired in a field inventory. Compared to our previous segment selection method without pairwise interactions, an increase in detection correctness and completeness of up to 7 and 9 percentage points, respectively, was observed.

  2. Teaching for Engagement: Part 3: Designing for Active Learning

    Science.gov (United States)

    Hunter, William J.

    2015-01-01

    In the first two parts of this series, ("Teaching for Engagement: Part 1: Constructivist Principles, Case-Based Teaching, and Active Learning") and ("Teaching for Engagement: Part 2: Technology in the Service of Active Learning"), William J. Hunter sought to outline the theoretical rationale and research basis for such active…

  3. Engaging Students in Large Health Classes with Active Learning Strategies

    Science.gov (United States)

    Elliott, Steven; Combs, Sue; Huelskamp, Amelia; Hritz, Nancy

    2017-01-01

    Creative K-12 health teachers can engage students in large classes by utilizing active learning strategies. Active learning involves engaging students in higher-order tasks, such as analysis and synthesis, which is a crucial element of the movement toward what is commonly called "learner-centered" teaching. Health education teachers who…

  4. Challenges Encountered in Creating Personalised Learning Activities to Suit Students Learning Preferences

    OpenAIRE

    O'Donnell, Eileen; Wade, Vincent; Sharp, Mary; O'Donnell, Liam

    2013-01-01

    This book chapter reviews some of the challenges encountered by educators in creating personalised e-learning activities to suit students learning preferences. Technology-enhanced learning (TEL) alternatively known as e-learning has not yet reached its full potential in higher education. There are still many potential uses as yet undiscovered and other discovered uses which are not yet realisable by many educators. TEL is still predominantly used for e-dissemination and e-administration. This...

  5. Active learning for noisy oracle via density power divergence.

    Science.gov (United States)

    Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi

    2013-10-01

    The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Improvements from a flipped classroom may simply be the fruits of active learning.

    Science.gov (United States)

    Jensen, Jamie L; Kummer, Tyler A; d M Godoy, Patricia D

    2015-03-02

    The "flipped classroom" is a learning model in which content attainment is shifted forward to outside of class, then followed by instructor-facilitated concept application activities in class. Current studies on the flipped model are limited. Our goal was to provide quantitative and controlled data about the effectiveness of this model. Using a quasi-experimental design, we compared an active nonflipped classroom with an active flipped classroom, both using the 5-E learning cycle, in an effort to vary only the role of the instructor and control for as many of the other potentially influential variables as possible. Results showed that both low-level and deep conceptual learning were equivalent between the conditions. Attitudinal data revealed equal student satisfaction with the course. Interestingly, both treatments ranked their contact time with the instructor as more influential to their learning than what they did at home. We conclude that the flipped classroom does not result in higher learning gains or better attitudes compared with the nonflipped classroom when both utilize an active-learning, constructivist approach and propose that learning gains in either condition are most likely a result of the active-learning style of instruction rather than the order in which the instructor participated in the learning process. © 2015 J. L. Jensen et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Active Inference and Learning in the Cerebellum.

    Science.gov (United States)

    Friston, Karl; Herreros, Ivan

    2016-09-01

    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception.

  8. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  9. Resting alpha activity predicts learning ability in alpha neurofeedback

    Directory of Open Access Journals (Sweden)

    Wenya eNan

    2014-07-01

    Full Text Available Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the training parameter changes between two periods, within a short period and across the whole training time. It was found that the resting alpha amplitude measured before training had significant positive correlations with all learning indices and could be used as a predictor for the learning ability prediction. This finding would help the researchers in not only predicting the training efficacy in individuals but also gaining further insight into the mechanisms of alpha neurofeedback.

  10. Mapping Learning Outcomes and Assignment Tasks for SPIDER Activities

    Directory of Open Access Journals (Sweden)

    Lyn Brodie

    2011-05-01

    Full Text Available Modern engineering programs have to address rapidly changing technical content and have to enable students to develop transferable skills such as critical evaluation, communication skills and lifelong learning. This paper introduces a combined learning and assessment activity that provides students with opportunities to develop and practice their soft skills, but also extends their theoretical knowledge base. Key tasks included self directed inquiry, oral and written communication as well as peer assessment. To facilitate the SPIDER activities (Select, Prepare and Investigate, Discuss, Evaluate, Reflect, a software tool has been implemented in the learning management system Moodle. Evidence shows increased student engagement and better learning outcomes for both transferable as well as technical skills. The study focuses on generalising the relationship between learning outcomes and assignment tasks as well as activities that drive these tasks. Trail results inform the approach. Staff evaluations and their views of assignments and intended learning outcomes also supported this analysis.

  11. Postnatal TLR2 activation impairs learning and memory in adulthood.

    Science.gov (United States)

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Qualität beim E-Learning: Der Lernende als Grundkategorie bei der Qualitätssicherung

    Directory of Open Access Journals (Sweden)

    Ulf Ehlers

    2002-03-01

    Full Text Available Qualität wird über die zukünftigen Erfolgschancen des E-Learning entscheiden. Das ist das Ergebnis vieler Analysen und Entwicklungen der letzten Zeit. So stellte etwa die KPMG-Studie heraus, dass es beim E-Learning nicht nur auf gute Technologie ankommt, sondern die betriebliche Lernkultur und der Lerner wesentlich mehr als bisher einzubeziehen sind. Dieser Beitrag beschäftigt sich damit, was Qualität beim E-Learning eigentlich ist und welche Konzepte zur Beschreibung und Sicherung von Qualität bestehen.

  13. Teacher feedback during active learning: current practices in primary schools.

    Science.gov (United States)

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-06-01

    Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears difficult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning. The purpose of the present study is to contribute to the existing knowledge about feedback and to give directions to improve teacher feedback in the context of active learning. The participants comprised 32 teachers who practiced active learning in the domain of environmental studies in the sixth, seventh, or eighth grade of 13 Dutch primary schools. A total of 1,465 teacher-student interactions were examined. Video observations were made of active learning lessons in the domain of environmental studies. A category system was developed based on the literature and empirical data. Teacher-student interactions were assessed using this system. Results. About half of the teacher-student interactions contained feedback. This feedback was usually focused on the tasks that were being performed by the students and on the ways in which these tasks were processed. Only 5% of the feedback was explicitly related to a learning goal. In their feedback, the teachers were directing (rather than facilitating) the learning processes. During active learning, feedback on meta-cognition and social learning is important. Feedback should be explicitly related to learning goals. In practice, these kinds of feedback appear to be scarce. Therefore, giving feedback during active learning seems to be an important topic for teachers' professional development. © 2012 The British Psychological Society.

  14. Learning To Learn: 15 Vocabulary Acquisition Activities. Tips and Hints.

    Science.gov (United States)

    Holden, William R.

    1999-01-01

    This article describes a variety of ways learners can help themselves remember new words, choosing the ones that best suit their learning styles. It is asserted that repeated exposure to new lexical items using a variety of means is the most consistent predictor of retention. The use of verbal, visual, tactile, textual, kinesthetic, and sonic…

  15. Learning Choices, Older Australians and Active Ageing

    Science.gov (United States)

    Boulton-Lewis, Gillian M.; Buys, Laurie

    2015-01-01

    This paper reports on the findings of qualitative, semistructured interviews conducted with 40 older Australian participants who either did or did not engage in organized learning. Phenomenology was used to guide the interviews and analysis to explore the lived learning experiences and perspectives of these older people. Their experiences of…

  16. Active learning reduces annotation time for clinical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2017-10-01

    To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. INTEGRATION OF GAMIFICATION AND ACTIVE LEARNING IN THE CLASSROOM

    Directory of Open Access Journals (Sweden)

    Sergio Zepeda-Hernández

    2016-07-01

    Full Text Available Teachers who currently use the traditional method teacher-centered learning, are having various difficulties with the new generations of students. New learning methods are required to allow students to focus more positive attitudes towards their learning. In this paper, we show how the evaluation and activities based on Active Learning and Gamification, can be an alternative to generate a more positive attitude of students and create a more friendly environment in the classroom. This research was conducted using the qualitative research and ethnographic method as technique.

  18. Active Learning of Classification Models with Likert-Scale Feedback.

    Science.gov (United States)

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  19. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  20. Telling Active Learning Pedagogies Apart: from theory to practice

    Directory of Open Access Journals (Sweden)

    Kelsey Hood Cattaneo

    2017-07-01

    Full Text Available Designing learning environments to incorporate active learning pedagogies is difficult as definitions are often contested and intertwined. This article seeks to determine whether classification of active learning pedagogies (i.e., project-based, problem-based, inquiry-based, case-based, and discovery-based, through theoretical and practical lenses, could function as a useful tool for researchers and practitioners in comparing pedagogies. This article classified five active learning pedagogies based on six constructivist elements. The comparison was completed through a comparative analysis and a content analysis informed by a systematic literature review. The findings were that learner-centeredness is a primary goal of all pedagogies; however, there is a strong dissonance between each pedagogy’s theoretical underpinnings and implementation realities. This dissonance complicates differentiating active learning pedagogies and classification as a comparative tool has proved to have limited usefulness.

  1. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    Science.gov (United States)

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  2. The search for active learning: Lessons from a happy accident

    OpenAIRE

    Bashforth, Hedley; Parmar, Nitin R

    2010-01-01

    This article suggests that the concept of ‘active learning’ has different meanings. These meanings are created in the dynamic and variable relationships between the uses of learning technologies and approaches to pedagogy. Institutions play a key role in mediating these relationships, privileging some meanings of ‘active learning’ over others. More dialogical forms of active learning call for changes in the mediating role of the institution. This article draws on a case study of the use of El...

  3. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  4. Active learning machine learns to create new quantum experiments.

    Science.gov (United States)

    Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J

    2018-02-06

    How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

  5. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  6. ENHANCEMENT OF ACIDITY AND CATALYTIC ACTIVITY OF ALUMINA BASED METAL ORGANIC FRAMEWORK (MIL-53 Al)

    OpenAIRE

    Yilmaz, Esra; Sert, Emine; Atalay, Ferhan Sami

    2017-01-01

    Metal organic frameworks are highly porous materials which are formed bycombination of metal precursor and salts as inorganic part and ligand asorganic part. They have many advantages such as low density, high surface area,tunable pore size and high porosity. Due to peculiar features, such asunsaturated metal active sites, high surface area and easily functionalization,its usage as catalyst are promising.  The MIL-53(Al) structure contains chains of transcorner-sharing [AlO4(OH)2] oc...

  7. Neutron activation in Cascade: the BeO/LiAlO/sub 2/ case

    International Nuclear Information System (INIS)

    Meier, W.R.

    1986-01-01

    Neutron activation calculations have been carried out for the Cascade inertial confinement fusion reactor concept. The Cascade chamber features a flowing granular blanket which consists of a carbon surface layer, a BeO multiplier, and a LiAlO/sub 2/ breeder. The blanket, with an effective thickness of 0.5 m, shields the chamber structural wall, which is made out of silicon carbide. A borated water shield surrounds the chamber. The results of the neutron activation calculations for Cascade indicate that the activity is significantly less than in recent magnetic fusion reactor designs. The activity at shutdown is dominated by /sup 24/Na, which is produced by (n,α) reactions with Al. The shutdown decay heat, which is also dominated by /sup 24/Na, can be dissipated by thermal radiation so that active shutdown cooling is not required to prevent melting of the blanket materials or chamber structures. In order to qualify for shallow land burial, both the BeO and LiAlO/sub 2/ require significant dilution; the BeO is limited by /sup 14/C, while LiAlO/sub 2/ is limited by /sup 39/Ar and /sup 26/Al

  8. Moments of movement: active learning and practice development.

    Science.gov (United States)

    Dewing, Jan

    2010-01-01

    As our understanding of practice development becomes more sophisticated, we enhance our understanding of how the facilitation of learning in and from practice, can be more effectively achieved. This paper outlines an approach for enabling and maximizing learning within practice development known as 'Active Learning'. It considers how, given establishing a learning culture is a prerequisite for the sustainability of PD within organisations, practice developers can do more to maximize learning for practitioners and other stakeholders. Active Learning requires that more attention be given by organisations committed to PD, at a corporate and strategic level for how learning strategies are developed in the workplace. Specifically, a move away from a heavy reliance on training may be required. Practice development facilitators also need to review: how they organise and offer learning, so that learning strategies are consistent with the vision, aims and processes of PD; have skills in the planning, delivery and evaluation of learning as part of their role and influence others who provide more traditional methods of training and education.

  9. Active controllers and the time duration to learn a task

    Science.gov (United States)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  10. Active Learning by Querying Informative and Representative Examples.

    Science.gov (United States)

    Huang, Sheng-Jun; Jin, Rong; Zhou, Zhi-Hua

    2014-10-01

    Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance. Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-art active learning approaches in both single-label and multi-label learning.

  11. Medical Student Perspectives of Active Learning: A Focus Group Study.

    Science.gov (United States)

    Walling, Anne; Istas, Kathryn; Bonaminio, Giulia A; Paolo, Anthony M; Fontes, Joseph D; Davis, Nancy; Berardo, Benito A

    2017-01-01

    Phenomenon: Medical student perspectives were sought about active learning, including concerns, challenges, perceived advantages and disadvantages, and appropriate role in the educational process. Focus groups were conducted with students from all years and campuses of a large U.S. state medical school. Students had considerable experience with active learning prior to medical school and conveyed accurate understanding of the concept and its major strategies. They appreciated the potential of active learning to deepen and broaden learning and its value for long-term professional development but had significant concerns about the efficiency of the process, the clarity of expectations provided, and the importance of receiving preparatory materials. Most significantly, active learning experiences were perceived as disconnected from grading and even as impeding preparation for school and national examinations. Insights: Medical students understand the concepts of active learning and have considerable experience in several formats prior to medical school. They are generally supportive of active learning concepts but frustrated by perceived inefficiencies and lack of contribution to the urgencies of achieving optimal grades and passing United States Medical Licensing Examinations, especially Step 1.

  12. StreamAR: incremental and active learning with evolving sensory data for activity recognition

    OpenAIRE

    Abdallah, Z.; Gaber, M.; Srinivasan, B.; Krishnaswamy, S.

    2012-01-01

    Activity recognition focuses on inferring current user activities by leveraging sensory data available on today’s sensor rich environment. Supervised learning has been applied pervasively for activity recognition. Typical activity recognition techniques process sensory data based on point-by-point approaches. In this paper, we propose a novel cluster-based classification for activity recognition Systems, termed StreamAR. The system incorporates incremental and active learning for mining user ...

  13. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  14. Employability and work-related learning activities in higher education

    DEFF Research Database (Denmark)

    Magnell, Marie; Kolmos, Anette

    2017-01-01

    The focus of this paper is on how academic staff perceive their roles and responsibilities regarding work-related learning, and how they approach and implement work-related learning activities in curricula across academic environments in higher education. The study is based on case studies...

  15. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    Science.gov (United States)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  16. Presence in a Collaborative Science Learning Activity in Second Life

    DEFF Research Database (Denmark)

    Vrellis, Ioannis; Papachristos, Nikiforos; Natsis, Antonios

    2012-01-01

    interacting with and via virtual environments and seems to play an important role in learning. This chapter presents empirical data gathered from an exploratory study regarding a problem-based physics learning activity in Second Life (SL). Our aim is to gain knowledge and experience about the sense...

  17. An active role for machine learning in drug development

    Science.gov (United States)

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  18. Creating Activating Events for Transformative Learning in a Prison Classroom

    Science.gov (United States)

    Keen, Cheryl H.; Woods, Robert

    2016-01-01

    In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…

  19. Cognitive and Social Aspects of Engagement in Active Learning

    Science.gov (United States)

    Koretsky, Milo

    2017-01-01

    This article reports analysis of students' written reflections as to what helps them learn in an active learning environment. Eight hundred and twenty seven responses from 403 students in four different studio courses over two years were analyzed. An emergent coding scheme identified 55% of the responses as associated with cognitive processes…

  20. An active learning organisation: teaching projects in electrical engineering education

    NARCIS (Netherlands)

    Christensen, H.-P.; Vos, Henk; de Graaff, E.; Lemoult, B.

    2004-01-01

    The introduction of active learning in engineering education is often started by enthusiastic teachers or change agents. They usually encounter resistance from stakeholders such as colleagues, department boards or students. For a successful introduction these stakeholders all have to learn what

  1. How an Active Learning Classroom Transformed IT Executive Management

    Science.gov (United States)

    Connolly, Amy; Lampe, Michael

    2016-01-01

    This article describes how our university built a unique classroom environment specifically for active learning. This classroom changed students' experience in the undergraduate executive information technology (IT) management class. Every college graduate should learn to think critically, solve problems, and communicate solutions, but 90% of…

  2. Enhanced Memory as a Common Effect of Active Learning

    Science.gov (United States)

    Markant, Douglas B.; Ruggeri, Azzurra; Gureckis, Todd M.; Xu, Fei

    2016-01-01

    Despite widespread consensus among educators that "active learning" leads to better outcomes than comparatively passive forms of instruction, it is often unclear why these benefits arise. In this article, we review research showing that the opportunity to control the information experienced while learning leads to improved memory…

  3. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    Science.gov (United States)

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  4. Electrochemical Studies of the Inhibition and Activation Effects of Al (III on the Activity of Bovine Liver Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shuping Bi

    2005-04-01

    Full Text Available Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5, the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III concentration solutions (80μM, the inhibition effects of Al (III were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples.

  5. Manufacturing of Porous Al-Cr Preforms for Composite Reinforcing Using Microwave Activated Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    Naplocha K.

    2014-10-01

    Full Text Available The combustion synthesis of porous skeletons (preforms of intermetallic Al–Cr compounds intended for metal matrix composite MMC reinforcing was developed. Mixture of Al and Cr powders with granularity of −10, −44, −74mm were cold isostatic pressed and next ignited and synthetized in a microwave reactor under argon atmosphere (microwave-activated combustion synthesis MACS. In order to ignite the synthesis, microwave energy was focused by a tuner on the specimen. The analysis of reaction temperature diagrams revealed that the synthesis proceeded through the following peritectic transformations: L(liquidus+Al7Cr→L+Al11Cr2→L+Al4Cr. Moreover, EDS and XRD examinations showed that the reaction proceeded between a solid Cr and a liquid Al to create a distinct envelope of Al9Cr4 on Cr particle which next extended and spreaded over the entire structure. The produced preforms with uniform structure and interconnected porosity were infiltrated with liquid Cu and Al alloy. The obtained composite materials exhibited high hardness, wear and distinct temperature oxidation resistance.

