WorldWideScience

Sample records for active joint-position sense

  1. Cryotherapy impairs knee joint position sense.

    Science.gov (United States)

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  2. The effects of knee direction, physical activity and age on knee joint position sense.

    Science.gov (United States)

    Relph, Nicola; Herrington, Lee

    2016-06-01

    Previous research has suggested a decline in knee proprioception with age. Furthermore, regular participation in physical activity may improve proprioceptive ability. However, there is no large scale data on uninjured populations to confirm these theories. The aim of this study was to provide normative knee joint position data (JPS) from healthy participants aged 18-82years to evaluate the effects of age, physical activity and knee direction. A sample of 116 participants across five age groups was used. The main outcome measures were knee JPS absolute error scores into flexion and extension, Tegner activity levels and General Practitioner Physical Activity Questionnaire results. Absolute error scores in to knee flexion were 3.6°, 3.9°, 3.5°, 3.7° and 3.1° and knee extension were 2.7°, 2.5°, 2.9°, 3.4° and 3.9° for ages 15-29, 30-44, 45-59, 60-74 and 75 years old respectively. Knee extension and flexion absolute error scores were significantly different when age group data were pooled. There was a significant effect of age and activity level on joint position sense into knee extension. Age and lower Tegner scores were also negatively correlated to joint position sense into knee extension. The results provide some evidence for a decline in knee joint position sense with age. Further, active populations may have heightened static proprioception compared to inactive groups. Normative knee joint position sense data is provided and may be used by practitioners to identify patients with reduced proprioceptive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Long-term neuromuscular training and ankle joint position sense.

    Science.gov (United States)

    Kynsburg, A; Pánics, G; Halasi, T

    2010-06-01

    Preventive effect of proprioceptive training is proven by decreasing injury incidence, but its proprioceptive mechanism is not. Major hypothesis: the training has a positive long-term effect on ankle joint position sense in athletes of a high-risk sport (handball). Ten elite-level female handball-players represented the intervention group (training-group), 10 healthy athletes of other sports formed the control-group. Proprioceptive training was incorporated into the regular training regimen of the training-group. Ankle joint position sense function was measured with the "slope-box" test, first described by Robbins et al. Testing was performed one day before the intervention and 20 months later. Mean absolute estimate errors were processed for statistical analysis. Proprioceptive sensory function improved regarding all four directions with a high significance (pneuromuscular training has improved ankle joint position sense function in the investigated athletes. This joint position sense improvement can be one of the explanations for injury rate reduction effect of neuromuscular training.

  4. Knee joint position sense of roller hockey players: a comparative study.

    Science.gov (United States)

    Venâncio, João; Lopes, Diogo; Lourenço, Joaquim; Ribeiro, Fernando

    2016-06-01

    This study aimed to compare knee joint position sense of roller hockey players with an age-matched group of non-athletes. Forty-three male participants voluntarily participated in this cross-sectional study: 21 roller hockey players (mean age: 23.2 ± 4.2 years old, mean weight: 81.8 ± 9.8 kg, mean height: 180.5 ± 4.1 cm) and 22 age-matched non-athletes (mean age: 23.7 ± 3.9 years old, mean weight: 85.0 ± 6.2 kg, mean height: 181.5 ± 5.0 cm). Knee joint position sense of the dominant limb was evaluated using a technique of open-kinetic chain and active knee positioning. Joint position sense was reported using absolute, relative and variable angular errors. The main results indicated that the group of roller hockey players showed significantly lower absolute (2.4 ± 1.2º vs. 6.5 ± 3.2º, p ≤ 0.001) and relative (1.7 ± 2.1º vs. 5.8 ± 4.4º, p ≤ 0.001) angular errors in comparison with the non-athletes group. In conclusion, the results from this present study suggest that proprioceptive acuity, assessed by measuring joint position sense, is increased in roller hockey players. The enhanced proprioception of the roller hockey players could contribute to injury prevention and improved performance during sporting activities.

  5. Comparing Knee Joint Position Sense in Patellofemoral Pain and Healthy Futsal Women

    Directory of Open Access Journals (Sweden)

    Negar Kooroshfar

    2017-03-01

    Full Text Available Background: Proprioception, or joint position sense, probably plays an important role in joint function. A number of studies have shown that proper joint position sense can decrease the risk of injuries in sports. It is not very clear how patellofemoral pain syndrome (PFPS can affect athletes joint position sense (JPS. Regarding the importance of proper joint position sense for movement performance and injury prevention in athletes, the aim of this study was to evaluate knee JPS in athletes with PFPS and compare it with asymptomatic individuals under non-weight bearing (sitting conditions. Methods: The study design was comparative in which 15 patients and 15 healthy athletes participated. JPS was evaluated by active and passive replication of knee angles for 30, 45 and 60° of knee flexion target angle while visual cues were eliminated. Each test was repeated three times. By subtracting the test angle from the replicated angle, the absolute error was calculated as a dependent variable. T-statistical test was used to compare data between two groups and P value of 0.05 was considered as the level of statistical significance. Results: No significant difference (P<0.05 in active (A and passive (P knee JPS was found between two groups for three (30°, p-value (A =0.79, P=0.68, 45°, P value (A=0.12, P=0.54 and 60°, P value (A=0.74, P=0.71 target angles. Conclusion: According to results, both groups had the same JPS ability, it seems PFPS does not affect the knee JPS at least in athlete cases. It would be possible that deficiency of JPS compensated for the physical activity or on the other hand, maybe pain intensity was not high enough to interfere with JPS accuracy. According to our results, PFPS doesn’t reduce IPS but further investigation is needed to disclose if other factors such as skill

  6. Cryotherapy does not impair shoulder joint position sense.

    Science.gov (United States)

    Dover, Geoffrey; Powers, Michael E

    2004-08-01

    To determine the effects of a cryotherapy treatment on shoulder proprioception. Crossover design with repeated measures. University athletic training and sports medicine research laboratory. Thirty healthy subjects (15 women, 15 men). A 30-minute cryotherapy treatment. Joint position sense was measured in the dominant shoulder by using an inclinometer before and after receiving 30 minutes of either no ice or a 1-kg ice bag application. Skin temperature was measured below the tip of the acromion process and recorded every 5 minutes for the entire 30 minutes and immediately after testing. Three different types of error scores were calculated for data analyses and used to determine proprioception. Separate analyses of absolute, constant, and variable error failed to identify changes in shoulder joint proprioception as a function of the cryotherapy application. Application of an ice bag to the shoulder does not impair joint position sense. The control of proprioception at the shoulder may be more complex than at other joints in the body. Clinical implications may involve modifying rehabilitation considerations when managing shoulder injuries.

  7. The Effectiveness of a Functional Knee Brace on Joint-Position Sense in Anterior Cruciate Ligament-Reconstructed Individuals.

    Science.gov (United States)

    Sugimoto, Dai; LeBlanc, Jessica C; Wooley, Sarah E; Micheli, Lyle J; Kramer, Dennis E

    2016-05-01

    It is estimated that approximately 350,000 individuals undergo anterior cruciate ligament (ACL) reconstruction surgery in each year in the US. Although ACL-reconstruction surgery and postoperative rehabilitation are successfully completed, deficits in postural control remain prevalent in ACL-reconstructed individuals. In order to assist the lack of balance ability and reduce the risk of retear of the reconstructed ACL, physicians often provide a functional knee brace on the patients' return to physical activity. However, it is not known whether use of the functional knee brace enhances knee-joint position sense in individuals with ACL reconstruction. Thus, the effect of a functional knee brace on knee-joint position sense in an ACL-reconstructed population needs be critically appraised. After systematically review of previously published literature, 3 studies that investigated the effect of a functional knee brace in ACL-reconstructed individuals using joint-position-sense measures were found. They were rated as level 2b evidence in the Centre of Evidence Based Medicine Level of Evidence chart. Synthesis of the reviewed studies indicated inconsistent evidence of a functional knee brace on joint-position improvement after ACL reconstruction. More research is needed to provide sufficient evidence on the effect of a functional knee brace on joint-position sense after ACL reconstruction. Future studies need to measure joint-position sense in closed-kinetic-chain fashion since ACL injury usually occurs under weight-bearing conditions.

  8. Joint position sense and vibration sense: anatomical organisation and assessment.

    Science.gov (United States)

    Gilman, S

    2002-11-01

    Clinical examination of joint position sense and vibration sense can provide important information concerning specific cutaneous sensory receptors, peripheral nerves, dorsal roots, and central nervous system pathways and should be included as a regular component of the neurological examination. Although these sensory modalities share a spinal cord and brainstem pathway, they arise in different receptors and terminate in separate distributions within the thalamus and cerebral cortex. Consequently, both modalities should be tested as part of the neurological examination. Clinical testing of these modalities requires simultaneous stimulation of tactile receptors; hence this review will include information about the receptors and pathways responsible for tactile sensation.

  9. A 200-m All-out Front-crawl Swim Modifies Competitive Swimmers' Shoulder Joint Position Sense

    NARCIS (Netherlands)

    Uematsu, A.; Kurita, Y.; Inoue, K.; Okuno, K.; Hortobagyi, T.; Suzuki, S.

    2015-01-01

    We tested the hypothesis that an all-out-effort 200-m front-crawl swim trial affects competitive swimmers' shoulder joint position sense. On Day 1, we measured shoulder joint position sense before and after the swim trial, and on Day 2 before and after 2 min of seated rest. On both days, shoulder

  10. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    Science.gov (United States)

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Furmanek Mariusz P.

    2018-03-01

    Full Text Available The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS and force production sense (FPS. The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6. Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976, its relative error (p = 0.295, and its variable error (p = 0.489; the FPS’s absolute error (p = 0.688, its relative error (p = 0.193, and its variable error (p = 0.123. The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group.

  12. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Science.gov (United States)

    Furmanek, Mariusz P.; Słomka, Kajetan J.; Sobiesiak, Andrzej; Rzepko, Marian; Juras, Grzegorz

    2018-01-01

    Abstract The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS) and force production sense (FPS). The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6). Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA) did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976), its relative error (p = 0.295), and its variable error (p = 0.489); the FPS’s absolute error (p = 0.688), its relative error (p = 0.193), and its variable error (p = 0.123). The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group. PMID:29599858

  13. The effects of transcutaneous electrical nerve stimulation on joint position sense in patients with knee joint osteoarthritis.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Shafaee, Razieh; Abbasi, Leila

    2014-10-01

    To study the effects of transcutaneous electrical nerve stimulation (TENS) on joint position sense (JPS) in knee osteoarthritis (OA) subjects. Thirty subjects with knee OA (40-60 years old) using non-random sampling participated in this study. In order to evaluate the absolute error of repositioning of the knee joint, Qualysis Track Manager system was used and sensory electrical stimulation was applied through the TENS device. The mean errors in repositioning of the joint, in two position of the knee joint with 20 and 60 degree angle, after applying the TENS was significantly decreased (p knee OA could improve JPS in these subjects.

  14. Exercises focusing on rotator cuff and scapular muscles do not improve shoulder joint position sense in healthy subjects.

    Science.gov (United States)

    Lin, Yin-Liang; Karduna, Andrew

    2016-10-01

    Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    Science.gov (United States)

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all Ppain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain

  16. POSITION-SPECIFIC DEFICIT OF JOINT POSITION SENSE IN ANKLES WITH CHRONIC FUNCTIONAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    Shigeki Yokoyama

    2008-12-01

    Full Text Available The present study was aimed to test a hypothesis that individuals with functional ankle instability (FAI underestimate the joint angle at greater plantarflexion and inversion. Seventeen males with unilateral FAI and 17 controls (males without FAI consented for participation in this IRB-approved, case-control study. Using a passive reproduction test, we assessed ankle joint position sense (JPS for test positions between 30 and -10 degrees plantarflexion with an inclement of 10 degrees with or without 20° inversion at each plantarflexion angle. The constant error (CE was defined as the value obtained by subtracting the true angle of a test position from the corresponding perceived angle. At plantarflexed and inverted test positions, the CE values were smaller in negative with greater in the FAI group than in the control group. That is, in the FAI group, the FAI group underestimated the true plantarflexion angle at combined 30° plantarflexion and 20° inversion. We conclude that the ankle with FAI underestimate the amount of plantarflexion, which increases the chance of reaching greater planterflexion and inversion than patients' intention at high risk situations of spraining such as landing

  17. Cryotherapy and Joint Position Sense in Healthy Participants: A Systematic Review

    Science.gov (United States)

    Costello, Joseph T.; Donnelly, Alan E.

    2010-01-01

    Abstract Objective: To (1) search the English-language literature for original research addressing the effect of cryotherapy on joint position sense (JPS) and (2) make recommendations regarding how soon healthy athletes can safely return to participation after cryotherapy. Data Sources: We performed an exhaustive search for original research using the AMED, CINAHL, MEDLINE, and SportDiscus databases from 1973 to 2009 to gather information on cryotherapy and JPS. Key words used were cryotherapy and proprioception, cryotherapy and joint position sense, cryotherapy, and proprioception. Study Selection: The inclusion criteria were (1) the literature was written in English, (2) participants were human, (3) an outcome measure included JPS, (4) participants were healthy, and (5) participants were tested immediately after a cryotherapy application to a joint. Data Extraction: The means and SDs of the JPS outcome measures were extracted and used to estimate the effect size (Cohen d) and associated 95% confidence intervals for comparisons of JPS before and after a cryotherapy treatment. The numbers, ages, and sexes of participants in all 7 selected studies were also extracted. Data Synthesis: The JPS was assessed in 3 joints: ankle (n  =  2), knee (n  =  3), and shoulder (n  =  2). The average effect size for the 7 included studies was modest, with effect sizes ranging from −0.08 to 1.17, with a positive number representing an increase in JPS error. The average methodologic score of the included studies was 5.4/10 (range, 5–6) on the Physiotherapy Evidence Database scale. Conclusions: Limited and equivocal evidence is available to address the effect of cryotherapy on proprioception in the form of JPS. Until further evidence is provided, clinicians should be cautious when returning individuals to tasks requiring components of proprioceptive input immediately after a cryotherapy treatment. PMID:20446845

  18. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.

    Science.gov (United States)

    Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent

    2017-09-01

    Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by

  19. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Directory of Open Access Journals (Sweden)

    Sarah B Clarke

    Full Text Available Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years. Postural control (sway velocity measured by a portable force platform during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation and at 3 research camps (3619m, 4600m and 5140m on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9 and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6 was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9. Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  20. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Science.gov (United States)

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  1. Joint-position sense is altered by football pre-participation warm-up exercise and match induced fatigue.

    Science.gov (United States)

    Salgado, Eduardo; Ribeiro, Fernando; Oliveira, José

    2015-06-01

    The demands to which football players are exposed during the match may augment the risk of injury by decreasing the sense of joint position. This study aimed to assess the effect of pre-participation warm-up and fatigue induced by an official football match on the knee-joint-position sense of football players. Fourteen semi-professional male football players (mean age: 25.9±4.6 years old) volunteered in this study. The main outcome measures were rate of perceived exertion and knee-joint-position sense assessed at rest, immediately after a standard warm-up (duration 25 min), and immediately after a competitive football match (90 minutes duration). Perceived exertion increased significantly from rest to the other assessments (rest: 8.6±2.0; after warm-up: 12.1±2.1; after football match: 18.5±1.3; pfootball match compared to both rest (pfootball match-induced fatigue. Warm-up exercises could contribute to knee injury prevention, whereas the deleterious effect of match-induced fatigue on the sensorimotor system could ultimately contribute to knee instability and injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Sex differences in the shoulder joint position sense acuity: a cross-sectional study.

    Science.gov (United States)

    Vafadar, Amir K; Côté, Julie N; Archambault, Philippe S

    2015-09-30

    Work-related musculoskeletal disorders (WMSD) is the most expensive form of work disability. Female sex has been considered as an individual risk factor for the development of WMSD, specifically in the neck and shoulder region. One of the factors that might contribute to the higher injury rate in women is possible differences in neuromuscular control. Accordingly the purpose of this study was to estimate the effect of sex on shoulder joint position sense acuity (as a part of shoulder neuromuscular control) in healthy individuals. Twenty-eight healthy participants, 14 females and 14 males were recruited for this study. To test position sense acuity, subjects were asked to flex their dominant shoulder to one of the three pre-defined angle ranges (low, mid and high-ranges) with eyes closed, hold their arm in that position for three seconds, go back to the starting position and then immediately replicate the same joint flexion angle, while the difference between the reproduced and original angle was taken as the measure of position sense error. The errors were measured using Vicon motion capture system. Subjects reproduced nine positions in total (3 ranges × 3 trials each). Calculation of absolute repositioning error (magnitude of error) showed no significant difference between men and women (p-value ≥ 0.05). However, the analysis of the direction of error (constant error) showed a significant difference between the sexes, as women tended to mostly overestimate the target, whereas men tended to both overestimate and underestimate the target (p-value ≤ 0.01, observed power = 0.79). The results also showed that men had a significantly more variable error, indicating more variability in their position sense, compared to women (p-value ≤ 0.05, observed power = 0.78). Differences observed in the constant JPS error suggest that men and women might use different neuromuscular control strategies in the upper limb. In addition, higher JPS

  3. ASSESSMENT AND COMPARISION OF CERVICAL JOINT POSITION SENSE IN SUBJECTS WITH CHRONIC NECK PAIN vs NORMALS

    Directory of Open Access Journals (Sweden)

    Oberoi Mugdha

    2015-06-01

    Full Text Available Background: The abundance of mechanoreceptors in the cervical spine and their central and reflex afferent connections to the vestibular, visual and postural control system suggests that the cervical proprioceptive information provides important somatosensory information influencing postural stability, head orientation and eye movement control. Disturbances to the afferent input from the cervical region is thought to underlie symptoms of dizziness, unsteadiness, visual disturbances and signs of altered postural stability, cervical proprioception and head and eye movement control in people with chronic neck pain. This study aimed to assess and compare cervical joint position sense in subjects with chronic neck pain vs normals. Methods: Total 60 subjects, divided into two groups chronic neck pain group (n=30 (12 males and 18 females with mean age of 40.7 years and control group (n=30 with age and gender matched normal individuals were assessed for baseline data and demographic variables. Head repositioning accuracy test was used to assess cervical joint position sense in degrees. Results: The difference in the head repositioning error values were found to be extremely significant (p<0.0001 for all the neck movements for subjects with chronic neck pain as compared to normals. Conclusion: Cervical joint position sense in subjects with chronic neck pain is found to be altered as compared to age and gender matched normals.

  4. Test-retest reliability of joint position and kinesthetic sense in the elbow of healthy subjects

    DEFF Research Database (Denmark)

    Juul-Kristensen, B.; Lund, Hans Aage; Hansen, K.

    2008-01-01

    Proprioception is an important effect measure in neuromuscular function training in physiotherapy. Reliability studies of methods for measuring proprioception are few on joint position sense (JPS) and threshold to detection of a passive movement (TDPM) on the elbow. The aim was to study test-rete...

  5. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  6. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    Directory of Open Access Journals (Sweden)

    Bartłomiej Niespodziński

    2018-01-01

    Full Text Available The aims of this study were (1 to assess the relationship between joint position (JPS and force sense (FS and muscle strength (MS and (2 to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR and passive reproduction (PR task and a force reproduction (FR task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72° than during the AR task (3.1 ± 1.93°. Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors.

  7. Effect of proprioception training on knee joint position sense in female team handball players.

    Science.gov (United States)

    Pánics, G; Tállay, A; Pavlik, A; Berkes, I

    2008-06-01

    A number of studies have shown that proprioception training can reduce the risk of injuries in pivoting sports, but the mechanism is not clearly understood. To determine the contributing effects of propioception on knee joint position sense among team handball players. Prospective cohort study. Two professional female handball teams were followed prospectively for the 2005-6 season. 20 players in the intervention team followed a prescribed proprioceptive training programme while 19 players in the control team did not have a specific propioceptive training programme. The coaches recorded all exposures of the individual players. The location and nature of injuries were recorded. Joint position sense (JPS) was measured by a goniometer on both knees in three angle intervals, testing each angle five times. Assessments were performed before and after the season by the same examiner for both teams. In the intervention team a third assessment was also performed during the season. Complete data were obtained for 15 subjects in the intervention team and 16 in the control team. Absolute error score, error of variation score and SEM were calculated and the results of the intervention and control teams were compared. The proprioception sensory function of the players in the intervention team was significantly improved between the assessments made at the start and the end of the season (mean (SD) absolute error 9.78-8.21 degrees (7.19-6.08 degrees ) vs 3.61-4.04 degrees (3.71-3.20 degrees ), pteam between the start and the end of the season (mean (SD) absolute error 6.31-6.22 degrees (6.12-3.59 degrees ) vs 6.13-6.69 degrees (7.46-6.49 degrees ), p>0.05). This is the first study to show that proprioception training improves the joint position sense in elite female handball players. This may explain the effect of neuromuscular training in reducing the injury rate.

  8. Effect of a patellar strap on the joint position sense of the symptomatic knee in athletes with patellar tendinopathy.

    Science.gov (United States)

    de Vries, Astrid J; van den Akker-Scheek, Inge; Haak, Svenja L; Diercks, Ron L; van der Worp, Henk; Zwerver, Johannes

    2017-11-01

    The primary aim of this study was to investigate the effect of a patellar strap on the proprioception of the symptomatic leg in PT. Secondary aims were to investigate a possible difference in effectiveness between athletes with high and low proprioceptive acuity, and whether predictors of effectiveness could be found. Randomised cross-over pilot study. 24 athletes with PT (age 27.3±9.0, VISA-P 50.6±11.2) performed a joint position sense test with and without a patellar strap. The difference between both conditions was analysed using linear mixed-model analysis. No improvement in the joint position sense using the strap for the whole group was found, while those classified as having low proprioceptive acuity did improve using the strap (p=0.015, 17.2%). A larger knee girth, longer duration of symptoms and more tendon abnormalities were negatively associated with the strap's effectiveness. The use of a patellar strap improves the knee joint proprioception - measured with joint position sense - of the symptomatic leg in athletes with poor proprioceptive acuity. Especially athletes with relatively small knee girth, short duration of symptoms and small tendon abnormalities might benefit from the strap. As proprioception plays an important role in motor control, and deficits in proprioception may put an athlete at risk for (re-)injury, these findings may be relevant for prevention as well as rehabilitation purposes in those PT athletes with low proprioceptive acuity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study.

    Science.gov (United States)

    Granito, Renata Neves; Aveiro, Mariana Chaves; Renno, Ana Claudia Muniz; Oishi, Jorge; Driusso, Patricia

    2012-01-01

    Increased thoracic kyphosis is one of the most disfiguring consequences of osteoporotic spine fractures in the elderly. However, mechanisms involved in the increasing of the kyphosis degree among osteoporotic women are not completely understood. Then, the aims of this cross-sectional preliminary study were comparing thoracic kyphosis degree, trunk muscle peak torque and joint position sense among healthy and osteoporotic elderly women and investigating possible factors affecting the kyphosis degree. Twenty women were selected for 2 groups: healthy (n=10) and osteoporotic (n=10) elderly women. Bone mineral density (BMD), thoracic kyphosis degree, trunk muscles peak torque and joint position sense were measured. Differences among groups were analyzed by Student's Test T for unpaired data. Correlations between variables were performed by Pearson's coefficient correlation. The level of significance used for all comparisons was 5% (p≤0.05). We observed that the osteoporotic women demonstrated a significantly higher degree of kyphosis and lower trunk extensor muscle peak torque. Moreover, it was found that the BMD had a negative correlation with the thoracic kyphosis degree. Kyphosis degree showed a negative correlation between extensor muscle strength and joint position sense index. This study suggests that lower BMD may be associated to higher degree of kyphosis degree, lower trunk extensors muscle strength and an impaired joint position sense. It is also suggested that lower extensor muscle strength may be a factor that contributes to the increasing in kyphosis thoracic degree. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Kamizato Iwao

    2014-01-01

    Full Text Available Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.

  11. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2018-05-01

    Full Text Available Bolted spherical joints are widely used to form space steel structures. The stiffness and load capacity of the structures are affected by the looseness of bolted spherical joint connections in the structures. The looseness of the connections, which can be caused by fabrication error, low modeling accuracy, and “false twist” in the installation process, may negatively impact the load capacity of the structure and even lead to severe accidents. Furthermore, it is difficult to detect bolted spherical joint connection looseness from the outside since the bolts connect spheres with rods together from the inside. Active sensing methods are proposed in this paper to monitor the tightness status of the bolted spherical connection using piezoceramic transducers. A triangle-on-triangle offset grid composed of bolted spherical joints and steel tube bars was fabricated as the specimen and was used to validate the active sensing methods. Lead Zirconate Titanate (PZT patches were used as sensors and actuators to monitor the bolted spherical joint tightness status. One PZT patch mounted on the central bolted sphere at the upper chord was used as an actuator to generate a stress wave. Another PZT patch mounted on the bar was used as a sensor to detect the propagated waves through the bolted spherical connection. The looseness of the connection can impact the energy of the stress wave propagated through the connection. The wavelet packet analysis and time reversal (TR method were used to quantify the energy of the transmitted signal between the PZT patches by which the tightness status of the connection can be detected. In order to verify the effectiveness, repeatability, and consistency of the proposed methods, the experiments were repeated six times in different bolted spherical connection positions. The experimental results showed that the wavelet packet analysis and TR method are effective in detecting the tightness status of the connections. The

  12. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  13. The impact of whole-hand vibration exposure on the sense of angular position about the wrist joint.

    Science.gov (United States)

    Radovanovic, Sasa; Day, Scott Jason; Johansson, Håkan

    2006-02-01

    The purpose of this research is to determine the impact of whole-hand vibration on the capacity of subjects to identify previously presented positions of the hand in both wrist flexion and extension. In each movement direction, targets of 15 or 30 degrees were presented with an imposed passive movement from the start position. During the second imposed movement, subjects were required to identify when the target position had been reached. For the vibration condition, 15 s of whole-hand vibration exposure was repeated immediately prior to each target position trial. Proprioceptive capacity was assessed by comparing the identified angular position with the reference position-angular distance expressed in terms of absolute error (AE), constant error (CE), and variable error (VE). For three of the four target positions (15 and 30 degrees flexion and 15 degrees extension), the absolute, constant, and VEs of target identification were insensitive to vibration, whereas for the 30 degrees extension target, both the absolute and CE were significantly different before and after the vibration application, showing the subjects overshooting previously presented target position. All three error measures were larger for the long targets than the short targets. Short-duration exposure to whole-hand vibration is insufficient to compromise post-vibration position sense in the wrist joint, except near the end range of joint movement in wrist extension. Complement contribution of different proprioceptive receptors (muscle, joint, and skin receptors) seems to be crucial for accuracy to reproduce passive movements, since the capacity of any individual class of receptor to deliver information about movement and position of the limbs is limited.

  14. Systematic changes in position sense accompany normal aging across adulthood.

    Science.gov (United States)

    Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2014-03-25

    Development of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations. We examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense. Analyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand. The present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.

  15. The role of sense of coherence and physical activity in positive and negative affect of Turkish adolescents.

    Science.gov (United States)

    Oztekin, Ceyda; Tezer, Esin

    2009-01-01

    This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.

  16. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    Traumatic minor cervical strains are common place in high-impact sports (e.g. tackling) and premature degenerative changes have been documented in sports people exposed to recurrent impact trauma (e.g. scrummaging in rugby) or repetitive forces (e.g. Formula 1 racing drivers, jockeys). While proprioceptive exercises have been an integral part of rehabilitation of injuries in the lower limb, they have not featured as prominently in the treatment of cervical injuries. However, head and neck position sense (HNPS) testing and re-training may have relevance in the management of minor sports-related neck injuries, and play a role in reducing the incidence of ongoing pain and problems with function. For efficacious programmes to be developed and tested, fundamental principles associated with proprioception in the cervical spine should be considered. Hence, this article highlights the importance of anatomical structures in the cervical spine responsible for position sense, and how their interaction with the CNS affects our ability to plan and execute effective purposeful movements. This article includes a review of studies examining position sense in subjects with and without pathology and describes the effects of rehabilitation programmes that have sought to improve position sense. In respect to the receptors providing proprioceptive information for the CNS, the high densities and complex arrays of spindles found in cervical muscles suggest that these receptors play a key role. There is some evidence suggesting that ensemble encoding of discharge patterns from muscle spindles is relayed to the CNS and that a pattern recognition system is used to establish joint position and movement. Sensory information from neck proprioceptive receptors is processed in tandem with information from the vestibular system. There are extensive anatomical connections between neck proprioceptive inputs and vestibular inputs. If positional information from the vestibular system is inaccurate or

  17. EFFECT OF DIFFERENT LEVELS OF LOCALIZED MUSCLE FATIGUE ON KNEE POSITION SENSE

    Directory of Open Access Journals (Sweden)

    William S. Gear

    2011-12-01

    Full Text Available There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001. Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02 and between the pre-test and following 50% of peak hamstring torque (p = 0.02. Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue.

  18. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Science.gov (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  19. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Flávia de Andrade e Souza Mazuchi

    2018-03-01

    Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.

  20. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training

    Directory of Open Access Journals (Sweden)

    Ann Van de Winckel

    2017-11-01

    Full Text Available Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years without cognitive decline (Mini Mental State Examination-brief version ≥13/16 and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years. Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01. Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38

  1. Joint position sense error in people with neck pain: A systematic review.

    Science.gov (United States)

    de Vries, J; Ischebeck, B K; Voogt, L P; van der Geest, J N; Janssen, M; Frens, M A; Kleinrensink, G J

    2015-12-01

    Several studies in recent decades have examined the relationship between proprioceptive deficits and neck pain. However, there is no uniform conclusion on the relationship between the two. Clinically, proprioception is evaluated using the Joint Position Sense Error (JPSE), which reflects a person's ability to accurately return his head to a predefined target after a cervical movement. We focused to differentiate between JPSE in people with neck pain compared to healthy controls. Systematic review according to the PRISMA guidelines. Our data sources were Embase, Medline OvidSP, Web of Science, Cochrane Central, CINAHL and Pubmed Publisher. To be included, studies had to compare JPSE of the neck (O) in people with neck pain (P) with JPSE of the neck in healthy controls (C). Fourteen studies were included. Four studies reported that participants with traumatic neck pain had a significantly higher JPSE than healthy controls. Of the eight studies involving people with non-traumatic neck pain, four reported significant differences between the groups. The JPSE did not vary between neck-pain groups. Current literature shows the JPSE to be a relevant measure when it is used correctly. All studies which calculated the JPSE over at least six trials showed a significantly increased JPSE in the neck pain group. This strongly suggests that 'number of repetitions' is a major element in correctly performing the JPSE test. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of chronic neck pain on cervical joint position error (JPE): Comparison between young and elderly subjects.

    Science.gov (United States)

    Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad

    2017-11-06

    Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (ppain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.

  3. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    OpenAIRE

    Flávia de Andrade e Souza Mazuchi; Aline Bigongiari; Juliana Valente Francica; Patricia Martins Franciulli; Luis Mochizuki; Joseph Hamill; Ulysses Fernandes Ervilha

    2018-01-01

    Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients). To compare the effect of two exercise training protocols (walking in deep water and on a treadmill) on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the ...

  4. The constrained control of force and position in multi-joint movements.

    Science.gov (United States)

    van Ingen Schenau, G J; Boots, P J; de Groot, G; Snackers, R J; van Woensel, W W

    1992-01-01

    In many arm or leg movements the hand or foot has to exert an external force on the environment. Based on an inverse dynamical analysis of cycling, it is shown that the distribution of net moments in the joints needed to control the direction of the external force is often opposite to the direction of joint displacements associated with this task. Kinetic and kinematic data were obtained from five experienced cyclists during ergometer cycling by means of film analysis and pedal force measurement. An inverse dynamic analysis, based on a linked segments model, yielded net joint moments, joint powers and muscle shortening velocities of eight leg muscles. Activation patterns of the muscles were obtained by means of surface electromyography. The results show that the transfer of rotations in hip, knee and ankle joints into the translation of the pedal is constrained by conflicting requirements. This occurs between the joint moments necessary to contribute to joint power and the moments necessary to establish a direction of the force on the pedal which allows this force to do work on the pedal. Co-activation of mono-articular agonists and their bi-articular antagonists appear to provide a unique solution for these conflicting requirements: bi-articular muscles appear to be able to control the desired direction of the external force on the pedal by adjusting the relative distribution of net moments over the joints while mono-articular muscles appear to be primarily activated when they are in the position to shorten and thus to contribute to positive work. Examples are given to illustrate the universal nature of this constrained control of force (external) and position (joint). Based on this study and published data it is suggested that different processes may underlie the organization of the control of mono- and bi-articular muscles.

  5. Action planning and position sense in children with Developmental Coordination Disorder

    NARCIS (Netherlands)

    Adams, I.L.; Ferguson, G.D.; Lust, J.M.; Steenbergen, B.; Smits-Engelsman, B.C.M.

    2016-01-01

    The present study examined action planning and position sense in children with Developmental Coordination Disorder (DCD). Participants performed two action planning tasks, the sword task and the bar grasping task, and an active elbow matching task to examine position sense. Thirty children were

  6. Effects of taping on knee joint position sense of female athletes across the menstrual cycle

    Directory of Open Access Journals (Sweden)

    Rose fouladi

    2013-06-01

    Full Text Available Introduction: The rate of anterior cruciate ligament (ACL tearing is more common in female athletes and one of thereasons is the effect of sex hormones. It was illustrated that knee joint position sense (JPS isaltered across the menstrual cycle and its lowest level is at menses. Therefore, it’s important to find a method to reduce injury risk at menses. Thus, the purpose of this study was to evaluate the effect of taping as a stimulator of skin, on the knee JPS in healthy female athletes across the menstrual cycle with different levels of estrogen and progesterone. Materials and Methods: In this semi-experimental study, 16 healthy female athletes with regular menstrual cycle voluntarily participated. Knee JPS was measured at 3 menstrual cycle phases, before and after patellataping. JPS was evaluated by reproduction of the target angle (30° flexion in standing position, from full extension. Serum estrogen and progesterone levels were collected in these 3 phases. Knee angles were measured by using a system comprised of skin markers, digital photography, and autoCAD software. Absolute error was considered as a dependent variable.Results: There was a significant difference between the knee JPS in 3 phases of measurement before taping (P=0.025, while no significant difference was found between knee JPS in 3 phases after taping (P=0.965. Conclusion: Findings of this study suggest that healthy female athletes have different levels of knee JPS across a menstrual cycle and its accuracy decreasesat menses. This differencecan be reduced by skin stimulatingmethods, such as taping. Therefore, kinesio taping would improve the knee JPSdeficiency at menses.

  7. Multi-field coupled sensing network for health monitoring of composite bolted joint

    Science.gov (United States)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  8. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.

    Directory of Open Access Journals (Sweden)

    Sara Contu

    Full Text Available Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants' hand was passively moved to the target position guided by the H-Man robot (Criterion movement and were asked to indicate during a second passive movement towards the same target (Matching movement when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings.

  9. Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Mathieu Grossard

    2015-12-01

    Full Text Available This paper deals with the mechatronic design of a novel self-sensing motor-to-joint transmission to be used for the actuation of robotic dexterous manipulators. Backdrivability, mechanical simplicity and efficient flexure joint structures are key concepts that have guided the mechanical design rationale to provide the actuator with force sensing capabilities. Indeed, a self-sensing characteristic is achieved by the specific design of high-resolution cable-driven actuators based on a DC motor, a ball-screw and a monolithic compliant anti-rotation system together with a novel flexure pivot providing a frictionless mechanical structure. That novel compliant pivot with a large angular range and a small center shift has been conceived of to provide the inter-phalangeal rotational degree of freedom of the fingers’ joints to be used for integration in a multi-fingered robotic gripper. Simultaneously, it helps to remove friction at the joint level of the mechanism. Experimental tests carried out on a prototype show an accurate matching between the model and the real behavior. Overall, this mechatronic design contributes to the improvement of the manipulation skills of robotic grippers, thanks to the combination of high performance mechanics, high sensitivity to external forces and compliance control capability.

  10. Joint positions matter for ultrasound examination of RA patients-increased power Doppler signal in neutral versus flat position of hands.

    Science.gov (United States)

    Husic, Rusmir; Lackner, Angelika; Stradner, Martin H; Hermann, Josef; Dejaco, Christian

    2017-08-01

    Position of joints might influence the result of US examination in patients with RA. The purpose of this work was to compare grey-scale (GS) and power Doppler (PWD) findings obtained in neutral vs flat position of hands. A cross-sectional study of 42 RA patients with active disease. Two dimensional and 3D sonography of wrists and MCP joints were conducted in two different joint positions: neutral position, which is a slight flexion of the fingers with relaxed extensor muscles; and flat position, where all palm and volar sides of fingers touch the Table. Two dimensional GS synovitis (GSS) and PWD signals were scored semi-quantitatively (0-3). For 3D sonography, the percentage of PWD voxels within a region of interest was calculated. GSS was not quantified using 3D sonography. Compared with neutral position, 2D PWD signals disappeared in 28.3% of joints upon flattening. The median global 2D PWD score (sum of all PWD scores of an individual patient) decreased from 8 to 3 ( P < 0.001), and the global 3D PWD voxel score from 3.8 to 0.9 ( P < 0.001). The reduction of PWD scores was similar in all joints (2D: minus 50%, 3D: minus 66.4-80.1%). Inter- and intrareader agreement of PWD results was good (intraclass correlation coefficient: 0.75-0.82). In RA, a neutral position of the hands is linked to a higher sensitivity of 2D and 3D sonography in detecting PWD signals at wrists and MCP joints, compared with a flat position. Standardization of the scanning procedure is essential for obtaining comparable US results in RA patients in trials and clinical routines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. The Effect of Eccentric Exercise-Induced Delayed-Onset Muscle Soreness on Positioning Sense and Shooting Percentage in Wheelchair Basketball Players

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Serinken

    2013-12-01

    Full Text Available Background: Eccentric exercise is defined as a type of exercise in which the muscle produces power by extending. In contrast to isometric and concentric exercises, eccentric muscle activity is much more effective mechanically; however, it may expose the muscle to soreness. Delayed-Onset Muscle Soreness (DOMS emerges a couple of hours after an eccentric activity, especially in individuals who are not used to this kind of exercise, and causes a temporary decrease in muscle performance, joint movement angle and muscle power, and also a temporary increase in the blood creatine kinase (CK activity. Aims: This study investigates the effect of DOMS on the upper extremities motor performance by conducting an eccentric exercise load on the elbow flexor muscles. Study design: Cross sectional study. Methods: The study included 10 wheelchair basketball players. First, the participants underwent blood CK activity, positioning sense, muscle pain, shooting performance measurements tests at the base, and after 30 minutes and 24 and 48 hours. Then, one week later, the one-repetition-maximums of biceps curls were determined in order to define the intensity of the eccentric exercise. An eccentric exercise protocol which would cause DOMS was applied to all players. All tests were replaced with acute exhaustive eccentric exercise; the same tests were repeated in the same order after the exercise. Blood CK activity was measured by taking an earlobe capillary blood sample. The muscle pain level was measured by using a Visual Analogue Scale (VAS. Positioning sense loss was assessed via goniometer at 30º, 60º and 90º degrees horizontally. Results: The study found a statistically significant increase in blood CK activity and positioning sense loss, and a decrease in the pressure-pain threshold, as well as the shooting percentages in the exercise group when compared with the control. Conclusion: These findings suggest that DOMS negatively affects the upper extremities

  12. Tracking a Subset of Skeleton Joints: An Effective Approach towards Complex Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Muhammad Latif Anjum

    2017-01-01

    Full Text Available We present a robust algorithm for complex human activity recognition for natural human-robot interaction. The algorithm is based on tracking the position of selected joints in human skeleton. For any given activity, only a few skeleton joints are involved in performing the activity, so a subset of joints contributing the most towards the activity is selected. Our approach of tracking a subset of skeleton joints (instead of tracking the whole skeleton is computationally efficient and provides better recognition accuracy. We have developed both manual and automatic approaches for the selection of these joints. The position of the selected joints is tracked for the duration of the activity and is used to construct feature vectors for each activity. Once the feature vectors have been constructed, we use a Support Vector Machines (SVM multiclass classifier for training and testing the algorithm. The algorithm has been tested on a purposely built dataset of depth videos recorded using Kinect camera. The dataset consists of 250 videos of 10 different activities being performed by different users. Experimental results show classification accuracy of 83% when tracking all skeleton joints, 95% when using manual selection of subset joints, and 89% when using automatic selection of subset joints.

  13. An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System

    Directory of Open Access Journals (Sweden)

    Hamza Djelouat

    2017-01-01

    Full Text Available The last decade has witnessed tremendous efforts to shape the Internet of things (IoT platforms to be well suited for healthcare applications. These platforms are comprised of a network of wireless sensors to monitor several physical and physiological quantities. For instance, long-term monitoring of brain activities using wearable electroencephalogram (EEG sensors is widely exploited in the clinical diagnosis of epileptic seizures and sleeping disorders. However, the deployment of such platforms is challenged by the high power consumption and system complexity. Energy efficiency can be achieved by exploring efficient compression techniques such as compressive sensing (CS. CS is an emerging theory that enables a compressed acquisition using well-designed sensing matrices. Moreover, system complexity can be optimized by using hardware friendly structured sensing matrices. This paper quantifies the performance of a CS-based multichannel EEG monitoring. In addition, the paper exploits the joint sparsity of multichannel EEG using subspace pursuit (SP algorithm as well as a designed sparsifying basis in order to improve the reconstruction quality. Furthermore, the paper proposes a modification to the SP algorithm based on an adaptive selection approach to further improve the performance in terms of reconstruction quality, execution time, and the robustness of the recovery process.

  14. Influence of Elastic Bandage and Neoprene Sleeve on Knee Position Sense and Pain in Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2003-12-01

    Full Text Available Objective: to investigate whether a neoprene sleeve and elastic bandage around the knee joint of subjects with knee osteoarthritis (OA would , in short term (a reduce pain (b improve knee joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (11 men, 19 women, age between 33-75 with unilateral knee OA. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of knee pain for study entry.All patients were randomly assigned to either an elastic bandage or a neoprene sleeve. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. Knee pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene sleeve application. Results: the mean of scores for knee variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene sleeve had significant effect on knee JPS (P=0.037. But elastic bandage had no effect (P=0.631. Both of them had significantly reduced knee pain. (P=0.000 Conclusion: In subjects with both neoprene sleeve and elastic bandage reduced knee pain with more effect of neoprene sleeve. Only the neoprene sleeve had effect on knee JPS.

  15. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.

    Science.gov (United States)

    Hannah, R; Minshull, C; Folland, J P

    2013-02-01

    This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.

  16. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in a Closed Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Jiménez-Reyes, Pedro

    2017-01-01

    Knee joint position sense (JPS) is a key parameter for optimum performance in many sports but is frequently negatively affected by injuries and/or fatigue during training sessions. Although evaluation of JPS may provide key information to reduce the risk of injury, it often requires expensive and/or complex tools that make monitoring proprioceptive deterioration difficult. To analyze the validity and reliability of a digital inclinometer to measure knee JPS in a closed kinetic chain (CKC). The validity and intertester and intratester reliability of a digital inclinometer for measuring knee JPS were assessed. Biomechanics laboratory. 10 athletes (5 men and 5 women; 26.2 ± 1.3 y, 71.7 ± 12.4 kg; 1.75 ± 0.09 m; 23.5 ± 3.9 kg/m 2 ). Knee JPS was measured in a CKC. Absolute angular error (AAE) of knee JPS in a CKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed that the inclinometer had a high level of validity compared with an isokinetic dynamometer (ICC = 1.0, SEM = 1.39, p AutoCAD video analysis, inclinometer validity was very high (ICC = 0.980, SEM = 3.46, p < 0.001) for measuring AAE during knee JPS in a CKC. In addition, the intertester reliability of the inclinometer for obtaining AAE was very high (ICC = .994, SEM = 1.67, p < 0.001). The inclinometer provides a valid and reliable method for assessing knee JPS in a CKC. Health and sports professionals could take advantage of this tool to monitor proprioceptive deterioration in athletes.

  17. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)

    2007-06-15

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  18. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    International Nuclear Information System (INIS)

    Park, Seung Hee; Yun, Chung Bang; Inman, Daniel J.

    2007-01-01

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  19. Joint Multi-scale Convolution Neural Network for Scene Classification of High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    ZHENG Zhuo

    2018-05-01

    Full Text Available High resolution remote sensing imagery scene classification is important for automatic complex scene recognition, which is the key technology for military and disaster relief, etc. In this paper, we propose a novel joint multi-scale convolution neural network (JMCNN method using a limited amount of image data for high resolution remote sensing imagery scene classification. Different from traditional convolutional neural network, the proposed JMCNN is an end-to-end training model with joint enhanced high-level feature representation, which includes multi-channel feature extractor, joint multi-scale feature fusion and Softmax classifier. Multi-channel and scale convolutional extractors are used to extract scene middle features, firstly. Then, in order to achieve enhanced high-level feature representation in a limit dataset, joint multi-scale feature fusion is proposed to combine multi-channel and scale features using two feature fusions. Finally, enhanced high-level feature representation can be used for classification by Softmax. Experiments were conducted using two limit public UCM and SIRI datasets. Compared to state-of-the-art methods, the JMCNN achieved improved performance and great robustness with average accuracies of 89.3% and 88.3% on the two datasets.

  20. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in an Open Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Fernández-Domínguez, Juan Carlos; Jiménez-Reyes, Pedro

    2017-12-18

    New methods are being validated to easily evaluate the knee joint position sense (JPS) due to its role in sports movement and the risk of injury. However, no studies to date have considered the open kinetic chain (OKC) technique, despite the biomechanical differences compared to closed kinetic chain movements. To analyze the validity and reliability of a digital inclinometer to measure the knee JPS in the OKC movement. The validity, inter-tester and intra-tester reliability of a digital inclinometer for measuring knee JPS were evaluated. Sports research laboratory. Eighteen athletes (11 males and 7 females; 28.4 ± 6.6 years; 71.9 ± 14.0 kg; 1.77 ± 0.09 m; 22.8 ± 3.2 kg/m 2 ) voluntary participated in this study. Absolute angular error (AAE), relative angular error (RAE) and variable angular error (VAE) of knee JPS in an OKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed excellent validity of the inclinometer to obtain proprioceptive errors compared to the video analysis in JPS tasks (AAE: ICC = 0.981, SEM = 0.08; RAE: ICC = 0.974, SEM = 0.12; VAE: ICC = 0.973, SEM = 0.07). Inter-tester reliability was also excellent for all the proprioceptive errors (AAE: ICC = 0.967, SEM = 0.04; RAE: ICC = 0.974, SEM = 0.03; VAE: ICC = 0.939, SEM = 0.08). Similar results were obtained for intra-tester reliability (AAE: ICC = 0.861, SEM = 0.1; RAE: ICC = 0.894, SEM = 0.1; VAE: ICC = 0.700, SEM = 0.2). The digital inclinometer is a valid and reliable method to assess the knee JPS in OKC. Sport professionals may evaluate the knee JPS to monitor its deterioration during training or improvements throughout the rehabilitation process.

  1. Survey of Joint Implementation activities in China; Chugoku ni okeru kyodo jisshi katsudo kanren chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    It is a large task for Japan to positively promote the Joint Implementation activities related to the United Nations Framework Convention on Climate Change. Rapid increase in the emission of greenhouse-effect gases, especially CO2, is predicted in China with remarkable economic growth and population of 1.2 billion. It is essential to promote the Joint Implementation activities in China. In this survey, framework, organization, problems and tasks were investigated to effectively promote the Joint Implementation activities in China. Construction of framework for the real Joint Implementation activities has been proposed. Current problems for promoting the Joint Implementation activities in China are that the distinct guideline for the Joint Implementation is not established in the government, that the receiving system including receiving, planning and arranging sections is not established, and that the burden problems for the costs of project evaluation, data acquisition, monitoring, and verification are not solved. 5 refs., 21 figs., 6 tabs.

  2. Influence of Elastic Bandage and Neoprene Ankle Support on Ankle Position Sense and Pain in Subjects with Ankle Sprain (Grade I & II

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2004-06-01

    Full Text Available Objective: to investigate whether a neoprene ankle support and elastic bandage around the ankle joint of subjects with ankle sprain (grade I&II would , in short term (a reduce pain (b improve ankle joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (16men, 14 women, age between 16-52 with ankle sprain grade I&II. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of ankle pain for study entry. All patients were randomly assigned to either an elastic bandage or a neoprene ankle support. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. ankle pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene ankle support application. Results: the mean of scores for ankle variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene ankle support had significant effect on ankle JPS (P=0.034. But elastic bandage had no effect (P=0.539. Both of them had significantly reduced ankle pain. (P=0.000  Conclusion: In subjects with both neoprene ankle support and elastic bandage reduced ankle pain with more effect of neoprene ankle support. Only the neoprene ankle support had effect on knee JPS.

  3. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  4. Leisure Activity Engagement and Positive Affect Partially Mediate the Relationship Between Positive Views on Aging and Physical Health.

    Science.gov (United States)

    Hicks, Stephanie A; Siedlecki, Karen L

    2017-03-01

    To examine leisure activity engagement and positive affect as potential mediators for the relationships between positive views on aging (PVA) and two health outcomes: subjective health and physical limitations. Data from 5,194 participants from the German Ageing Survey (aged 40-91 years) were used to examine relationships between PVA to subjective health (assessed by self-rated health and perceived health change from past) and physical limitations (assessed via self-reported limitations on 10 activities). Leisure activity engagement and positive affect were examined as potential mediators in latent variable path analyses. Age moderation among these relationships was also examined. Leisure activity engagement and positive affect separately and jointly served to partially mediate the relationships between PVA and the health outcomes. When entered as joint mediators, positive affect no longer significantly predicted physical limitations, indicating a shared variance with leisure activity engagement. Age moderated the relationship between PVA and physical limitations; the relationship was stronger among older adults than among middle-aged adults. Leisure activity engagement and positive affect were shown to help explain the relationship between PVA and health, but differently for different health constructs and also among middle-aged and older adults. Findings provide further insight into ways in which PVA influence health. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Attitudes toward Immigration as a Sense of Group Position

    DEFF Research Database (Denmark)

    Farah, Abdulkadir Osman

    2018-01-01

    such as affirmative action and immigration, we examine the extent to which American attitudes toward immigration can be conceptualized from a Blumerian sense of group position without setting Allport’s contact theory as an alternative hypothesis. Our findings show cultural and ideological threat, and subjective...... economic threat as more important in informing attitudes toward immigration than objective economic conditions; and social and ethnic location threat. Our findings are consistent with and confirm Blumer’s argument that prejudice as a sense of group position is primarily derived from feelings, and are...

  6. Assessing joint space and condylar position in the people with normal function of temporomandibular joint with cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Zahra Dalili

    2012-01-01

    Conclusion: The assessment of joint spaces in right and left sides should be done independently. Overall, the measured joint spaces except Sjs are not different in two sexes. The data from this study could be a useful and comparable reference for the clinical assessment of condylar position in patients with normal functional joints.