  6. Active Learning to Improve Fifth Grade Mathematics Achievement in Banten

    Directory of Open Access Journals (Sweden)

    Andri Suherman

    2011-12-01

    Full Text Available Teaching for active learning is a pedagogical technique that has been actively promoted in Indonesian education through government reform efforts and international development assistance projects for decades. Recently, elementary schools in Banten province received training in active learning instructional strategies from the USAID-funded project, Decentralized Basic Education 2. Post-training evaluations conducted by lecturers from the University of Sultan Ageng Tirtayasa (UNTIRTA: Universitas Sultan Ageng Tirtayasa suggested that teachers were successfully employing active learning strategies in some subjects, but not mathematics. In order to understand the difficulties teachers were having in teaching for active learning in mathematics, and to assist them in using active learning strategies, a team of lecturers from UNTIRTA designed and carried out an action research project to train teachers in an elementary school in the city of Cilegon to use a technique called Magic Fingers in teaching Grade 5 multiplication. During the course of the project the research team discovered that teachers were having problems transferring knowledge gained from training in one context and subject to other school subjects and contexts. Key Words: Mathematics, Teaching for Active Learning, Indonesia, Banten

  7. Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Science.gov (United States)

    Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn

    2018-02-01

    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.

  8. Developing capability through peer-assisted learning activities ...

    African Journals Online (AJOL)

    L-CAS) is an activity by means of which each student is exposed to primary healthcare learning and practice in communities. Capability has been described as 'an integration of knowledge, skills, personal qualities and understanding used ...

  9. Physical Activity and Wellness: Applied Learning through Collaboration

    Science.gov (United States)

    Long, Lynn Hunt; Franzidis, Alexia

    2015-01-01

    This article describes how two university professors teamed up to initiate a university-sponsored physical activity and wellness expo in an effort to promote an authentic and transformative learning experience for preservice students.

  10. Teachers' Perceptions and Practices of Active Learning in ...

    African Journals Online (AJOL)

    Teachers' Perceptions and Practices of Active Learning in Haramaya ... Science, Technology and Arts Research Journal ... traditional/lecture method, lack of students' interest, shortage of time, lack of instructional material and large class size.

  11. Prototype-based active learning for lemmatization

    CSIR Research Space (South Africa)

    Daelemans, W

    2009-09-01

    Full Text Available ] and Word Length [Long to Short] with the prototypical curves (e.g. Word Frequency [High to Low] and [Word Length Short to Long]). (With regard to the learning curves representing word frequency, refer to 4.1 for an explanation of why [High to Low... of language usage [15]. Secondly, in memory-based language processing [16] it has been argued, on the basis of com- parative machine learning experiments on natural lan- guage processing data, that exceptions are crucial for obtaining high generalization...

  12. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification.

    Science.gov (United States)

    Lin, Liang; Wang, Keze; Meng, Deyu; Zuo, Wangmeng; Zhang, Lei

    2018-01-01

    This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert recertification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, which include hundreds of persons under diverse conditions, and demonstrate very promising results. Please find the code of this project at: http://hcp.sysu.edu.cn/projects/aspl/.

  13. Localization-Aware Active Learning for Object Detection

    OpenAIRE

    Kao, Chieh-Chi; Lee, Teng-Yok; Sen, Pradeep; Liu, Ming-Yu

    2018-01-01

    Active learning - a class of algorithms that iteratively searches for the most informative samples to include in a training dataset - has been shown to be effective at annotating data for image classification. However, the use of active learning for object detection is still largely unexplored as determining informativeness of an object-location hypothesis is more difficult. In this paper, we address this issue and present two metrics for measuring the informativeness of an object hypothesis,...

  14. Learning Microbiology Through Cooperation: Designing Cooperative Learning Activities that Promote Interdependence, Interaction, and Accountability

    Directory of Open Access Journals (Sweden)

    Janine E. Trempy

    2009-12-01

    Full Text Available A microbiology course and its corresponding learning activities have been structured according to the Cooperative Learning Model. This course, The World According to Microbes, integrates science, math, engineering, and technology (SMET majors and non-SMET majors into teams of students charged with problem solving activities that are microbial in origin. In this study we describe development of learning activities that utilize key components of Cooperative Learning—positive interdependence, promotive interaction, individual accountability, teamwork skills, and group processing. Assessments and evaluations over an 8-year period demonstrate high retention of key concepts in microbiology and high student satisfaction with the course.

  15. Active Reading Behaviors in Tablet-Based Learning

    Science.gov (United States)

    Palilonis, Jennifer; Bolchini, Davide

    2015-01-01

    Active reading is fundamental to learning. However, there is little understanding about whether traditional active reading frameworks sufficiently characterize how learners study multimedia tablet textbooks. This paper explores the nature of active reading in the tablet environment through a qualitative study that engaged 30 students in an active…

  16. Active Learning: 101 Strategies To Teach Any Subject.

    Science.gov (United States)

    Silberman, Mel

    This book contains specific, practical strategies that can be used for almost any subject matters to promote active learning. It brings together in one source a comprehensive collection of instructional strategies, with ways to get students to be active from the beginning through activities that build teamwork and get students thinking about the…

  17. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    Science.gov (United States)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  18. Active Learning of Markov Decision Processes for System Verification

    DEFF Research Database (Denmark)

    Chen, Yingke; Nielsen, Thomas Dyhre

    2012-01-01

    deterministic Markov decision processes from data by actively guiding the selection of input actions. The algorithm is empirically analyzed by learning system models of slot machines, and it is demonstrated that the proposed active learning procedure can significantly reduce the amount of data required...... demanding process, and this shortcoming has motivated the development of algorithms for automatically learning system models from observed system behaviors. Recently, algorithms have been proposed for learning Markov decision process representations of reactive systems based on alternating sequences...... of input/output observations. While alleviating the problem of manually constructing a system model, the collection/generation of observed system behaviors can also prove demanding. Consequently we seek to minimize the amount of data required. In this paper we propose an algorithm for learning...

  19. [Supporting an Academic Society with the Active Learning Tool Clica].

    Science.gov (United States)

    Arai, Kensuke; Mitsubori, Masahiro

    2018-01-01

     Within school classrooms, Active Learning has been receiving unprecedented attention. Indeed, Active Learning's popularity does not stop in the classroom. As more and more people argue that the Japanese government needs to renew guidelines for education, Active Learning has surfaced as a method capable of providing the necessary knowledge and training for people in all areas of society, helping them reach their full potential. It has become accepted that Active Learning is more effective over the passive listening of lectures, where there is little to no interaction. Active Learning emphasizes that learners explain their thoughts, ask questions, and express their opinions, resulting in a better retention rate of the subject at hand. In this review, I introduce an Active Learning support tool developed at Digital Knowledge, "Clica". This tool is currently being used at many educational institutions. I will also introduce an online questionnaire that Digital Knowledge provided at the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences.

  20. Inter-Labeler and Intra-Labeler Variability of Condition Severity Classification Models Using Active and Passive Learning Methods

    Science.gov (United States)

    Nissim, Nir; Shahar, Yuval; Boland, Mary Regina; Tatonetti, Nicholas P; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2018-01-01

    Background and Objectives Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers’ learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. Methods We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by

  1. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.

    Science.gov (United States)

    Nissim, Nir; Shahar, Yuval; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2017-09-01

    Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers' learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by using the labels provided by seven

  2. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi, RPh, PhD

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven “closing the loop” feedback discussion. For teambuilding, a set of clue sheets or manufacturer‘s drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams’ impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators’ interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.

  3. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven "closing the loop" feedback discussion. For teambuilding, a set of clue sheets or manufacturer's drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams' impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators' interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.   Type: Case Study

  4. Active Multi-Field Learning for Spam Filtering

    OpenAIRE

    Wuying Liu; Lin Wang; Mianzhu Yi; Nan Xie

    2015-01-01

    Ubiquitous spam messages cause a serious waste of time and resources. This paper addresses the practical spam filtering problem, and proposes a universal approach to fight with various spam messages. The proposed active multi-field learning approach is based on: 1) It is cost-sensitive to obtain a label for a real-world spam filter, which suggests an active learning idea; and 2) Different messages often have a similar multi-field text structure, which suggests a multi-field learning idea. The...

  5. Implementation of Active Learning Method in Unit Operations II Subject

    OpenAIRE

    Ma'mun, Sholeh

    2018-01-01

    ABSTRACT: Active Learning Method which requires students to take an active role in the process of learning in the classroom has been applied in Department of Chemical Engineering, Faculty of Industrial Technology, Islamic University of Indonesia for Unit Operations II subject in the Even Semester of Academic Year 2015/2016. The purpose of implementation of the learning method is to assist students in achieving competencies associated with the Unit Operations II subject and to help in creating...

  6. Collaborative learning in higher education : design, implementation and evaluation of group learning activities

    NARCIS (Netherlands)

    Hei, de M.S.A.

    2016-01-01

    In higher education, group learning activities (GLAs) are frequently implemented in online, blended or face-to-face educational contexts. A major problem for the design and implementation of good quality GLAs that lead to the desired learning outcomes is that many approaches to GLAs have been

  7. Learning Active Citizenship: Conflicts between Students' Conceptualisations of Citizenship and Classroom Learning Experiences in Lebanon

    Science.gov (United States)

    Akar, Bassel

    2016-01-01

    Education for active citizenship continues to be a critical response for social cohesion and reconstruction in conflict-affected areas. Oftentimes, approaches to learning and teaching in such contexts can do as much harm as good. This study qualitatively examines 435 students' reflections of their civics classroom learning experiences and their…

  8. Student's Reflections on Their Learning and Note-Taking Activities in a Blended Learning Course

    Science.gov (United States)

    Nakayama, Minoru; Mutsuura, Kouichi; Yamamoto, Hiroh

    2016-01-01

    Student's emotional aspects are often discussed in order to promote better learning activity in blended learning courses. To observe these factors, course participant's self-efficacy and reflections upon their studies were surveyed, in addition to the surveying of the metrics of student's characteristics during a Bachelor level credit course.…

  9. Learning by Doing: Twenty Successful Active Learning Exercises for Information Systems Courses

    Science.gov (United States)

    Mitchell, Alanah; Petter, Stacie; Harris, Albert L.

    2017-01-01

    Aim/Purpose: This paper provides a review of previously published work related to active learning in information systems (IS) courses. Background: There are a rising number of strategies in higher education that offer promise in regards to getting students' attention and helping them learn, such as flipped classrooms and offering courses online.…

  10. Active-constructive-interactive: a conceptual framework for differentiating learning activities.

    Science.gov (United States)

    Chi, Michelene T H

    2009-01-01

    Active, constructive, and interactive are terms that are commonly used in the cognitive and learning sciences. They describe activities that can be undertaken by learners. However, the literature is actually not explicit about how these terms can be defined; whether they are distinct; and whether they refer to overt manifestations, learning processes, or learning outcomes. Thus, a framework is provided here that offers a way to differentiate active, constructive, and interactive in terms of observable overt activities and underlying learning processes. The framework generates a testable hypothesis for learning: that interactive activities are most likely to be better than constructive activities, which in turn might be better than active activities, which are better than being passive. Studies from the literature are cited to provide evidence in support of this hypothesis. Moreover, postulating underlying learning processes allows us to interpret evidence in the literature more accurately. Specifying distinct overt activities for active, constructive, and interactive also offers suggestions for how learning activities can be coded and how each kind of activity might be elicited. Copyright © 2009 Cognitive Science Society, Inc.

  11. Active learning increases student performance in science, engineering, and mathematics.

    Science.gov (United States)

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  12. Competency and an active learning program in undergraduate nursing education.

    Science.gov (United States)

    Shin, Hyunsook; Sok, Sohyune; Hyun, Kyung Sun; Kim, Mi Ja

    2015-03-01

    To evaluate the effect of an active learning program on competency of senior students. Active learning strategies have been used to help students achieve desired nursing competency, but their effectiveness has not been systematically examined. A descriptive, cross-sectional comparative design was used. Two cohort group comparisons using t-test were made: one in an active learning group and the other in a traditional learning group. A total of 147 senior nursing students near graduation participated in this study: 73 in 2010 and 74 in 2013. The active learning program incorporated high-fidelity simulation, situation-based case studies, standardized patients, audio-video playback, reflective activities and technology such as a SmartPad-based program. The overall scores of the nursing competency in the active group were significantly higher than those in the traditional group. Of five overall subdomains, the scores of the special and general clinical performance competency, critical thinking and human understanding were significantly higher in the active group than in the traditional group. Importance-performance analysis showed that all five subdomains of the active group clustered in the high importance and high performance quadrant, indicating significantly better achievements. In contrast, the students in the traditional group showed scattered patterns in three quadrants, excluding the low importance and low performance quadrants. This pattern indicates that the traditional learning method did not yield the high performance in most important areas. The findings of this study suggest that an active learning strategy is useful for helping undergraduate students to gain competency. © 2014 John Wiley & Sons Ltd.

  13. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Gregory P. Way

    2018-04-01

    Full Text Available Summary: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. : Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines. Keywords: Gene expression, machine learning, Ras, NF1, KRAS, NRAS, HRAS, pan-cancer, TCGA, drug sensitivity

  14. Effectiveness of Student's Note-Taking Activities and Characteristics of Their Learning Performance in Two Types of Online Learning

    Science.gov (United States)

    Nakayama, Minoru; Mutsuura, Kouichi; Yamamoto, Hiroh

    2017-01-01

    Aspects of learning behavior during two types of university courses, a blended learning course and a fully online course, were examined using note-taking activity. The contribution of students' characteristics and styles of learning to note-taking activity and learning performance were analyzed, and the relationships between the two types of…

  15. The planning illusion: Does active planning of a learning route support learning as well as learners think it does?

    NARCIS (Netherlands)

    Bonestroo, W.J.; de Jong, Anthonius J.M.

    2012-01-01

    Is actively planning one’s learning route through a learning domain beneficial for learning? Moreover, can learners accurately judge the extent to which planning has been beneficial for them? This study examined the effects of active planning on learning. Participants received a tool in which they

  16. Integrating Online and Active Learning in a Computer-Assisted Translation Workbench

    DEFF Research Database (Denmark)

    Alabau, Vicent; González-Rubio, Jésus; Ortíz-Martínez, Daniel

    2014-01-01

    This paper describes a pilot study with a computed-assisted translation workbench aiming at testing the integration of online and active learning features. We investigate the effect of these features on translation productivity, using interactive translation prediction (ITP) as a baseline. User...... activity data were collected from five beta testers using key-logging and eye-tracking. User feedback was also collected at the end of the experiments in the form of retrospective think-aloud protocols. We found that OL performs better than ITP, especially in terms of translation speed. In addition, AL...

  17. Active Learning Classrooms and Educational Alliances: Changing Relationships to Improve Learning

    Science.gov (United States)

    Baepler, Paul; Walker, J. D.

    2014-01-01

    This chapter explores the "educational alliance" among students and between students and instructors. We contend that this is a framework that can help us understand how active learning classrooms facilitate positive educational outcomes.

  18. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  19. Active Learning: Qualitative Inquiries into Vocabulary Instruction in Chinese L2 Classrooms

    Science.gov (United States)

    Shen, Helen H.; Xu, Wenjing

    2015-01-01

    Active learning emerged as a new approach to learning in the 1980s. The core concept of active learning involves engaging students not only in actively exploring knowledge but also in reflecting on their own learning process in order to become more effective learners. Because the nonalphabetic nature of the Chinese writing system makes learning to…

  20. Practical research on junior high school mathematics about students' learning processes : using 'reflective sheet' (the Math Journal) et al.

    OpenAIRE

    吉岡, 睦美; 重松, 敬一

    2015-01-01

    In this paper, we discuss the case study of mathematics education for Junior High School students' learning processes focusing students' metacognition and knowledge using 'Reflective Sheet' (the Math Journal) et al.. The metacognition is rather than direct action on the environment and the perception that target cognitive function and cognitive recognition of that, and say what happens in the mind. Especially, we use Reflective Sheet which is formed to check students' cognitive and metacognit...

  1. A Bridge to Active Learning: A Summer Bridge Program Helps Students Maximize Their Active-Learning Experiences and the Active-Learning Experiences of Others

    Science.gov (United States)

    Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.

    2017-01-01

    National calls to improve student academic success in college have sparked the development of bridge programs designed to help students transition from high school to college. We designed a 2-week Summer Bridge program that taught introductory biology content in an active-learning way. Through a set of exploratory interviews, we unexpectedly…

  2. A Nap But Not Rest or Activity Consolidates Language Learning

    Directory of Open Access Journals (Sweden)

    Stefan Heim

    2017-05-01

    Full Text Available Recent evidence suggests that a period of sleep after a motor learning task is a relevant factor for memory consolidation. However, it is yet open whether this also holds true for language-related learning. Therefore, the present study compared the short- and long-term effects of a daytime nap, rest, or an activity task after vocabulary learning on learning outcome. Thirty healthy subjects were divided into three treatment groups. Each group received a pseudo-word learning task in which pictures of monsters were associated with unique pseudo-word names. At the end of the learning block a first test was administered. Then, one group went for a 90-min nap, one for a waking rest period, and one for a resting session with interfering activity at the end during which a new set of monster names was to be learned. After this block, all groups performed a first re-test of the names that they initially learned. On the morning of the following day, a second re-test was administered to all groups. The nap group showed significant improvement from test to re-test and a stable performance onto the second re-test. In contrast, the rest and the interference groups showed decline in performance from test to re-test, with persistently low performance at re-test 2. The 3 (GROUP × 3 (TIME ANOVA revealed a significant interaction, indicating that the type of activity (nap/rest/interfering action after initial learning actually had an influence on the memory outcome. These data are discussed with respect to translation to clinical settings with suggestions for improvement of intervention outcome after speech-language therapy if it is followed by a nap rather than interfering activity.

  3. The Managers’ Experiential Learning of Program Planning in Active Ageing Learning Centers

    Directory of Open Access Journals (Sweden)

    Chun-Ting Yeh

    2016-12-01

    Full Text Available Planning older adult learning programs is really a complex work. Program planners go through different learning stages and accumulate experiences to be able to undertake the task alone. This study aimed to explore the experiential learning process of older adult learning program planners who work in the Active Ageing Learning Centers (AALCs. Semi-structure interviews were conducted with seven program planners. The findings of this study were identified as follows. 1 Before being a program planner, the participants’ knowledge results from grasping and transforming experience gained from their family, their daily lives and past learning experiences; 2 after being a program planner, the participants’ experiential learning focused on leadership, training in the institute, professional development, as well as involvement in organizations for elderly people; and 3 the participants’ experiential learning outcomes in the older adult learning program planning include: their ability to reflect on the appropriateness and fulfillment of program planning, to apply theoretical knowledge and professional background in the field, and to make plans for future learning and business strategies.

  4. Active Learning Innovations in Knowledge Management Education Generate Higher Quality Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Arthur Shelley

    2014-01-01

    Full Text Available Innovations in how a postgraduate course in knowledge management is delivered have generated better learning outcomes and made the course more engaging for learners. Course participant feedback has shown that collaborative active learning is preferred and provides them with richer insights into how knowledge is created and applied to generate innovation and value. The course applies an andragogy approach in which students collaborate in weekly dialogue of their experiences of the content, rather than learn the content itself. The approach combines systems thinking, learning praxis, and active learning to explore the interdependencies between topics and how they impact outcomes in real world situations. This has stimulated students to apply these ideas in their own workplaces.

  5. An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation

    Science.gov (United States)

    Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.

    2015-01-01

    Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.

  6. Combining traditional anatomy lectures with e-learning activities: how do students perceive their learning experience?

    Science.gov (United States)

    Lochner, Lukas; Wieser, Heike; Waldboth, Simone; Mischo-Kelling, Maria

    2016-02-21

    The purpose of this study was to investigate how students perceived their learning experience when combining traditional anatomy lectures with preparatory e-learning activities that consisted of fill-in-the-blank assignments, videos, and multiple-choice quizzes. A qualitative study was conducted to explore changes in study behaviour and perception of learning. Three group interviews with students were conducted and thematically analysed. Data was categorized into four themes: 1. Approaching the course material, 2. Understanding the material, 3. Consolidating the material, and 4. Perceived learning outcome. Students appreciated the clear structure of the course, and reported that online activities encouraged them towards a first engagement with the material. They felt that they were more active during in-class sessions, described self-study before the end-of-term exam as easier, and believed that contents would remain in their memories for a longer time. By adjusting already existing resources, lectures can be combined fairly easily and cost-effectively with preparatory e-learning activities. The creation of online components promote well-structured courses, can help minimize 'student passivity' as a characteristic element of lectures, and can support students in distributing their studies throughout the term, thus suggesting enhanced learning. Further research work should be designed to confirm the afore-mentioned findings through objective measurements of student learning outcomes.

  7. Combining traditional anatomy lectures with e-learning activities: how do students perceive their learning experience?

    Science.gov (United States)

    Wieser, Heike; Waldboth, Simone; Mischo-Kelling, Maria

    2016-01-01

    Objectives The purpose of this study was to investigate how students perceived their learning experience when combining traditional anatomy lectures with preparatory e-learning activities that consisted of fill-in-the-blank assignments, videos, and multiple-choice quizzes. Methods A qualitative study was conducted to explore changes in study behaviour and perception of learning. Three group interviews with students were conducted and thematically analysed. Results Data was categorized into four themes: 1. Approaching the course material, 2. Understanding the material, 3. Consolidating the material, and 4. Perceived learning outcome.  Students appreciated the clear structure of the course, and reported that online activities encouraged them towards a first engagement with the material. They felt that they were more active during in-class sessions, described self-study before the end-of-term exam as easier, and believed that contents would remain in their memories for a longer time. Conclusions By adjusting already existing resources, lectures can be combined fairly easily and cost-effectively with preparatory e-learning activities. The creation of online components promote well-structured courses, can help minimize ‘student passivity’ as a characteristic element of lectures, and can support students in distributing their studies throughout the term, thus suggesting enhanced learning. Further research work should be designed to confirm the afore-mentioned findings through objective measurements of student learning outcomes. PMID:26897012

  8. Reinforcement active learning in the vibrissae system: optimal object localization.

    Science.gov (United States)

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J. [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); Brink, Henrik [Dark Cosmology Centre, Juliane Maries Vej 30, 2100 Copenhagen O (Denmark); Long, James P.; Rice, John, E-mail: jwrichar@stat.berkeley.edu [Statistics Department, University of California, Berkeley, CA 94720-7450 (United States)

    2012-01-10

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL-where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up-is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  10. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  11. Identifying key features of effective active learning: the effects of writing and peer discussion.

    Science.gov (United States)

    Linton, Debra L; Pangle, Wiline M; Wyatt, Kevin H; Powell, Karli N; Sherwood, Rachel E

    2014-01-01

    We investigated some of the key features of effective active learning by comparing the outcomes of three different methods of implementing active-learning exercises in a majors introductory biology course. Students completed activities in one of three treatments: discussion, writing, and discussion + writing. Treatments were rotated weekly between three sections taught by three different instructors in a full factorial design. The data set was analyzed by generalized linear mixed-effect models with three independent variables: student aptitude, treatment, and instructor, and three dependent (assessment) variables: change in score on pre- and postactivity clicker questions, and coding scores on in-class writing and exam essays. All independent variables had significant effects on student performance for at least one of the dependent variables. Students with higher aptitude scored higher on all assessments. Student scores were higher on exam essay questions when the activity was implemented with a writing component compared with peer discussion only. There was a significant effect of instructor, with instructors showing different degrees of effectiveness with active-learning techniques. We suggest that individual writing should be implemented as part of active learning whenever possible and that instructors may need training and practice to become effective with active learning. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    Science.gov (United States)

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  13. Assessing High School Student Learning on Science Outreach Lab Activities

    Science.gov (United States)

    Thomas, Courtney L.

    2012-01-01

    The effect of hands-on laboratory activities on secondary student learning was examined. Assessment was conducted over a two-year period, with 262 students participating the first year and 264 students the second year. Students took a prequiz, performed a laboratory activity (gas chromatography of alcohols, or photosynthesis and respiration), and…

  14. Teaching Sociology of Sport: An Active Learning Approach.

    Science.gov (United States)

    Blinde, Elaine M.

    1995-01-01

    Asserts that sport is a pervasive aspect of society. Presents and describes four learning activities designed to help students understand the significance of sport as a social institution. Maintains that, while the activities focus on the institution of sport, they can be used in a variety of sociology courses. (CFR)

  15. Active learning in physiology practical work | Allers | South African ...

    African Journals Online (AJOL)

    A statistical analysis of the results indicates that when students are actively involved in the teaching-learning process, they enhance their ability to use cognitive skills such as interpretation, judgement and problem-solving skills. The results also underline the importance of an active approach towards practical work and ...

  16. Constructivist Learning Environment During Virtual and Real Laboratory Activities

    Directory of Open Access Journals (Sweden)

    Ari Widodo

    2017-04-01

    Full Text Available Laboratory activities and constructivism are two notions that have been playing significant roles in science education. Despite common beliefs about the importance of laboratory activities, reviews reported inconsistent results about the effectiveness of laboratory activities. Since laboratory activities can be expensive and take more time, there is an effort to introduce virtual laboratory activities. This study aims at exploring the learning environment created by a virtual laboratory and a real laboratory. A quasi experimental study was conducted at two grade ten classes at a state high school in Bandung, Indonesia. Data were collected using a questionnaire called Constructivist Learning Environment Survey (CLES before and after the laboratory activities. The results show that both types of laboratories can create constructivist learning environments. Each type of laboratory activity, however, may be stronger in improving certain aspects compared to the other. While a virtual laboratory is stronger in improving critical voice and personal relevance, real laboratory activities promote aspects of personal relevance, uncertainty and student negotiation. This study suggests that instead of setting one type of laboratory against the other, lessons and follow up studies should focus on how to combine both types of laboratories to support better learning.

  17. Plastics in Our Environment: A Jigsaw Learning Activity

    Science.gov (United States)

    Hampton, Elaine; Wallace, Mary Ann; Lee, Wen-Yee

    2009-01-01

    In this lesson, a ready-to-teach cooperative reading activity, students learn about the effects of plastics in our environment, specifically that certain petrochemicals act as artificial estrogens and impact hormonal activities. Much of the content in this lesson was synthesized from recent medical research about the impact of xenoestrogens and…

  18. Active Learning Strategies for Introductory Light and Optics

    Science.gov (United States)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  19. Marketing Feud: An Active Learning Game of (Mis)Perception

    Science.gov (United States)

    Schee, Brian A. Vander

    2011-01-01

    This paper presents the results of implementing an active learning activity in the principles of marketing course adapted from the television show "Family Feud". The objectives of the Marketing Feud game include increasing awareness of marketing misperceptions, clarifying marketing misunderstandings, encouraging class participation, and building…

  20. Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…

  1. Lasers. Technology Learning Activity. Teacher Edition. Technology Education Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the materials required for presenting an 8-day competency-based technology learning activity (TLA) designed to introduce students in grades 6-10 to advances and career opportunities in the field of laser technology. The guide uses a series of hands-on exploratory experiences into which activities to help students develop…

  2. Learning through debate during problem-based learning: an active learning strategy.

    Science.gov (United States)

    Mumtaz, Sadaf; Latif, Rabia

    2017-09-01

    We explored medical student's views and perceptions of a series of debates conducted during problem-based learning (PBL) practiced as a part of the Spiral curriculum at the Imam Abdulrahman Bin Faisal University, Saudi Arabia. A series of debates were employed during PBL sessions for second-year female medical students, over the period 2014-2016. Each cohort of students was randomly split into 10 small PBL groups and exposed to weekly PBL activity. Within each group, the students were divided into a proposition half and an opposition half. Students were given 1 wk for debate preparation. The students' responses were recorded on a formulated questionnaire. Descriptive statistics were used to analyze quantitative data, and results are presented as percentages. The usefulness of debate in alleviating potential difficulties in communicating with patients was agreed to by 69% ( n = 126) of participants. That these sessions evoked critical thinking among students was reported by 78% ( n = 142). This series of debates helped 61% ( n = 111) of students to learn effectively about controversial issues. Seventy-one percent ( n = 130) considered that debate promoted argument generation and interpretation skills. Enhanced ability to analyze and research evidence was reported by 59% ( n = 108) of students. One hundred and thirteen students (62%) agreed that debate helped them to improve clinical decision-making, and 75% of students agreed that debates encouraged tolerance toward diverse viewpoints/convincing strategies. The majority of our medical students found debating enhanced analytic decision-making, communication, and critical thinking skills. Copyright © 2017 the American Physiological Society.

  3. Invention activities as preparation for learning laboratory data handling skills

    Science.gov (United States)

    Day, James

    2012-10-01

    Undergraduate physics laboratories are often driven by a mix of goals, and usually enough of them to cause cognitive overload for the student. Our recent findings align well with studies indicating that students often exit a physics lab without having properly learned how to handle real data. The value of having students explore the underlying structure of a problem before being able to solve it has been shown as an effective way to ready students for learning. Borrowing on findings from the fields of education and cognitive psychology, we use ``invention activities'' to precede direct instruction and bolster learning. In this talk I will show some of what we have learned about students' data handling skills, explain how an invention activity works, and share some observations of successful transfer.

  4. ONLINE EDUCATION, ACTIVE LEARNING, AND ANDRAGOGY: An approach for Student Engagement

    OpenAIRE

    CARUTH, Gail D.

    2015-01-01

    Online learning opportunities have become essential for today’s colleges and universities. Online technology can support active learning approaches to learning. The purpose of the paper was to investigate why active learning in online classes has a positive effect on student engagement. A review of the literature revealed that research studies have been conducted to investigate the benefits of active learning. There exists extensive evidence to support the notion that active learning enhances...

  5. Dislocation dynamics in Al-Li alloys: mean jump distance and activation length of moving dislocations

    International Nuclear Information System (INIS)

    De Hosson, J.Th.M.; Huis Int Veld, A.

    1984-01-01

    It is pointed out that aluminum-lithium based alloys offer considerable promise for structural applications, especially in the aerospace industry. This promise is related to the potential for high strength in combination with a density which is lower than that found in conventional aluminum alloys. In addition, the modulus of elasticity is higher than corresponding values in conventional aluminum alloys. A nuclear magnetic resonance study of the mechanism of dislocation motion in Al-2.2 wt pct Li is reported. Information about the effective mean jump distance of mobile dislocations is provided by in situ nuclear spin relaxation measurements. The activation length of mobile dislocations has been obtained from strain-rate change experiments on Al-2.2 wt pct Li. The considered study shows that pulsed nuclear magnetic resonance is a complementary new technique for the study of moving dislocations in Al-Li alloys. 28 references

  6. Isotope identification of Saudi Arabian rock samples from Umm Al-Birak using neutron activation analysis

    International Nuclear Information System (INIS)

    Kahtani, S.A.

    1984-12-01

    Forty eight geological samples from Umm Al-Birak area in the northwest part of Saudi Arabia are analyzed qualitatively and quantitatively using the instrumental neutron activation analysis technique. Samples are properly prepared and irridiated in the reactor facilities of the National Tsing-Hue University in Taiwan. Gamma spectra from high resolution detector are analyzed using BRUTAL code. Final calculations are made by two independent programs, namely, ELCAL and SMPCL. Twenty trace elements are identified and their concentrations are used in the investigation of the geochemistry of the Umm Al-Birak microgranite site. These elements are: Co, Cr, Eu, Fe, Hf, K, La, Lu, Na, Rb, Sc, Sm, Ta, Tb, Th, U, Yb, Zn and Zr. It is shown that high grade area is a differentiated rock that crystallized in a late stage of Umm Al-Birak microgranite area. 43 Ref

  7. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  8. [Flipped classroom as a strategy to enhance active learning].

    Science.gov (United States)

    Wakabayashi, Noriyuki

    2015-03-01

    This paper reviews the introduction of a flipped class for fourth grade dentistry students, and analyzes the characteristics of the learning method. In fiscal 2013 and 2014, a series of ten three-hour units for removable partial prosthodontics were completed with the flipped class method; a lecture video of approximately 60 minutes was made by the teacher (author) and uploaded to the university's e-learning website one week before each class. Students were instructed to prepare for the class by watching the streaming video on their PC, tablet, or smartphone. In the flipped class, students were not given a lecture, but were asked to solve short questions displayed on screen, to make a short presentation about a part of the video lecture, and to discuss a critical question related to the main subject of the day. An additional team-based learning (TBL) session with individual and group answers was implemented. The average individual scores were considerably higher in the last two years, when the flipped method was implemented, than in the three previous years when conventional lectures were used. The following learning concepts were discussed: the role of the flipped method as an active learning strategy, the efficacy of lecture videos and short questions, students' participation in the class discussion, present-day value of the method, cooperation with TBL, the significance of active learning in relation with the students' learning ability, and the potential increase in the preparation time and workload for students.

  9. Trends in Research on Writing as a Learning Activity

    Directory of Open Access Journals (Sweden)

    Perry D. Klein

    2016-02-01

    Full Text Available This article discusses five trends in research on writing as a learning activity. Firstly, earlier decades were marked by conflicting views about the effects of writing on learning; in the past decade, the use of meta-analysis has shown that the effects of writing on learning are reliable, and that several variables mediate and moderate these effects. Secondly, in earlier decades, it was thought that text as a medium inherently elicited thinking and learning. Research during the past decade has indicated that writing to learn is a self-regulated activity, dependent on the goals and strategies of the writer. Thirdly, the Writing Across the Curriculum (WAC movement emphasized domain-general approaches to WTL. Much recent research is consistent with the Writing in the Disciplines (WID movement, incorporating genres that embody forms of reasoning specific to a given discipline. Fourthly, WTL as a classroom practice was always partially social, but the theoretical conceptualization of it was largely individual. During the past two decades, WTL has broadened to include theories and research that integrate social and psychological processes. Fifthly, WTL research has traditionally focused on epistemic learning in schools; more recently, it has been extended to include reflective learning in the professions and additional kinds of outcomes.

  10. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  11. ANALYTiC: An Active Learning System for Trajectory Classification.

    Science.gov (United States)

    Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan

    2017-01-01

    The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.

  12. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments

    Directory of Open Access Journals (Sweden)

    Hagiwara N

    2017-12-01

    Full Text Available Nobuko Hagiwara Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA Abstract: The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students’ skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students’ competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules’ learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed. Keywords

  13. Active Learning for Automatic Audio Processing of Unwritten Languages (ALAPUL)

    Science.gov (United States)

    2016-07-01

    AFRL-RH-WP-TR-2016-0074 ACTIVE LEARNING FOR AUTOMATIC AUDIO PROCESSING OF UNWRITTEN LANGUAGES (ALAPUL) Dimitra Vergyri Andreas Kathol Wen Wang...FA8650-15-C-9101 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) *Dimitra Vergyri; Andreas Kathol; Wen Wang; Chris Bartels; Julian VanHout...feature transform through deep auto-encoders for better phone recognition performance. We target iterative learning to improve the system through

  14. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  15. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  16. Diverse Expected Gradient Active Learning for Relative Attributes.

    Science.gov (United States)

    You, Xinge; Wang, Ruxin; Tao, Dacheng

    2014-06-02

    The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called Diverse Expected Gradient Active Learning (DEGAL). This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multi-class distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.

  17. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  18. Exergaming: Syncing Physical Activity and Learning

    Science.gov (United States)

    Hicks, Lisa; Higgins, John

    2010-01-01

    This article discusses exergaming, a groundbreaking type of video game which is creating a revolution in physical education. Exergaming combines physical activity and video gaming to create an enjoyable and appealing way for students to be physically active. An extremely popular choice in this genre is the music video/dance rhythm game (MVDG). One…

  19. Activities To Help in Learning about Functions.

    Science.gov (United States)

    Willoughby, Stephen S.

    1997-01-01

    Describes several activities and games that provide an introduction to the concept of function. Suggests that experiences should depend more on students' experiences and understanding and less on the memorization of unmotivated conventions with abstract symbols. Includes activities for a calculator as a function machine, composite functions, and…

  20. Active Learning? Not with My Syllabus!

    Science.gov (United States)

    Ernst, Michael D.