  7. Sports Activity Following Cementless Metaphyseal Hip Joint Arthroplasty

    Directory of Open Access Journals (Sweden)

    Czech Szymon

    2017-12-01

    Full Text Available An adequate level of physical activity has a substantial effect on both mental and physical human health. Physical activity is largely dependent on the function of the musculoskeletal and articular system. One of the most frequent diseases of this system is degenerative joint disease. Due to the changing and more demanding lifestyles and patients’ willingness to be involved in sports activity, the expectations of hip joint arthroplasty are becoming increasingly high. Alleviating pain ceases to be the only reason for which patients choose surgical interventions, while the expectations often include involvement in various sports. Only few studies contain recommendations concerning the frequency, type and intensity of sports activity which are acceptable after hip joint arthroplasty. The aim of the study was to evaluate function and physical activity of people following cementless short-stem hip joint arthroplasty in the observation of at least five years. The study group comprised 106 patients who underwent total hip arthroplasty due to degenerative joint diseases, chosen according to inclusion criteria. Patients underwent routine physical examinations following the Harris Hip Score protocol, responded to the UCLA scale and questionnaires concerning pre-surgical and current physical activity. Our results demonstrated that hip joint arthroplasty in people suffering from degenerative joint diseases has a beneficial effect on their level of functioning and physical activity. Although physical activity and the level of functioning obviously reduced as a person aged, the level of physical activity continued to be very high in both groups, with function of the hip joint evaluated as very good.

  8. Sports Activity Following Cementless Metaphyseal Hip Joint Arthroplasty.

    Science.gov (United States)

    Czech, Szymon; Hermanson, Jacek; Rodak, Piotr; Stołtny, Tomasz; Rodak, Łukasz; Kasperczyk, Sławomir; Koczy, Bogdan; Mielnik, Michał

    2017-12-01

    An adequate level of physical activity has a substantial effect on both mental and physical human health. Physical activity is largely dependent on the function of the musculoskeletal and articular system. One of the most frequent diseases of this system is degenerative joint disease. Due to the changing and more demanding lifestyles and patients' willingness to be involved in sports activity, the expectations of hip joint arthroplasty are becoming increasingly high. Alleviating pain ceases to be the only reason for which patients choose surgical interventions, while the expectations often include involvement in various sports. Only few studies contain recommendations concerning the frequency, type and intensity of sports activity which are acceptable after hip joint arthroplasty. The aim of the study was to evaluate function and physical activity of people following cementless short-stem hip joint arthroplasty in the observation of at least five years. The study group comprised 106 patients who underwent total hip arthroplasty due to degenerative joint diseases, chosen according to inclusion criteria. Patients underwent routine physical examinations following the Harris Hip Score protocol, responded to the UCLA scale and questionnaires concerning pre-surgical and current physical activity. Our results demonstrated that hip joint arthroplasty in people suffering from degenerative joint diseases has a beneficial effect on their level of functioning and physical activity. Although physical activity and the level of functioning obviously reduced as a person aged, the level of physical activity continued to be very high in both groups, with function of the hip joint evaluated as very good.

  9. Development of a Motion Sensing and Automatic Positioning Universal Planisphere Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2017-01-01

    Full Text Available This study combines the augmented reality technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to develop a motion sensing and automatic positioning universal planisphere. It can create local star charts according to the current date, time, and position and help users locate constellations on the planisphere easily through motion sensing operation. By holding the mobile device towards the target constellation in the sky, the azimuth and elevation angles are obtained automatically for mapping to its correct position on the star chart. The proposed system combines observational activities with physical operation and spatial cognition for developing correct astronomical concepts, thus making learning more effective. It contains a built-in 3D virtual starry sky to enable observation in classroom for supporting teaching applications. The learning process can be shortened by setting varying observation date, time, and latitude. Therefore, it is a useful tool for astronomy education.

  10. Locations of Joint Physical Activity in Parent-Child Pairs Based on Accelerometer and GPS Monitoring

    Science.gov (United States)

    Dunton, Genevieve Fridlund; Liao, Yue; Almanza, Estela; Jerrett, Micheal; Spruijt-Metz, Donna; Pentz, Mary Ann

    2012-01-01

    Background Parental factors may play an important role in influencing children’s physical activity levels. Purpose This cross-sectional study sought to describe the locations of joint physical activity among parents and children. Methods Parent-child pairs (N = 291) wore an Actigraph GT2M accelerometer and GlobalSat BT-335 Global Positioning Systems (GPS) device over the same 7-day period. Children were ages 8–14 years. Joint behavior was defined by a linear separation distance of less than 50m between parent and child. Land use classifications were assigned to GPS data points. Results Joint physical activity was spread across residential locations (35%), and commercial venues (24%), and open spaces/parks (20%). Obese children and parents performed less joint physical activity in open spaces/parks than under/normal weight children and parents (p’s parent-child physical activity naturally occurs may inform location-based interventions to promote these behaviors. PMID:23011914

  11. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    International Nuclear Information System (INIS)

    Xiao Di; Cai Hong-Kun; Zheng Hong-Ying

    2015-01-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. (paper)

  12. A comparative study on scapular static position between femaleswith and without generalized joint hyper mobility

    Directory of Open Access Journals (Sweden)

    Afsun Nodehi Moghadam

    2012-08-01

    Full Text Available Abstract Background: Generalized joint hyper mobility predisposes some individuals to a wide variety of musculoskeletal complaints. Given the critical role of scapular position in function of shoulder, the aim of this study was to compare scapular position between persons with and without general joint hyper mobility. Methods: By nonprobability sampling 30 hyper mobile persons at average of 22.86 ±2.77 years of age and 30 non hyper mobile persons (age 23.6 ± 2.73years through a case-control design participated in the study. Scapular position was assessed according to the lateral scapular slide test. Independent t test and repeated measures ANOVA were used to statistically analyze scapular position differences between groups.  Results: Compared to non hyper mobile persons, those with General joint hyper mobility demonstrated a significantly higher superior scapula slide in dependent arm position (p=0.03. However, no significant difference was found between another scores between two groups (p>0.05. Conclusion: The results suggest that altered scapular position may be an important aspect of General joint hyper mobility.

  13. Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Directory of Open Access Journals (Sweden)

    S. Eman Mahmoodi

    2014-04-01

    Full Text Available In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F, we achieve more reliable communications, generating less interference (by needing less transmit power and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1 interference introduced by the SU and the cognitive relay to the PUs; (2 miss-detection and false alarm probabilities and (3 subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4 minimum Quality of Service (QoS for each CR subcarrier. We propose one optimal and two suboptimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.

  14. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1998-01-01

    This study aims to develop a dispersed cooperative intellectualized system technique and a sensing system required for construction of a robot group inspectable in patrol and maintainable in selfish in a plant with large scale and complex variety. In particular, in order to establish a system with flexibility response to environment and soundness durable to abnormal accident, a cooperative active sensing technique and real-time active vision sensing technique were started. On the base of last two years results, in 1996 fiscal year, important and expansion of each element technique was conducted to start a study on movement of focussing point which was an important function of the active vision sensing. (G.K.)

  15. Joint action without and beyond planning

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2013-01-01

    ” that one must have in order to be a party to a shared intention (consider, for example, the social play of young children or the cooperative hunting of non-human primates or social carnivores). The second lacuna concerns how participants (including adult human agents) are able to coordinate their actions......, to make sense of the idea that joint activities are non-accidentally coordinated. In chapter 3, I offer an account of a kind of joint activity in which agents such as young children and some non-human primates could participate, given what we know about their socio-cognitive capacities. In chapter 4, I...... to perform “our” joint action. I reject this constraint and argue that some joint actions (such as a joint manoeuvre performed by two figure skaters) are joint in virtue of each participant having what I call ‘socially extended intention-in-action’ that overlap. In chapter 5, I review empirical work...

  16. The mechanoreceptors of the costo-vertebral joints

    Science.gov (United States)

    Godwin-Austen, R. B.

    1969-01-01

    1. Unitary recording in the thoracic dorsal roots of mechanoreceptor discharges from the costo-vertebral joints was carried out in the cat and rabbit. Criteria for the identification of costo-vertebral joint mechanoreceptors were established. 2. The majority of rib joint mechanoreceptors are slowly adapting and fifty-three such receptors were studied. Five rapidly adapting receptors were also identified. 3. The responses of these receptors have been correlated with rib position and movement. The slowly adapting receptors gave a monotonic response to different rib positions. 72% showed an increase of discharge rate with displacements towards expiratory rib positions. 4. In response to manually imposed rib movements slowly adapting joint mechanoreceptors gave a dynamic response which was directly related to the velocity of the movement and adapted within 2 sec. The movements of breathing produced a corresponding alteration of the discharge frequency of the slowly adapting receptors. 5. Slowly adapting receptors were localized to the capsule of the costo-transverse joint by probing. They responded to increased intra-articular pressure with an increase of discharge rate and were silenced by intra-articular lignocaine, 0·4%. 6. Rapidly adapting joint mechanoreceptors responded to rib movement with a brief burst of discharges. 7. The rib joint mechanoreceptors signal rib joint position, and the direction and velocity of rib movement. It is suggested that these afferent discharges provide the basis for the perception of respiratory movements of the chest. The significance of these receptors to the `sense of effort' resulting from a resistance to breathing is discussed. PMID:5789947

  17. A New Neurocognitive Interpretation of Shoulder Position Sense during Reaching: Unexpected Competence in the Measurement of Extracorporeal Space

    Directory of Open Access Journals (Sweden)

    Teresa Paolucci

    2016-01-01

    Full Text Available Background. The position sense of the shoulder joint is important during reaching. Objective. To examine the existence of additional competence of the shoulder with regard to the ability to measure extracorporeal space, through a novel approach, using the shoulder proprioceptive rehabilitation tool (SPRT, during reaching. Design. Observational case-control study. Methods. We examined 50 subjects: 25 healthy and 25 with impingement syndrome with a mean age [years] of 64.52 +/− 6.98 and 68.36 +/− 6.54, respectively. Two parameters were evaluated using the SPRT: the integration of visual information and the proprioceptive afferents of the shoulder (Test 1 and the discriminative proprioceptive capacity of the shoulder, with the subject blindfolded (Test 2. These tasks assessed the spatial error (in centimeters by the shoulder joint in reaching movements on the sagittal plane. Results. The shoulder had proprioceptive features that allowed it to memorize a reaching position and reproduce it (error of 1.22 cm to 1.55 cm in healthy subjects. This ability was lower in the impingement group, with a statistically significant difference compared to the healthy group (p<0.05 by Mann–Whitney test. Conclusions. The shoulder has specific expertise in the measurement of the extracorporeal space during reaching movements that gradually decreases in impingement syndrome.

  18. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo

    2018-01-01

    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  19. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  20. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  1. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  2. Joint reconstruction of activity and attenuation in Time-of-Flight PET: A Quantitative Analysis.

    Science.gov (United States)

    Rezaei, Ahmadreza; Deroose, Christophe M; Vahle, Thomas; Boada, Fernando; Nuyts, Johan

    2018-03-01

    Joint activity and attenuation reconstruction methods from time of flight (TOF) positron emission tomography (PET) data provide an effective solution to attenuation correction when no (or incomplete/inaccurate) information on the attenuation is available. One of the main barriers limiting their use in clinical practice is the lack of validation of these methods on a relatively large patient database. In this contribution, we aim at validating the activity reconstructions of the maximum likelihood activity reconstruction and attenuation registration (MLRR) algorithm on a whole-body patient data set. Furthermore, a partial validation (since the scale problem of the algorithm is avoided for now) of the maximum likelihood activity and attenuation reconstruction (MLAA) algorithm is also provided. We present a quantitative comparison of the joint reconstructions to the current clinical gold-standard maximum likelihood expectation maximization (MLEM) reconstruction with CT-based attenuation correction. Methods: The whole-body TOF-PET emission data of each patient data set is processed as a whole to reconstruct an activity volume covering all the acquired bed positions, which helps to reduce the problem of a scale per bed position in MLAA to a global scale for the entire activity volume. Three reconstruction algorithms are used: MLEM, MLRR and MLAA. A maximum likelihood (ML) scaling of the single scatter simulation (SSS) estimate to the emission data is used for scatter correction. The reconstruction results are then analyzed in different regions of interest. Results: The joint reconstructions of the whole-body patient data set provide better quantification in case of PET and CT misalignments caused by patient and organ motion. Our quantitative analysis shows a difference of -4.2% (±2.3%) and -7.5% (±4.6%) between the joint reconstructions of MLRR and MLAA compared to MLEM, averaged over all regions of interest, respectively. Conclusion: Joint activity and attenuation

  3. Family joint activities in a cross-national perspective

    Directory of Open Access Journals (Sweden)

    Kuntsche Emmanuel

    2007-05-01

    Full Text Available Abstract Background Parents and children joint activities are considered to be an important factor on healthy lifestyle development throughout adolescence. This study is a part of the Cross-National Survey on Health Behaviour in School-aged Children – World Health Organization Collaborative Study (HBSC. It aims to describe family time in joint activities and to clarify the role of social and structural family profile in a cross-national perspective. Methods The research was carried out according to the methodology of the HBSC study using the anonymous standardized questionnaire. In total, 17,761 students (8,649 boys and 9,112 girls aged 13 and 15 years from 6 European countries (Czech Republic, Finland, Greenland, Lithuania, Spain, and Ukraine were surveyed in the 2001–2002 school-year. The evaluation of joint family activity is based on 8 items: (1 watching TV or a video, (2 playing indoor games, (3 eating meals, (4 going for a walk, (5 going places, (6 visiting friends or relatives, (7 playing sports, (8 sitting and talking about things (chatting. Results Students from Spain and Ukraine reported spending the most time together with their families in almost all kinds of joint activities, whereas students from Greenland and Finland reported spending the least of this time. Boys were more likely than girls to be spending time together with family. Joint family activity goes into decline in age from 13 to 15 years. Variability of family time in a cross-national perspective was relatively small and related to children age category. Considering national, gender and age differences of studied population groups, we found that the distribution of joint family activities tends to be dispersed significantly by family structure (intact/restructured family and family wealth. Conclusion Our study compares children and parent joint activities in European countries and reveals differences and similarities in these patterns between countries. The findings

  4. Family joint activities in a cross-national perspective.

    Science.gov (United States)

    Zaborskis, Apolinaras; Zemaitiene, Nida; Borup, Ina; Kuntsche, Emmanuel; Moreno, Carmen

    2007-05-30

    Parents and children joint activities are considered to be an important factor on healthy lifestyle development throughout adolescence. This study is a part of the Cross-National Survey on Health Behaviour in School-aged Children--World Health Organization Collaborative Study (HBSC). It aims to describe family time in joint activities and to clarify the role of social and structural family profile in a cross-national perspective. The research was carried out according to the methodology of the HBSC study using the anonymous standardized questionnaire. In total, 17,761 students (8,649 boys and 9,112 girls) aged 13 and 15 years from 6 European countries (Czech Republic, Finland, Greenland, Lithuania, Spain, and Ukraine) were surveyed in the 2001-2002 school-year. The evaluation of joint family activity is based on 8 items: (1) watching TV or a video, (2) playing indoor games, (3) eating meals, (4) going for a walk, (5) going places, (6) visiting friends or relatives, (7) playing sports, (8) sitting and talking about things (chatting). Students from Spain and Ukraine reported spending the most time together with their families in almost all kinds of joint activities, whereas students from Greenland and Finland reported spending the least of this time. Boys were more likely than girls to be spending time together with family. Joint family activity goes into decline in age from 13 to 15 years. Variability of family time in a cross-national perspective was relatively small and related to children age category. Considering national, gender and age differences of studied population groups, we found that the distribution of joint family activities tends to be dispersed significantly by family structure (intact/restructured family) and family wealth. Our study compares children and parent joint activities in European countries and reveals differences and similarities in these patterns between countries. The findings underline the role of family structure (intact

  5. ANALYSIS OF ACTIVITY OF GERMAN S OCIETY OF PHOTOGRAMMETRY, REMOTE SENSING AND GEOINFORMATICS

    OpenAIRE

    Kresse Wolfgang

    2014-01-01

    DGPF is the German Society of Photogrammetry, Remote Sensing and Geoinformatics – established in 1909, with currently 800 people. The Society has 12 working committees to work on issues in the field of photogrammetry and remote sensing as well as geoinforatics. In international cooperation with societies of Austria and Switzerland joint congresses are organized every three years. Similar cooperation could arise between Polish Society of Photogrammetry and Remote Sensing and DGPF.

  6. A comparative study on scapular static position between females with and without generalized joint hyper mobility.

    Science.gov (United States)

    Moghadam, Afsun Nodehi; Salimee, Maryam Moghadam

    2012-08-01

    Generalized joint hyper mobility predisposes some individuals to a wide variety of musculoskeletal complaints. Given the critical role of scapular position in function of shoulder, the aim of this study was to compare scapular position between persons with and without general joint hyper mobility. By nonprobability sampling 30 hyper mobile persons at average of 22.86 ±2.77 years of age and 30 non hyper mobile persons (age 23.6 ± 2.73years) through a case-control design participated in the study. Scapular position was assessed according to the lateral scapular slide test. Independent t test and repeated measures ANOVA were used to statistically analyze scapular position differences between groups. Compared to non hyper mobile persons, those with General joint hyper mobility demonstrated a significantly higher superior scapula slide in dependent arm position (p = 0.03). However, no significant difference was found between another scores between two groups (p > 0.05). The results suggest that altered scapular position may be an important aspect of General joint hyper mobility.

  7. Automatic control of positioning along the joint during EBW in conditions of action of magnetic fields

    Science.gov (United States)

    Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.

    2016-11-01

    Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.

  8. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  9. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    Science.gov (United States)

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  10. Microbial Growth and Quorum Sensing Antagonist Activities of Herbal Plants Extracts

    Directory of Open Access Journals (Sweden)

    Reema Al-Hussaini

    2009-09-01

    Full Text Available Antimicrobial and antiquorum sensing (AQS activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's for both bacteria and fungi were relatively high (0.5-3.0 mg. As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  11. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  12. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  13. The Effect of Fatigued External Rotator Muscles of the Shoulder on the Shoulder Position Sense

    Directory of Open Access Journals (Sweden)

    Naoya Iida

    2011-10-01

    Full Text Available This study aimed to investigate the effect of fatigue in shoulder external rotator muscles on position sense of shoulder abduction, internal rotation, and external rotation. The study included 10 healthy subjects. Shoulder position sense was measured before and after a fatigue task involving shoulder external rotator muscles. The fatigue task was performed using an isokinetic machine. To confirm the muscle fatigue, electromyography (EMG was recorded, and an integrated EMG and median power frequency (MDF during 3 sec performed target torque were calculated. After the fatigue task, the MDF of the infraspinatus muscle significantly decreased. This indicates that the infraspinatus muscle was involved in the fatigue task. In addition, the shoulder position sense of internal and external rotation significantly decreased after the fatigue task. These results suggest that the fatigue reduced the accuracy of sensory input from muscle spindles. However, no significant difference was observed in shoulder position sense of abduction before and after the fatigue task. This may be due to the fact that infraspinatus muscle did not act as prime movers in shoulder abduction. These results suggest that muscle fatigue decreased position sense during movements in which the affected muscles acted as prime movers.

  14. MR findings associated with positive distraction of the hip joint achieved by axial traction

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Aline; Dietrich, Tobias J.; Maier, Matthias; Pfirrmann, Christian W.A. [Radiology, Orthopedic University Hospital Balgrist, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Dora, Claudio [Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2015-06-01

    To determine which MR-arthrography findings are associated with positive hip joint distraction. One hundred patients with MR arthrography of the hip using axial traction were included. Traction was applied during the MR examination with an 8 kg (females) or 10 kg (males) water bag, attached to the ankle over a deflection pulley. Fifty patients showing joint space distraction were compared to an age- and gender-matched control group of 50 patients that did not show a joint distraction under axial traction. Two radiologists assessed the neck-shaft angle, lateral and anterior center-edge (CE) angles, CE angles in the transverse plane, extrusion index of the femoral head, acetabular depth, alpha angle, acetabular version, ligamentum teres, joint capsule and ligaments, iliopsoas tendon and the labrum. Mean joint space distraction in the study group was 0.9 ± 0.6 mm. Patients with positive joint space distraction had significantly higher neck-shaft angles (control group 131.6 ± 5.4 /study group 134.1 ± 6.1 , p < 0.05), smaller lateral CE angles (38.1 ± 5.9 /34.6 ± 7.2 , p < 0.05), smaller overall transverse CE angles (161.4 ± 9.9 /153.6 ± 9.6 , p < 0.001), smaller acetabular depth (4.1 ± 2.4 mm/5.8 ± 2.5 mm, p < 0.01), higher alpha angles (53.5 ± 7.8 /59.2 ± 10.1 , p < 0.01) and a thicker ligamentum teres (4.7 ± 1.4 mm/5.4 ± 1.8 mm, p < 0.05). The other parameters revealed no significant differences. ICC values for interobserver agreement were 0.71-0.95 and kappa values 0.43-0.92. Increased neck-shaft angles, small CE angles, small acetabular depth, higher alpha angles and a thick ligamentum teres are associated with positive joint distraction. (orig.)

  15. MR findings associated with positive distraction of the hip joint achieved by axial traction

    International Nuclear Information System (INIS)

    Suter, Aline; Dietrich, Tobias J.; Maier, Matthias; Pfirrmann, Christian W.A.; Dora, Claudio

    2015-01-01

    To determine which MR-arthrography findings are associated with positive hip joint distraction. One hundred patients with MR arthrography of the hip using axial traction were included. Traction was applied during the MR examination with an 8 kg (females) or 10 kg (males) water bag, attached to the ankle over a deflection pulley. Fifty patients showing joint space distraction were compared to an age- and gender-matched control group of 50 patients that did not show a joint distraction under axial traction. Two radiologists assessed the neck-shaft angle, lateral and anterior center-edge (CE) angles, CE angles in the transverse plane, extrusion index of the femoral head, acetabular depth, alpha angle, acetabular version, ligamentum teres, joint capsule and ligaments, iliopsoas tendon and the labrum. Mean joint space distraction in the study group was 0.9 ± 0.6 mm. Patients with positive joint space distraction had significantly higher neck-shaft angles (control group 131.6 ± 5.4 /study group 134.1 ± 6.1 , p < 0.05), smaller lateral CE angles (38.1 ± 5.9 /34.6 ± 7.2 , p < 0.05), smaller overall transverse CE angles (161.4 ± 9.9 /153.6 ± 9.6 , p < 0.001), smaller acetabular depth (4.1 ± 2.4 mm/5.8 ± 2.5 mm, p < 0.01), higher alpha angles (53.5 ± 7.8 /59.2 ± 10.1 , p < 0.01) and a thicker ligamentum teres (4.7 ± 1.4 mm/5.4 ± 1.8 mm, p < 0.05). The other parameters revealed no significant differences. ICC values for interobserver agreement were 0.71-0.95 and kappa values 0.43-0.92. Increased neck-shaft angles, small CE angles, small acetabular depth, higher alpha angles and a thick ligamentum teres are associated with positive joint distraction. (orig.)

  16. High-resolution ultrasonography in assessing temporomandibular joint disc position.

    Science.gov (United States)

    Talmaceanu, Daniel; Lenghel, Lavinia Manuela; Bolog, Nicolae; Popa Stanila, Roxana; Buduru, Smaranda; Leucuta, Daniel Corneliu; Rotar, Horatiu; Baciut, Mihaela; Baciut, Grigore

    2018-02-04

    The purpose of this study was to determine the diagnostic value of high-resolution ultrasonography (US) in temporomandibular joint (TMJ) disc displacements. A number of 74 patients (148 TMJs) with signs and symptoms of TMJ disorders, according to the Research Diagnostic Criteria for Temporomandibular Disorders, were included in this study. All patients received US and magnetic resonance imaging (MRI) of both TMJs 1 to 5 days after the clinical examination. MRI examinations were performed using 1.5 T MRI equipment (Siemens Avanto, Siemens, Erlangen). Ultrasonographic examination was performed on a Hitachi EUB 8500 (Hitachi Medical Corp., Tokyo, Japan) scanner with L 54 M6.5-13 MHz linear transducer. MRI depicted 68 (45.95%) normal joints, 47 (31.76%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 34 (22.97%) with degenerative changes. US detected 78 (52.7%) normal joints, 37 (25%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 21 (14.19%) with degenerative changes. Compared to MRI, US showed a sensitivity of 93.1%, specificity of 87.88%, accuracy of 90.32%, a positive predictive value of 87.1% and a negative predictive value of 93.55% for overall diagnosis of disc displacement. The Youden index was 0.81. Based on our results, high-resolution ultrasonography showed high sensitivity, specificity and accuracy in the diagnosis of TMJ disc displacement. It could be a valuable imaging technique in assessing TMJ disc position. The diagnostic value of high-resolution ultrasonography depends strictly on the examiner's skills and on the equipment used.

  17. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  18. Temporomandibular joint involvement as a positive clinical prognostic factor in necrotising external otitis.

    Science.gov (United States)

    Yeheskeli, E; Eta, R Abu; Gavriel, H; Kleid, S; Eviatar, E

    2016-05-01

    Necrotising otitis externa is associated with high morbidity and mortality rates. This study investigated whether temporomandibular joint involvement had any prognostic effect on the course of necrotising otitis externa in patients who had undergone hyperbaric oxygen therapy after failed medical and sometimes surgical therapy. A retrospective case series was conducted of patients in whom antibiotic treatment and surgery had failed, who had been hospitalised for further treatment and hyperbaric oxygen therapy. Twenty-three patients with necrotising otitis externa were identified. The temporomandibular joint was involved in four patients (17 per cent); these patients showed a constant gradual improvement in C-reactive protein and were eventually discharged free of disease, except one patient who was lost to follow up. Four patients (16 per cent) without temporomandibular joint involvement died within 90 days of discharge, while all patients with temporomandibular joint involvement were alive. Three patients (13 per cent) without temporomandibular joint involvement needed recurrent hospitalisation including further hyperbaric oxygen therapy; no patients with temporomandibular joint involvement required such treatment. Patients with temporomandibular joint involvement had lower rates of recurrent disease and no mortality. Therefore, we suggest considering temporomandibular joint involvement as a positive prognostic factor in necrotising otitis externa management.