    2012-01-01

    We describe an approach to teaching probability that minimizes the amount of class time spent on the topic while also providing a meaningful (dice-rolling) activity to get students engaged. The activity, which has a surprising outcome, illustrates the basic ideas of informal probability and how probability is used in statistical inference.…

  1. An Activity for Learning to Find Percentiles

    Science.gov (United States)

    Cox, Richard G.

    2016-01-01

    This classroom activity is designed to help students practice calculating percentiles. The approach of the activity involves physical sorting and full classroom participation in each calculation. The design encourages a more engaged approach than simply having students make a calculation with numbers on a paper.

  2. Five Experiential Learning Activities in Addictions Education

    Science.gov (United States)

    Warren, Jane A.; Hof, Kiphany R.; McGriff, Deborah; Morris, Lay-nah Blue

    2012-01-01

    This article describes five creative experiential classroom activities used in teaching addictions. The activities were integrated into the classroom curriculum and were processed weekly in focused dialogue. Student reflections throughout the article add depth to the meaning gained from the experience of the change process. The students' feedback…

  3. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching....

  4. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  5. ASPECT: A Survey to Assess Student Perspective of Engagement in an Active-Learning Classroom

    Science.gov (United States)

    Wiggins, Benjamin L.; Eddy, Sarah L.; Wener-Fligner, Leah; Freisem, Karen; Grunspan, Daniel Z.; Theobald, Elli J.; Timbrook, Jerry; Crowe, Alison J.

    2017-01-01

    The primary measure used to determine relative effectiveness of in-class activities has been student performance on pre/posttests. However, in today's active-learning classrooms, learning is a social activity, requiring students to interact and learn from their peers. To develop effective active-learning exercises that engage students, it is…

  6. An active learning curriculum improves fellows' knowledge and faculty teaching skills: a medical student perspective

    Directory of Open Access Journals (Sweden)

    Ahmad M

    2017-08-01

    Full Text Available Mubariz Ahmad, Nourah AlHennawi, Maaham AhmedManchester Medical School, The University of Manchester, Manchester, UKWe read with great interest the article by Inra et al1 which discusses the benefits of using an active learning curriculum to improve faculty teaching skills and help fellows retain more knowledge compared to traditional teaching methods. As current medical students, we can vouch for the effectiveness of this approach in improving the way material can be taught, hence would like to offer our perspective on this.  Authors’ replyJennifer A Inra,1,2 Stephen Pelletier,2 Navin L Kumar,1,2 Edward L Barnes,3,4 Helen M Shields1,21Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, 2Harvard Medical School, Boston, MA, 3Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 4University of North Carolina School of Medicine, Chapel Hill, NC, USAWe appreciate the thoughtful comments received from Ahmed et al regarding our article “An active learning curriculum improves fellows’ knowledge and faculty teaching”.1 The educational literature supports the recommendation that the optimal timing for a lecture is 10-15 minutes, as a student’s attention may wander or wane after that time.2 This ideal time limit stems from a paperby Hartley in 1978, which recommends this optimal time frame.3View the original paper by Inra and colleagues  

  7. Performance in physiology evaluation: possible improvement by active learning strategies.

    Science.gov (United States)

    Montrezor, Luís H

    2016-12-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.

  8. Active learning approach in Moodle for the organization of student’s self-study practice-based learning activities

    Directory of Open Access Journals (Sweden)

    Ivanova Veronica

    2016-01-01

    Full Text Available Nowadays e-learning tools and delivery methods have been constantly expanding. Employs use e-learning to train their employees more often and often. New and experienced employees have the opportunity to improve upon their knowledge base and expand their skill sets. At home, individuals are granted the access to the programs that provided them with the ability to earn online degrees and enrich their lives through the expanded knowledge. The paper focuses on the analysis of the advantages and disadvantages of e- learning. The ways of applying on-line training used by employers are demonstrated. The experience of implementing active methods of e-learning is described as well as the conclusion about the possibility of their application is made. The paper also presents the results of the survey conducted among TPU teacher and students concerning the advisability of e-learning usage.

  9. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  10. Using evaluation strategically to promote active learning

    DEFF Research Database (Denmark)

    Münster, Marie

    as to grade them. For this purpose it was decided to change one report into a poster including a 15 minute group oral presentation. The oral examination allows for individual assessment of the students, for assessment of conceptual understanding and for learning during the examination. This type of evaluation...... is however very time consuming and a written examination will facilitate a better evaluation of whether the core elements of the course (including the tools used for the two projects) are achieved at an individual level, so it was decided to have a 4 hour written examination instead. Evaluation of conceptual...... understanding was undertaken through more open ended questions. Results: Using a poster instead of a report for one of the projects was found to be very successful. The students used most of their time on discussing and using the tool, and less on reporting, which was the purpose. When asked, they claimed...

  11. Writing Assignments that Promote Active Learning

    Science.gov (United States)

    Narayanan, M.

    2014-12-01

    Encourage students to write a detailed, analytical report correlating classroom discussions to an important historical event or a current event. Motivate students interview an expert from industry on a topic that was discussed in class. Ask the students to submit a report with supporting sketches, drawings, circuit diagrams and graphs. Propose that the students generate a complete a set of reading responses pertaining to an assigned topic. Require each student to bring in one comment or one question about an assigned reading. The assignment should be a recent publication in an appropriate journal. Have the students conduct a web search on an assigned topic. Ask them to generate a set of ideas that can relate to classroom discussions. Provide the students with a study guide. The study guide should provide about 10 or 15 short topics. Quiz the students on one or two of the topics. Encourage the students to design or develop some creative real-world examples based on a chapter discussed or a topic of interest. Require that students originate, develop, support and defend a viewpoint using a specifically assigned material. Make the students practice using or utilizing a set of new technical terms they have encountered in an assigned chapter. Have students develop original examples explaining the different terms. Ask the students to select one important terminology from the previous classroom discussions. Encourage the students to explain why they selected that particular word. Ask them to talk about the importance of the terminology from the point of view of their educational objectives and future career. Angelo, T. A. (1991). Ten easy pieces: Assessing higher learning in four dimensions. In T. A. Angelo (Ed.), Classroom research: Early lessons from success (pp. 17-31). New Directions for Teaching and Learning, No. 46. San Francisco: Jossey-Bass.

  12. Using Active Learning for Speeding up Calibration in Simulation Models.

    Science.gov (United States)

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  13. Active Learning by Design: An Undergraduate Introductory Public Health Course

    Directory of Open Access Journals (Sweden)

    Karin eYeatts

    2014-12-01

    Full Text Available Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an experience trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they cover key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities.

  14. Active learning in the presence of unlabelable examples

    Science.gov (United States)

    Mazzoni, Dominic; Wagstaff, Kiri

    2004-01-01

    We propose a new active learning framework where the expert labeler is allowed to decline to label any example. This may be necessary because the true label is unknown or because the example belongs to a class that is not part of the real training problem. We show that within this framework, popular active learning algorithms (such as Simple) may perform worse than random selection because they make so many queries to the unlabelable class. We present a method by which any active learning algorithm can be modified to avoid unlabelable examples by training a second classifier to distinguish between the labelable and unlabelable classes. We also demonstrate the effectiveness of the method on two benchmark data sets and a real-world problem.

  15. Active explorers show low learning performance in a social insect

    Institute of Scientific and Technical Information of China (English)

    Eve UDINO; Margot PEREZ; Claudio CARERE; Patrizia d'ETTORRE

    2017-01-01

    An intriguing question in behavioral biology is whether consistent individual differences (called animal personalities) relate to variation in cognitive performance because commonly measured personality traits may be associated with risk-reward trade-offs.Social insects,whose learning abilities have been extensively characterized,show consistent behavioral variability,both at colony and at individual level.We investigated the possible link between personality traits and learning performance in the carpenter ant Camponotus aethiops.Exploratory activity,sociability,and aggression were assessed twice in ant foragers.Behaviors differed among individuals,they were partly repeatable across time and exploratory activity correlated positively with aggression.Learning abilities were quantified by differential conditioning of the maxilla-labium extension response,a task that requires cue perception and information storage.We found that exploratory activity of individual ants significantly predicted learning performance:"active-explorers" were slower in learning the task than "inactive-explorers".The results suggest for the first time a link between a personality trait and cognitive performance in eusocial insects,and that the underlying individual variability could affect colony performance and success.

  16. Active Learning and Cooperative Learning in the Organic Chemistry Lecture Class

    Science.gov (United States)

    Paulson, Donald R.

    1999-08-01

    Faculty in the physical sciences are one of the academic groups least receptive to the use of active learning strategies and cooperative learning in their classrooms. This is particularly so in traditional lecture classes. It is the objective of this paper to show how effective these techniques can be in improving student performance in classes. The use of active learning strategies and cooperative learning groups in my organic chemistry lecture classes has increased the overall pass rate in my classes by an astounding 20-30% over the traditional lecture mode. This has been accomplished without any reduction in "standards". The actual methods employed are presented as well as a discussion of how I came to radically change the way I teach my classes.

  17. Developing a Mobile Learning Management System for Outdoors Nature Science Activities Based on 5E Learning Cycle

    Science.gov (United States)

    Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng

    2015-01-01

    Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…

  18. A Preliminary Investigation of Self-Directed Learning Activities in a Non-Formal Blended Learning Environment

    Science.gov (United States)

    Schwier, Richard A.; Morrison, Dirk; Daniel, Ben K.

    2009-01-01

    This research considers how professional participants in a non-formal self-directed learning environment (NFSDL) made use of self-directed learning activities in a blended face-to-face and on line learning professional development course. The learning environment for the study was a professional development seminar on teaching in higher education…

  19. Actively Learning about the Active Sun: Using JHelioviewer in Undergraduate Astronomy

    Science.gov (United States)

    Stage, Michael D.

    2018-06-01

    Solar phenomena of the chromosphere, corona and photosphere are only truly revealed through multi-wavelength and time-dependent study. While one can show slides of models of the solar convection zone, videos of granulation, and magnetogram and UV images, it is now possible to engage students much more fully in learning about dynamic solar phenomena such as the evolution of sunspots and the magentic field. JHelioviewer is professional solar visualization tool developed by an international team as part of the ESA/NASA Helioviewer project (Muller et al., 2017, A&A 606, A10), which allows users to select and overlay movies of solar data from multiple instruments of multiple satellite and ground-based observatories, with complete control over time-sequencing, image overlays, solar coordinate grids, rotational tracking, and export functions. I developed materials using the viewer for my sophomore-level undergraduate solar astronomy course to introduce students to the dynamics of the solar surface and atmosphere. The lab-like projects, suitable for in-class, labs, or home-work assignments, allow students to watch the formation, strengthening, movement, and dissipation of sunspots; to classify spots; to study the magnetic flux tubes connecting spots; to see reconnection; to learn about the solar coordinate systems (Stonyhurst, Carrington, etc.); to see how line emission (H-alpha, C, Fe and He UV lines from SDO, etc.) traces the structure of the atmosphere at different heights and temperatures; to observe the Wilson effect; and to measure motions such as moat flow and photospheric flow by tracking individual elements in magnetograms. In this presentation I share my activities and approach, which can be tailored to suit gen-ed, intermediate, or advanced astrophysics majors. (The author has no connection with the JHelioviewer project or team.)

  20. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  1. Photodynamic processes in LiCaAlF6:Ce3+ UV active medium

    International Nuclear Information System (INIS)

    Galiev, A I; Semashko, V V; Akhtyamov, O R; Shnaidman, S A; Marisov, M A; Shavelev, A A

    2014-01-01

    The objectives of this paper are experimental studies of pump-induced effects in LiCaAlF 6 : Ce 3+ single crystals and computer model elaboration and appropriated software package engineering. The elaborated experimental technique and software allow either to calculate the nonlinear absorption/gain characteristics of the active medium on the basis of known parameters, or to find its previously unknown parameters from pump-probe experimental dependences

  2. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  3. Activation characteristics of ion-implanted Si+ in AlGaN

    International Nuclear Information System (INIS)

    Irokawa, Y.; Fujishima, O.; Kachi, T.; Pearton, S.J.; Ren, F.

    2005-01-01

    Multiple-energy Si + implantation in the range 30-360 keV into Al 0.13 Ga 0.87 N for n-type doping was carried out at room temperature, followed by annealing at 1150-1375 deg. C for 5 min. Activation efficiencies close to 100% were obtained for ion doses of 1.0x10 15 cm -2 after annealing at 1375 deg. C, with a resulting sheet resistance of 74 Ω/square. By sharp contrast, the activation efficiency at 1150 deg. C was only 4% for this dose, with a sheet resistance of 1.63x10 4 Ω/square. The activation efficiency was also a function of dose, with a maximum activation percentage of only 55% for lower doses of 1.0x10 14 cm -2 annealed at 1375 deg. C. This is due to the comparatively larger effect of compensating acceptors at the lower dose and is also lower than the corresponding activation of Si in pure GaN under these conditions (78%). The measurement temperature dependence of sheet carrier density showed an activation energy of 23 meV, consistent with the ionization energy of Si in AlGaN

  4. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  5. Public health genetic counselors: activities, skills, and sources of learning.

    Science.gov (United States)

    McWalter, Kirsty M; Sdano, Mallory R; Dave, Gaurav; Powell, Karen P; Callanan, Nancy

    2015-06-01

    Specialization within genetic counseling is apparent, with 29 primary specialties listed in the National Society of Genetic Counselors' 2012 Professional Status Survey (PSS). PSS results show a steady proportion of genetic counselors primarily involved in public health, yet do not identify all those performing public health activities. Little is known about the skills needed to perform activities outside of "traditional" genetic counselor roles and the expertise needed to execute those skills. This study aimed to identify genetic counselors engaging in public health activities, the skills used, and the most influential sources of learning for those skills. Participants (N = 155) reported involvement in several public health categories: (a) Education of Public and/or Health Care Providers (n = 80, 52 %), (b) Population-Based Screening Programs (n = 70, 45 %), (c) Lobbying/Public Policy (n = 62, 40 %), (d) Public Health Related Research (n = 47, 30 %), and (e) State Chronic Disease Programs (n = 12, 8 %). Regardless of category, "on the job" was the most common primary source of learning. Genetic counseling training program was the most common secondary source of learning. Results indicate that the number of genetic counselors performing public health activities is likely higher than PSS reports, and that those who may not consider themselves "public health genetic counselors" do participate in public health activities. Genetic counselors learn a diverse skill set in their training programs; some skills are directly applicable to public health genetics, while other public health skills require additional training and/or knowledge.

  6. Google classroom as a tool for active learning

    Science.gov (United States)

    Shaharanee, Izwan Nizal Mohd; Jamil, Jastini Mohd; Rodzi, Sarah Syamimi Mohamad

    2016-08-01

    As the world is being developed with the new technologies, discovering and manipulating new ideas and concepts of online education are changing rapidly. In response to these changes, many states, institutions, and organizations have been working on strategic plans to implement online education. At the same time, misconceptions and myths related to the difficulty of teaching and learning online, technologies available to support online instruction, the support and compensation needed for high-quality instructors, and the needs of online students create challenges for such vision statements and planning documents. This paper provides analysis and evaluation of the effectiveness of Google Classroom's active learning activities for data mining subject under the Decision Sciences program. Technology Acceptance Model (TAM) has been employed to measure the effectiveness of the learning activities. A total of 100 valid unduplicated responses from students who enrolled data mining subject were used in this study. The results indicated that majority of the students satisfy with the Google Classroom's tool that were introduced in the class. Results of data analyzed showed that all ratios are above averages. In particular, comparative performance is good in the areas of ease of access, perceived usefulness, communication and interaction, instruction delivery and students' satisfaction towards the Google Classroom's active learning activities.

  7. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    International Nuclear Information System (INIS)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J.; Brink, Henrik; Long, James P.; Rice, John

    2012-01-01

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  8. Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable Star Classification

    Science.gov (United States)

    Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John

    2012-01-01

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  9. Enhancing students' learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking.

    Science.gov (United States)

    Khoiriyah, Umatul; Roberts, Chris; Jorm, Christine; Van der Vleuten, C P M

    2015-08-26

    Problem based learning (PBL) is a powerful learning activity but fidelity to intended models may slip and student engagement wane, negatively impacting learning processes, and outcomes. One potential solution to solve this degradation is by encouraging self-assessment in the PBL tutorial. Self-assessment is a central component of the self-regulation of student learning behaviours. There are few measures to investigate self-assessment relevant to PBL processes. We developed a Self-assessment Scale on Active Learning and Critical Thinking (SSACT) to address this gap. We wished to demonstrated evidence of its validity in the context of PBL by exploring its internal structure. We used a mixed methods approach to scale development. We developed scale items from a qualitative investigation, literature review, and consideration of previous existing tools used for study of the PBL process. Expert review panels evaluated its content; a process of validation subsequently reduced the pool of items. We used structural equation modelling to undertake a confirmatory factor analysis (CFA) of the SSACT and coefficient alpha. The 14 item SSACT consisted of two domains "active learning" and "critical thinking." The factorial validity of SSACT was evidenced by all items loading significantly on their expected factors, a good model fit for the data, and good stability across two independent samples. Each subscale had good internal reliability (>0.8) and strongly correlated with each other. The SSACT has sufficient evidence of its validity to support its use in the PBL process to encourage students to self-assess. The implementation of the SSACT may assist students to improve the quality of their learning in achieving PBL goals such as critical thinking and self-directed learning.

  10. Understanding Insurance. A Guide for Industrial Cooperative Training Programs. Learning Activity Package No. 15.

    Science.gov (United States)

    Duenk, Lester G.; Tuel, Charles

    This learning activity package (LAP) on the insurance industry and the methods used to give protection to the insured is designed for student self-study. Following a list of learning objectives, the LAP contains a pretest (answer key provided at the back). Six learning activities follow. The learning activities cover the following material: terms…

  11. Musical Peddy-Paper: A Collaborative Learning Activity Suported by Augmented Reality

    Science.gov (United States)

    Gomes, José Duarte Cardoso; Figueiredo, Mauro Jorge Guerreiro; Amante, Lúcia da Graça Cruz Domingues; Gomes, Cristina Maria Cardoso

    2014-01-01

    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge…

  12. An active-learning strategies primer for achieving ability-based educational outcomes.

    Science.gov (United States)

    Gleason, Brenda L; Peeters, Michael J; Resman-Targoff, Beth H; Karr, Samantha; McBane, Sarah; Kelley, Kristi; Thomas, Tyan; Denetclaw, Tina H

    2011-11-10

    Active learning is an important component of pharmacy education. By engaging students in the learning process, they are better able to apply the knowledge they gain. This paper describes evidence supporting the use of active-learning strategies in pharmacy education and also offers strategies for implementing active learning in pharmacy curricula in the classroom and during pharmacy practice experiences.

  13. Active Learning Strategies in Face-to-Face Courses. IDEA Paper #53

    Science.gov (United States)

    Millis, Barbara J.

    2012-01-01

    As numerous research studies suggest, teachers who desire increased student learning should adopt active learning. This article explores the research, defines active learning, discusses its value, offers suggestions for implementing it, and provides six concrete examples of active learning approaches: Thinking-Aloud Pair Problem-Solving;…

  14. Exploring Characteristics of Fine-Grained Behaviors of Learning Mathematics in Tablet-Based E-Learning Activities

    Science.gov (United States)

    Yeung, Cheuk Yu; Shum, Kam Hong; Hui, Lucas Chi Kwong; Chu, Samuel Kai Wah; Chan, Tsing Yun; Kuo, Yung Nin; Ng, Yee Ling

    2017-01-01

    Attributes of teaching and learning contexts provide rich information about how students participate in learning activities. By tracking and analyzing snapshots of these attributes captured continuously throughout the duration of the learning activities, teachers can identify individual students who need special attention and apply different…

  15. The Impact of Peer Review on Creative Self-Efficacy and Learning Performance in Web 2.0 Learning Activities

    Science.gov (United States)

    Liu, Chen-Chung; Lu, Kuan-Hsien; Wu, Leon Yufeng; Tsai, Chin-Chung

    2016-01-01

    Many studies have pointed out the significant contrast between the creative nature of Web 2.0 learning activities and the structured learning in school. This study proposes an approach to leveraging Web 2.0 learning activities and classroom teaching to help students develop both specific knowledge and creativity based on Csikzentmihalyi's system…

  16. Can Cooperative Learning Achieve the Four Learning Outcomes of Physical Education? A Review of Literature

    Science.gov (United States)

    Casey, Ashley; Goodyear, Victoria A.

    2015-01-01

    Physical learning, cognitive learning, social learning, and affective learning are positioned as the legitimate learning outcomes of physical education. It has been argued that these four learning outcomes go toward facilitating students' engagement with the physically active life (Bailey et al., 2009; Kirk, 2013). With Cooperative Learning…

  17. Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications.

    Science.gov (United States)

    Minor, Bryan; Doppa, Janardhan Rao; Cook, Diane J

    2017-12-01

    Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However, there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction , where the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes. Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting activities from sensor data.

  18. The Degree of Applying E-Learning in English Departments at Al-Balqa Applied University from Instructors' Perspectives

    Science.gov (United States)

    Alzu'bi, Mohammad Akram Mohammad

    2018-01-01

    The study aimed at identifying the degree of applying e-learning in Al-Balqa Applied University from instructors' perspectives so the researcher designed a questionnaire of 20 items which is applied on a sample of 48 lecturers. The study showed that the percentage of (64.0%) out of 48 participants apply e-learning in English departments at…

  19. Introduction of active learning method in learning physiology by MBBS students.

    Science.gov (United States)

    Gilkar, Suhail Ahmad; Lone, Shabiruddin; Lone, Riyaz Ahmad

    2016-01-01

    Active learning has received considerable attention over the past several years, often presented or perceived as a radical change from traditional instruction methods. Current research on learning indicates that using a variety of teaching strategies in the classroom increases student participation and learning. To introduce active learning methodology, i.e., "jigsaw technique" in undergraduate medical education and assess the student and faculty response to it. This study was carried out in the Department of Physiology in a Medical College of North India. A topic was chosen and taught using one of the active learning methods (ALMs), i.e., jigsaw technique. An instrument (questionnaire) was developed in English through an extensive review of literature and was properly validated. The students were asked to give their response on a five-point Likert scale. The feedback was kept anonymous. Faculty also provided their feedback in a separately provided feedback proforma. The data were collected, compiled, and analyzed. Of 150 students of MBBS-first year batch 2014, 142 participated in this study along with 14 faculty members of the Physiology Department. The majority of the students (>90%) did welcome the introduction of ALM and strongly recommended the use of such methods in teaching many more topics in future. 100% faculty members were of the opinion that many more topics shall be taken up using ALMs. This study establishes the fact that both the medical students and faculty want a change from the traditional way of passive, teacher-centric learning, to the more active teaching-learning techniques.

  20. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  1. A Problem Solving Active-Learning Course in Pharmacotherapy.

    Science.gov (United States)

    Delafuente, Jeffrey C.; And Others

    1994-01-01

    A third-year pharmacology course in a doctoral pharmacy program that is case based and intended for a large class is described. Aspects discussed include learning objectives, course organization, classroom activities, case selection and design, faculty involvement, grading, and areas identified for improvement. (MSE)

  2. Implementing Active Learning Reform in the Maldives: Challenges and Opportunities

    Science.gov (United States)

    Di Biase, Rhonda

    2009-01-01

    Many countries are adopting child-centered active learning reforms as they strive to improve the quality of primary education. Consistent challenges can be found in the implementation of similar, global reforms. These issues are discussed here within the following framework: the cultural appropriateness of such reforms; the extent to which active…

  3. Effect of active learning techniques on students' choice of approach ...

    African Journals Online (AJOL)

    The purpose of this article is to report on empirical work, related to a techniques module, undertaken with the dental students of the University of the Western Cape, South Africa. I will relate how a range of different active learning techniques (tutorials; question papers and mock tests) assisted students to adopt a deep ...

  4. Physical activity during learning inside and outside the classroom

    DEFF Research Database (Denmark)

    Mygind, Erik

    2016-01-01

    Objective: Does learning outside the classroom (LOtC) in urban nature or cultural contexts one day per week contribute to raising children’s physical activity (PA) in lower secondary school? Methods: PA was measured on 7 consecutive days using GT3x+ accelerometers. Overall, 44 girls and 40 boys...

  5. Research and Practice of Active Learning in Engineering Education

    NARCIS (Netherlands)

    Graaf, de Erik; Saunders-Smits, Gillian; Nieweg, Michael

    2005-01-01

    Since 2001, the international network Active Learning in Engineering education (ALE) organized a series of international workshops on innovation of engineering education. The papers in this book are selected to reflect the state of the art, based on contributions to the 2005 ALE workshop in Holland.

  6. Teacher educators' design and implementation of group learning activities

    NARCIS (Netherlands)

    De Hei, Miranda S.A.; Sjoer, Ellen; Admiraal, Wilfried; Strijbos, J.W.

    2016-01-01

    Group Learning Activities (GLAs) are a key ingredient of course designs in higher education. Various approaches for designing GLAs have been developed, featuring different design components. However, this has not yet resulted in clear guidelines for teachers on how to design GLAs. The purpose of

  7. A Judicious Lesson: A Whole-Learning Reading Activity.

    Science.gov (United States)

    Spooner, Patrick

    2001-01-01

    Describes a unique language learning activity using the whole language approach in a tertiary level lower advanced reading and speaking course. Following a semester long theme on crime and punishment, students were introduced to an authentic, idiomatic text dealing with a famous murder case in U.S. history. (Author/VWL)

  8. An Active Learning Exercise for Introducing Agent-Based Modeling

    Science.gov (United States)

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  9. Origami: An Active Learning Exercise for Scrum Project Management

    Science.gov (United States)

    Sibona, Christopher; Pourreza, Saba; Hill, Stephen

    2018-01-01

    Scrum is a popular project management model for iterative delivery of software that subscribes to Agile principles. This paper describes an origami active learning exercise to teach the principles of Scrum in management information systems courses. The exercise shows students how Agile methods respond to changes in requirements during project…

  10. The effect of outdoor learning activities on the development of ...

    African Journals Online (AJOL)

    These activities, which provide primary experiences, help children to change theoretical knowledge into practice, record it in the long-term memory, and create solutions to problems they encounter in daily life, based on what they have learned. Children, especially preschoolers, can record things into their long-term memory ...

  11. The Intercollegiate Ethics Bowl: An Active Learning Experience

    Science.gov (United States)

    Meyer, Tracy

    2012-01-01

    This paper introduces the Intercollegiate Ethics Bowl (IEB) as a means of promoting active learning in the realm of marketing ethics. The cases discussed in the competition are based on current ethical issues and require students to provide a coherent analysis of what are generally complex, ambiguous, and highly viewpoint dependent issues. The…

  12. Blog Construction as an Effective Tool in Biochemistry Active Learning

    Science.gov (United States)

    Cubas Rolim, Estêvão; Martins de Oliveira, Julia; Dalvi, Luana T.; Moreira, Daniel C.; Garcia Caldas, Natasha; Fernandes Lobo, Felipe; André Polli, Démerson; Campos, Élida G.; Hermes-Lima, Marcelo

    2017-01-01

    To boost active learning in undergraduate students, they were given the task of preparing blogs on topics of clinical biochemistry. This "experiment" lasted for 12 teaching-semesters (from 2008 to 2013), and included a survey on the blogs' usefulness at the end of each semester. The survey (applied in the 2008-2010 period) used a…

  13. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  14. Using an Active-Learning Approach to Teach Epigenetics

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel

    2010-01-01

    Epigenetics involves heritable changes in gene expression that do not involve alterations in the DNA sequence. I developed an active-learning approach to convey this topic to students in a college genetics course. I posted a brief summary of the topic before class to stimulate exchange in cooperative groups. During class, we discussed the…

  15. Development of Active Learning with Simulations and Games

    Science.gov (United States)

    Zapalska, Alina; Brozik, Dallas; Rudd, Denis

    2012-01-01

    Educational games and simulations are excellent active learning tools that offer students hands-on experience. Little research is available on developing games and simulations and how teachers can be assisted in making their own games and simulations. In this context, the paper presents a multi-step process of how to develop games and simulations…

  16. Minority Politics Courses: Moving beyond Controversy and toward Active Learning.

    Science.gov (United States)

    Alex-Assensoh, Yvette

    2000-01-01

    Focuses on an undergraduate course, "Outside Politics: How Minorities Play the Political Game". Describes how to create a foundation for active and collaborative learning and to promote critical thinking, discussion, and writing through reading assignments. Discusses the use of debates and role playing, autobiographies and videos, and…

  17. Active learning and adaptive sampling for non-parametric inference

    NARCIS (Netherlands)

    Castro, R.M.

    2007-01-01

    This thesis presents a general discussion of active learning and adaptive sampling. In many practical scenarios it is possible to use information gleaned from previous observations to focus the sampling process, in the spirit of the "twenty-questions" game. As more samples are collected one can

  18. An example of active learning in Aerospace Engineering

    NARCIS (Netherlands)

    Brugemann, V.P.; Brummelen, van E.H.; Melkert, J.A.; Kamp, A.; Saunders-Smits, G.N.; Reith, B.A.; Zandbergen, B.T.C.; Graaf, de E.; Saunders-Smits, G.N.; Nieweg, M.R.

    2005-01-01

    This paper is a showcase for an on-going active learning capstone design project in the BSe. programme at the Faculty of Aerospace Engineering at Delft University of Technology. In multi-disciplinary teams supervised by tutors from different backgrounds students work towards an Aerospace (related)

  19. Effort and trust: the underpinnings of active learning.

    Science.gov (United States)

    Adams, Seana; Bilimoria, Krish; Malhotra, Neha; Rangachari, P K

    2017-09-01

    Three undergraduate students and their teacher discuss two crucial issues that form the implicit basis of active learning: effort and trust. They use a single course in a Health Sciences Program to anchor their comments. Copyright © 2017 the American Physiological Society.

  20. Creating Student Engagement: The Kickstarter Active Learning Project

    Science.gov (United States)

    Manzon, Elliott

    2017-01-01

    Students can become disengaged from marketing material if they cannot see the direct application. Marketing material needs to be applied to a meaningful business task to engage and motivate students. This article introduces the Kickstarter Active Learning Project--an innovative semester-long project in which students create a Kickstarter…

  1. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    Science.gov (United States)

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  2. Using a Learning Activity Sequence in Large-Enrollment Physical Geology Classes: Supporting the Needs of Underserved Students While Motivating Interest, Learning, and Success

    Science.gov (United States)

    Pun, A.; Smith, G. A.

    2011-12-01

    -enrollment department sections taught during the same period. (2) Anonymous student surveys show that: 97% of students do at least some of the assigned reading before class while 58% indicate they would not do the reading if online reading assessments were not assigned; 72% indicate post-lecture online assessments prepare them for exams; greater than 80% of students feel that they learn more in the LAS approach than with traditional instruction; 90% favor active learning in the classroom to only lecture; learning opportunities motivate 82% to attend class to participate in peer instruction and in-class exercises, even if these assignments did not contribute at all to their grade. Notably, first-generation students show disproportionately greater preference for active in-class learning. (3) Learning gains were assessed with the geoscience concept inventory (GCI) of Libarkin and Anderson (2005, J Geo Ed 53(4):395-401). Paired pre- and post-test scores (n=404) in 5 classes show an improvement from 46% to 52% (11% normalized gain), within the target goal that McConnell et al. (2008, GSA Abst Prog 41(1):49) propose for introductory geology courses that produce improved conceptual geoscience learning.

  3. Active-learning strategies: the use of a game to reinforce learning in nursing education. A case study.

    Science.gov (United States)

    Boctor, Lisa

    2013-03-01

    The majority of nursing students are kinesthetic learners, preferring a hands-on, active approach to education. Research shows that active-learning strategies can increase student learning and satisfaction. This study looks at the use of one active-learning strategy, a Jeopardy-style game, 'Nursopardy', to reinforce Fundamentals of Nursing material, aiding in students' preparation for a standardized final exam. The game was created keeping students varied learning styles and the NCLEX blueprint in mind. The blueprint was used to create 5 categories, with 26 total questions. Student survey results, using a five-point Likert scale showed that they did find this learning method enjoyable and beneficial to learning. More research is recommended regarding learning outcomes, when using active-learning strategies, such as games. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Entering the urban frame: early lesbian activism and public space in Montréal.

    Science.gov (United States)

    Podmore, Julie A; Chamberland, Line

    2015-01-01

    This article examines the spatial strategies used by Montréal lesbian activists in the 1970s and 1980s to fight for the lesbian "right to the city." After situating lesbian public activism within Henri Lefebvre's ideal of spatial justice, this article provides case studies of four moments during which Montréal lesbian activists joined or initiated public demonstrations as lesbians. The focus is on the multiple ways in which lesbian activists performed politicized lesbian identities in urban public spaces. Their spatial strategies in this first era of the lesbian and gay rights movement provide an alternative account of claiming lesbian, gay, bisexual, transgender, and queer rights to the heterosexual city.

  5. High efficient photocatalytic activity of Zn-Al-Ti layered double hydroxides nanocomposite

    Directory of Open Access Journals (Sweden)

    Amor F.

    2018-01-01

    Full Text Available This work establishes a simple method for synthesising layered double hydroxides (LDHs powders with coprecipitation. The characteristics of the samples were investigated y X-ray diffraction (XRD, scanning electron microscopy (SEM and spectrophotometer UV–Vis (DRS. Non-uniform distribution was shown for LDHs samples by SEM. Photocatalytic efficiencies were tested using methylene blue (MB dye as a model contaminant under UV irradiation. In particular, Zn–Al-Ti LDH exhibited an excellent performance towards MB degradation compared with commercial TiO2 nanoparticles. Methylene blue removal percentage was reached at almost 100%, whereas commercial TiO2 reached a removal rate of only 66% under the same conditions within 20 min. The aim of the current work is to prepare Zn-Al-Ti layered double hydroxides nanocomposite and to evaluate their photocatalytic activity in the removal of methylene blue under UV irradiation.

  6. Active Learning to Develop Motor Skills and Teamwork

    Directory of Open Access Journals (Sweden)

    Johanna Lorena Aristizabal-Almanza

    2017-12-01

    Full Text Available This action-research project was conducted to determine how the use of principles of active learning, specifically collaboration, had an effect on psychomotor performance and achievement in teamwork. The research setting included 20 students of first grade from a private school located in Bogota, Colombia. The students were selected through not randomized sampling based on criteria. The methodological process included observation, interviews, and a scale based on standardized tests to measure skills; the latter was applied before and after the intervention. Data analysis was performed using a triangulation of qualitative data, and through comparative analysis of the initial and final student profile for quantitative inputs. The results showed that, after the intervention with collaborative techniques based on action learning, students achieved a positive variation in their performance. Being part of a team positively affected the achievement of the objectives. Systematical reflection on their practices fostered their capacity to identify strengths and weaknesses to build knowledge in interaction with others. Knowledge construction was nurtured based in their previous experiences. Students showed more accountability and self-directed learning behaviors, according to their age. Overall the experience showed the importance of research and innovation in the classroom in order to provide meaningful data, so teachers and researchers can engage in providing learning experiences based in active learning.

  7. Effective, Active Learning Strategies for the Oceanography Classroom

    Science.gov (United States)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  8. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

    Science.gov (United States)

    Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368

  10. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  11. Absence of Sublexical Representations in Late-Learning Signers? A Statistical Critique of Lieberman et al. (2015)

    Science.gov (United States)

    Salverda, Anne Pier

    2016-01-01

    Lieberman, Borovsky, Hatrak, and Mayberry (2015) used a modified version of the visual-world paradigm to examine the real-time processing of signs in American Sign Language. They examined the activation of phonological and semantic competitors in native signers and late-learning signers and concluded that their results provide evidence that the…

  12. Problem-based Learning (PBL in Sociolinguistics as a Way of Encouraging Active Learning

    Directory of Open Access Journals (Sweden)

    Engku Ibrahim Engku Haliza

    2018-01-01

    Full Text Available The major concern of this paper is to advocate the integration of PBL strategies in classroom instruction as a way of promoting active learning. It is undoubted that the benefits of problem-based learning (PBL are numerous. In the sciences, PBL has been well integrated in the curriculum. This research reports of an experience of integrating problem-based learning in an introductory Sociolinguistics course for 60 undergraduates of a Bachelors of English programme through a semester that ran for 14 weeks. A focused group interview and questionnaire were used to find out the perceptions of the students undergoing the hybrid PBL course. The findings of this study reveal that students generally enjoyed the PBL approach and found that they had little choice but to become active learners. Some challenges faced by the learners were also highlighted. These findings have implications for the integration of PBL in the field of social sciences.