  19. Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Yuanxin Jia

    2018-03-01

    Full Text Available Land use is of great importance for urban planning, environmental monitoring, and transportation management. Several methods have been proposed to obtain land use maps of urban areas, and these can be classified into two categories: remote sensing methods and social sensing methods. However, remote sensing and social sensing approaches have specific disadvantages regarding the description of social and physical features, respectively. Therefore, an appropriate fusion strategy is vital for large-area land use mapping. To address this issue, we propose an efficient land use mapping method that combines remote sensing imagery (RSI and mobile phone positioning data (MPPD for large areas. We implemented this method in two steps. First, a support vector machine was adopted to classify the RSI and MPPD. Then, the two classification results were fused using a decision fusion strategy to generate the land use map. The proposed method was applied to a case study of the central area of Beijing. The experimental results show that the proposed method improved classification accuracy compared with that achieved using MPPD alone, validating the efficacy of this new approach for identifying land use. Based on the land use map and MPPD data, activity density in key zones during daytime and nighttime was analyzed to illustrate the volume and variation of people working and living across different regions.

  20. The importance of position and path repeatability on force at the knee during six-DOF joint motion.

    Science.gov (United States)

    Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E

    2009-06-01

    Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed

  1. Condylar position on the lateral individualized corrected tomography in internal derangement of temporomandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keun Min; Hwang, Eui Hwan; Lee, Sang Rae [College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    2002-06-15

    To examine the possible relationship between condylar position and disk displacement in the temporomandibular joint. 79 temporomandibular joints in 40 patients having temporomandibular disorders were classified into three categories: no disk displacement (NDD), disk displacement with reduction (DDWR), and disk displacement without reduction (DDWOR). Disk positions were assessed from clinical and MRI findings. The relationship between the three categories and condylar positions was evaluated using lateral individualized corrected tomography. Clinical findings regarding the relationship between condyle and disk positions having anterior, centric, and posterior positions were 27%, 27%, and 46%, respectively, in NDD, 43%, 17%, and 40%, respectively, in DDWR, and 44%, 22%, and 34%, respectively, in DDWOR. There were no significant differences in condylar positions between each of the groups (P>0.05). In the relationship between condyle and disk positions with MRI findings, anterior, centric, and posterior positions were 38%, 38%, and 24%, respectively, in NDD, 29%, 21%, and 50%, respectively, in DDWR, and 44%, 9%, and 47% respectively, in DDWOR. There were significant differences in the condylar positions when MRI was utilized (P<0.05). There was a significant correlation between the condyle and disk positions with MRI findings on lateral individualized corrected tomography.

  2. Study on a cooperative active sensing

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1997-01-01

    This study was made as a part of the research project ''Study on the evaluation of applicability of information collection·processing system to autonomous plant''. Previously, the basic techniques for 3-dimensional geometric modeling of working environments and for systemizing of information collection and processing have been developed. Thus, this study aimed to establish the techniques for a decentralized and cooperatively intellectualized system which allows to automatically perform patrol for inspection and maintenance in complicated plants. First, developments of cooperative active sensing for functioning in a multi-robot system and real-time active visual sensing were attempted and then the both were integrated to produce a prototype system for cooperative active sensing. The outcomes of the project in this year were as follows; a mobile platform with expanded functions, acoustic information processing, parallel EusLisp, a simulator for moving robot's behaviors, a visual monitoring system for moving objects, etc. All of these were usable for general purpose. (M.N.)

  3. Silicon Drift Detectors development for position sensing

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    Novel Silicon Drift Detectors (SDDs) with multi-linear architecture specifically intended for 2D position sensing and imaging applications are presented and their achievable spatial, energy and time resolution are discussed. The capability of providing a fast timing of the interaction with nanosecond time resolution is a new available feature that allows operating the drift detector in continuous readout mode for coincidence imaging applications either with an external trigger or in self-timing. The application of SDDs with multi-linear architecture to Compton electrons' tracking within a single silicon layer and the achieved experimental results will be discussed

  4. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  5. The impact of the initial stance position on lower limb joint kinetics in the taekwondo roundhouse kick

    Directory of Open Access Journals (Sweden)

    Daniel Jandačka

    2013-06-01

    Full Text Available BACKGROUND: To achieve good performance, taekwondo athletes should optimize the stance position of the foot on the ground. OBJECTIVE: The aim of this study is to compare generated net joint power (hip, knee and ankle during stance phase, magnitude of peak foot velocity of the attacking lower extremity and execution stance time produced from three stance positions (forward "0°", diagonal "45°", orthogonal "90°" in the taekwondo roundhouse kick. METHODS: Ten taekwondo athletes participated in the study; their experience of practicing taekwondo ranged between 13.8 ± 5.8 years. The kinetics and kinematics of the athletes’ movement during the roundhouse kick were recorded. The execution stance time and the magnitude of peak foot velocity were determined. The net joint power of the kicking lower extremity during the stance phase was calculated using the inverse dynamics method. Then the peak net joint power was determined. RESULTS: The analysis of variance for repeated measures showed that there is a significant main effect of the stance position on the peak net hip joint power in the three planes. In addition, the stance position does not affect the magnitude of the peak foot velocity of the kicking lower extremity and execution stance time. CONCLUSIONS: The necessity to produce a higher net hip joint power in the stance phase of the roundhouse kick from the position when the feet are placed orthogonal to the target of the kick, compared with the execution of the kick from the forward or diagonal position, must be taken into account for purposes of rationalizing strength training of taekwondo athletes or for selecting the technique of the roundhouse kick.

  6. Trunk and Shank Position Influences Patellofemoral Joint Stress in the Lead and Trail Limbs During the Forward Lunge Exercise.

    Science.gov (United States)

    Hofmann, Cory L; Holyoak, Derek T; Juris, Paul M

    2017-01-01

    Study Design Controlled laboratory study, repeated-measures design. Background The effects of trunk and shank position on patellofemoral joint stress of the lead limb have been well studied; however, the effects on the trail limb are not well understood. Objectives To test the hypothesis that trunk and shank position may influence patellofemoral joint stress in both limbs during the forward lunge exercise. Methods Patellofemoral kinetics were quantified from 18 healthy participants performing the lunge exercise with different combinations of trunk and shank positions (vertical or forward). A 2-by-3 (limb-by-lunge variation) repeated-measures analysis of variance was performed, using paired t tests for post hoc comparisons. Results The trail limb experienced greater total patellofemoral joint stress relative to the lead limb, regardless of trunk and shank position (Ppatellofemoral joint stress in the trail limb relative to the lead limb (Ppatellofemoral stress in the lead limb (Ppatellofemoral joint loading of both limbs during the forward lunge, with the trail limb generally experiencing greater total joint stress. Restricting forward translation of the lead-limb shank may reduce patellofemoral joint stress at the expense of increased stress in the trail limb. Technique recommendations should consider the demands imposed on both knees during this exercise. J Orthop Sports Phys Ther 2017;47(1):31-40. Epub 4 Nov 2016. doi:10.2519/jospt.2017.6336.

  7. MR diagnosis of temporomandibular joint. A study of joint effusion

    International Nuclear Information System (INIS)

    Kaneda, Takashi; Yamashiro, Mitsuaki; Ozawa, Kaoru; Suzuki, Hiromi; Okada, Hiroyuki; Yamamoto, Hirotsugu

    1998-01-01

    The purposes of this study were to evaluate the relationship between correlation of MR joint effusion of the temporomandibular joint and disk position, to evaluate the relationship between joint effusion and aging, and to assess the frequency of MR joint effusion of bilateral temporomandibular joints. The temporomandibular joints of 192 patients with clinical symptoms of temporomandibular joint disorders were imaged bilaterally using high field, surface-coil MR imaging. Oblique sagittal and coronal proton density-weighted and T2-weighted images were obtained. Imaging findings of joint effusion were correlated with disk position, aging, and bilateral temporomandibular joints. MR showed effusion in 4% of the joints with normal superior disk position, 36% of the joints with disk displacement with reduction, and 45% of the joints with disk displacement without reduction. There were significant differences in the incidence of joint effusion between normal disk position and anterior disk displacement with or without reduction. Younger patients less than 40 years were significant higher the incidence of joint effusion than those of older patients. A significant association was seen between joint effusion and aging. MR showed effusion in 17% of the unilateral temporomandibular joint, 24% of the bilateral temporomandibular joints. There was no significant difference between unilateral and bilateral case. These results indicated that joint effusion using MR imaging was associated with varied temporomandibular joint pathologic states. (author)

  8. [Analysis of influential factors for job burnout among managers in a joint venture in Guangzhou, China].

    Science.gov (United States)

    Lin, Qiu-hong; Jiang, Chao-qiang; Liu, Yi-min; Guo, Jing-yi; Lam, Tai Hing

    2013-12-01

    To investigate the influential factors for job burnout among the managerial staff in a Sino-Japanese joint venture automobile manufacturer in Guangzhou, China. A total of 288 managers in a Sino-Japanese joint venture automobile manufacturer were surveyed using the Occupational Stress Indicator, Maslach Burnout Inventory (MBI), Eysenck Personality Questionnaire, Simplified Coping Style Questionnaire, and Social Support Rating Scale. On the depersonalization dimension, the male managers had significantly higher scores than the female managers. The scores of emotion exhaustion and depersonalization of MBI showed significant differences among the managers with different levels of occupational stress. The path analysis showed that occupational stress, neuroticism, and psychoticism had negative effects on emotion exhaustion, while job satisfaction and utilization of social support had direct positive effects on emotion exhaustion. Occupational stress, psychoticism, and passive coping style had direct negative effects on depersonalization, while job satisfaction, objective support, and utilization of social support had positive effects on depersonalization. Job satisfaction and active coping style had positive effects on sense of personal accomplishment, while passive coping style had a negative effect on sense of personal accomplishment. Personality exerted its effect on social support through coping style and thus on job satisfaction and job burnout. Male managers have a greater propensity to depersonalization than their female counterparts. High occupational stress is a risk factor for job burnout. Personality, social support, and coping style are influential factors for job burnout.

  9. Remote sensing for the oil in ice Joint Industry Program 2007-2009

    International Nuclear Information System (INIS)

    Dickins, D.; Andersen, J.H.S; Brandvik, P.J.; Singsaas, I.; Buvik, T.; Bradford, J.; Hall, R.; Babiker, M.; Kloster, K.; Sandven, S.

    2009-01-01

    The challenge of detecting, mapping and tracking oil spills on ice were discussed with particular reference to the importance of spill detection and mapping for Arctic oil spills, where the oil can be hidden from view under snow and ice during periods of almost total darkness. The remote sensing project (P5) with in the Oil-in-Ice Joint Industry Program aimed to establish whether off-the-shelf technologies and sensors could detect oil in the presence of ice in particular scenarios. The specific goals were to evaluate the limitations and capabilities of currently operational remote sensors for spill surveillance in ice regimes encountered during the 2008 and 2009 field experiments and to draw conclusions regarding which sensors are most likely to be effective in a variety of oil and ice situations. The project focused on proven, commercially available systems and technologies. These included airborne sensors such as Ultra-violet/Infrared ( UV/IR ), forward looking infrared (FLIR) and synthetic aperture radar/side-looking airborne radars (SAR/SLAR); all weather satellite systems involving SAR; dogs for surface oil detection; and ground penetrating radar (GPR) for low level airborne oil on ice detection. The key finding was that flexible combinations of sensors operating from a variety of platforms are needed to cover a range of oil in ice scenarios. The most effective solution to detect oil patches during periods of darkness or fog was to deploy closely spaced global positioning system (GPS) tracking buoys to follow the ice and the oil. 34 refs., 1 tab., 17 figs.

  10. Remote sensing for the oil in ice Joint Industry Program 2007-2009

    Energy Technology Data Exchange (ETDEWEB)

    Dickins, D. [DF Dickins Associates LLC, La Jolla, CA (United States); Andersen, J.H.S [Norconsult, Horten (Norway); Brandvik, P.J.; Singsaas, I. [SINTEF Materials and Chemistry, Trondheim (Norway); Buvik, T. [Trondheim Dog Training Centre, Trondheim (Norway); Bradford, J. [Boise State Univ., Boise, ID (United States); Hall, R. [Kongsberg Satellite Services, Tromso (Norway); Babiker, M.; Kloster, K.; Sandven, S. [Nansen Environmental and Remote Sensing Center, Bergen (Norway)

    2009-07-01

    The challenge of detecting, mapping and tracking oil spills on ice were discussed with particular reference to the importance of spill detection and mapping for Arctic oil spills, where the oil can be hidden from view under snow and ice during periods of almost total darkness. The remote sensing project (P5) with in the Oil-in-Ice Joint Industry Program aimed to establish whether off-the-shelf technologies and sensors could detect oil in the presence of ice in particular scenarios. The specific goals were to evaluate the limitations and capabilities of currently operational remote sensors for spill surveillance in ice regimes encountered during the 2008 and 2009 field experiments and to draw conclusions regarding which sensors are most likely to be effective in a variety of oil and ice situations. The project focused on proven, commercially available systems and technologies. These included airborne sensors such as Ultra-violet/Infrared ( UV/IR ), forward looking infrared (FLIR) and synthetic aperture radar/side-looking airborne radars (SAR/SLAR); all weather satellite systems involving SAR; dogs for surface oil detection; and ground penetrating radar (GPR) for low level airborne oil on ice detection. The key finding was that flexible combinations of sensors operating from a variety of platforms are needed to cover a range of oil in ice scenarios. The most effective solution to detect oil patches during periods of darkness or fog was to deploy closely spaced global positioning system (GPS) tracking buoys to follow the ice and the oil. 34 refs., 1 tab., 17 figs.

  11. 15 CFR 296.9 - Activities not permitted for joint ventures.

    Science.gov (United States)

    2010-01-01

    ... joint venture of any product, process, or service, other than the distribution among the parties to such venture, in accordance with such venture, of a product, process, or service produced by such venture, the... INNOVATION PROGRAM General § 296.9 Activities not permitted for joint ventures. The following activities are...

  12. Restriction in participation in leisure activities after joint replacement: an exploratory study.

    Science.gov (United States)

    Wylde, Vikki; Livesey, Christine; Blom, Ashley W

    2012-03-01

    currently, assessment of outcomes after joint replacement is predominantly centred on impairment and activity limitation (e.g. walking), with little consideration of participation restriction. structured telephone interviews about participation in leisure activities were conducted with 56 total hip replacement (THR) and 60 total knee replacement (TKR) patients before and 1 year after joint replacement. before surgery, THR patients participated in 209 leisure activities, with an average of four leisure activities per person. TKR patients participated in 171 leisure activities, with an average of three leisure activities per person. The leisure activities were coded into four categories: sports/exercise, hobbies, social activities and holidays. Between 89 and 95% of leisure activities were rated as important by THR and TKR patients prior to surgery. Before surgery, THR patients rated 82% of leisure activities as difficult to perform because of joint problems, which decreased to 25% of leisure activities by 1-year after surgery. TKR patients rated 86% of leisure activities as difficult to perform because of joint problems, which decreased to 32% after surgery. this research highlights that participation in leisure activities is important to patients undergoing joint replacement, but that approximately a quarter of patients are unable to perform their valued leisure activities after surgery.

  13. Radiographic evaluation of coxofemoral joint laxity in dogs part I: New stress-radiographic positioning techniques

    International Nuclear Information System (INIS)

    Phiwipha Kamonrat; Duangdaun Kaenkangploo

    2002-01-01

    Two new stress-radiographic positioning techniques, namely 60 deg and 90 deg stress techniques, were introduced for quantifying hip joint laxity in dogs. The comparative characteristics and efficiency of these new techniques with angled hindlimbs were evaluated relative to the standard hip-extended radiographic technique. Forty, healthy, mongrel dogs with normal hip joint conformation were anesthetized and placed in dorsal recumbency before 3 radiograhps of the standard, 60 deg , and 90 deg stress techniques were taken. For the 60 deg stress technique, hindlimbs were extended in parallel to each other at 60 deg angled to the table top and stifles were slightly rotated inward, femoral heads were manually pushed in a craniodorsal direction during exposure. For the 90 deg stress technique, femurs were positioned perpendicular to the table top, stifles were 90 deg flexed and adducted and femoral heads were manually pushed in a craniodorsal direction during exposure. The subluxation index (SI) and dorsolateral subluxation score (DLS score) were calculated from 3 radiographic views for both hip joints to quantitate the relative degree of joint laxity. Results of the study indicated that the 60 deg (SI = 0.20+-0.045, DLS score = 62.5+-7.96 percent) and 90 deg (SI = 0.23+-0.044, DLS score = 61.2+-9.47 percent) stress-radiographs yielded significantly (p0.001) higher degree of hip joint laxity than the standard technique (SI)

  14. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  15. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  16. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    Science.gov (United States)

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  17. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Directory of Open Access Journals (Sweden)

    Jan M Ache

    2015-07-01

    Full Text Available Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs. First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This

  18. Movement of the sacroiliac joint during the Active Straight Leg Raise test in patients with long-lasting severe sacroiliac joint pain.

    Science.gov (United States)

    Kibsgård, Thomas J; Röhrl, Stephan M; Røise, Olav; Sturesson, Bengt; Stuge, Britt

    2017-08-01

    The Active Straight Leg Raise is a functional test used in the assessment of pelvic girdle pain, and has shown to have good validity, reliability and responsiveness. The Active Straight Leg Raise is considered to examine the patients' ability to transfer load through the pelvis. It has been hypothesized that patients with pelvic girdle pain lack the ability to stabilize the pelvic girdle, probably due to instability or increased movement of the sacroiliac joint. This study examines the movement of the sacroiliac joints during the Active Straight Leg Raise in patients with pelvic girdle pain. Tantalum markers were inserted in the dorsal sacrum and ilium of 12 patients with long-lasting pelvic girdle pain scheduled for sacroiliac joint fusion surgery. Two to three weeks later movement of the sacroiliac joints during the Active Straight Leg Raise was measured with radiostereometric analysis. Small movements were detected. There was larger movement of the sacroiliac joint of the rested leg's sacroiliac joint compared to the lifted leg's side. A mean backward rotation of 0.8° and inward tilt of 0.3° were seen in the rested leg's sacroiliac joint. The movements of the sacroiliac joints during the Active Straight Leg Raise are small. There was a small backward rotation of the innominate bone relative to sacrum on the rested leg's side. Our findings contradict an earlier understanding that a forward rotation of the lifted leg's innominate occur while performing the Active Straight Leg Raise. Copyright © 2017. Published by Elsevier Ltd.

  19. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  20. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  1. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  2. No Correlation between Distorted Body Representations Underlying Tactile Distance Perception and Position Sense

    Directory of Open Access Journals (Sweden)

    Matthew R. Longo

    2016-11-01

    Full Text Available Both tactile distance perception and position sense are believed to require that immediate afferent signals be referenced to a stored representation of body size and shape (the body model. For both of these abilities, recent studies have reported that the stored body representations involved are highly distorted, at least in the case of the hand, with the hand dorsum represented as wider and squatter than it actually is. Here, we investigated whether individual differences in the magnitude of these distortions are shared between tactile distance perception and position sense, as would be predicted by the hypothesis that a single distorted body model underlies both tasks. We used established task to measure distortions of the represented shape of the hand dorsum. Consistent with previous results, in both cases there were clear biases to overestimate distances oriented along the medio-lateral axis of the hand compared to the proximo-distal axis. Moreover, within each task there were clear split-half correlations, demonstrating that both tasks show consistent individual differences. Critically, however, there was no correlation between the magnitudes of distortion in the two tasks. This casts doubt on the proposal that a common body model underlies both tactile distance perception and position sense.

  3. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    Directory of Open Access Journals (Sweden)

    Tal-Chen Rabinowitch

    2017-06-01

    Full Text Available The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior and cooperation (a goal-directed collaborative endeavor. Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  4. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    Science.gov (United States)

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  5. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

    Directory of Open Access Journals (Sweden)

    Quentin Mourcou

    2015-01-01

    Full Text Available Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM. Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS. Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home.

  6. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls.

    Science.gov (United States)

    Rathi, Sangeeta; Taylor, Nicholas F; Soo, Brendan; Green, Rodney A

    2018-03-02

    To determine whether patients with symptomatic rotator cuff pathology had more glenohumeral joint translation and different patterns of rotator cuff muscle activity compared to controls. Repeated measurements of glenohumeral translation and muscle activity in two positions and six testing conditions in two groups. Twenty participants with a symptomatic and diagnosed rotator cuff tear and 20 age, and gender matched controls were included. Neuromuscular activity was tested by inserting intramuscular electrodes in the rotator cuff muscles. Anterior and posterior glenohumeral translations were measured using real time ultrasound in testing conditions (with and without translation force, with and without isometric internal and external rotation), in two positions (shoulder neutral, 90° of abduction) and two force directions (anterior, posterior). Symptomatic pathology group demonstrated increased passive glenohumeral translation with posterior translation force (protator cuff muscle contraction in the pathology group limited joint translation in a similar manner to the control group, but they did not show the normal direction specific pattern in the neutral posterior position (protator cuff still controlled glenohumeral translation. These results highlight the need to consider joint translation in the assessment and management of patients with rotator cuff injury. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Reliability of a Functional Test Battery Evaluating Functionality, Proprioception and Strength of the Ankle Joint

    OpenAIRE

    YILDIZ, Yavuz; ŞEKİR, Ufuk; HAZNECİ, Bülent

    2009-01-01

    Aim: In contrast to the one-sided evaluation methods used in the past, combining multiple tests allows one to obtain a global assessment of the ankle joint. Materials and Methods: Twenty healthy male volunteers participated in this study. One component of the test battery included five different functional ability tests, which included: single limb hopping course, one-legged and triple-legged hop for distance, and six-meter (6-m) and cross 6-m hop for time. Ankle joint position sense and on...

  8. Effects on Subtalar Joint Stress Distribution After Cannulated Screw Insertion at Different Positions and Directions.

    Science.gov (United States)

    Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai

    2015-01-01

    We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Educational activities of remote sensing archaeology (Conference Presentation)

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  10. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    Science.gov (United States)

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  11. Application of ankle joint adem position combined with foot inclined position in ankle sprain%踝关节正侧位联合足正斜位在足踝扭伤中的应用

    Institute of Scientific and Technical Information of China (English)

    施付强; 胡扬; 刘霞; 汪伟伟

    2015-01-01

    Objective To investigate X-ray examination technique and diagnosis of ankle joint sprain, in order to reduce misdiagnosis rate. Methods There were 8 patients with fractures caused by ankle joint sprain, and they all received ankle joint adem position examination and foot inclined position examination. Examination results were observed. Results Among the 8 patients, there was 1 case with lateral malleolus fracture, whose ankle joint adem position result was worse than foot inclined position, 1 case with lateral malleolus fracture, which was not showed by ankle joint adem position but was clearly showed by foot inclined position, and 1 case with fracture in basilar part of the fifth metatarsal bone, which had ankle joint adem position results better than foot inclined position. Conclusion Application of ankle joint adem position combined with foot inclined position examination can show the fracture line better than single examination by joint adem position or foot inclined position, thereby the coincidence rate of diagnosis can be improved.%目的:探讨踝关节扭伤的X线检查技术及诊断,以降低误诊漏诊率。方法8例足踝扭伤并致骨折的患者,均行踝关节正侧位检查及足正斜位检查,观察检查结果。结果8例患者中,有1例外踝骨折,踝关节正侧位显示不如足正斜位,1例外踝骨折踝关节正侧位未能显示,而足正斜位能清晰显示,1例第五跖骨基底部骨折足正斜位显示不如踝关节正侧位。结论踝关节扭伤患者行踝关节正侧位联合足正斜位检查比单纯踝关节正侧位检查或单纯足正斜位检查能更好的显示骨折线,从而提高诊断符合率。

  12. Neck muscle vibration can improve sensorimotor function in patients with neck pain.

    Science.gov (United States)

    Beinert, Konstantin; Keller, Martin; Taube, Wolfgang

    2015-03-01

    People with neck pain display a diminished joint position sense and disturbed postural control, which is thought to be a result of impaired somatosensory afferent activity and/or integration. Afferent processing can be artificially manipulated by vibration and was shown to reduce motor performance in healthy subjects. However, the effect of vibration on sensorimotor function in neck pain patients is scarcely investigated. To assess the effect of neck muscle vibration on joint position sense and postural control in neck pain subjects and healthy controls. Case control study. Thirteen neck pain patients and 10 healthy controls participated in the present study. Cervical joint position sense and dynamic and static postural stability. Short-term, targeted neck muscle vibration with 100 Hz was applied after baseline measurement. Vibration had opposite effects in patients and healthy subjects. Patients showed improved joint position sense (pneck pain. Thus, vibration may be used to counteract sensorimotor impairment of the cervical spine. Potential underlying mechanisms are discussed. Copyright © 2015. Published by Elsevier Inc.

  13. Active knee joint flexibility and sports activity

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders; Vestergaard, E

    1999-01-01

    was significantly higher in women than in men and significantly positively associated with weekly hours of swimming and weekly hours of competitive gymnastics. Active knee flexion was significantly positively associated with participation in basketball, and significantly negatively associated with age and weekly......The aim of the study was to estimate active knee flexion and active knee extension in athletes and to investigate the potential association of each to different types of sports activity. Active knee extension and active knee flexion was measured in 339 athletes. Active knee extension...... hours of soccer, European team handball and swimming. The results point to sport-specific adaptation of active knee flexion and active knee extension. Udgivelsesdato: 1999-Apr...

  14. Effects of hip joint position and intra-capsular volume on hip joint intra-capsular pressure: a human cadaveric model

    Directory of Open Access Journals (Sweden)

    Tse Paul

    2009-04-01

    Full Text Available Abstract Background Increase in hip intra-capsular pressure has been implicated in various hip pathologies, such as avascular necrosis complicating undisplaced femoral neck fracture. Our study aimed at documenting the relationship between intra-capsular volume and pressure in various hip positions. Methods Fifty-two cadaveric hips were studied. An electronic pressure-monitoring catheter recorded the intra-capsular hip pressure after each instillation of 2 ml of normal saline and in six hip positions. Results In neutral hip position, the control position for investigation, intra-capsular pressure remained unchanged when its content was below 10 ml. Thereafter, it increased exponentially. When the intra-capsular volume was 12 ml, full abduction produced a 2.1-fold increase (p = 0.028 of the intra-capsular hip joint pressure; full external rotation and full internal rotation increased the pressure by at least 4-fold (p Conclusion Intra-capsular pressure increases with its volume, but with a wide variation with different positions. It would be appropriate to recommend that hips with haemarthrosis or effusion should be positioned in 45-degree flexion.