  13. DASL-Data and Activities for Solar Learning

    Science.gov (United States)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  14. Influence of Microtexture on Early Plastic Slip Activity in Ti-6Al-4V Polycrystals

    Science.gov (United States)

    Hémery, Samuel; Dang, Van Truong; Signor, Loïc; Villechaise, Patrick

    2018-06-01

    Microtextured regions are known to influence the fatigue performance of titanium alloys. Previous studies revealed that crack initiation, accounting for most of the fatigue life, is triggered by slip activity. The influence of microtextured regions on the early plastic slip activity was presently investigated by means of an in situ tensile test performed inside a scanning electron microscope on a bimodal Ti-6Al-4V polycrystalline specimen. A slip trace analysis was carried out in several regions with different crystallographic textures to highlight potentially different deformation behaviors. Significant stress heterogeneities were revealed through an early slip activation in microtextured regions with a predominant [0001] orientation. This point was shown to be related to a locally increased resolved shear stress. Consequences on behavior under cyclic loadings are finally discussed.

  15. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments.

    Science.gov (United States)

    Hagiwara, Nobuko

    2017-01-01

    The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students' skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs) in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students' competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules' learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed.

  16. Embracing Complexity: Rethinking the Relation between Play and Learning--Comment on Lillard et al. (2013)

    Science.gov (United States)

    Weisberg, Deena Skolnick; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick

    2013-01-01

    Lillard et al. (2013) concluded that pretend play is not causally related to child outcomes and charged that the field is subject to a "play ethos", whereby research is tainted by a bias to find positive effects of play on child development. In this commentary, we embrace their call for a more solidly scientific approach to questions in this…

  17. It takes biking to learn: Physical activity improves learning a second language.

    Science.gov (United States)

    Liu, Fengqin; Sulpizio, Simone; Kornpetpanee, Suchada; Job, Remo

    2017-01-01

    Recent studies have shown that concurrent physical activity enhances learning a completely unfamiliar L2 vocabulary as compared to learning it in a static condition. In this paper we report a study whose aim is twofold: to test for possible positive effects of physical activity when L2 learning has already reached some level of proficiency, and to test whether the assumed better performance when engaged in physical activity is limited to the linguistic level probed at training (i.e. L2 vocabulary tested by means of a Word-Picture Verification task), or whether it extends also to the sentence level (which was tested by means of a Sentence Semantic Judgment Task). The results show that Chinese speakers with basic knowledge of English benefited from physical activity while learning a set of new words. Furthermore, their better performance emerged also at the sentential level, as shown by their performance in a Semantic Judgment task. Finally, an interesting temporal asymmetry between the lexical and the sentential level emerges, with the difference between the experimental and control group emerging from the 1st testing session at the lexical level but after several weeks at the sentential level.

  18. Active Learning through Online Quizzes: Better Learning and Less (Busy) Work

    Science.gov (United States)

    Cook, Brian Robert; Babon, Andrea

    2017-01-01

    Active learning is increasingly promoted within institutions of higher education to assist students develop higher order thinking and link knowledge to meaning. In this paper, the authors evaluate the use of weekly online quizzes based on prescribed preparatory material as a tool to incentivize preparatory reading in order to enable and encourage…

  19. Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil

    Energy Technology Data Exchange (ETDEWEB)

    Hong-yan Zeng; Zhen Feng; Xin Deng; Yu-qin Li [University of Xiangtan, Hunan (China). Institute of Biotechnology

    2008-10-15

    Mg-Al hydrotalcites with different Mg/Al molar ratios were prepared and characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), thermogravimetric apparatus and differential thermal analysis (TGA-DTA) and scanning electron micrograph (SEM). It was confirmed by XRD that the materials had hydrotalcite structure. The hydrotalcite catalyst calcined at 773 K with Mg/Al molar ratio of 3.0 exhibited the highest catalytic activity in the transesterification. In addition, a study for optimizing the transesterification reaction conditions such as molar ratio of the methanol to oil, the reaction temperature, the reaction time, the stirring speed and the amount of catalyst, was performed. The optimized parameters, 6:1 methanol/oil molar ratio with 1.5% catalyst (w/w of oil) reacted under stirring speed 300 rpm at 65{sup o}C for 4 h reaction, gave a maximum ester conversion of 90.5%. Moreover, the solid catalyst could be easily separated and possibly reused. 33 refs., 5 figs., 1 tab.

  20. Islamic Extremist Organizations: "Al-Qaeda" And "Taliban" Activity in Russia and Abroad

    Directory of Open Access Journals (Sweden)

    Nina V. Volodina

    2014-06-01

    Full Text Available Radical Islamic extremist organizations, including "Al-Qaeda" and "Taliban" pose a threat to the national security not only in modern Russia, but also in other countries of the world. In the article author points out that Islamic extremist organizations create new radical organizations, merging, forming communications with other extremist organizations and their leaders. Acts of terrorism, responsibility for which were taken by the "Al-Qaeda" or "Taliban" are known, they are numerous: acts of terrorism organization and conduct, creation of new Islamic organizations is conducted continuously, including the territory of the Russian Federation, died Islamic leaders are succeeded by other already prepared leaders and this process is not possible to stop. It is insufficient to simple forbid, modern situation demands development of the counteraction mechanism to their activity in part that pose threat to the national security of Russia. Attention is paid to the fact that these organizations are gaining strength therefore it is necessary to start formation of new strategic tasks, using legal potential and improving national legislation of Russian Federation taking into account realities of the present. Structure and features of the "Al-Qaeda" and "Taliban" as international extremist organizations is analyzed.

  1. How Technology and Collaboration Promote Formative Feedback: A Role for CSCL Research in Active Learning Interventions

    Science.gov (United States)

    Wu, Sally P. W.; Rau, Martina A.

    2017-01-01

    Recent evidence for the effectiveness of active learning interventions has led educators to advocate for widespread adoption of active learning in undergraduate science, technology, engineering, and mathematics courses. Active learning interventions implement technology and collaboration to engage students actively with the content. Yet, it is…

  2. Activation and motivation of medical students for learning histoembrylogy.

    Science.gov (United States)

    Stiblar-Martincic, D

    1998-01-01

    The paper described the present learning/teaching activities for the basic subject in the medical curriculum called histoembryology. Various forms of teaching are presented, but a special emphasis is put on computer assisted testing. The leading idea in the teaching activities is to improve the activation and motivation of the students. This goal has been only partly achieved presumably because of insufficient coordination and integration in the curriculum. The plans for further improvements in histoembryology teaching are presented, including the improvements in computer assisted testing.

  3. Active Learning and Self-Regulation Enhance Student Teachers’ Professional Competences

    OpenAIRE

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers’ self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey were analysed using statistical methods. It was found that the use of active learning methods, such as goal-oriented and intentional learning as well a...

  4. "Musyahadat Al Fidyu": YouTube-Based Teaching and Learning of Arabic as Foreign Language (AFL)

    Science.gov (United States)

    Albantani, Azkia Muharom; Madkur, Ahmad

    2017-01-01

    Today, it is not surprising to say that there is a swiftly rising use of internet in education. Internet with the enormous features has provided up prospects for rich and ground-breaking approaches to deal with educational issues and present solutions to the escalating needs for learning resources. Despite this fact, it is still found few studies…

  5. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  6. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  7. Learning through Debate during Problem-Based Learning: An Active Learning Strategy

    Science.gov (United States)

    Mumtaz, Sadaf; Latif, Rabia

    2017-01-01

    We explored medical student's views and perceptions of a series of debates conducted during problem-based learning (PBL) practiced as a part of the Spiral curriculum at the Imam Abdulrahman Bin Faisal University, Saudi Arabia. A series of debates were employed during PBL sessions for second-year female medical students, over the period 2014-2016.…

  8. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  9. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  10. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Debate preparation/participation: an active, effective learning tool.

    Science.gov (United States)

    Koklanaris, Nikki; MacKenzie, Andrew P; Fino, M Elizabeth; Arslan, Alan A; Seubert, David E

    2008-01-01

    Passive educational techniques (such as lectures) are thought to be less productive than active learning. We examined whether preparing for and participating in a debate would be an effective, active way to learn about a controversial topic. We compared quiz performance in residents who attended a lecture to residents who prepared for/participated in a debate. Twelve residents each participated in one lecture session and one debate session. Learning was evaluated via a quiz. Quizzes were given twice: before the debate/lecture and 1 week after the debate/lecture. Quiz scores were compared using repeated measures analysis of variance, with a p value of debating was given to all participants. There was a statistically significant difference in the pretest mean quiz score between the debate and lecture groups: 78.3% and 52.5%, respectively (p = .02). Similarly, on posttest quizzes, the average debater scored 85.8%, versus 61.7% for the lecture group (p = .003). Although no one in the debate group scored lower on a follow-up quiz, 3 residents in the lecture group did worse on follow-up. When learning about a controversial topic, residents who prepared for/participated in a debate achieved higher quiz scores and were better at retaining information than those who attended a lecture. When faced with teaching a controversial topic, organizing a debate may be more effective than giving a lecture.

  12. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    Science.gov (United States)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  13. Minimization of annotation work: diagnosis of mammographic masses via active learning

    Science.gov (United States)

    Zhao, Yu; Zhang, Jingyang; Xie, Hongzhi; Zhang, Shuyang; Gu, Lixu

    2018-06-01

    The prerequisite for establishing an effective prediction system for mammographic diagnosis is the annotation of each mammographic image. The manual annotation work is time-consuming and laborious, which becomes a great hindrance for researchers. In this article, we propose a novel active learning algorithm that can adequately address this problem, leading to the minimization of the labeling costs on the premise of guaranteed performance. Our proposed method is different from the existing active learning methods designed for the general problem as it is specifically designed for mammographic images. Through its modified discriminant functions and improved sample query criteria, the proposed method can fully utilize the pairing of mammographic images and select the most valuable images from both the mediolateral and craniocaudal views. Moreover, in order to extend active learning to the ordinal regression problem, which has no precedent in existing studies, but is essential for mammographic diagnosis (mammographic diagnosis is not only a classification task, but also an ordinal regression task for predicting an ordinal variable, viz. the malignancy risk of lesions), multiple sample query criteria need to be taken into consideration simultaneously. We formulate it as a criteria integration problem and further present an algorithm based on self-adaptive weighted rank aggregation to achieve a good solution. The efficacy of the proposed method was demonstrated on thousands of mammographic images from the digital database for screening mammography. The labeling costs of obtaining optimal performance in the classification and ordinal regression task respectively fell to 33.8 and 19.8 percent of their original costs. The proposed method also generated 1228 wins, 369 ties and 47 losses for the classification task, and 1933 wins, 258 ties and 185 losses for the ordinal regression task compared to the other state-of-the-art active learning algorithms. By taking the

  14. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism.

    Science.gov (United States)

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian

    2012-01-01

    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  15. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    Science.gov (United States)

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  16. From Swimming Pool to Collaborative Learning Studio: Pedagogy, Space, and Technology in a Large Active Learning Classroom

    Science.gov (United States)

    Lee, Dabae; Morrone, Anastasia S.; Siering, Greg

    2018-01-01

    To promote student learning and bolster student success, higher education institutions are increasingly creating large active learning classrooms to replace traditional lecture halls. Although there have been many efforts to examine the effects of those classrooms on learning outcomes, there is paucity of research that can inform the design and…

  17. Exploring the Effects of Active Learning on High School Students' Outcomes and Teachers' Perceptions of Biotechnology and Genetics Instruction

    Science.gov (United States)

    Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.

    2015-01-01

    Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…

  18. Effect of preparation method on catalytic activity of Ni/ γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara

    2017-01-01

    The performance of catalysts was shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.%Ni/γ-Al 2 O 3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), N 2 -physorption, H 2 -chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and temperature-programmed oxidation (TPO). The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected. (author) [es

  19. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation...... can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics...... of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new...

  20. [Designing the Annual Meeting and Active Learning System].

    Science.gov (United States)

    Kawamura, Kazumi

    2018-01-01

     At the 10th Annual Meeting of the Japanese Society for Pharmaceutical Palliative Care and Sciences our theme centered on active learning systems where adult learners engage on their own initiative. Many of the participants were pharmacists active in clinical practices. Regardless of their specialized skill-sets, pharmacists are constantly faced with difficult challenges in their daily work. Passive, one-way lectures are one resource for them, but unfortunately such lectures provide limited insights for resolving concrete problems. The present meeting aimed to show participants how to obtain information they need to solve specific real-world problems. This paper summarizes how we planned this year's meeting, including details about the debate symposium, social lunch, and online questionnaires. All these elements had the end goal of enabling learners proactivity to become their own best resource for learning. It is sincerely hoped that the design and execution of this meeting will prove resourceful for future annual meetings.

  1. Active Learning in a Large General Physics Classroom.

    Science.gov (United States)

    Trousil, Rebecca

    2008-04-01

    In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.

  2. PROCRASTINATION AS FACTOR OF THE EMOTIONAL ATTITUDE OF STUDENTS TO LEARNING ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. A. Kuznetsov

    2016-04-01

    Manifestation of academic procrastination in the emotional attitude to learning activity is connected with students’ academic progress. High academic progress students’ emotional attitude to learning activity is broken by procrastination more than that of low academic progress students.

  3. Communicative – Activity Approach in Learning Foreign Language

    Directory of Open Access Journals (Sweden)

    Dariga A. Bekova

    2015-01-01

    Full Text Available The article is devoted communicative method of teaching foreign languages, which is the activity character. The task of the communicative approach – to interest of students in learning a foreign language through the accumulation and improvement their knowledge and experience. The main objective this method – free orienteering training in foreign language environment and the ability to adequately react in different situations, communication.

  4. Delta Learning Rule for the Active Sites Model

    OpenAIRE

    Lingashetty, Krishna Chaithanya

    2010-01-01

    This paper reports the results on methods of comparing the memory retrieval capacity of the Hebbian neural network which implements the B-Matrix approach, by using the Widrow-Hoff rule of learning. We then, extend the recently proposed Active Sites model by developing a delta rule to increase memory capacity. Also, this paper extends the binary neural network to a multi-level (non-binary) neural network.

  5. TEXT-BASED LEARNING (TBL TO ACTIVATE ADULT EFL LEARNERS IN LEARNING ENGLISH: A NARRATIVE INQUIRY

    Directory of Open Access Journals (Sweden)

    Erna Iftanti

    2017-06-01

    Full Text Available In response to the fact that college students complain on their unsuccessful story of their EFL learning experience such as the limited number of vocabulary, English Grammar confusion, low competence of English language skills, this article explores an alternative effective way of helping them to improve their English through Text-Based Learning (TBL model. This article is then intended to narrate the implementation of TBL to teach English for college students of non English Department of Post Graduate Program of State Islamic Institute of Tulungagung, Indonesia. The result of implementing this teaching model proves to be able to not only stimulate joyful learning atmosphere but to attract the students’ active participation during the EFL instructional process as well. This further brings about their better practical understanding on English language skills as their expectation. Therefore, for English lecturers, this model is pedagogically good to be implemented in their English instructional practices.

  6. Activities Joining Learning Objectives to Assessments in Introductory Astronomy

    Science.gov (United States)

    Palen, Stacy E.; Larson, Ana M.

    2015-01-01

    In recent years, accreditation boards and other governing bodies have been pushing hard for explicit learning goals and quantitative measures of assessment for general education courses such as Astronomy 101. This added assessment burden can be problematic, especially for harried adjuncts teaching multiple courses at multiple institutions. It would be helpful to have a field-tested set of combined hands-on activities and assessment tools that help instructors meet these assessment requirements. The authors have produced just such a set. We have been using hands-on activities in our classrooms for more than 15 years. These activities require no special equipment or preparation and can be completed within an hour by most students working in groups of two or three. The sections of each activity are arranged in steps, guiding the students from initial knowledge-level questions or practice to a final evaluation or synthesis of what they have just accomplished. Students thus get practice thinking at higher cognitive levels. A recent addition to these activities is the inclusion of formalized learning objectives and accompanying pre- and post-activity questions. The pre-activity questions address common misconceptions, relate familiar analogous terrestrial examples to the activity, and act as a brief refresher meta-concepts like scale factors, measurements, and basic mathematics review. The post-activity questions review the most important concepts introduced in the activity. We present a number of examples as well as a summary as to how we have initiated their use in a large lecture setting of 300 students, in smaller classrooms of 15 students, and in a community college online course.

  7. Observing and Understanding an On-Line Learning Activity: A Model-Based Approach for Activity Indicator Engineering

    Science.gov (United States)

    Djouad, Tarek; Mille, Alain

    2018-01-01

    Although learning indicators are now properly studied and published, it is still very difficult to manage them freely within most distance learning platforms. As all activity indicators need to collect and analyze properly traces of the learning activity, we propose to use these traces as a starting point for a platform independent Trace…

  8. An Integrative Review of In-Class Activities That Enable Active Learning in College Science Classroom Settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-01-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about "active learning" in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are…

  9. An investigation of the impact of selected prereading activities on student content learning through laboratory activities

    Science.gov (United States)

    Kass, Jesse (Shaya)

    This study investigated whether two prereading activities impacted student learning from hands-on science activities. The study was based on constructivist learning theory. Based on the work of Piaget, it was hypothesized that students who activated prior knowledge would learn more from the activities. Based on the work of Vygotsky it was hypothesized that students who talk more and write more would learn more from the activity. The K-W-L chart and anticipation guide strategies were used with eighth grade students at Graves Middle School in Whittier, California before learning about levers and convection currents. D. M. Ogle (1986) created the three-column K-W-L chart to have students activate prior knowledge. In the first column, the students write what they already know about a subject, in the second column, the students write what they want to know about the subject, and the students complete the third column after learning about a subject by writing answers to the questions that they asked in the second column. Duffelmeyer (1994) created the anticipation guide based on Herber's (1978) reasoning guide. In the anticipation guide, the teacher creates three or four sentences that convey the major ideas of the topic and the students either agree or disagree with the statements. After learning about the topic, students revisit their answers and decide if they were correct or incorrect and they must defend their choices. This research used the Solomon (1947) four-square design and compared both the experimental groups to a control group that simply discussed the concepts before completing the activity. The research showed no significant difference between the control group and either of the treatment groups. The reasons for the lack of significant differences are considered. It was hypothesized that since the students were unfamiliar with the prereading activities and did not have much experience with using either writing-to-learn or talking-to-learn strategies, the

  10. Active-learning versus teacher-centered instruction for learning acids and bases

    Science.gov (United States)

    Acar Sesen, Burcin; Tarhan, Leman

    2011-07-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p acid and base theories'; 'metal and non-metal oxides'; 'acid and base strengths'; 'neutralization'; 'pH and pOH'; 'hydrolysis'; 'acid-base equilibrium'; 'buffers'; 'indicators'; and 'titration'. Based on the achievement test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the concepts more meaningfully than students in control group. Conclusion The study revealed that active-learning implementation is more effective at

  11. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  12. Comparing the Effectiveness of Traditional and Active Learning Methods in Business Statistics: Convergence to the Mean

    Science.gov (United States)

    Weltman, David; Whiteside, Mary

    2010-01-01

    This research shows that active learning is not universally effective and, in fact, may inhibit learning for certain types of students. The results of this study show that as increased levels of active learning are utilized, student test scores decrease for those with a high grade point average. In contrast, test scores increase as active learning…

  13. Characterizing Engineering Learners' Preferences for Active and Passive Learning Methods

    Science.gov (United States)

    Magana, Alejandra J.; Vieira, Camilo; Boutin, Mireille

    2018-01-01

    This paper studies electrical engineering learners' preferences for learning methods with various degrees of activity. Less active learning methods such as homework and peer reviews are investigated, as well as a newly introduced very active (constructive) learning method called "slectures," and some others. The results suggest that…

  14. Using Active-Learning Pedagogy to Develop Essay-Writing Skills in Introductory Political Theory Tutorials

    Science.gov (United States)

    Murphy, Michael P. A.

    2017-01-01

    Building on prior research into active learning pedagogy in political science, I discuss the development of a new active learning strategy called the "thesis-building carousel," designed for use in political theory tutorials. This use of active learning pedagogy in a graduate student-led political theory tutorial represents the overlap…

  15. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  16. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces

    Science.gov (United States)

    Stoltzfus, Jon R.; Libarkin, Julie

    2016-01-01

    SCALE-UP-type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well…

  17. Active Learning Promoting Student Teachers' Professional Competences in Finland and Turkey

    Science.gov (United States)

    Niemi, Hannele; Nevgi, Anne; Aksit, Fisun

    2016-01-01

    This study investigates student teachers' active learning experiences in teacher education (TE) in Finnish and Turkish contexts and attempts to determine how active learning methods' impact student teachers' professional competences. Student teachers (N = 728) assessed their active learning experiences and the professional competences they…

  18. The Effect of Active Learning Approach on Attitudes of 7th Grade Students

    Science.gov (United States)

    Demirci, Cavide

    2017-01-01

    Active learning is a student's active impact on learning and a student's involvement in the learning process which allows students to focus on creating knowledge with an emphasis on skills such as analytical thinking, problem-solving and meta-cognitive activities that develop students' thinking. The main purpose of this study is to determine…

  19. Perceptions of Active Learning between Faculty and Undergraduates: Differing Views among Departments

    Science.gov (United States)

    Patrick, Lorelei E.; Howell, Leigh Anne; Wischusen, William

    2016-01-01

    There have been numerous calls recently to increase the use of active learning in university science, technology, engineering, and math (STEM) classrooms to more actively engage students and enhance student learning. However, few studies have investigated faculty and student perceptions regarding the effectiveness of active learning or the…

  20. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768

  1. Enhancing active learning in microbiology through case based learning: experiences from an Indian medical school.

    Science.gov (United States)

    Ciraj, A M; Vinod, P; Ramnarayan, K

    2010-01-01

    Case-based learning (CBL) is an interactive student-centered exploration of real life situations. This paper describes the use of CBL as an educational strategy for promoting active learning in microbiology. CBL was introduced in the microbiology curriculum for the second year medical students after an orientation program for faculty and students. After intervention, the average student scores in CBL topics were compared with scores obtained in lecture topics. An attempt was also made to find the effect of CBL on the academic performance. Student and faculty perception on CBL were also recorded. In a cross sectional survey conducted to assess the effectiveness of CBL, students responded that, apart from helping them acquire substantive knowledge in microbiology, CBL sessions enhanced their analytic, collaborative, and communication skills. The block examination scores in CBL topics were significantly higher than those obtained for lecture topics. Faculty rated the process to be highly effective in stimulating student interest and long term retention of microbiology knowledge. The student scores were significantly higher in the group that used CBL, compared to the group that had not used CBL as a learning strategy. Our experience indicated that CBL sessions enhanced active learning in microbiology. More frequent use of CBL sessions would not only help the student gain requisite knowledge in microbiology but also enhance their analytic and communication skills.

  2. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

  3. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  4. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  5. Annotating smart environment sensor data for activity learning.

    Science.gov (United States)

    Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.

  6. Promoting readiness to practice: which learning activities promote competence and professional identity for student social workers during practice learning?

    OpenAIRE

    Roulston, Audrey; Cleak, Helen; Vreugdenhil, Anthea

    2016-01-01

    Practice learning is integral to the curriculum for qualifying social work students. Accreditation standards require regular student supervision and exposure to specific learning activities. Most agencies offer high quality placements but organisational cutbacks may affect supervision and restrict the development of competence and professional identity. Undergraduate social work students in Northern Ireland universities (n = 396) were surveyed about the usefulness of the learning activities t...

  7. Research-based active-learning instruction in physics

    Science.gov (United States)

    Meltzer, David E.; Thornton, Ronald K.

    2013-04-01

    The development of research-based active-learning instructional methods in physics has significantly altered the landscape of U.S. physics education during the past 20 years. Based on a recent review [D.E. Meltzer and R.K. Thornton, Am. J. Phys. 80, 478 (2012)], we define these methods as those (1) explicitly based on research in the learning and teaching of physics, (2) that incorporate classroom and/or laboratory activities that require students to express their thinking through speaking, writing, or other actions that go beyond listening and the copying of notes, or execution of prescribed procedures, and (3) that have been tested repeatedly in actual classroom settings and have yielded objective evidence of improved student learning. We describe some key features common to methods in current use. These features focus on (a) recognizing and addressing students' physics ideas, and (b) guiding students to solve problems in realistic physical settings, in novel and diverse contexts, and to justify or explain the reasoning they have used.

  8. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  9. Active Learning for Directed Exploration of Complex Systems

    Science.gov (United States)

    Burl, Michael C.; Wang, Esther

    2009-01-01

    Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.

  10. Does using active learning in thermodynamics lectures improve students’ conceptual understanding and learning experiences?

    International Nuclear Information System (INIS)

    Georgiou, H; Sharma, M D

    2015-01-01

    Encouraging ‘active learning’ in the large lecture theatre emerges as a credible recommendation for improving university courses, with reports often showing significant improvements in learning outcomes. However, the recommendations are based predominantly on studies undertaken in mechanics. We set out to examine those claims in the thermodynamics module of a large first year physics course with an established technique, called interactive lecture demonstrations (ILDs). The study took place at The University of Sydney, where four parallel streams of the thermodynamics module were divided into two streams that experienced the ILDs and two streams that did not. The programme was first implemented in 2011 to gain experience and refine logistical matters and repeated in 2012 with approximately 500 students. A validated survey, the thermal concepts survey, was used as pre-test and post-test to measure learning gains while surveys and interviews provided insights into what the ‘active learning’ meant from student experiences. We analysed lecture recordings to capture the time devoted to different activities in a lecture, including interactivity. The learning gains were in the ‘high gain’ range for the ILD streams and ‘medium gain’ for the other streams. The analysis of the lecture recordings showed that the ILD streams devoted significantly more time to interactivity while surveys and interviews showed that students in the ILD streams were thinking in deep ways. Our study shows that ILDs can make a difference in students’ conceptual understanding as well as their experiences, demonstrating the potential value-add that can be provided by investing in active learning to enhance lectures. (paper)

  11. Actively Encouraging Learning and Degree Persistence in Advanced Astrophysics Courses

    Science.gov (United States)

    McIntosh, Daniel H.

    2018-01-01

    The need to grow and diversify the STEM workforce remains a critical national challenge. Less than 40% of college students interested in STEM achieve a bachelor's degree. These numbers are even more dire for women and URMs, underscoring a serious concern about the country's ability to remain competitive in science and tech. A major factor is persistent performance gaps in rigorous 'gateway' and advanced STEM courses for majors from diverse backgrounds leading to discouragement, a sense of exclusion, and high dropout rates. Education research has clearly demonstrated that interactive-engagement (`active learning') strategies increase performance, boost confidence, and help build positive 'identity' in STEM. Likewise, the evidence shows that traditional science education practices do not help most students gain a genuine understanding of concepts nor the necessary skill set to succeed in their disciplines. Yet, lecture-heavy courses continue to dominate the higher-ed curriculum, thus, reinforcing the tired notion that only a small percentage of 'special' students have the inherent ability to achieve a STEM degree. In short, very capable students with less experience and confidence in science, who belong to groups that traditionally are less identified with STEM careers, are effectively and efficiently 'weeded out' by traditional education practices. I will share specific examples for how I successfully incorporate active learning in advanced astrophysics courses to encourage students from all backgrounds to synthesize complex ideas, build bedrock conceptual frameworks, gain technical communication skills, and achieve mastery learning outcomes all necessary to successfully complete rigorous degrees like astrophysics. By creating an inclusive and active learning experience in junior-level extragalactic and stellar interiors/atmospheres courses, I am helping students gain fluency in their chosen major and the ability to 'think like a scientist', both critical to

  12. Student Buy-In to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026

  13. Potentiodynamic study of Al-Mg alloy with superhydrophobic coating in photobiologically active/not active natural seawater.

    Science.gov (United States)

    Benedetti, Alessandro; Cirisano, Francesca; Delucchi, Marina; Faimali, Marco; Ferrari, Michele

    2016-01-01

    Superhydrophobic coating technology is regarded as an attractive possibility for the protection of materials in a sea environment. DC techniques are a useful tool to characterize metals' behavior in seawater in the presence/absence of coatings and/or corrosion inhibitors. In this work, investigations concerning Al-5%Mg alloy with and without a sprayed superhydrophobic coating were carried out with potentiodynamic scans in photobiologically active and not active seawater (3 weeks of immersion). In not photobiologically active seawater, the presence of the superhydrophobic coating did not prevent pitting corrosion. With time, the coating underwent local exfoliations, but intact areas still preserved superhydrophobicity. In photobiologically active seawater, on samples without the superhydrophobic coating (controls) pitting was inhibited, probably due to the adsorption of organic compounds produced by the photobiological activity. After 3 weeks of immersion, the surface of the coating became hydrophilic due to diatom coverage. As suggested by intermediate observations, the surface below the diatom layer is suspected of having lost its superhydrophobicity due to early stages of biofouling processes (organic molecule adsorption and diatom attachment/gliding). Polarization curves also revealed that the metal below the coating underwent corrosion inhibiting phenomena as observed in controls, likely due to the permeation of organic molecules through the coating. Hence, the initial biofouling stages (days) occurring in photobiologically active seawater can both accelerate the loss of superhydrophobicity of coatings and promote corrosion inhibition on the underlying metal. Finally, time durability of superhydrophobic surfaces in real seawater still remains the main challenge for applications, where the early stages of immersion are demonstrated to be of crucial importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Investigation of activated Al-pillared clay efficiency in vegetable oil purification

    Directory of Open Access Journals (Sweden)

    Lomić Gizela A.

    2004-01-01

    Full Text Available This paper represents a contribution to the applicability of natural clays and their derivates as adsorbents in the process of purification of vegetable oil. Investigation of textural properties of raw and purified clay samples reveals that during acid activation and Al-pillaring, BET and micropore surface area increases significantly. However, bleaching capacity of clay and its derivates is not determined by using sample surface area, but rather sample total pore volume. Surface area, especially micropore surface area contributes to removal of smaller molecules. This was confirmed by successful elimination of moisture and volatile materials by samples with an appropriate micropore structure. Used samples of clay and its derivates do not significantly influence acid and peroxide values of raw sunflower oil during its treatment.

  15. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    Science.gov (United States)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  16. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    Science.gov (United States)

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  17. Student Motivation from and Resistance to Active Learning Rooted in Essential Science Practices

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Barlow, Angela T.; Smith-Walters, Cindi

    2017-12-01

    Several studies have found active learning to enhance students' motivation and attitudes. Yet, faculty indicate that students resist active learning and censure them on evaluations after incorporating active learning into their instruction, resulting in an apparent paradox. We argue that the disparity in findings across previous studies is the result of variation in the active learning instruction that was implemented. The purpose of this study was to illuminate sources of motivation from and resistance to active learning that resulted from a novel, exemplary active-learning approach rooted in essential science practices and supported by science education literature. This approach was enacted over the course of 4 weeks in eight sections of an introductory undergraduate biology laboratory course. A plant concept inventory, administered to students as a pre-, post-, and delayed-posttest indicated significant proximal and distal learning gains. Qualitative analysis of open-response questionnaires and interviews elucidated sources of motivation and resistance that resulted from this active-learning approach. Several participants indicated this approach enhanced interest, creativity, and motivation to prepare, and resulted in a challenging learning environment that facilitated the sharing of diverse perspectives and the development of a community of learners. Sources of resistance to active learning included participants' unfamiliarity with essential science practices, having to struggle with uncertainty in the absence of authoritative information, and the extra effort required to actively construct knowledge as compared to learning via traditional, teacher-centered instruction. Implications for implementation, including tips for reducing student resistance to active learning, are discussed.

  18. Synthesizing Technology Adoption and Learners' Approaches towards Active Learning in Higher Education

    Science.gov (United States)

    Chan, Kevin; Cheung, George; Wan, Kelvin; Brown, Ian; Luk, Green

    2015-01-01

    In understanding how active and blended learning approaches with learning technologies engagement in undergraduate education, current research models tend to undermine the effect of learners' variations, particularly regarding their styles and approaches to learning, on intention and use of learning technologies. This study contributes to further…

  19. Advancing the skill set of SCM graduates – An active learning approach

    NARCIS (Netherlands)

    Scholten, Kirstin; Dubois, Anna

    2017-01-01

    Purpose Drawing on a novel approach to active learning in supply chain management, the purpose of this paper is to describe and analyze how the students’ learning process as well as their learning outcomes are influenced by the learning and teaching contexts. Design/methodology/approach A case study

  20. Linking Motivation and Commitment through Learning Activities in the Volunteer Sector.

    Science.gov (United States)

    Serafino, Allan

    2001-01-01

    Volunteer motivation and commitment are linked through learning about the organization, the job, and oneself. Volunteer managers should (1) identity volunteer motivations and establish conditions to support them; (2) identify learning activities appropriate for motivations and learning styles; (3) ensure congruence between volunteer learning and…

  1. Informal Learning Activities for Learners of English and for Learners of Dutch

    Science.gov (United States)

    Van Marsenille, Anne

    2017-01-01

    The purpose of this study is to investigate and compare the informal learning activities which French-speaking higher education students in Brussels engage in while learning English and Dutch. The informal learning of English was investigated in 2012, while the informal learning of Dutch was studied in 2015 and then compared to the informal…

  2. Actively Teaching Research Methods with a Process Oriented Guided Inquiry Learning Approach

    Science.gov (United States)

    Mullins, Mary H.

    2017-01-01

    Active learning approaches have shown to improve student learning outcomes and improve the experience of students in the classroom. This article compares a Process Oriented Guided Inquiry Learning style approach to a more traditional teaching method in an undergraduate research methods course. Moving from a more traditional learning environment to…

  3. Teacher learning through reciprocal peer coaching :an analysis of activity sequences

    NARCIS (Netherlands)

    Zwart, R.C.; Wubbels, Th.; Bolhuis, S.M; Bergen, T.C.M.

    2008-01-01

    Just what and how eight experienced teachers in four coaching dyads learned during a 1-year reciprocal peer coaching trajectory was examined in the present study. The learning processes were mapped by providing a detailed description of reported learning activities, reported learning outcomes, and

  4. Advancing the skill set of SCM graduates – An active learning approach

    NARCIS (Netherlands)

    Scholten, Kirstin; Dubois, Anna

    Purpose Drawing on a novel approach to active learning in supply chain management, the purpose of this paper is to describe and analyze how the students’ learning process as well as their learning outcomes are influenced by the learning and teaching contexts. Design/methodology/approach A case study

  5. Measurement of the neutron activation constants Q0 and k0 for the 27Al(n, γ)28Al reaction at the JSI TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Vladimir Radulovic; Andrej Trkov; Radojko Jacimovic; Robert Jeraj

    2013-01-01

    Measurements of the neutron activation constants Q 0 and k 0 for the 27 Al(n, γ) 28 Al reaction have been performed in two irradiation channels with different spectral characteristics at the JSI TRIGA Mark II reactor. In the determination of Q 0 the fission spectrum contribution to the reaction rates has been corrected for. The final experimental value of the Q 0 factor was found to differ significantly from the adopted value in the k 0 -database. The experimental value of the k 0 factor is in agreement with the recommended value in the k 0 -database. The thermal cross-section and resonance integral for the reaction were found to be in good agreement with the values calculated from the cross-sections from the ENDF/B-VII.1 library. (author)

  6. Learning through role-playing games: an approach for active learning and teaching

    Directory of Open Access Journals (Sweden)

    Marco Antonio Ferreira Randi

    Full Text Available This study evaluates the use of role-playing games (RPGs as a methodological approach for teaching cellular biology, assessing student satisfaction, learning outcomes, and retention of acquired knowledge. First-year undergraduate medical students at two Brazilian public universities attended either an RPG-based class (RPG group or a lecture (lecture-based group on topics related to cellular biology. Pre- and post-RPG-based class questionnaires were compared to scores in regular exams and in an unannounced test one year later to assess students' attitudes and learning. From the 230 students that attended the RPG classes, 78.4% responded that the RPG-based classes were an effective tool for learning; 55.4% thought that such classes were better than lectures but did not replace them; and 81% responded that they would use this method. The lecture-based group achieved a higher grade in 1 of 14 regular exam questions. In the medium-term evaluation (one year later, the RPG group scored higher in 2 of 12 questions. RPG classes are thus quantitatively as effective as formal lectures, are well accepted by students, and may serve as educational tools, giving students the chance to learn actively and potentially retain the acquired knowledge more efficiently.