  15. Muscular activation during plyometric exercises in 90° of glenohumeral joint abduction.

    Science.gov (United States)

    Ellenbecker, Todd S; Sueyoshi, Tetsuro; Bailie, David S

    2015-01-01

    Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Descriptive laboratory study. Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°.

  16. Sports activity after anatomic acromioclavicular joint stabilisation with flip-button technique.

    Science.gov (United States)

    Porschke, Felix; Schnetzke, Marc; Aytac, Sara; Studier-Fischer, Stefan; Gruetzner, Paul Alfred; Guehring, Thorsten

    2017-07-01

    Sports activity after surgical AC joint stabilisation has not been comprehensively evaluated to date. The aim of this study was to determine rate, level and time to return to sports after AC joint stabilisation and to identify the influence of overhead sports on post-operative sports activity. In this retrospective case series, a total of 68 patients with a high-grade AC joint dislocation (Rockwood type V) were stabilised using a single TightRope technique. Fifty-five patients (80.9 %) with median age of 42.0 (range, 18-65) years completed questionnaires regarding sports activity before and after surgery. Clinical outcome and complications were also evaluated. Forty-three patients participated in sports regularly before injury. Their sports activity was rated according to Allain, and non-overhead and overhead sports were differentiated. At median follow-up of 24 (18-45) months, 41 of 43 patients (95.3 %) had returned to sports. 63 % returned to the same sports activity as before injury. 16.3 % needed to adapt the type of sports to reduce demanding activities. 11.6 % reduced the frequency and 32.5 % the intensity of sports. The median time to return to sports was 9.5 (3-18) months. Overhead athletes (Allain Type III and IV) had to reduce their sports activity significantly more often (11.8 vs. 53.8 %; p = 0.011) and needed more time to return to sports (9.5 vs. 4.5 months; p = 0.009). After stabilisation of AC joint dislocation, the majority of patients returned to sports after a substantial period of time. Overhead athletes, in particular, required more time and had to considerably reduce their sports activity. The findings impact therapeutic decision-making after AC joint injury and help with the prognosis and assessment of rehabilitation progress. IV.

  17. A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion

    Directory of Open Access Journals (Sweden)

    Amarendra Jnana H.

    2018-01-01

    Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.

  18. Coordinated Volt/Var Control in Distribution Systems with Distributed Generations Based on Joint Active and Reactive Powers Dispatch

    Directory of Open Access Journals (Sweden)

    Abouzar Samimi

    2016-01-01

    Full Text Available One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC. Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO procures its active and reactive power requirements from Distributed Generations (DGs along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i the scheduled active and reactive power values of generation units; (ii reactive power values of switched capacitor banks; and (iii tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.

  19. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  20. Effect of cooling on thixotropic position-sense error in human biceps muscle.

    Science.gov (United States)

    Sekihara, Chikara; Izumizaki, Masahiko; Yasuda, Tomohiro; Nakajima, Takayuki; Atsumi, Takashi; Homma, Ikuo

    2007-06-01

    Muscle temperature affects muscle thixotropy. However, it is unclear whether changes in muscle temperature affect thixotropic position-sense errors. We studied the effect of cooling on thixotropic position-sense errors induced by short-length muscle contraction (hold-short conditioning) in the biceps of 12 healthy men. After hold-short conditioning of the right biceps muscle in a cooled (5.0 degrees C) or control (36.5 degrees C) environment, subjects perceived greater extension of the conditioned forearm at 5.0 degrees C. The angle differences between the two forearms following hold-short conditioning of the right biceps muscle in normal or cooled conditions were significantly different (-3.335 +/- 1.680 degrees at 36.5 degrees C vs. -5.317 +/- 1.096 degrees at 5.0 degrees C; P=0.043). Induction of a tonic vibration reflex in the biceps muscle elicited involuntary forearm elevation, and the angular velocities of the elevation differed significantly between arms conditioned in normal and cooled environments (1.583 +/- 0.326 degrees /s at 36.5 degrees C vs. 3.100 +/- 0.555 degrees /s at 5.0 degrees C, P=0.0039). Thus, a cooled environment impairs a muscle's ability to provide positional information, potentially leading to poor muscle performance.

  1. The divide within: Older active ICT users position themselves against different 'Others'.

    Science.gov (United States)

    Kania-Lundholm, Magdalena; Torres, Sandra

    2015-12-01

    Although research into older people's internet usage patterns is rapidly growing, their understandings of digital technologies, particularly in relation to how these are informed by their understandings of aging and old age, remain unexplored. This is the case because research on older active ICT users tends to regard old age as an empirically interesting part of the life-course as opposed to a theoretically profuse source of information about why and how older people engage with digital technologies. This article explores - through focus group interviews with 30 older adults (aged 66-89) - the ways in which the social position of old age is used by older active ICT users in order to make sense of how and why they engage with these technologies. In this article, positioning theory is used to shed light on how the older people interviewed positioned themselves as 'active older users' in the interviews. The analysis brings to the fore the divide that older people themselves create as they discursively position themselves against different types of ICT users and non-users (young and old) when describing how and why they engage with digital technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  3. The position of management of czech joint-stock companies on dividend policy

    OpenAIRE

    Sejkora František; Duspiva Pavel

    2015-01-01

    The concept of distributing economic results belongs unequivocally among management’s basic financial decisions. The goal of this article is to identify factors that have a fundamental influence on dividend payout and to further determine and evaluate the position of management on dividend theories. This problematic is current for the conditions of Czech joint-stock companies, because deeper studies in this area are not available for recent years. Nevertheless, currently, the greater majority...

  4. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    Science.gov (United States)

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6

  5. Soft Smart Garments for Lower Limb Joint Position Analysis

    Directory of Open Access Journals (Sweden)

    Massimo Totaro

    2017-10-01

    Full Text Available Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  6. Soft Smart Garments for Lower Limb Joint Position Analysis.

    Science.gov (United States)

    Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia

    2017-10-12

    Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  7. Bistable Articulated Joint

    Science.gov (United States)

    Graighead, Norwood D., II; Preliasco, R. J.; Hult, T. D.

    1986-01-01

    Joint with four-bar-linkage geometry has following attributes: Springs to fully extended fully folded positions. Automatically locks in its extended position. Joint combines zero backlash, positive locking, and centerline pivoting. Used in folding tool handles, portable antenna booms, and many other deployable structures.

  8. Spatio-Temporal Analysis of Human Activities in Indoor Environments through Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger

    with the intuition and personal experience of the planners. Lack of real-time information on task execution has made it difficult to adapt to changes in the schedules, such as delays or suddenly occurring urgent tasks. The recent advances in methods and devices for mobile sensing provides opportunities...... methods for spatio-temporal analysis of human activities in indoor environments based on mobile sensing. The methods aim to improve scheduling and facility utilization by providing information on the used route networks, transportation modes, travel times, and the flow of people through buildings....... The methods are based on large-scale real-time indoor positioning through the use of existing WiFi infrastructures, which allows for easy deployment even in very large building complexes. The methods are designed for real-time operation, which enables them to detect and adjust to changes as they occur...

  9. Joint-2D-SL0 Algorithm for Joint Sparse Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-01-01

    Full Text Available Sparse matrix reconstruction has a wide application such as DOA estimation and STAP. However, its performance is usually restricted by the grid mismatch problem. In this paper, we revise the sparse matrix reconstruction model and propose the joint sparse matrix reconstruction model based on one-order Taylor expansion. And it can overcome the grid mismatch problem. Then, we put forward the Joint-2D-SL0 algorithm which can solve the joint sparse matrix reconstruction problem efficiently. Compared with the Kronecker compressive sensing method, our proposed method has a higher computational efficiency and acceptable reconstruction accuracy. Finally, simulation results validate the superiority of the proposed method.

  10. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities

    Science.gov (United States)

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2017-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group. PMID:25570956

  11. Thumb carpometacarpal joint congruence during functional tasks and thumb range-of-motion activities.

    Science.gov (United States)

    Halilaj, Eni; Moore, Douglas C; Patel, Tarpit K; Laidlaw, David H; Ladd, Amy L; Weiss, Arnold-Peter C; Crisco, Joseph J

    2014-01-01

    Joint incongruity is often cited as a possible etiological factor for the high incidence of thumb carpometacarpal (CMC) joint osteoarthritis (OA) in older women. There is evidence suggesting that biomechanics plays a role in CMC OA progression, but little is known about how CMC joint congruence, specifically, differs among different cohorts. The purpose of this in vivo study was to determine if CMC joint congruence differs with sex, age, and early stage OA for different thumb positions. Using CT data from 155 subjects and a congruence metric that is based on both articular morphology and joint posture, we did not find any differences in CMC joint congruence with sex or age group, but found that patients in the early stages of OA exhibit lower congruence than healthy subjects of the same age group.

  12. From joint implementation to a clean development mechanism : Have the African positions changed?

    International Nuclear Information System (INIS)

    Thomas, J.P.

    1998-01-01

    The economic and political implications of the applications of the Kyoto United Nations Framework Conference on Climate Change for African developing nations were discussed. The concepts of joint implementation, clean development mechanism, and ecological implications were presented. Also discussed were the African positions on these matters, and on the mechanism of Article 12 of the Kyoto protocol (the Clean Development Mechanism). 19 refs., 1 tab

  13. Multi-state supernetwork representation and location selection heuristics for two-person joint activity-travel problem

    NARCIS (Netherlands)

    Liao, F.; Arentze, Theo A.; Timmermans, Harry J P; Leng, Z.; Wang, Y.H.

    2014-01-01

    Joint travel and joint activity participation by multiple people are common mobility phenomena. The joint scheduling of activities, routes, modes and location choices is a challenging problem due to the explosion of the possible choice combinations. In a previous paper, the authors have suggested an

  14. Impact Of Using Joint Productive Activity Approach On Second Language Learners’ Performance In Reading Comprehension At The Basic Education Level In Nigeria

    Directory of Open Access Journals (Sweden)

    HANNA ONYI YUSUF

    2013-01-01

    Full Text Available This study investigated the impact of using joint productive activity on the performance of second language learners in reading comprehension at the basic education level in Nigeria. A sample of forty (40 Junior Secondary II students from Kaduna North and South were used for the study. The study was quasi experimental. Government Junior Secondary School Doka was used as the experimental group while Government Junior Secondary School Makera was used as the control group. Both groups were assessed after six weeks of teaching using two reading comprehension tests. T-test was used to test the hypothesis raised in the study. The findings revealed significant differences in the performance of students taught reading comprehension using joint productive activity. Based on the findings teachers are encouraged to use joint productive activities in teaching reading comprehension. This is a positive deviation from the traditional practice in Nigeria where a teacher is regarded as the sole custodian of knowledge and students are empty tabula rasa who should be passive during class teaching. Teachers need to exploit this new approach by designing teaching comprehension activities that will require second language learners’ collaboration and active participation in accomplishing tasks jointly in class with the teacher.

  15. New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling : negotiating with incomplete information

    NARCIS (Netherlands)

    Ma, H.; Ronald, N.A.; Arentze, T.A.; Timmermans, H.J.P.

    2011-01-01

    Joint activities have been investigated primarily in the context of household-based models of travel demand. The joint decision requires agreement about several issues. Each participant, on the one hand, tries to cooperate with others to reach an agreement on the joint activity and, on the other

  16. Bilingual Intertextuality: The Joint Construction of Bi-Literacy Practices between Parent and Child

    Science.gov (United States)

    Liu, Yu; Vadeboncoeur, Jennifer A.

    2010-01-01

    Based on sociocultural theory, this article examines two activities constituted by a parent and child as jointly constructed bi-literacy practices. Bi-literacy practices enable the parent and child to co-construct conceptual meanings and sense across two languages. Concept development in young children "begins" with meaning in one language and…

  17. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  18. Human Activity Recognition in Real-Times Environments using Skeleton Joints

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2016-06-01

    Full Text Available In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data is processed from real-time video gesture to sequence of frames and getter skeleton joints (Energy Joints, orientation, rotations of joint angles from selected setof frames. We are using joint angle and orientations, rotations information from Kinect therefore less computation required. However, after extracting the set of frames we implemented several classification techniques Principal Component Analysis (PCA with several distance based classifiers and Artificial Neural Network (ANN respectively with some variants for classify our all different gesture models. However, we conclude that use very less number of frame (10-15% for train our system efficiently from the entire set of gesture frames. Moreover, after successfully completion of our classification methods we clinch an excellent overall accuracy 94%, 96% and 98% respectively. We finally observe that our proposed system is more useful than comparing to other existing system, therefore our model is best suitable for real-time application such as in video games for player action/gesture recognition.

  19. Association between disk position and degenerative bone changes of the temporomandibular joints: an imaging study in subjects with TMD.

    Science.gov (United States)

    Cortés, Daniel; Sylvester, Daniel Cortés; Exss, Eduardo; Marholz, Carlos; Millas, Rodrigo; Moncada, Gustavo

    2011-04-01

    The aim of this study was to determine the frequency and relationship between disk position and degenerative bone changes in the temporomandibular joints (TMJ), in subjects with internal derangement (ID). MRI and CT scans of 180 subjects with temporomandibular disorders (TMD) were studied. Different image parameters or characteristics were observed, such as disk position, joint effusion, condyle movement, degenerative bone changes (flattened, cortical erosions and irregularities), osteophytes, subchondral cysts and idiopathic condyle resorption. The present study concluded that there is a significant association between disk displacement without reduction and degenerative bone changes in patients with TMD. The study also found a high probability of degenerative bone changes when disk displacement without reduction is present. No association was found between TMD and condyle range of motion, joint effusion and/or degenerative bone changes. The following were the most frequent morphological changes observed: flattening of the anterior surface of the condyle; followed by erosions and irregularities of the joint surfaces; flattening of the articular surface of the temporal eminence, subchondral cysts, osteophytes; and idiopathic condyle resorption, in decreasing order.

  20. Consideration of Shoulder Joint's Image with the Changed Tube Angle of the Shoulder Oblique Projection in Supine Position

    International Nuclear Information System (INIS)

    Seo, Jae Hyun; Choi, Nam Gil

    2008-01-01

    There is a standard shoulder oblique method (Grashey method) available to view the shoulder joint. This method projects AP view of the shoulder joint so that the Humerus head's subuxation or joint degeneration can be easily visualized. However, in this view, the patients, with supine or sitting or erect position, have to keep their body obliquely. Whereas, the patients who are not well or operated, usually feel very uncomfortable to keep their body in this position and hence, we need other persons' help and much efforts will be needed to get the good quality shoulder joint view. Therefore, we thought of examining a method which shows the joint well by angling the tube to Medio-Lateral direction and without keeping the patients' one side upward in supine position. For this study, total 15 subjects with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 9 males and 6 females. Statistic group analysis was performed with ANOVA test. Scores of the evaluation of the experts were 1.01±0.54 at 25 degrees, 2.50±0.50 at 30 degrees, 2.85±0.36 at 35 degrees and 2.33±0.47 at 40 degrees, respectively, and they were significant(p<0.05, Table 1). Joint space of the Humerus head and Scapula were well distinguished at 35 degrees, 30 degrees and 40 degrees with the almost same score. However, the degree of distortion at 40 degrees was more severe than that at 30 degrees. Ultimately, 30-35 degrees views were shown to yield good quality shoulder oblique images. In conclusion, this method may be very useful for the patients who are uncomfortable and for the emergency patients. In order to get similar or comparable view, the same X-tube angle is recommended to be used before and after the operation. Therefore, we hope that this new angled method seems to be efficient.

  1. Degenerative joint disease on MRI and physical activity: a clinical study of the knee joint in 320 patients

    International Nuclear Information System (INIS)

    Bachmann, G.F.; Rauber, K.; Damian, M.S.; Rau, W.S.; Basad, E.

    1999-01-01

    We examined 320 patients with MRI and arthroscopy after an acute trauma to evaluate MRI in diagnosis of degenerative joint disease of the knee in relation to sports activity and clinical data. Lesions of cartilage and menisci on MRI were registered by two radiologists in consensus without knowledge of arthroscopy. Arthroscopy demonstrated grade-1 to grade-4 lesions of cartilage on 729 of 1920 joint surfaces of 320 knees, and MRI diagnosed 14 % of grade-1, 32 % of grade-2, 94 % of grade-3, and 100 % of grade-4 lesions. Arthroscopy explored 1280 meniscal areas and showed degenerations in 10 %, tears in 11.4 %, and complex lesions in 9.2 %. Magnetic resonance imaging was in agreement with arthroscopy in 81 % showing more degenerations but less tears of menisci than arthroscopy. Using a global system for grading the total damage of the knee joint into none, mild, moderate, or severe changes, agreement between arthroscopy and MRI was found in 82 %. Magnetic resonance imaging and arthroscopy showed coherently that degree of degenerative joint changes was significantly correlated to patient age or previous knee trauma. Patients over 40 years had moderate to severe changes on MRI in 45 % and patients under 30 years in only 22 %. Knee joints with a history of trauma without complete structural or functional reconstitution showed marked changes on MRI in 57 %, whereas stable joints without such alterations had degenerative changes in only 26 %. There was no correlation of degenerative disease to gender, weight, type, frequency, and intensity of sports activity. Therefore, MRI is an effective non-invasive imaging method for exact localization and quantification of chronic joint changes of cartilage and menisci that recommends MRI for monitoring in sports medicine. (orig.) (orig.)

  2. Functional MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1995-01-01

    Conventional X-ray examinations of the patellofemoral joint in 30 , 60 and 90 of knee flexion demonstrate the position of the patella. On the other hand, they have been shown to be insufficient for the diagnosis of patellofemoral maltracking in the critical range between 30 of flexion and full extension. Motion-triggered and ultrafast MRI offer new possibilities for functional diagnosis of the patellofemoral joint under active knee motion. Functional MRI of the patellofemoral joint is suggested as an alternative to arthroscopy, particularly in patients with anterior knee pain or suspected patellar maltracking. (orig.) [de

  3. Detection of Arthritis by Joint Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, W. S. [Dept, of Radiology, Louisiana State University School of Medicine, New Orleans, LA (United States); Weiss, T. E.; Tutton, R. H.; Hidalgo, J. U. [Ochsner Clinic and Ochsner Foundation Hospital, New Orleans, LA (United States)

    1969-05-15

    Detection and identification of early arthritis is frequently difficult with routine methods. Several tracers, {sup 131}I human serum albumin (25 {mu}Ci/10 lb), {sup 99m}Tc human serum albumin (1-3 mCi), {sup 131}I iodipamide (40 {mu}Ci/10 lb), and {sup 99m}Tc pertechnetate (10 mCi), have been employed for joint scanning to detect synovitis produced by arthritis in joints of the extremities. When administered intravenously, the 25% increase in localization of these tracers in the synovial membrane, if there is active synovitis, can be demonstrated by scintillation scanning. This ability to detect synovitis at an early stage enables the joint scan to show areas of active synovitis not demonstrated on roentgenograms. The scan may objectively confirm or disprove questionable physical findings. From this standpoint the technique has been useful in determining whether joint pain is functional or due to arthritis as a negative localization tends to rule out active synovitis as the cause of the pain. The scan demonstration of a positive localization of the tracer in several joints when only one area is symptomatic is evidence that joint pain is due to systemic disease. The short half-life tracera permit serial studies to follow the course of an arthritis process. Use of {sup 99m}Tc pertechnetate and an Anger camera have made joint scanning a practical technique for clinical use. A review of the accuracy of joint scanning in 130 cases as compared to roentgenograms is presented. (author)

  4. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  5. PA positioning significantly reduces testicular dose during sacroiliac joint radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, Nejc [Faculty of Health Sciences, University of Ljubljana (Slovenia); Mc Entee, Mark F., E-mail: mark.mcentee@ucd.i [School of Medicine and Medical Science, University College Dublin 4 (Ireland); Stegnar, Peter [Jozef Stefan International Postgraduate School, Ljubljana (Slovenia)

    2010-11-15

    Radiation dose to the testes in the antero-posterior (AP) and postero-anterior (PA) projection of the sacroiliac joint (SIJ) was measured with and without a scrotal shield. Entrance surface dose, the dose received by the testicles and the dose area product (DAP) was used. DAP measurements revealed the dose received by the phantom in the PA position is 12.6% lower than the AP (p {<=} 0.009) with no statistically significant reduction in image quality (p {<=} 0.483). The dose received by the testes in the PA projection in SIJ imaging is 93.1% lower than the AP projection when not using protection (p {<=} 0.020) and 94.9% lower with protection (p {<=} 0.019). The dose received by the testicles was not changed by the use of a scrotal shield in the AP position (p {<=} 0.559); but was lowered by its use in the PA (p {<=} 0.058). Use of the PA projection in SIJ imaging significantly lowers, the dose received by the testes compared to the AP projection without significant loss of image quality.

  6. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  7. On the problem of knee joint articular space in the X-ray film

    International Nuclear Information System (INIS)

    Saure, D.; Emminger, A.; Freyschmidt, J.

    1980-01-01

    Measurements of the width of the intraarticular space were performed in X-ray films of 64 human knee joints (32 patients), taken laterally, and in standing position after 24 hours of rest in bed or after exposure to load for one hour. In more than half of the knee joints, the width of the intraarticular space increased after load. However, the distance between the articular surfaces rarely changed in the same patient in the same sense in the right and left knee joint, respectively medially and laterally. Hence, this method of indirect measurement of the cartilaginous layer is unsuitable, and the question raised in literature regarding the cartilaginous changes under load can be explained as being due to influx of fluid or as an expression of the viso-elastic properties of the articular cartilage. (orig.) 891 MG/orig. 892 MB [de

  8. Parameter identification for joint elements in a revolute-joint detector manipulator

    International Nuclear Information System (INIS)

    Preissner, C.; Shu, D.; Royston, T.

    2005-01-01

    A revolute-joint robot is being developed for the spatial positioning of an x-ray detector at the Advanced Photon Source. Commercially available revolute-joint manipulators do not meet our size, positioning, or payload specifications. One idea being considered is the modification of a commercially available robot, with the goal of improving the repeatability and trajectory accuracy. Theoretical, computational, and experimental procedures are being used to (1) identify, (2) simulate the dynamics of an existing robot system using a multibody approach, and eventually (3) design an improved version, with low dynamic positioning uncertainty. A key aspect of the modeling and performance prediction is accurate stiffness and damping values for the robot joints. This paper discusses the experimental identification of the stiffness and damping parameters for one robot harmonic drive joint

  9. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-06-30

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, but never with P-PIV. Since the activity of M-PIV was restored by adding the CS of QS-positive and PIV-deficient strain, we hypothesized that the propeptide binds to and inhibits PIV, and is degraded to activate PIV by a QS-dependent factor. In fact, the CS of the QS-positive and PIV-deficient strain was able to degrade the propeptide. Since the responsible factor should be a QS-dependently expressed extracellular protease, we tested QS-dependent proteases of P. aeruginosa and found that LasB (elastase) can degrade the propeptide and activate M-PIV. We purified the propeptide of PIV and confirmed that the propeptide can bind to and inhibit PIV. We suggest that PIV is post-secretionally activated through the extracellular degradation of the propeptide by LasB, a QS-dependent protease.

  10. Determination of MMP-2 and -9 activities in synovial fluid of horses with osteoarthritic and arthritic joint diseases using gelatin zymography and immunocapture activity assays.

    Science.gov (United States)

    Fietz, S; Einspanier, R; Hoppner, S; Hertsch, B; Bondzio, A

    2008-05-01

    Matrix metalloproteinases (MMPs)-2 and -9 activities have been found elevated in synovial fluid from various joint diseases in man. However, in the horse few data are available. To explore the clinical significance of MMP-2 and -9 activities in synovial fluid of horses with different forms of joint diseases. Gelatin zymography and MMP-2 and -9 immunocapture activity assays were applied on synovial fluids from control joints and joints with aseptic joint disease (AJD) and septic arthritis (SA). Additionally, MMP-2 and -9 activities were measured in samples from SA to monitor the disease process. Zymographic analysis revealed that samples from AJD and SA contained significantly increased latent MMP-2 activity compared to controls. Samples from SA showed significantly increased monomeric latent MMP-9 activity compared with all other affected joints and controls. Trace amounts of MMP-9 activity, due to the active and dimer form, were detected in samples from SA; however, these bands were absent in samples from AJD and controls. Using immunocapture activity assays, MMP-2 and -9 activities were found to be significantly elevated in joints from SA compared to controls and AJD samples. MMP-2 activity in samples from AJD was significantly increased compared to controls. Both MMP activities decreased in the joints from SA in the course of successful therapy. Data from zymographic analysis confirmed that MMP-2 and -9 were elevated in equine joint diseases. Immunocapture activity assays have been shown to be suitable for the quantitative determination of MMP-2 and -9 activities in synovial fluid of horses. Both MMP-2 and -9 activities seem to be useful to indicate SA, and MMP-2 activity might be a suitable marker for AJD. These findings encourage the potential use of MMP-2 and -9 as additional aids to clinical investigation. Further work is required to validate the clinical significance of MMP activities in the progress of different joint diseases in horses.