  7. Business oriented educational experiments enhance active learning by engineering students

    DEFF Research Database (Denmark)

    Christiansen, Nynne Mia; Schjær-Jacobsen, Hans; Simon, Jens

    2012-01-01

    It is generally agreed that one of the keys to recreating industrial growth after the financial crisis is to mobilize universities and engineering schools to be more actively involved in innovation and entrepreneurship activities in cooperation with industrial companies. This active learning...... exploration symposium on bridging the gap between engineering education and business is proposed on the basis of the Copenhagen University College of Engineering (IHK) being involved in a DKK 50m ongoing project “Business Oriented Educational Experiments” financed by the Capital Region of Denmark...... and the European Social Fund. The project is carried out with other major educational institutions in the Copenhagen area and organized in five themes: 1) world class competences, 2) new interactions between education and business, 3) the experimenting organization, 4) education on demand, and 5) new career paths...

  8. Rare-earth-ion-doped Al2O3 waveguides for active integrated optical devices

    NARCIS (Netherlands)

    Bradley, J.; Ay, F.; Blauwendraat, Tom; Worhoff, Kerstin; Pollnau, Markus; Orlovic, Valentin A.; Panchenko, Vladislav; Scherbakov, Ivan A.

    2007-01-01

    Reactively co-sputtered amorphous $Al_2O_3$ waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such $Al_2O_3$ films, the etching behaviour of $Al_2O_3$ has been investigated using an inductively coupled reactive ion etch system. The etch rate

  9. Structure and photocatalytic activity studies of TiO2-supported over Ce-modified Al-MCM-41

    International Nuclear Information System (INIS)

    Krishna Reddy, Jakkidi; Durgakumari, Valluri; Subrahmanyam, Machiraju; Sreedhar, Bojja

    2009-01-01

    Ce-Al-MCM-41, TiO 2 /Al-MCM-41 and TiO 2 /Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO 2 loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO 2 loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce 3+ species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of both Ce 4+ and Ce 3+ species. A series of Ce-modified Al-MCM-41 and TiO 2 loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce 3+ state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO 2 /Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO 2 surface by the redox properties of cerium. The photocatalyst TiO 2 /Ce-Al-MCM-41 with an optimum of 10 wt.% TiO 2 and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.

  10. Human Activity Recognition from Body Sensor Data using Deep Learning.

    Science.gov (United States)

    Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed

    2018-04-16

    In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.

  11. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    International Nuclear Information System (INIS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-01-01

    Thin layers of Al 2 O 3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p + emitters, due to a high density of fixed negative charges. Recent results indicate that Al 2 O 3 can also provide a good passivation of certain phosphorus-diffused n + c-Si surfaces. In this work, we studied the recombination at Al 2 O 3 passivated n + surfaces theoretically with device simulations and experimentally for Al 2 O 3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al 2 O 3 interface. This pronounced maximum was also observed experimentally for n + surfaces passivated either with Al 2 O 3 single layers or stacks of Al 2 O 3 capped by SiN x , when activated with a low temperature anneal (425 °C). In contrast, for Al 2 O 3 /SiN x stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n + diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al 2 O 3 /SiN x stacks can provide not only excellent passivation on p + surfaces but also on n + surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments

  12. Personalized Physical Activity Coaching: A Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Talko B. Dijkhuis

    2018-02-01

    Full Text Available Living a sedentary lifestyle is one of the major causes of numerous health problems. To encourage employees to lead a less sedentary life, the Hanze University started a health promotion program. One of the interventions in the program was the use of an activity tracker to record participants' daily step count. The daily step count served as input for a fortnightly coaching session. In this paper, we investigate the possibility of automating part of the coaching procedure on physical activity by providing personalized feedback throughout the day on a participant's progress in achieving a personal step goal. The gathered step count data was used to train eight different machine learning algorithms to make hourly estimations of the probability of achieving a personalized, daily steps threshold. In 80% of the individual cases, the Random Forest algorithm was the best performing algorithm (mean accuracy = 0.93, range = 0.88–0.99, and mean F1-score = 0.90, range = 0.87–0.94. To demonstrate the practical usefulness of these models, we developed a proof-of-concept Web application that provides personalized feedback about whether a participant is expected to reach his or her daily threshold. We argue that the use of machine learning could become an invaluable asset in the process of automated personalized coaching. The individualized algorithms allow for predicting physical activity during the day and provides the possibility to intervene in time.

  13. An active, collaborative approach to learning skills in flow cytometry.

    Science.gov (United States)

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. Copyright © 2016 The American Physiological Society.

  14. Business Simulation as an Active Learning Activity for Developing Soft Skills

    Science.gov (United States)

    Levant, Yves; Coulmont, Michel; Sandu, Raluca

    2016-01-01

    Business simulations are innovative instruction models for active or cooperative learning. In this paper, we look at the social constructionist roots of these education models in light of the current efforts to enhance employability skills in undergraduate and graduate studies. More specifically, we analyse the role of business simulations in…

  15. Student Behavior and Epistemological Framing: Examples from Collaborative Active-Learning Activities in Physics

    Science.gov (United States)

    Scherr, Rachel E.; Hammer, David

    2009-01-01

    The concept of framing from anthropology and sociolinguistics is useful for understanding student reasoning. For example, a student may frame a learning activity as an opportunity for sensemaking or as an assignment to fill out a worksheet. The student's framing affects what she notices, what knowledge she accesses, and how she thinks to act. We…

  16. Learning in Activity: Exploring the Methodological Potential of Action Research in Activity Theorising of Social Practice

    Science.gov (United States)

    Darwin, Stephen

    2011-01-01

    Cultural-historical activity theory (CHAT), founded on the seminal work of Vygotsky and evolving in the subsequent work of Leont'ev and Engestrom, continues to emerge as a robust and increasingly widely used conceptual framework for the research and analysis of the complex social mediation of human learning and development. Yet there remains…

  17. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  18. Study of the unbound proton-rich nucleus $^{21}$Al with resonance elastic and inelastic scattering using an active target

    CERN Multimedia

    We intend to measure the structure of the unbound nucleus $^{21}$Al via resonance elastic and inelastic scattering with an active target. There are many goals: \\\\ a) to locate the 1/2$^{+}$ level in $^{21}$Al that brings information on the Thomas-Ehrman shift, \\\\ b) to measure the energy spectrum of $^{21}$Al which is a N=8 isotone with the resonance elastic scattering reaction, \\\\ c) to investigate via inelastic scattering the strength of core excitations in the existence of narrow unbound resonances beyond the proton drip-line.

  19. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    OpenAIRE

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M.

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞)...

  20. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  1. Developing Clinical Competency in Crisis Event Management: An Integrated Simulation Problem-Based Learning Activity

    Science.gov (United States)

    Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.

    2010-01-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…

  2. The Effects of Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    Science.gov (United States)

    Roessger, Kevin M.

    2014-01-01

    In work-related instrumental learning contexts, the role of reflective activities is unclear. Kolb's experiential learning theory and Mezirow's transformative learning theory predict skill adaptation as an outcome. This prediction was tested by manipulating reflective activities and assessing participants' response and error rates during novel…

  3. Applying Active Learning at the Graduate Level: Merger Issues at Newco.

    Science.gov (United States)

    Berger, Bruce K.

    2002-01-01

    Suggests that active learning can benefit students in public relations and integrated communication courses at the graduate level. Describes how three active learning approaches--research and field work, student accountabilities for learning, and student reflection and reflexive exercises--were used in a graduate class project to help a Fortune 50…

  4. Supporting intra-group social metacognitive activities with technology: A grammar learning game

    NARCIS (Netherlands)

    Molenaar, I.; Horvers, A.; Desain, P.W.M.

    2017-01-01

    This study investigates the effects of a technology enhanced collaborative grammar learning activity on students sentence parsing and formulation. These types of collaborative learning activities for grammar education are expected to support more effective learning. Yet, effective intra-group social

  5. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  6. Active Learning and Self-Regulation Enhance Student Teachers' Professional Competences

    Science.gov (United States)

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers' self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey…

  7. Teacher Knowledge for Active-Learning Instruction: Expert-Novice Comparison Reveals Differences

    Science.gov (United States)

    Auerbach, A. J.; Higgins, M.; Brickman, P.; Andrews, T. C.

    2018-01-01

    Active-learning strategies "can" improve science, technology, engineering, and mathematics (STEM) undergraduates' abilities to learn fundamental concepts and skills. However, the results instructors achieve vary substantially. One explanation for this is that instructors commonly implement active learning differently than intended. An…

  8. A Qualitative Research on Active Learning Practices in Pre-School Education

    Science.gov (United States)

    Pekdogan, Serpil; Kanak, Mehmet

    2016-01-01

    In educational environments prepared based on the active learning method, children learn with interest and pleasure, doing and experiencing, and directly through their own experiences. Considering the contributions of the active learning method and the educational environments designed based on it to children's development, it can be said that…

  9. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures.

    Directory of Open Access Journals (Sweden)

    Cho X J Chan

    Full Text Available Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.

  10. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    Science.gov (United States)

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Lessons learned from IDeAl - 33 recommendations from the IDeAl-net about design and analysis of small population clinical trials.

    Science.gov (United States)

    Hilgers, Ralf-Dieter; Bogdan, Malgorzata; Burman, Carl-Fredrik; Dette, Holger; Karlsson, Mats; König, Franz; Male, Christoph; Mentré, France; Molenberghs, Geert; Senn, Stephen

    2018-05-11

    IDeAl (Integrated designs and analysis of small population clinical trials) is an EU funded project developing new statistical design and analysis methodologies for clinical trials in small population groups. Here we provide an overview of IDeAl findings and give recommendations to applied researchers. The description of the findings is broken down by the nine scientific IDeAl work packages and summarizes results from the project's more than 60 publications to date in peer reviewed journals. In addition, we applied text mining to evaluate the publications and the IDeAl work packages' output in relation to the design and analysis terms derived from in the IRDiRC task force report on small population clinical trials. The results are summarized, describing the developments from an applied viewpoint. The main result presented here are 33 practical recommendations drawn from the work, giving researchers a comprehensive guidance to the improved methodology. In particular, the findings will help design and analyse efficient clinical trials in rare diseases with limited number of patients available. We developed a network representation relating the hot topics developed by the IRDiRC task force on small population clinical trials to IDeAl's work as well as relating important methodologies by IDeAl's definition necessary to consider in design and analysis of small-population clinical trials. These network representation establish a new perspective on design and analysis of small-population clinical trials. IDeAl has provided a huge number of options to refine the statistical methodology for small-population clinical trials from various perspectives. A total of 33 recommendations developed and related to the work packages help the researcher to design small population clinical trial. The route to improvements is displayed in IDeAl-network representing important statistical methodological skills necessary to design and analysis of small-population clinical trials. The methods

  12. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  13. Ask-the-Expert: Minimizing Human Review for Big Data Analytics through Active Learning

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to learn the operational significance of anomalies using active learning, we will first get a ranked list of statistically significant anomalies by running...

  14. Using Expectancy Value Theory as a Framework to Reduce Student Resistance to Active Learning: A Proof of Concept.

    Science.gov (United States)

    Cooper, Katelyn M; Ashley, Michael; Brownell, Sara E

    2017-01-01

    There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning.

  15. Active Learning Strategies: An illustrative approach to bring out better learning outcomes from Science, Technology, Engineering and Mathematics (STEM students

    Directory of Open Access Journals (Sweden)

    Adusumilli Srinath

    2014-10-01

    Full Text Available Teaching in a Teacher centric manner has been the mainframe teaching style in engineering education, however students feel it as a single sided approach and feel they are only passive listeners thus this style has now paved way to a Learner centric style of teaching-learning which is ACTIVE LEARNING, wherein every student is actively involved in one or the other form of learning and thus gets a chance to develop the key aspects of the course either on their own or by being a member of an active-learning group. They thus not only learn and practice the course contents but also learn managerial and team skills which are of much importance in present scenario in regard to Industries and companies where these students will be ultimately hired as employees. Professional education is making one’s students ready for the profession which includes team work, management and technical skills, thus Active learning has emerged as a mainframe tool for cherishing this aim of professional education, especially Science, Technology, Engineering and Management (STEM education. This paper aims to focus on a few facets of this active learning process and give an overview to the teaching faculty as well as students on what their individual roles must be like in this process for getting the most out of this process.

  16. The Effects of Students' Learning Anxiety and Motivation on the Learning Achievement in the Activity Theory Based Gamified Learning Environment

    Science.gov (United States)

    Su, Chung-Ho

    2017-01-01

    The advancement of mobile game-based learning has encouraged many related studies, which has enabled students to learn more and faster. To enhance the clinical path of cardiac catheterization learning, this paper has developed a mobile 3D-CCGBLS (3D Cardiac Catheterization Game-Based Learning System) with a learning assessment for cardiac…

  17. Chaotic....!! Active and Engaged. Effects of an active learning classroom on student retention and engagement.

    Science.gov (United States)

    Palsole, S.; Serpa, L. F.

    2014-12-01

    Scientific literacy has been defined as the foremost challenge of this decade (AAAS, 2012). The Geological Society of American in its position statement postis that due to the systemic nature of the discipline of earth science, it is the most effective way to engage students in STEM disciplines. Given that the most common place for exposure to earth sciences is at the freshman level for non majors, we decided to transform a freshman introductory geology course to an active, student centered course, using an inquiry based approach. Our focus was to ensure the students saw the earth sciences as broadly applicative field, and not an esoteric science. To achieve this goal, we developed a series of problems that required the students to apply the concepts acquired through their self guided learning into the different topics of the course. This self guided learning took the form of didactic content uploaded into the learning management system (the various elements used to deliver the content were designed video clips, short text based lectures, short formative assessments, discussion boards and other web based discovery exercises) with the class time devoted to problem solving. A comparison of student performance in the active learning classroom vs. a traditional classroom as measured on a geoscience concept inventory (the questions were chosen by a third party who was not teaching either courses) showed that the the students in the active learning classroom scored 10% higher on the average in comparison to the traditional class. In addition to this heightened performance, the students in the active classroom also showed a higher degree of content retention 8 weeks after the semester had ended. This session will share the design process, some exercises and efficacy data collected.

  18. How Does Self-Regulated Learning Relate to Active Procrastination and Other Learning Behaviors?

    Science.gov (United States)

    Yamada, Masanori; Goda, Yoshiko; Matsuda, Takeshi; Saito, Yutaka; Kato, Hiroshi; Miyagawa, Hiroyuki

    2016-01-01

    This research investigates the relationship between self-regulated learning awareness, procrastination, and learning behaviors in a blended learning environment. Participants included 179 first-grade university students attending a blended learning-style class that used a learning management system. Data were collected using questionnaires on…

  19. A Randomized Crossover Design to Assess Learning Impact and Student Preference for Active and Passive Online Learning Modules.

    Science.gov (United States)

    Prunuske, Amy J; Henn, Lisa; Brearley, Ann M; Prunuske, Jacob

    Medical education increasingly involves online learning experiences to facilitate the standardization of curriculum across time and space. In class, delivering material by lecture is less effective at promoting student learning than engaging students in active learning experience and it is unclear whether this difference also exists online. We sought to evaluate medical student preferences for online lecture or online active learning formats and the impact of format on short- and long-term learning gains. Students participated online in either lecture or constructivist learning activities in a first year neurologic sciences course at a US medical school. In 2012, students selected which format to complete and in 2013, students were randomly assigned in a crossover fashion to the modules. In the first iteration, students strongly preferred the lecture modules and valued being told "what they need to know" rather than figuring it out independently. In the crossover iteration, learning gains and knowledge retention were found to be equivalent regardless of format, and students uniformly demonstrated a strong preference for the lecture format, which also on average took less time to complete. When given a choice for online modules, students prefer passive lecture rather than completing constructivist activities, and in the time-limited environment of medical school, this choice results in similar performance on multiple-choice examinations with less time invested. Instructors need to look more carefully at whether assessments and learning strategies are helping students to obtain self-directed learning skills and to consider strategies to help students learn to value active learning in an online environment.

  20. Learning Is a Do-It-Yourself Activity

    Science.gov (United States)

    Moore, John W.

    1999-06-01

    distractions now than then. And students' reasons for taking a chemistry course probably span a much greater range. How then do we get them engaged? Nash developed the idea that the most effective thing a teacher can do is to be an example of what it means to be a scientist. In the presence of students, teachers should demonstrate commitment and enthusiasm for their subject, ask questions of nature and obtain answers, think logically and with clarity, and respect and encourage their students' potential ability to engage in scientific inquiry. Though I am certain that he was an exemplar of Nash's approach, Ramette espoused a different one. To help students ask questions and find answers for themselves, he designed computer programs that can present a broad range of problems in a specific area, encourage students to think about how to address the problems, and then provide feedback on their approach. I have used two of these, KinWORKS and REACT, for the past half dozen years and find them quite effective. Both are available from JCE Software. There are many other approaches to engaging students actively in the learning process. The NSF has funded five systemic chemistry projects, and all of them have developed active-learning methods. New Traditions (http://newtraditions.chem.wisc.edu/) has an array of techniques ranging from ConcepTests in lectures and Challenge Problems for small-group work, through inquiry-based laboratories, to lecture-less courses in which students spend most of their class time working on problems that have been carefully designed to lead them to develop new insights. ChemLinks (http://chemlinks.beloit.edu/) and Modular Chemistry Consortium (http://mc2.cchem.berkeley.edu/) are jointly developing thematic modules in which students learn chemical principles by studying a real-world problem such as how to make a blue LED, or what it takes to make an automobile air bag. The Workshop Chemistry project (http://www.sci.ccny.cuny.edu/~chemwksp/) involves students