  11. Dual joint space arthrography in temporomandibular joint disorders: Comparison with single inferior joint space arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Sik; Chang, Duk Soo; Lee, Kyung Soo; Kim, Woo Sun; Sung, Jung Ho; Jun, Young Hwan [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1989-02-15

    The temporomandibular joint(TMJ) is really a complex of two synovial space separated by fibrocartilaginous disc. Single inferior joint space arthrography is commonly performed for evaluation of TMJ disorders, which is known to be superior in demonstrating joint dynamics. But it reveals only the inferior surface of the disc. Therefore, dual space arthrography is superior to demonstrate the soft tissue anatomic feature of the joint such as disc position and shape. Authors performed 83 TMJ arthrograms in TMJ problems. Initially, the inferior joint space was done and then the superior space was sequentially contrasted. The follow results were noted: 1. In all cases, dual space arthrography revealed accurate disc shape and positions. 2. Concordant findings between the two techniques: 68 cases (82%). Discordance between the two techniques: 15 cases (18%) 3. Possible causes of discordance between inferior and dual space arthrography. a) Normal varians of anterior recess: 3 cases b) Posterior disc displacement: 4 cases c) Influence of the patient's head position change :4 cases d) False perforation: 2 cases e) Reduction change: 2 cases 4. In 5 cases with anterior displacement, dual space arthrography gave additional findings such as adhesion within the superior space, which could not be evaluated by single inferior space.

  12. MR image findings on advanced internal derangement of the temporomandibular joints. Cases of disc position changed from anterior disc displacement with reduction to without reduction

    International Nuclear Information System (INIS)

    Igarashi, Chinami; Kobayashi, Kaoru; Yuasa, Masao; Imanaka, Masahiro; Yamamoto, Akira

    2005-01-01

    This study was designed to evaluate the suggestion that the clinical findings and MR image findings of anterior disc displacement with reduction cases could not reduce the disc displacement within the follow-up period. We selected 26 joints without remarkable bone changes in the condylar head or glenoid fossa in which reduction disappeared during follow-up. Clinical evaluation focused on temporomandibular pain, trismus, and joint sound. MR imaging was targeted for configuration of articular disc, degree of disc displacement, and condylar head position. Clinical signs observed with progression of the condition were disappearance of joint sound in 12/26 joints (46.1%), temporomandibular pain in 15/26 joints (57.6%), and decreased distance of opening mouth in 19/26 joints (73%). MR image findings were disc configuration changes in 12/26 joints (46.1%), increased degree of anterior displacement of disc in 20/26 joints (76.9%), and condylar head position changes in 9/26 joints (34.6%). It is suggested that the advanced stage of internal derangement is closely associated with the degree of disc displacement. (author)

  13. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  14. Positional and morphologic changes of the temporomandibular joint disc using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahn, Hyoun Suk; Cho, Su Beom; Koh, Kwang Joon

    2001-01-01

    To evaluate displacement and morphologic changes of the temporomandibular joint (TMJ) disc in patient with internal derangement using magnetic resonance imaging (MRI). One hundred and forty five MR images of TMJs in 73 patients were evaluated. Positional and morphologic changes of the TMJ disc were assessed. Lateral or medial disc displacement was also evaluated on cornal images. Among 63 discs with anterior disc displacement, 37 discs were assessed as a biconcave disc and 21 as a deformed disc. Rotational disc displacement was observed in 35 disc. Anteromedial disc displacement was observed in 29 discs, and anterolateral direction in 6 discs. Among 35 rotational displacement, 5 biconcave discs and 21 deformed discs were observed. Rotational and sideways displacement of TMJ discs were found to be common and an important aspect of internal derangement. This study also suggests that sagittal and coronal images of the TMJ have complementary abilities for an assessment of joint abnormality

  15. Sensory innervation of the temporomandibular joint in the mouse.

    Science.gov (United States)

    Dreessen, D; Halata, Z; Strasmann, T

    1990-01-01

    The sensory innervation of the temporomandibular joints (TMJs) of 8 STR/IN mice was investigated by means of light and electron microscopy. Through the cutting of complete semithin sections in series it was possible to investigate the joints thoroughly. Additionally, one joint with its nerve supply was reconstructed three-dimensionally with a computerized three-dimensional programme. The reconstruction was based on one complete semithin section series. The joint's nerve supply originates from the nervus auriculotemporalis and additionally from motor branches of the n. mandibularis: n. massetericus, n. pterygoideus lateralis and the nn. temporales posteriores. The greatest number of nerve fibres and endings is located in the dorsolateral part of the joint capsule. They lie only in the stratum fibrosum and subsynovially. Neither the stratum synoviale nor the discus articularis contain any nerve fibres or endings, whereas the peri-articular loose connective tissue is richly innervated. The only type of nerve ending observed within the joint was the free nerve ending, which is assumed to serve not only as a nociceptor but also as a polymodal mechanoreceptor. Merely within the insertion of the musculus pterygoideus lateralis at the collum mandibulae single stretch receptors of the Ruffini type were observed. Ultrastructurally, they correspond to those described in the cat's knee joint. Neither lamellated nor nerve endings of the Golgi or Pacini type were observed in the joint or in the peri-articular connective tissue. The unexpected paucity of nerve fibres and endings in the TMJ itself of the mouse suggests that the afferent information from the joint is less important for position sense and movement than the afferent information from muscles, tendons and periodontal ligaments.

  16. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing.

    Science.gov (United States)

    Lau, C P; Stott, J R; Toff, W D; Zetlein, M B; Ward, D E; Camm, A J

    1988-09-01

    A clinically available model of an activity-sensing, rate-responsive pacemaker (Activitrax, Medtronic) utilizes body vibration during exercise as an indicator of the need for a rate increase. Although having the advantage of rapid onset of rate response, this system lacks specificity and the rate response does not closely correlate with the level of exertion. In addition, this pacemaker is susceptible to the effects of extraneous vibration. In this study involving 20 normal subjects fitted with an external Activitrax pacemaker, the rate responses to a variety of exercises were studied and were compared with the corresponding sinus rates. The vibration generated at the level of the pacemaker was also measured by accelerometers in three axes. Only a fair correlation (r = 0.51) was achieved between the pacemaker rate and the sinus rate. The total root mean square value of acceleration in either the anteroposterior or the vertical axes was found to have a better correlation (r = 0.8). As the main accelerations during physical activities were in the lower frequency range (0.1-4 Hz), a low-pass filter was used to reduce the influence of extraneous vibration. Selective sensing of the acceleration level may be usefully implemented in an algorithm for activity pacing.

  17. Management of acromioclavicular joint injuries.

    Science.gov (United States)

    Li, Xinning; Ma, Richard; Bedi, Asheesh; Dines, David M; Altchek, David W; Dines, Joshua S

    2014-01-01

    Acromioclavicular joint injuries are among the most common shoulder girdle injuries in athletes and most commonly result from a direct force to the acromion with the arm in an adducted position. Acromioclavicular joint injuries often present with associated injuries to the glenohumeral joint, including an increased incidence of superior labrum anterior posterior (SLAP) tears that may warrant further evaluation and treatment. Anteroposterior stability of the acromioclavicular joint is conferred by the capsule and acromioclavicular ligaments, of which the posterior and superior ligaments are the strongest. Superior-inferior stability is maintained by the coracoclavicular (conoid and trapezoid) ligaments. Type-I or type-II acromioclavicular joint injuries have been treated with sling immobilization, early shoulder motion, and physical therapy, with favorable outcomes. Return to activity can occur when normal shoulder motion and strength are obtained and the shoulder is asymptomatic as compared with the contralateral normal extremity. The management of type-III injuries remains controversial and is individualized. While a return to the previous level of functional activity with nonsurgical treatment has been documented in a number of case series, surgical reduction and coracoclavicular ligament reconstruction has been associated with a favorable outcome and can be considered in patients who place high functional demands on their shoulders or in athletes who participate in overhead sports. Surgical management is indicated for high-grade (≥type IV) acromioclavicular joint injuries to achieve anatomic reduction of the acromioclavicular joint, reconstruction of the coracoclavicular ligaments, and repair of the deltotrapezial fascia. Outcomes after surgical reconstruction of the coracoclavicular ligaments have been satisfactory with regard to achieving pain relief and return to functional activities, but further improvements in the biomechanical strength of these

  18. PA positioning significantly reduces testicular dose during sacroiliac joint radiography

    International Nuclear Information System (INIS)

    Mekis, Nejc; Mc Entee, Mark F.; Stegnar, Peter

    2010-01-01

    Radiation dose to the testes in the antero-posterior (AP) and postero-anterior (PA) projection of the sacroiliac joint (SIJ) was measured with and without a scrotal shield. Entrance surface dose, the dose received by the testicles and the dose area product (DAP) was used. DAP measurements revealed the dose received by the phantom in the PA position is 12.6% lower than the AP (p ≤ 0.009) with no statistically significant reduction in image quality (p ≤ 0.483). The dose received by the testes in the PA projection in SIJ imaging is 93.1% lower than the AP projection when not using protection (p ≤ 0.020) and 94.9% lower with protection (p ≤ 0.019). The dose received by the testicles was not changed by the use of a scrotal shield in the AP position (p ≤ 0.559); but was lowered by its use in the PA (p ≤ 0.058). Use of the PA projection in SIJ imaging significantly lowers, the dose received by the testes compared to the AP projection without significant loss of image quality.

  19. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France

    1979-02-01

    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  20. Comparison of reliability of five patellar position indices at various stifle joint angles in pelvic limbs obtained from cadavers of red foxes (Vulpes vulpes)

    DEFF Research Database (Denmark)

    Miles, James E; Nielsen, Dorte H; Jensen, Bente Rona

    2012-01-01

    To compare 5 patellar position indices at various stifle joint angles in cadavers of red foxes, determine measurement reliability, and assess the suitability of these indices for clinical use.......To compare 5 patellar position indices at various stifle joint angles in cadavers of red foxes, determine measurement reliability, and assess the suitability of these indices for clinical use....

  1. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia

    Science.gov (United States)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul

    2015-04-01

    develop the exchangeable and transferable rule-set with optimal parameterization for such aforementioned tasks. A geomorphometric-based remotely sensed approach is used to understand the tectonic geomorphology in processes affecting the environment at different spatial scales. As a result of this study, questions related to cascading natural disasters, e.g. landslides can be quantitatively answered. Development and applications of seismically induced landslide hazard and risk zonation at different scales are conceptually presented and critically discussed. So far, quantification evaluation of uncertainties associated to spatial seismic hazard and risks prediction remains very challenging to understand and it is an interest of on-going research. In the near-future, it is crucial to address the changes of climate and land-use-land-cover in relation to temporal and spatial pattern of seismically induced landslides. It is also important to assess, model and incorporate the changes due to natural disasters into a sustainable risk management. As a conclusion, the characteristics, development and function of tectonic movement, as one of the components for geomorphological process-response system is crucial for a regional seismic study. With newly emerging multi-sensor of remotely sensed data coupled with the satellite positioning system promises a better mapping and monitoring tool for seismotectonic activities in such a way that it can be used to map, monitor, and model related seismically induced processes for a comprehensive hazard and associated risk assessment.

  3. Stressor experience negatively affects life satisfaction in adolescents: the positive role of sense of coherence.

    Science.gov (United States)

    Moksnes, Unni K; Haugan, G

    2015-10-01

    The aim of the present study was to investigate the association between different normative stressors, sense of coherence and life satisfaction separately for gender in Norwegian adolescents. The interaction effect of stress by sense of coherence in relation to life satisfaction was also investigated. The data are based on a cross-sectional sample of 1239 adolescents (13-18 years) from public elementary and secondary schools in Central Norway. Hierarchical multiple regression analysis was used to evaluate the association between stressors, sense of coherence and life satisfaction, separately for gender. The results showed significant differences between genders, where boys reported higher scores than girls on sense of coherence and life satisfaction, whereas girls scored higher than boys on five of seven stressor domains. All stressors were significantly and inversely associated with life satisfaction in both genders; however, all associations were stronger for girls compared to boys. Sense of coherence showed a significant strong and positive association with life satisfaction, controlled for age and each individual stressor. A significant although weak interaction effect of stress related to romantic relationships by sense of coherence was found in association with life satisfaction for boys; the other interaction effects were nonsignificant in both genders. The results give support for a significant unique role of stressor experience and sense of coherence in relation to life satisfaction in both genders during adolescence, where the associations were especially strong in girls.

  4. Collaborative models for the joint production of core health technology assessments: negative and positive aspects for the joint work of different European agencies.

    Science.gov (United States)

    Lo Scalzo, Alessandra; Vicari, Nicola; Corio, Mirella; Perrini, Maria Rosaria; Jefferson, Tom; Gillespie, Francesca; Cerbo, Marina

    2014-11-01

    The purpose of the European network for Health Technology Assessment (EUnetHTA) is to make HTA agencies collaborate sharing methods and tools thus avoiding duplication of evaluative efforts and allowing resource savings. From 2010 to 2012, the activities of the network were carried out through EUnetHTA Joint Action 1 and Work Package 4 Strand B aimed at producing two Core HTAs with two main objectives: to test the Web based Core model and the collaborative working models. Our objective in this article is to give an historical record of the Work Package activities highlighting what worked and what did not in the collaboration of researchers' groups coming from different agencies. A retrospective description of all the steps for the joint production of the two Core HTAs is provided starting from the first step of selecting technologies of common interest. Primary researchers' views on the whole process have been collected through a semi-structured telephonic interview supported by a questionnaire. Coordinators views were gathered during internal meetings and validated. Majority of respondents thought topic selection procedure was not clear and well managed. About collaborative models, small groups were seen to enable more exchange, whatever the model. According to coordinators, loss of expertise and experience during the production process, different languages, and novelty of the Online Tool were main barriers. Lessons learned from this first experience in Joint Action 1 paved the path for the collaboration in Joint Action 2, as it allowed enhancements and changes in models of collaborations and coordination.

  5. Smell, Odor, and Somatic Work: Sense-Making and Sensory Management

    Science.gov (United States)

    Waskul, Dennis D.; Vannini, Phillip

    2008-01-01

    Sensation (noun) is emergent in joint acts of sensing (verb). To sense, in other words, is to make sense, and sense making entails what we call "somatic work." We investigate these dynamics in the context of olfaction, highlighting how olfaction intersects with social, cultural, and moral order--thus compelling reflexive forms of somatic…

  6. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update.

    Science.gov (United States)

    2015-10-01

    The following statement was prepared by the Special Committee to Revise the Joint American Association of Endodontists/American Academy of Oral and Maxillofacial Radiology Position on Cone Beam Computed Tomography, and approved by the AAE Board of Directors and AAOMR Executive Council in May 2015. AAE members may reprint this position statement for distribution to patients or referring dentists. Copyright © 2015 American Academy of Oral and Maxillofacial Radiology and American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. In Vivo Measurement of Glenohumeral Joint Contact Patterns

    Directory of Open Access Journals (Sweden)

    Bey MichaelJ

    2010-01-01

    Full Text Available The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral. Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.

  8. Object texture recognition by dynamic tactile sensing using active exploration

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum Petersen, Mikkel; Bilberg, Arne

    with a dynamic tactile transducer based on polyvinylidene fluoride (PVDF) piezoelectric film. Different test surfaces are actively explored and the signal from the sensor is used for feature extraction, which is subsequently used for classification. A comparison between the significance of different extracted......For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped...

  9. Hip joint centre position estimation using a dual unscented Kalman filter for computer-assisted orthopaedic surgery.

    Science.gov (United States)

    Beretta, Elisa; De Momi, Elena; Camomilla, Valentina; Cereatti, Andrea; Cappozzo, Aurelio; Ferrigno, Giancarlo

    2014-09-01

    In computer-assisted knee surgery, the accuracy of the localization of the femur centre of rotation relative to the hip-bone (hip joint centre) is affected by the unavoidable and untracked pelvic movements because only the femoral pose is acquired during passive pivoting manoeuvres. We present a dual unscented Kalman filter algorithm that allows the estimation of the hip joint centre also using as input the position of a pelvic reference point that can be acquired with a skin marker placed on the hip, without increasing the invasiveness of the surgical procedure. A comparative assessment of the algorithm was carried out using data provided by in vitro experiments mimicking in vivo surgical conditions. Soft tissue artefacts were simulated and superimposed onto the position of a pelvic landmark. Femoral pivoting made of a sequence of star-like quasi-planar movements followed by a circumduction was performed. The dual unscented Kalman filter method proved to be less sensitive to pelvic displacements, which were shown to be larger during the manoeuvres in which the femur was more adducted. Comparable accuracy between all the analysed methods resulted for hip joint centre displacements smaller than 1 mm (error: 2.2 ± [0.2; 0.3] mm, median ± [inter-quartile range 25%; inter-quartile range 75%]) and between 1 and 6 mm (error: 4.8 ± [0.5; 0.8] mm) during planar movements. When the hip joint centre displacement exceeded 6 mm, the dual unscented Kalman filter proved to be more accurate than the other methods by 30% during multi-planar movements (error: 5.2 ± [1.2; 1] mm). © IMechE 2014.

  10. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.

    Science.gov (United States)

    Eiammanussakul, Trinnachoke; Sangveraphunsiri, Viboon

    2018-01-01

    Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  11. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities

    Directory of Open Access Journals (Sweden)

    Trinnachoke Eiammanussakul

    2018-01-01

    Full Text Available Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  12. Temporomandibular joint involvement caused by Borrelia Burgdorferi.

    Science.gov (United States)

    Lesnicar, Gorazd; Zerdoner, Danijel

    2007-12-01

    Lyme borreliosis is an endemic disease in Slovenia with an incidence of around 150 patients per 100,000 inhabitants. Although the large joints are most typically affected in Lyme borreliosis, there are also periods of disease activity with arthritis or arthralgias involving smaller joints, including the temporo-mandibular joint. During the years between 2000 and 2003, two patients with Lyme borreliosis affecting the temporo-mandibular joints were treated. The patients presented with fatigue and pain in diverse muscle groups accompanied by arthralgia, which was most pronounced in the temporomandibular joint area. None of the patients were febrile or had joint effusions. Both patients were examined by means of biochemical and serological examinations for Borrelia burgdorferi using ELISA assay and Western blot test (both for IgM and IgG), plain radiographs, MR and CT scans, and scinti-scan of the temporo-mandibular joints They both had positive serum markers for an acute B. burgdorferi infection and were treated with intravenous ceftriaxone. None of the patients had clinical or laboratory signs of chronic Lyme disease activity two and four years following therapy, respectively. Roentgenographic and nuclear magnetic resonance imaging of the temporo-mandibular joints had not shown any persistent sign of acute inflammation. There are only few reports of patients with manifest temporo-mandibular joint involvement of Lyme borreliosis in the literature. This report emphasizes the importance of differential diagnosis of acute temporo-mandibular joint arthralgia, of early diagnosis of Lyme borreliosis, and of the necessity for prompt antibiotic treatment.

  13. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  14. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  15. Consideration of Shoulder Joint's Image with the Changed Tube Angle of the Shoulder Oblique Projection in Supine Position

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Hyun; Choi, Nam Gil [Dept. of Radiology, Chonnam National University Hospital, Kwangju (Korea, Republic of)

    2008-06-15

    There is a standard shoulder oblique method (Grashey method) available to view the shoulder joint. This method projects AP view of the shoulder joint so that the Humerus head's subuxation or joint degeneration can be easily visualized. However, in this view, the patients, with supine or sitting or erect position, have to keep their body obliquely. Whereas, the patients who are not well or operated, usually feel very uncomfortable to keep their body in this position and hence, we need other persons' help and much efforts will be needed to get the good quality shoulder joint view. Therefore, we thought of examining a method which shows the joint well by angling the tube to Medio-Lateral direction and without keeping the patients' one side upward in supine position. For this study, total 15 subjects with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 9 males and 6 females. Statistic group analysis was performed with ANOVA test. Scores of the evaluation of the experts were 1.01{+-}0.54 at 25 degrees, 2.50{+-}0.50 at 30 degrees, 2.85{+-}0.36 at 35 degrees and 2.33{+-}0.47 at 40 degrees, respectively, and they were significant(p<0.05, Table 1). Joint space of the Humerus head and Scapula were well distinguished at 35 degrees, 30 degrees and 40 degrees with the almost same score. However, the degree of distortion at 40 degrees was more severe than that at 30 degrees. Ultimately, 30-35 degrees views were shown to yield good quality shoulder oblique images. In conclusion, this method may be very useful for the patients who are uncomfortable and for the emergency patients. In order to get similar or comparable view, the same X-tube angle is recommended to be used before and after the operation. Therefore, we hope that this new angled method seems to be efficient.

  16. MRI of the sacroiliac joints in spondyloarthritis: the added value of intra-articular signal changes for a 'positive MRI'.

    Science.gov (United States)

    Laloo, Frederiek; Herregods, N; Jaremko, J L; Verstraete, K; Jans, L

    2018-05-01

    To determine if intra-articular signal changes at the sacroiliac joint space on MRI have added diagnostic value for spondyloarthritis, when compared to bone marrow edema (BME). A retrospective study was performed on the MRIs of sacroiliac joints of 363 patients, aged 16-45 years, clinically suspected of sacroiliitis. BME of the sacroiliac joints was correlated to intra-articular sacroiliac joint MR signal changes: high T1 signal, fluid signal, ankylosis and vacuum phenomenon (VP). These MRI findings were correlated with final clinical diagnosis. Sensitivity (SN), specificity (SP), likelihood ratios (LR), predictive values and post-test probabilities were calculated. BME had SN of 68.9%, SP of 74.0% and LR+ of 2.6 for diagnosis of spondyloarthritis. BME in absence of intra-articular signal changes had a lower SN and LR+ for spondyloarthritis (SN = 20.5%, LR+ 1.4). Concomitant BME and high T1 signal (SP = 97.2%, LR + = 10.5), BME and fluid signal (SP = 98.6%, LR + = 10.3) or BME and ankylosis (SP = 100%) had higher SP and LR+ for spondyloarthritis. Concomitant BME and VP had low LR+ for spondyloarthritis (SP = 91%, LR + =0.9). When BME was absent, intra-articular signal changes were less prevalent, but remained highly specific for spondyloarthritis. Our results suggest that both periarticular and intra-articular MR signal of the sacroiliac joint should be examined to determine whether an MRI is 'positive' or 'not positive' for sacroiliitis associated with spondyloarthritis.

  17. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period.

  18. Joint Operation Planning

    National Research Council Canada - National Science Library

    2006-01-01

    .... It sets forth joint doctrine to govern the joint operation planning activities and performance of the Armed Forces of the United States in joint operations, and provides the joint doctrinal basis...

  19. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    Science.gov (United States)

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  20. Joint associations of smoking and physical activity with disability retirement: a register-linked cohort study.

    Science.gov (United States)

    Lallukka, Tea; Rahkonen, Ossi; Lahelma, Eero; Lahti, Jouni

    2015-07-29

    We examined the risk of disability retirement by smoking and physical activity, and particularly whether the risk due to smoking is affected by the level of physical activity. Additionally, the contribution of baseline health, sociodemographic and work-related factors to the joint associations of smoking and physical activity with disability retirement was considered. Cohort study. Helsinki, Finland. Employees of the City of Helsinki, aged 40-60 years at baseline in 2000-2002, were followed up using complete register data from the Finnish Centre of Pensions until the end of 2010 (n=6390, with a consent to register linkage from 74%). All-cause disability retirement (ICD-10). Altogether, 608 employees (9.5%) retired due to disability during the follow-up. Cox regression models were fitted to examine the joint associations of smoking and physical activity with subsequent disability retirement. Never-smokers, ex-smokers and moderate smokers who were inactive or moderately active had an increased risk of disability retirement, but if they were vigorously active, they had no excess risk. Instead, all heavy smokers (15 or more cigarettes per day among women, and 20 or more among men), irrespective of physical activity, had an increased risk of disability retirement. The examined associations attenuated but remained for ex-smokers and heavy smokers after adjustments for gender, age, socioeconomic position, mental and physical workload, problem drinking, body mass index and self-rated health. No gender interactions were found. Vigorous physical activity might help prevent disability retirement not only among never-smokers, but even among ex-smokers and moderate smokers. However, among heavy smokers, physical activity is not sufficient to eliminate the adverse effects of smoking on health and work ability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Dealing with Daily Challenges in Dementia (Deal-id Study): An Experience Sampling Study to Assess Caregivers' Sense of Competence and Experienced Positive Affect in Daily Life.

    Science.gov (United States)

    van Knippenberg, Rosalia J M; de Vugt, Marjolein E; Ponds, Rudolf W; Myin-Germeys, Inez; Verhey, Frans R J

    2017-08-01

    Positive emotions and feelings of competence seem to play an important role in the well-being of caregivers of people with dementia. Both are likely to fluctuate constantly throughout the caretaking process. Unlike standard retrospective methods, momentary assessments in daily life can provide insight into these moment-to-moment fluctuations. Therefore, in this study both retrospective and momentary assessments were used to examine the relationship between caregivers' sense of competence and their experienced positive affect (PA) in daily life. Thirty Dutch caregivers provided momentary data on PA and daily sense of competence ratings for 6 consecutive days using the experience sampling methodology. Additionally, they reported retrospectively on their sense of competence with a traditional questionnaire. A positive association was found between retrospective and daily measured sense of competence. Caregivers reported corresponding levels of sense of competence on both measures. Both daily and retrospective sense of competence were positively associated with the experienced levels of PA. However, daily sense of competence appeared to be the strongest predictor. Regarding the variability in PA, only daily sense of competence showed a significant association, with a higher daily sense of competence predicting a more stable PA pattern. This study provides support for redirecting caregiver support interventions toward enhancement of positive rather than negative experiences and focusing more on caregivers' momentary emotional experiences. Momentary assessments are a valuable addition to standard retrospective measures and provide a more comprehensive and dynamic view of caregiver functioning. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  3. Temporomandibular joint

    International Nuclear Information System (INIS)

    Westesson, P.L.; Hatala, M.; Tallents, R.H.; Katzberg, R.W.; Musgrave, M.; Levitt, S.

    1990-01-01

    This paper determines the frequency of MR signs of abnormal temporomandibular joints (TMJs) in asymptomatic volunteers. Forty-two volunteers with 84 clinically normal TMJs were imaged in the sagittal and coronal planes with surface coil MR imaging. Sagittal closed and open and coronal closed views were obtained bilaterally in all volunteers. The images were classified as normal (superior disk position) or abnormal (disk displacement of degenerative joint disease). Eighteen joints in 11 volunteers were abnormal; 12 had disk displacement with reduction and six had disk displacement without reduction, with associated degenerative joint disease in three of the six. Asymptomatic internal derangement and degenerative joint disease occur in about one-fourth of asymptomatic volunteers

  4. Differences in Activation Area Within Brodmann Area 2 Caused by Pressure Stimuli on Fingers and Joints

    Science.gov (United States)

    Choi, Mi-Hyun; Kim, Hyung-Sik; Baek, Ji-Hye; Lee, Jung-Chul; Park, Sung-Jun; Jeong, Ul-Ho; Gim, Seon-Young; Kim, Sung-Phil; Lim, Dae-Woon; Chung, Soon-Cheol

    2015-01-01

    Abstract In this study, a constant pressure stimulus was applied on the 3 joints (first [p1], second [p2], and third [p3] joints) of 4 fingers (index, middle, ring, and little fingers), and the activation areas within Brodmann area 2 (BA 2) were compared for these different fingers and joints by using functional magnetic resonance imaging. Eight healthy male college students (25.4 ± 1.32 years) participated in the study. Each session was composed of 3 blocks, and each block was composed of a Control phase (30 seconds) and a Pressure phase (30 seconds). No pressure stimulus was applied in the Control phase, during which the subjects would simply lay comfortably with their eyes closed. In the Pressure phase, a pressure stimulus was applied onto one of the joints of the selected finger. For each finger and joint, BA 2 areas activated by the pressure stimulus were extracted by the region of interest method. There was a significant difference in the activation areas for the different fingers (P = .042) as well as for the different joints (P = .050). The activation area decreased in the order of the little, index, and middle fingers, as well as in the order of p1, p3, and p2. PMID:26402840

  5. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    Directory of Open Access Journals (Sweden)

    Jesus Olivero-Verbel

    2014-09-01

    Full Text Available Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs as signal molecules for quorum sensing (QS. This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  6. Biomechanics of the natural, arthritic, and replaced human ankle joint

    Science.gov (United States)

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  7. Magnetic resonance imaging-based temporomandibular joint space evaluation in temporomandibular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo [Pusan National Univ. College of Dentistry, Pusan (Korea, Republic of)

    2007-03-15

    Disc and condylar position were observed on MRIs of temporomandibular joint disorder patients and condylar position agreement between MRI and tranascranal radiography was evaluated. MRI and transcranial radiographs of both TM joints from 67 patients with temporomandibular disorder were used. On MRI, the position and shape of disc and condylar position as anterior, middle, posterior was evaluated at medial, center, and lateral views. On transcranial radiographs, condylar position was evaluated using the shortest distance from condyle to fossa in anterior, superior, and posterior directions. 1. On MRI, 96 joints (71.6%) of 134 had anterior disc dispalcement with reduction and 38 joints (28.4%) without reduction. 2. Fourteen (14.6%) of 96 reducible joints showed anterior condylar position. 19 (19.8%) showed central position, 63 joints (65.6%) showed posterior position. Two joints (5.3%) of 38 non-reducible joints showed anterior condylar position, while 9 (23.7%) showed central position, and 27 (71.1%)-posterior position. 3. In 85 joints (63.4%) of 134, the transcranial condylar position agreed with that of the central MRI view, 10 joints (7.5%) with that of medial, 16 joints (11.6%) with that of lateral, and 23 joints (17.2%) disagreed with that of MRI. On MRI, most of the reducible and non-reducible joints showed posterior condylar position. Transcranial radiographs taken with machine designed for TMJ had better agreement of condylar position with that of MRI. Extremely narrow joint spaces or very posterior condylar positions observed on transcranial radiographs had a little more than fifty percent agreement with those of MRIs.

  8. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  9. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Soft Active Materials for Actuation, Sensing, and Electronics

    OpenAIRE

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  11. The Relationship of Social Engagement and Social Support With Sense of Community.

    Science.gov (United States)

    Tang, Fengyan; Chi, Iris; Dong, Xinqi

    2017-07-01

    We aimed to investigate the relationship of engagement in social and cognitive activities and social support with the sense of community (SOC) and its components among older Chinese Americans. The Sense of Community Index (SCI) was used to measure SOC and its four component factors: membership, influence, needs fulfillment, and emotional connection. Social engagement was assessed with 16 questions. Social support included positive support and negative strain. Principal component analysis was used to identify the SCI components. Linear regression analysis was used to detect the contribution of social engagement and social support to SOC and its components. After controlling for sociodemographics and self-rated health, social activity engagement and positive social support were positively related to SOC and its components. This study points to the importance of social activity engagement and positive support from family and friends in increasing the sense of community. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Current Activities of the Joint Council on Economic Education.

    Science.gov (United States)

    Highsmith, Robert J.

    1987-01-01

    Reviews current activities of the Joint Council, among them, a researcher training institute, a new K-12 economic education scope and sequence document, a junior high level test of economic knowledge, an instructional package for advanced placement classes, a textbook conference, a project to help teachers of students who work with at-risk…

  13. Summary of fiscal year 1994 near-infrared spectroscopy moisture sensing activities

    International Nuclear Information System (INIS)

    Reich, F.R.; Johnson, R.E.; Philipp, B.L.; Duncan, J.B.; Schutzenhofer, G.L.

    1995-01-01

    This report summarizes the work to develop and deploy near-infrared (NIR) moisture sensing technology for application to the Hanford Site's high-level nuclear waste materials. This work is jointly supported by the U.S. Department of Energy's (DOE) EM-50 Office of Technology Development Support and the EM-30 Tank Waste Safety and Tank Waste Remediation Systems Programs. A basic NIR system was developed at the Savannah River Laboratory (SRL) with support from DOE's EM-50 Office. The application of this technology to Hanford's high-level wastes (HLW). Including deployment, is supported by DOE's EM-30 Systems Programs. The need to know the moisture content in HLW is driven by concerns for the safety of underground storage tanks that contain or are suspected of containing ferrocyanide and organic types of materials. The NIR technology has application for both ex situ (hot cell core measurements) and in situ waste tank moisture sensing. The cold test/calibration data in this report was generated as part of the total life cycle development path being followed in the development and deployment of the NIR technology at the Hanford Site

  14. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    Science.gov (United States)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  15. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  16. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  17. Nasa's Land Remote Sensing Plans for the 1980's

    Science.gov (United States)

    Higg, H. C.; Butera, K. M.; Settle, M.

    1985-01-01

    Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.

  18. Joint ventures between industry and government

    International Nuclear Information System (INIS)

    Vant, T.R.

    1991-01-01

    Joint venture projects undertaken between government and industry in western Canada are reviewed. The first significant involvement of the Alberta government was with the Syncrude oil sands project. In 1974, one of the original participants, Atlantic Richfield, pulled out of Syncrude for financial reasons. After a government review and search for replacement participation, three provincial governments took equity positions in the project. The Syncrude project has since had a very significant impact on Alberta and Canada in terms of oil production, employment, investment, and profits. The Other Six Leases Operation (OSLO), the OSLO New Ventures Project, and the Lloydminster Bi-Provincial Upgrader would also not have advanced to their present stages of development without government participation. Since oil sand/heavy oil development requires significant capital investment over long lead times, and since there are few private companies that can undertake such a commitment, government assistance is often required. It also makes sense for governments to share upfront risk in such projects for both the long-term economic gain and such immediate benefits as job creation and energy supply security. An industry/government joint venture provides a means of getting large, inherently economic projects such as oil sands developments under way while protecting taxpayers' interests. The success of such a joint venture depends not only on the financing brought to the project but also on the expertise, decision making capability, and balanced management of regulatory and policy issues

  19. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  20. Measurement of rain intensity by means of active-passive remote sensing

    Science.gov (United States)

    Linkova, Anna; Khlopov, Grygoriy

    2014-05-01

    Measurement of rain intensity is of great interest for municipal services and agriculture, particularly because of increasing number of floods and landslides. At that monitoring of amount of liquid precipitation allows to schedule work of hydrological services to inform the relevant public authorities about violent weather in time. That is why development of remote sensing methods for monitoring of rains is quite important task. The inverse problem solution of rain remote sensing is based on the measurements of scattering or radiation characteristics of rain drops. However liquid precipitation has a difficult structure which depends on many parameters. So using only scattering or radiation characteristics obtained by active and passive sensing at a single frequency does not allow to solve the inverse problem. Therefore double frequency sensing is widely used now for precipitation monitoring. Measurement of reflected power at two frequencies allows to find two parameters of drop size distribution of rain drops. However three-parameter distributions (for example gamma distribution) are the most prevalent now as a rain model, so in this case solution of the inverse problem requires the measurement of at least three uncorrelated variables. That is why a priori statistical meteorological data obtained by contact methods are used additionally to the double frequency sensing to solve the inverse problem. In particular, authors proposed and studied the combined method of double frequency sensing of rains based on dependence of the parameters of gamma distribution on rain intensity. The numerical simulation and experimental study shown that the proposed method allows to retrieve the profile of microstructure and integral parameters of rain with accuracy less than 15%. However, the effectiveness of the proposed method essentially depends on the reliability of the used statistical data which are tend to have a strong seasonal and regional variability led to significant

  1. A radiographic study on the condylar position in temporomandibular joint dysfunction patients

    International Nuclear Information System (INIS)

    Bang, Seo Howan; Kim, Jae Duck

    1987-01-01

    The author obtained the transcranial-oblique lateral radiograms from 78 patients (26 male, 52 female) with temporom andibular dysfunction problem. And then, the author analyzed the dimensional changes of the TMJ space on centric occlusion, horizontal condylar movement and antero-posterior positional relationship of condyle to the articular eminence on 2.54 cm mouth opening with clicking, TMJ pain and mouth opening limitation respectively, which were the symptoms of the temporomandibular joint pain dysfunction problem, and compared these data with control group. The results were as follow: 1. In centric occlusion, anterior and posterior TMJ space of experimental group was slightly lesser than those of the control group, also superior TMJ space of experimental group was significantly lesser than that of the control group. (p 2. In 2.54 cm mouth opening, the condylar horizontal movement and the antero-posterior positional relationship to the articular eminence were significantly lesser than those of the control group. (p 3. Examined experimental group, the degree of condylar horizontal movement of affected side was lesser than that of the normal side in 2.54 cm mouth opening.

  2. Glenohumeral Joint Preservation: A Review of Management Options for Young, Active Patients with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Olivier A. van der Meijden

    2012-01-01

    Full Text Available The management of osteoarthritis of the shoulder in young, active patients is a challenge, and the optimal treatment has yet to be completely established. Many of these patients wish to maintain a high level of activity, and arthroplasty may not be a practical treatment option. It is these patients who may be excellent candidates for joint-preservation procedures in an effort to avoid or delay joint replacement. Several palliative and restorative techniques are currently optional. Joint debridement has shown good results and a combination of arthroscopic debridement with a capsular release, humeral osteoplasty, and transcapsular axillary nerve decompression seems promising when humeral osteophytes are present. Currently, microfracture seems the most studied reparative treatment modality available. Other techniques, such as autologous chondrocyte implantation and osteochondral transfers, have reportedly shown potential but are currently mainly still investigational procedures. This paper gives an overview of the currently available joint preserving surgical techniques for glenohumeral osteoarthritis.

  3. Use of a multilayer printed circuit board as the position sensing electrode in an MWPC

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1995-01-01

    An X-ray gas position sensitive detector (PSD) is described. The detector makes use of a single electrode, the X and Y cathode, to sense the electric charge induced by the avalanches generated after the absorption of X-ray photons in a multiwire proportional counter (MWPC). Two-dimensional (2D) localization of photons is achieved by associating one delay line to each coordinate. The delay lines are directly coupled to the X and Y cathode, so that the propagation time of electric pulses can be related to the corresponding avalanche position. Since the position encoding does not involve wires, the anode is the only wire electrode present in the detector, used for collecting the avalanche electrons. (orig.)

  4. Rethinking procrastination: positive effects of "active" procrastination behavior on attitudes and performance.

    Science.gov (United States)

    Chu, Angela Hsin Chun; Choi, Jin Nam

    2005-06-01

    Researchers and practitioners have long regarded procrastination as a self-handicapping and dysfunctional behavior. In the present study, the authors proposed that not all procrastination behaviors either are harmful or lead to negative consequences. Specifically, the authors differentiated two types of procrastinators: passive procrastinators versus active procrastinators. Passive procrastinators are procrastinators in the traditional sense. They are paralyzed by their indecision to act and fail to complete tasks on time. In contrast, active procrastinators are a "positive" type of procrastinator. They prefer to work under pressure, and they make deliberate decisions to procrastinate. The present results showed that although active procrastinators procrastinate to the same degree as passive procrastinators, they are more similar to nonprocrastinators than to passive procrastinators in terms of purposive use of time, control of time, self-efficacy belief, coping styles, and outcomes including academic performance. The present findings offer a more sophisticated understanding of procrastination behavior and indicate a need to reevaluate its implications for outcomes of individuals.

  5. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  6. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  7. Position Statement on Active Outdoor Play

    Science.gov (United States)

    Tremblay, Mark S.; Gray, Casey; Babcock, Shawna; Barnes, Joel; Costas Bradstreet, Christa; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William; Power, Marlene; Sandseter, Ellen Beate Hansen; Simon, Brenda; Brussoni, Mariana

    2015-01-01

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N = 9) and cross-sectorial individuals/organizations (N = 17), and an extensive stakeholder consultation process (N = 1908). More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: “Access to active play in nature and outdoors—with its risks— is essential for healthy child development. We recommend increasing children’s opportunities for self-directed play outdoors in all settings—at home, at school, in child care, the community and nature.” The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development. PMID:26062040

  8. Position Statement on Active Outdoor Play.

    Science.gov (United States)

    Tremblay, Mark S; Gray, Casey; Babcock, Shawna; Barnes, Joel; Bradstreet, Christa Costas; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William; Power, Marlene; Sandseter, Ellen Beate Hansen; Simon, Brenda; Brussoni, Mariana

    2015-06-08

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3-12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N=9) and cross-sectorial individuals/organizations (N=17), and an extensive stakeholder consultation process (N=1908). More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: "Access to active play in nature and outdoors--with its risks--is essential for healthy child development. We recommend increasing children's opportunities for self-directed play outdoors in all settings--at home, at school, in child care, the community and nature." The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development.

  9. Position Statement on Active Outdoor Play

    Directory of Open Access Journals (Sweden)

    Mark S. Tremblay

    2015-06-01

    Full Text Available A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N = 9 and cross-sectorial individuals/organizations (N = 17, and an extensive stakeholder consultation process (N = 1908. More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: “Access to active play in nature and outdoors—with its risks— is essential for healthy child development. We recommend increasing children’s opportunities for self-directed play outdoors in all settings—at home, at school, in child care, the community and nature.” The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development.

  10. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  11. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  12. Intellectual Disability Policy as Developed, Expressed, and Evaluated in AAIDD/The Arc Joint Statements: The Role of Organization Position Statements.

    Science.gov (United States)

    Luckasson, Ruth; Ford, Marty E; McMillan, Elise D; Misilo, Frederick M; Nygren, Margaret A

    2017-07-01

    The American Association on Intellectual and Developmental Disabilities (AAIDD) and The Arc of the United States (The Arc) have a long history of joined efforts to develop, express, and evaluate disability policies. These efforts have resulted in a series of formal statements on critical issues such as education, healthcare, human rights, and criminal justice. Their joint efforts further important policy goals including providing clear strong communication about important policy values and directions, promulgating key principles of high quality supports and services, affirming best professional practices, and emphasizing personal outcomes. In addition, the joint efforts (a) affirm important aspects of organization identity; (b) enhance the organizations' abilities to assure the input of a wide variety of perspectives; (c) engage members' expanded ranges of experiences and talents; (d) multiply staff and leadership resources; (e) increase communication strength and avenues; and (f) establish processes for timely review and revision of policies as critical disability issues arise or change, and new opportunities for policy integration and advancement occur. This article describes the processes used to develop, express, and evaluate the position statements; summarizes the policy content of several joint statements; and discusses the role of these organization position statements.

  13. Reduced articular cartilage thickness in joints without a history of active arthritis in children with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Pradsgaard, Dan Østergaard; Spannow, Anne Helene; Heuck, Carsten

    Background: The functional disability experienced in juvenile idiopathic arthritis is primarily caused by degeneration of the osteocartilaginous structures due to the inflammatory process in the synovium. It is therefore essential for evaluating the therapeutic efficacy to closely monitor...... in joint cartilage thickness (Cth) between healthy children and JIA children measured by US (1). But are there any differences in Cth measured by US between healthy children and joints without a history of activity among JIA children’s. Aim: To investigate a possible effect of the inflammatory process...... on joints never directly affected by arthritic activity during the history of the child’s disease course. Furthermore we wanted to compare joint cartilage thickness within the JIA group in joints with or without a history of activity. Methods: We included 95 Danish JIA children. Age, mean (range) 10...

  14. Joint Intentionality

    Directory of Open Access Journals (Sweden)

    Koreň Ladislav

    2016-03-01

    Full Text Available According to the shared intentionality hypothesis proposed by Michael Tomasello, two cognitive upgrades – joint and collective intentionality, respectively – make human thinking unique. Joint intentionality, in particular, is a mindset supposed to account for our early, species-specific capacity to participate in collaborative activities involving two (or a few agents. In order to elucidate such activities and their proximate cognitive-motivational mechanism, Tomasello draws on philosophical accounts of shared intentionality. I argue that his deference to such cognitively demanding accounts of shared intentional activities is problematic if his theoretical ambition is in part to show that and how early (prelinguistic and precultural capacities for joint action contribute to the development of higher cognitive capacities.

  15. Self-calibrating solar position sensor

    Science.gov (United States)

    Maxey, Lonnie Curt

    2018-01-30

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated by the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.

  16. Negotiating on location, timing, duration, and participant in agent-mediated joint activity-travel scheduling

    NARCIS (Netherlands)

    Ma, Huiye; Ronald, N.A.; Arentze, T.A.; Timmermans, H.J.P.

    2013-01-01

    Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location,

  17. The reliability of knee joint position testing using electrogoniometry

    Directory of Open Access Journals (Sweden)

    Winter Adele

    2008-01-01

    Full Text Available Abstract Background The current investigation examined the inter- and intra-tester reliability of knee joint angle measurements using a flexible Penny and Giles Biometric® electrogoniometer. The clinical utility of electrogoniometry was also addressed. Methods The first study examined the inter- and intra-tester reliability of measurements of knee joint angles in supine, sitting and standing in 35 healthy adults. The second study evaluated inter-tester and intra-tester reliability of knee joint angle measurements in standing and after walking 10 metres in 20 healthy adults, using an enhanced measurement protocol with a more detailed electrogoniometer attachment procedure. Both inter-tester reliability studies involved two testers. Results In the first study, inter-tester reliability (ICC[2,10] ranged from 0.58–0.71 in supine, 0.68–0.79 in sitting and 0.57–0.80 in standing. The standard error of measurement between testers was less than 3.55° and the limits of agreement ranged from -12.51° to 12.21°. Reliability coefficients for intra-tester reliability (ICC[3,10] ranged from 0.75–0.76 in supine, 0.86–0.87 in sitting and 0.87–0.88 in standing. The standard error of measurement for repeated measures by the same tester was less than 1.7° and the limits of agreement ranged from -8.13° to 7.90°. The second study showed that using a more detailed electrogoniometer attachment protocol reduced the error of measurement between testers to 0.5°. Conclusion Using a standardised protocol, reliable measures of knee joint angles can be gained in standing, supine and sitting by using a flexible goniometer.

  18. Quadriceps Activation Failure After Anterior Cruciate Ligament Rupture Is Not Mediated by Knee Joint Effusion

    Science.gov (United States)

    LYNCH, ANDREW D.; LOGERSTEDT, DAVID S.; AXE, MICHAEL J.; SNYDER-MACKLER, LYNN

    2013-01-01

    STUDY DESIGN Descriptive prospective cohort study. OBJECTIVES To investigate the relationships between knee joint effusion, quadriceps activation, and quadriceps strength. These relationships may help clinicians better identify impaired quadriceps activation. BACKGROUND After anterior cruciate ligament (ACL) injury, the involved quadriceps may demonstrate weakness. Experimental data have shown that quadriceps activation and strength may be directly mediated by intracapsular joint pressure created by saline injection. An inverse relationship between quadriceps activation and the amount of saline injected has been reported. This association has not been demonstrated for traumatic effusion. We hypothesized that traumatic joint effusion due to ACL rupture and postinjury quadriceps strength would correlate well with quadriceps activation, allowing clinicians to use effusion and strength measurement as a surrogate for electrophysiological assessment of quadriceps activation. METHODS Prospective data were collected on 188 patients within 100 days of ACL injury (average, 27 days) referred from a single surgeon. A complete clinical evaluation of the knee was performed, including ligamentous assessment and assessment of range of motion and effusion. Quadriceps function was electrophysiologically assessed using maximal volitional isometric contraction and burst superimposition techniques to quantify both strength and activation. RESULTS Effusion grade did not correlate with quadriceps central activation ratio (CAR) (zero effusion: mean ± SD CAR, 93.5% ± 5.8%; trace effusion: CAR, 93.8% ± 9.5%; 1+ effusion: CAR, 94.0% ± 7.5%; 2+/3+ effusion: CAR, 90.6% ± 11.1%). These values are lower than normative data from healthy subjects (CAR, 98% ± 3%). CONCLUSION Joint effusion after ACL injury does not directly mediate quadriceps activation failure seen after injury. Therefore, it should not be used as a clinical substitute for electrophysiological assessment of quadriceps

  19. Joint Group Sparse PCA for Compressed Hyperspectral Imaging.

    Science.gov (United States)

    Khan, Zohaib; Shafait, Faisal; Mian, Ajmal

    2015-12-01

    A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.

  20. 77 FR 74279 - Agency Information Collection (VA/DOD Joint Disability Evaluation Board Claim): Activity under...

    Science.gov (United States)

    2012-12-13

    ... Joint Disability Evaluation Board Claim): Activity under OMB Review AGENCY: Veterans Benefits... . Please refer to ``OMB Control No. 2900-0704.'' SUPPLEMENTARY INFORMATION: Title: VA/DOD Joint Disability Evaluation Board Claim, VA Form 21- 0819. OMB Control Number: 2900-0704. Type of Review: Extension of a...

  1. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

    Science.gov (United States)

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-07-08

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  2. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  3. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frédéric Satgé

    2017-02-01

    Full Text Available In 2015, an emergency state was declared in Bolivia when Poopó Lake dried up. Climate variability and the increasing need for water are potential factors responsible for this situation. Because field data are missing over the region, no statements are possible about the influence of mentioned factors. This study is a preliminary step toward the understanding of Poopó Lake drought using remote sensing data. First, atmospheric corrections for Landsat (FLAASH and L8SR, seven satellite derived indexes for extracting water bodies, MOD16 evapotranspiration, PERSIANN-CDR and MSWEP rainfall products potentiality were assessed. Then, the fluctuations of Poopó Lake extent over the last 26 years are presented for the first time jointly, with the mean regional annual rainfall. Three main droughts are highlighted between 1990 and 2015: two are associated with negative annual rainfall anomalies in 1994 and 1995 and one associated with positive annual rainfall anomaly in 2015. This suggests that other factors than rainfall influenced the recent disappearance of the lake. The regional evapotranspiration increased by 12.8% between 2000 and 2014. Evapotranspiration increase is not homogeneous over the watershed but limited over the main agriculture regions. Agriculture activity is one of the major factors contributing to the regional desertification and recent disappearance of Poopó Lake.

  4. Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein-Podolsky-Rosen pairs: active versus passive receiver

    Science.gov (United States)

    Bich, Cao Thi; Dat, Le Thanh; Van Hop, Nguyen; An, Nguyen Ba

    2018-04-01

    Entanglement plays a vital and in many cases non-replaceable role in the quantum network communication. Here, we propose two new protocols to jointly and remotely prepare a special so-called bipartite equatorial state which is hybrid in the sense that it entangles two Hilbert spaces with arbitrary different dimensions D and N (i.e., a type of entanglement between a quDit and a quNit). The quantum channels required to do that are however not necessarily hybrid. In fact, we utilize four high-dimensional Einstein-Podolsky-Rosen pairs, two of which are quDit-quDit entanglements, while the other two are quNit-quNit ones. In the first protocol the receiver has to be involved actively in the process of remote state preparation, while in the second protocol the receiver is passive as he/she needs to participate only in the final step for reconstructing the target hybrid state. Each protocol meets a specific circumstance that may be encountered in practice and both can be performed with unit success probability. Moreover, the concerned equatorial hybrid entangled state can also be jointly prepared for two receivers at two separated locations by slightly modifying the initial particles' distribution, thereby establishing between them an entangled channel ready for a later use.

  5. Managing Knee Osteoarthritis: The Effects of Body Weight Supported Physical Activity on Joint Pain, Function, and Thigh Muscle Strength.

    Science.gov (United States)

    Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter

    2015-11-01

    To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the

  6. Position Statement on Active Outdoor Play

    OpenAIRE

    Tremblay, Mark S.; Gray, Casey; Babcock, Shawna; Barnes, Joel; Costas Bradstreet, Christa; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William

    2015-01-01

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critic...

  7. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  8. [Short-term effectiveness of Swanson artificial joint replacement in treating posttraumatic metacarpophalangeal joint stiffness].

    Science.gov (United States)

    Lu, Hui; Shen, Xiangqian; Xu, Jihua; Huang, Xin; Ye, Po; Wu, Shoucheng

    2011-11-01

    To investigate the short-term effectiveness of Swanson artificial joint replacement in treating post-traumatic metacarpophalangeal joint stiffness. Between August 2007 and May 2010, 11 cases (13 fingers) of metacarpophalangeal joint stiffness with soft tissue defects underwent Swanson artificial joint replacement. There were 7 males (9 fingers) and 4 females (4 fingers), aged 43 to 65 years with an average of 49 years. The involved fingers included 4 thumbs, 4 index fingers, 3 middle fingers, and 2 ring fingers. The types of injury included open and crush injury in 8 fingers, fracture of the metacarpophalangeal joint in 3 fingers, metacarpophalangeal joint severing in 2 fingers. The time from joint stiffness to hospitalization was 12 to 48 weeks (mean, 24 weeks). The joint activity was (136.82 +/- 28.96) degrees. According to total active motion (TAM) assessment, included good in 1 finger, fair in 6 fingers, and poor in 6 fingers before operation. The activities of daily living were assessed by Sollerman score, which was 45.64 +/- 11.04. The X-ray films and CT scan showed traumatic arthritis of the metacarpophalangeal joint. The incision healed by first intention. All patients were followed up 12 to 34 months (mean, 24.1 months). At last follow-up, the joint activity was (194.64 +/- 28.86) degrees, showing significant difference when compared with preoperative value (t = 25.214, P = 0.000). According to TAM assessment, including excellent in 1 finger, good in 4 fingers, fair in 7 fingers, and poor in 1 finger. The Sollerman score was 67.45 +/- 8.20 postoperatively, showing significant difference when compared with the preoperative score (t = -10.470, P = 0.000). X-ray examination showed no prosthesis fracture, periprosthetic fracture, or joint dislocation occurred at last follow-up. Swanson artificial joint replacement can be applied to treat post-traumatic metacarpophalangeal joint stiffness, which can improve the joint activity and has satisfactory short

  9. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique.

    Science.gov (United States)

    Hyong, In Hyouk

    2015-06-01

    [Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.

  10. Joint Attention in Autism: Teaching Smiling Coordinated with Gaze to Respond to Joint Attention Bids

    Science.gov (United States)

    Krstovska-Guerrero, Ivana; Jones, Emily A.

    2013-01-01

    Children with autism demonstrate early deficits in joint attention and expressions of affect. Interventions to teach joint attention have addressed gaze behavior, gestures, and vocalizations, but have not specifically taught an expression of positive affect such as smiling that tends to occur during joint attention interactions. Intervention was…

  11. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    Directory of Open Access Journals (Sweden)

    Benedikt Fasel

    2017-11-01

    Full Text Available For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error was below 110 mm and precision (error standard deviation was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface. In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow. Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training

  12. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    Science.gov (United States)

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies

  13. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    OpenAIRE

    Carment, Lo?c; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie; Lindberg, P?vel G; Bleton, Jean-Pierre

    2017-01-01

    International audience; BackgroundFocal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues.MethodsNeck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-match...

  14. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  15. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  16. Comprehensive treatment of temporomandibular joint disorders.

    Science.gov (United States)

    Navrátil, Leos; Navratil, Vaclav; Hajkova, Simona; Hlinakova, Petra; Dostalova, Tatjana; Vranová, Jana

    2014-01-01

    Changing lifestyles, decreasing physical activity, which is increasing the number of degenerative joint diseases of various etiology, and certain dental procedures are increasing the number of patients complaining of pain in their temporomandibular joints. The aim of the study was to assess the benefits of comprehensive physiotherapy sessions in order to decrease the number of temporomandibular joint problems, thereby improving the patient's quality of life. An examination by a dentist determined each patient's treatment plan, which consisted of a medical exam, physical therapy and education. Each form of treatment was applied 10 times at intervals of 7-14 days. The main goal of the therapeutic physical education was to redress the muscle imbalance in the mandibular joint. This was achieved by restoring balance between the masticatory muscles, along with releasing the spastic shrouds found in the masticatory muscles. The aim of education was to teach the patient exercises focused on the temporomandibular joint and masticatory muscles. The intensity of the exercises and their composition were individually adjusted and adapted to their current state. Physical therapy consisted of the application of pulsed magnetic therapy, laser therapy, and non-invasive positive thermotherapy. The above procedure was conducted on a therapeutic group of 24 patients (3 men and 20 women). In the course of therapy, there were no complications, and all patients adhered to the prescribed regime. None reported any side effects. The mean treatment duration was 123 +/- 66 days. The outcome of the therapy was evaluated as described in the methodology, the degree of pain affecting the joint, and the opening ability of the mouth. In both parameters, there was a significant decline in patient pain. In a study devoted to tactics of rehabilitation treatment for temporomandibular joint disorders, the need for comprehensive long-term therapy, involving education, and learning proper chewing habits

  17. Don't worry, be active: positive affect and habitual physical activity.

    Science.gov (United States)

    Pasco, Julie A; Jacka, Felice N; Williams, Lana J; Brennan, Sharon L; Leslie, Eva; Berk, Michael

    2011-12-01

    The aim of ths study was to examine the association between habitual physical activity and positive and negative affect. This cross-sectional study included 276 women aged 20 +, from the Geelong Osteoporosis Study. Habitual physical activity and other lifestyle exposures were assessed by questionnaire, concurrent with anthropometric assessments. Physical activity was categorized as very active, moderately active or sedentary. Positive and negative affect scores were derived from the validated 20 item Positive and Negative Affect Schedule (PANAS) self-report and were categorized into tertiles. There was a pattern of lower positive affect scores for lower levels of physical activity. With very active as the reference category, the odds for having a positive affect score in the highest tertile were sequentially lower for those who were moderately active (OR = 0.53, 95%CI 0.28-1.01) and sedentary (OR = 0.28, 95%CI 0.10-0.75). Associations were sustained after adjusting for body mass index and polypharmacy (OR = 0.50, 95%CI 0.26-0.96 and OR = 0.25, 95%CI 0.09-0.72, respectively). These associations were not explained by age, negative affect score or other exposures. No association was detected between physical activity and negative affect scores. This study reports that higher positive affect scores, encompassing emotions such as interest, excitement, enthusiasm and alertness, are associated with higher levels of habitual physical activity. These observations warrant further investigations into possible mechanistic interplay between neurobiological and psychosocial factors that underpin this association.

  18. Muscle activation and estimated relative joint force during running with weight support on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Hovgaard-Hansen, Line; Cappelen, Katrine Louise

    2016-01-01

    Running on a lower-body positive pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg mus...

  19. Experimental joint immobilization in guinea pigs. Effects on the knee joint

    Science.gov (United States)

    Marcondesdesouza, J. P.; Machado, F. F.; Sesso, A.; Valeri, V.

    1980-01-01

    In young and adult guinea pigs, the aftermath experimentally induced by the immobilization of the knee joint in hyperextended forced position was studied. Joint immobilization which varied from one to nine weeks was attained by plaster. Eighty knee joints were examined macro and microscopically. Findings included: (1) muscular hypotrophy and joint stiffness in all animals, directly proportional to the length of immobilization; (2) haemoarthrosis in the first week; (3) intra-articular fibrous tissue proliferation ending up with fibrous ankylosis; (4) hyaline articular cartilage erosions; (5) various degrees of destructive menisci changes. A tentative explanation of the fibrous tissue proliferation and of the cartilage changes is offered.

  20. The Effect of Theraband Training on Position Sense of Internal and External Rotator Muscles in Male Athletes with Shoulder Impingement Syndrome

    Directory of Open Access Journals (Sweden)

    Ramin Moharrami

    2015-10-01

    Full Text Available Objective: This study evaluated the effect of theraband training on Position sense of internal and external rotator muscles in male athletes with shoulder impingement syndrome. Materials & Methods: In this semi-experimental interventional study 30 cases of men with Shoulder syndrome with age range of 20 to 30 years participated. They were divided in test and control groups, each group including 15 people through non-random and purposeful method Biodex System 3 Made in America was used to measure position sense of internal and external rotator muscles. For data analysis independent 7 paired t-test was used in SPSS software (version 21. Results: The experimental group showed significant improvement after six weeks of theraband training in the internal and external rotator muscles in three 90,45,0 degree angle at a significance level of 0.05 (P=0.05. Conclusion: The results of this study showed that of theraband training resulted in improved position sense of internal and external rotator muscles in male athletes with impingement syndrome thus, the benefits of these exercises can be used widely in team sports and also for easy and quick rehabilitation of patients.

  1. Relationship of condylar position to disc position and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Incesu, L.; Taskaya-Yilmaz, N. E-mail: nergizy@omu.edu.tr; Oeguetcen-Toller, M.; Uzun, E

    2004-09-01

    Introduction/objective: The purpose of this study was to assess whether condylar position, as depicted by magnetic resonance imaging, was an indicator of disc morphology and position. Methods and material: One hundred and twenty two TMJs of 61 patients with temporomandibular joint disorder were examined. Condylar position, disc deformity and degree of anterior disc displacement were evaluated by using magnetic resonance imaging. Results and discussion: Posterior condyle position was found to be the main feature of temporomandibular joints with slight and moderate anterior disc displacement. No statistical significance was found between the condylar position, and reducing and nonreducing disc positions. On the other hand, superior disc position was found to be statistically significant for centric condylar position. Conclusion: It was concluded that posterior condyle position could indicate anterior disc displacement whereas there was no relation between the position of condyle and the disc deformity.

  2. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    Science.gov (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  3. Comparison of facet joint activity on 99mTc-MDP SPECT/CT with facet joint signal change on MRI with fat suppression.

    Science.gov (United States)

    Lehman, Vance T; Murphy, Robert C; Schenck, Louis A; Carter, Rickey E; Johnson, Geoffrey B; Kotsenas, Amy L; Morris, Jonathan M; Nathan, Mark A; Wald, John T; Maus, Timothy P

    2016-01-01

    We compared signal change on magnetic resonance imaging (MRI) with fat suppression and bone scan activity of lumbar facet joints to determine if these two imaging findings are correlated. We retrospectively identified all patients who underwent imaging of the lumbar spine for pain evaluation using both technetium-99m methylene disphosphonate single-photon emission computed tomography/computed tomography (99mTc-MDP SPECT/CT) and MRI with at least one fat-suppressed T2- or T1-weighted sequence with gadolinium enhancement within a 180-day interval, at our institution between 1 January 2008 and 19 February 2013. Facet joint activity on 99mTc-MDP SPECT/CT and peri-facet signal change on MRI were rated as normal or increased. Agreement between the two examination types were determined with the κ and prevalence-adjusted bias-adjusted κ (PABAK) statistics. This study included 60 patients (28 male, 47%), with a mean age of 49±19.7 years (range, 12-93 years). The κ value indicated no agreement between 99mTc-MDP SPECT/CT and MRI (κ=-0.026; 95% confidence interval: -0.051, 0.000). The PABAK values were fair to high at each spinal level, which suggests that relatively low disease prevalence lowered the κ values. Together, the κ and PABAK values indicate that there is some degree of intermodality agreement, but that it is not consistent. Overall, facet joint signal change on fat-suppressed MRI did not always correlate with increased 99mTc-MDP SPECT/CT activity. MRI and 99mTc-MDP SPECT/CT for facet joint evaluation should not be considered interchangeable examinations in clinical practice or research.

  4. The unsuspected prosthetic joint infection : incidence and consequences of positive intra-operative cultures in presumed aseptic knee and hip revisions.

    Science.gov (United States)

    Jacobs, A M E; Bénard, M; Meis, J F; van Hellemondt, G; Goosen, J H M

    2017-11-01

    Positive cultures are not uncommon in cases of revision total knee and hip arthroplasty (TKA and THA) for presumed aseptic causes. The purpose of this study was to assess the incidence of positive intra-operative cultures in presumed aseptic revision of TKA and THA, and to determine whether the presence of intra-operative positive cultures results in inferior survival in such cases. A retrospective cohort study was assembled with 679 patients undergoing revision knee (340 cases) or hip arthroplasty (339 cases) for presumed aseptic causes. For all patients three or more separate intra-operative cultures were obtained. Patients were diagnosed with a previously unsuspected prosthetic joint infection (PJI) if two or more cultures were positive with the same organism. Records were reviewed for demographic details, pre-operative laboratory results and culture results. The primary outcome measure was infection-free implant survival at two years. The incidence of unsuspected PJI was 27 out of 340 (7.9%) in TKA and 41 out of 339 (12.1%) in THA. Following revision TKA, the rate of infection-free implant survival in patients with an unsuspected PJI was 88% (95% confidence intervals (CI) 60 to 97) at two years compared with 98% (95% CI 94 to 99) in patients without PJI (p = 0.001). After THA, the rate of survival was similar in those with unsuspected PJI (92% (95% CI 73 to 98) at two years) and those without (94% (95% CI 89 to 97), p = 0.31). Following revision of TKA and THA for aseptic diagnoses, around 10% of cases were found to have positive cultures. In the knee, such cases had inferior infection-free survival at two years compared with those with negative cultures; there was no difference between the groups following THA. Cite this article: Bone Joint J 2017;99-B:1482-9. ©2017 The British Editorial Society of Bone & Joint Surgery.

  5. Temporomandibular joint movement

    International Nuclear Information System (INIS)

    Maeda, M.; Itou, S.; Ishii, Y.; Yamamoto, K.; Kawamura, Y.; Matsuda, T.; Hayashi, N.; Ishii, J.

    1992-01-01

    Ten temporomandibular joints (TMJs) of 5 healthy volunteers and 19 TMJs of internal derangements in 16 patients with splint therapy were examined with MR imaging. T1-weighted images were obtained only in the closed mouth position, and gradient recalled acquisition in steady state (GRASS) images were obtained in active opening and closing phases, allowing a pseudodynamic display of TMJ movement. All patients received protrusive splint treatment. The usefulness of MR imaging to assess the efficacy of splint therapy was evaluated. Corrected disk position with the splint in place was clearly demonstrated in 9 TMJs, corresponding with elimination of reciprocal clicking. Ten other TMJs of anterior disk displacement without reduction showed uncorrected disk position by the splint. This information could confirm the therapeutic efficacy, or suggest other treatment alternatives. GRASS MR imaging can provide accurate and physiologic information about disk function in initial and follow-up assessment of protrusive splint therapy. (orig.)

  6. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    Science.gov (United States)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  7. Neural network committees for finger joint angle estimation from surface EMG signals

    Directory of Open Access Journals (Sweden)

    Reddy Narender P

    2009-01-01

    Full Text Available Abstract Background In virtual reality (VR systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals.

  8. Older active users of ICTs make sense of their engagement

    Directory of Open Access Journals (Sweden)

    Magdalena Kania-Lundholm

    2017-05-01

    Full Text Available Research on older people’s ICT usage tends to focus on either the ways in which they go about learning to use these technologies or the impact that ICTs have on their lives. This research seems, in other words, to take for granted that older people are ‘digital immigrants’ as the digital divide debate proposed. Research that specifically looks at the ways in which older ICT users make sense of their engagement with these technologies is still limited. This article explores therefore – through focus group interviews – how a group of older people who are active ICT users make sense of their ‘digital nativeness’. The analysis shows that the interviewees are well aware that their ICT proficiency differentiated them from their peers, which is why they make sense of their ICT usage by making reference to the issues that make them ‘exceptional’ older people. These include the fact that they have used computers for many years and therefore made ICT usage an everyday habit early on; the fact that most older people do not have the skills that they themselves have, which is why they feel the need to share them with others; and the fact that their lifelong experience means they can use these technologies in judicious ways. By bringing attention to how older active ICT users make sense of their engagement, this article contributes to the notion of the digital spectrum and the debate on the inequalities that ICT proficiency brings about. 

  9. Potential effect modifiers of the association between physical activity patterns and joint symptoms in middle aged women.

    Science.gov (United States)

    Peeters, Geeske; Edwards, Kimberley L; Brown, Wendy J; Barker, Anna L; Arden, Nigel; Redmond, Anthony C; Conaghan, Philip G; Cicuttini, Flavia; Mishra, Gita D

    2017-12-06

    To examine whether body mass index (BMI), menopausal status and hormone therapy (HT) use modify the association between physical activity (PA) patterns throughout middle age and incidence and prevalence of joint symptoms in later middle age in women. Data were from 6661 participants (born 1946-1951) in the Australian Longitudinal Study on Women's Health. Surveys were completed every three years from 1998 to 2010 with questions on joint pain and stiffness, PA, height and weight, menopausal symptoms, and HT use. PA patterns were defined as 'none-or-low', 'low-or-meeting-guidelines', 'fluctuating' or 'meeting guidelines-at-all-times' (reference pattern). Logistic regression was used to examine the association between PA patterns and prevalent (in 2010) and cumulative incident (1998-2010) joint symptoms and effect modification by patterns of BMI, menopausal status and HT. The groups representing 'fluctuating' (odds ratio [OR]=1.34, 99% confidence interval [CI]=1.04-1.72) and 'none-or-low' physical activity (OR=1.60, CI =1.08-2.35) had higher odds of incident joint symptoms than those 'meeting guidelines-at-all-times'. Stratification by BMI showed that this association was statistically significant in the obese group only. No evidence was found for effect modification by menopausal status or HT use. The findings were similar for prevalent joint symptoms. Maintaining at least low levels of physical activity throughout middle age was associated with lower prevalence and incidence of joint symptoms in later life. This apparent protective effect of physical activity on joint symptoms was stronger in obese women than in under or normal weight women, and not related to menopause and HT status. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  11. Optimal Energy-Efficient Sensing and Power Allocation in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Xia Wu

    2014-01-01

    Full Text Available We consider a joint optimization of sensing parameter and power allocation for an energy-efficient cognitive radio network (CRN in which the primary user (PU is protected. The optimization problem to maximize the energy efficiency of CRN is formulated as a function of two variables, which are sensing time and transmit power, subject to the average interference power to the PU and the target detection probability. During the optimizing process, the quality of service parameter (the minimum rate acceptable to secondary users (SUs has also been taken into consideration. The optimal solutions are analyzed and an algorithm combined with fractional programming that maximizes the energy efficiency for CRN is presented. Numerical results show that the performance improvement is achieved by the joint optimization of sensing time and power allocation.

  12. Gymnasts and non-athletes muscle activation and torque production at the ankle joint

    Directory of Open Access Journals (Sweden)

    Natália Batista Albuquerque Goulart

    2014-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2014v16n5p555  Artistic Gymnasts (AG execute specific movements that require substantial movement control and force production at the ankle joint. This high demand might change the neuromechanical properties of the ankle joint muscles in these athletes compared to non-athlete girls (NAG. The aim of this study was to compare muscle activation and torque production at the ankle joint between AG and NAG. Ten AG (11.70 ± 1.06 years of age and 10 NAG (11.70 ± 1.49 years of age participated in the study. Electromyographic  (EMG signals of medial gastrocnemius (MG, soleus (SO and tibialis anterior (TA were obtained simultaneously to the maximal isometric plantarflexion (PFT and dorsiflexion (DFT torques of the dominant limb during a maximal voluntary isometric contraction (MVIC at five different joint angles (20°, 10°, 0°, -10° e -20°. Neuromuscular efficiency was also calculated by the Torque/EMG ratio. AG presented higher PFT (p0.05. In addition, AG showed higher values for plantar flexion neuromuscular efficiency and smaller values of dorsiflexion neuromuscular efficiency compared to the NAG (p<0.01. Higher sports demands of AG determined higher PFT, higher plantar flexor efficiency, smaller DFT but similar activation of MG, SO and TA compared to NAG.

  13. Negotiating on location, timing, duration, and participant in agent-mediated joint activity-travel scheduling

    Science.gov (United States)

    Ma, Huiye; Ronald, Nicole; Arentze, Theo A.; Timmermans, Harry J. P.

    2013-10-01

    Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location, participants, and timing and take different approaches to make their decisions. In this context, joint activity participation requires negotiation among agents involved, so that conflicts among the agents can be addressed. Existing mechanisms do not fully provide a solution when utility functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in time and space as an application, we propose a novel negotiation approach, which takes into account these properties, such as continuous and discrete issues, and nonlinear and non-monotonic utility functions, by defining a concession strategy and a search mechanism. The results of experiments show that agents having these properties can negotiate efficiently. Furthermore, the negotiation procedure affects individuals’ choices of location, timing, duration, and participants.

  14. Anti-quorum sensing activity of essential oils from Colombian plants.

    Science.gov (United States)

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250 µg mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.

  15. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft

    2014-02-01

    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  17. Physical activity behaviour in men with inflammatory joint disease: a cross-sectional register-based study.

    Science.gov (United States)

    Hammer, Nanna Maria; Midtgaard, Julie; Hetland, Merete Lund; Krogh, Niels Steen; Esbensen, Bente Appel

    2018-05-01

    Physical activity is recommended as an essential part of the non-pharmacological management of inflammatory joint disease, but previous research in this area has predominantly included women. The aim of this study was to examine physical activity behaviour in men with inflammatory joint disease. The study was conducted as a cross-sectional register-based study. Data on physical activity behaviour in men with RA, PsA and AS were matched with sociodemographic and clinical variables extracted from the DANBIO registry. Logistic regression analyses using multiple imputations were performed to investigate demographic and clinical variables associated with regular engagement in physical activity (moderate-vigorous ⩾2 h/week). Descriptive statistics were applied to explore motivation, barriers and preferences for physical activity. A total of 325 men were included of whom 129 (40%) engaged in regular physical activity. In univariate analyses, higher age, visual analogue scale (VAS) for pain, VAS fatigue, VAS patient's global, CRP level, disease activity, functional disability and current smoking were negatively associated with regular engagement in physical activity. In the final multivariable regression model only a high VAS fatigue score (⩾61 mm) (OR = 0.228; CI: 0.119, 0.436) remained significantly independently associated with regular physical activity. A majority of men with inflammatory joint disease do not meet the recommendations of regular physical activity. Both sociodemographic and clinical parameters were associated with engagement in physical activity, and fatigue especially seems to play a pivotal role in explaining suboptimal physical activity behaviour in this patient group.

  18. The study of active tectonic based on hyperspectral remote sensing

    Science.gov (United States)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm

  19. Hamlet without the Prince: Shortcomings of an Activity-Based Account of Joint Attention

    Science.gov (United States)

    Hobson, R. Peter

    2007-01-01

    In this commentary, I consider several strengths of the position adopted by Racine and Carpendale (2007), but suggest that the authors are in danger of overstating their case. In doing so, they appear to sideline an issue that should be pivotal for accounts of joint attention: how does a child come to arrive at an understanding that people, both…

  20. Eyes that bind us: Gaze leading induces an implicit sense of agency.

    Science.gov (United States)

    Stephenson, Lisa J; Edwards, S Gareth; Howard, Emma E; Bayliss, Andrew P

    2018-03-01

    Humans feel a sense of agency over the effects their motor system causes. This is the case for manual actions such as pushing buttons, kicking footballs, and all acts that affect the physical environment. We ask whether initiating joint attention - causing another person to follow our eye movement - can elicit an implicit sense of agency over this congruent gaze response. Eye movements themselves cannot directly affect the physical environment, but joint attention is an example of how eye movements can indirectly cause social outcomes. Here we show that leading the gaze of an on-screen face induces an underestimation of the temporal gap between action and consequence (Experiments 1 and 2). This underestimation effect, named 'temporal binding,' is thought to be a measure of an implicit sense of agency. Experiment 3 asked whether merely making an eye movement in a non-agentic, non-social context might also affect temporal estimation, and no reliable effects were detected, implying that inconsequential oculomotor acts do not reliably affect temporal estimations under these conditions. Together, these findings suggest that an implicit sense of agency is generated when initiating joint attention interactions. This is important for understanding how humans can efficiently detect and understand the social consequences of their actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  2. Functional disorders of the temporomandibular joints: Internal derangement of the temporomandibular joint.

    Science.gov (United States)

    Chang, Chih-Ling; Wang, Ding-Han; Yang, Mu-Chen; Hsu, Wun-Eng; Hsu, Ming-Lun

    2018-04-01

    Temporomandibular joint (TMJ) is one of the most complex joints of the human body. Due to its unique movement, in terms of combination of rotation and translator movement, disc of the joint plays an important role to maintain its normal function. In order to sustain the normal function of the TMJ, disc must be kept in proper position as well as maintain normal shape in all circumstances. Once the disc is not any more in its normal position during function of the joint, disturbance of the joint can be occurred which will lead to subsequent distortion of the disc. Shape of the disc can be influenced by many factors i.e.: abnormal function or composition of the disc itself. Etiology of the internal derangement of the disc remains controversial. Multifactorial theory has been postulated in most of previous manuscripts. Disc is composed of mainly extracellular matrix. Abnormal proportion of collagen type I & III may also leads to joint hypermobility which may be also a predisposing factor of this disorder. Thus it can be recognized as local manifestation of a systemic disorder. Different treatment modalities with from conservative treatment to surgical intervention distinct success rate have been reported. Recently treatment with extracellular matrix injection becomes more and more popular to strengthen the joint itself. Since multifactorial in character, the best solution of the treatment modalities should be aimed to resolve possible etiology from different aspects. Team work may be indication to reach satisfied results. Copyright © 2018. Published by Elsevier Taiwan.

  3. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    Science.gov (United States)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  4. Local Positioning Systems in (Game) Sports

    Science.gov (United States)

    Leser, Roland; Baca, Arnold; Ogris, Georg

    2011-01-01

    Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications. PMID:22163725

  5. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  6. Quantifying the impact of transient joint symptoms, chronic joint symptoms, and arthritis: a population-based approach.

    Science.gov (United States)

    Busija, Lucy; Buchbinder, Rachelle; Osborne, Richard H

    2009-10-15

    To estimate the prevalence and co-occurrence of self-reported doctor-diagnosed arthritis, chronic joint symptoms (pain, aching, stiffness, or swelling on most days for a month), and transient joint symptoms (pain, aching, stiffness, or swelling but not on most days for a month), and to compare the sociodemographic characteristics, activity limitations, and health-related quality of life (HRQOL) of people with joint conditions with those who have no self-reported doctor-diagnosed arthritis and no joint symptoms. Data from the 2004 population-based South Australian Health Omnibus Survey (n = 2,840, ages 18-96 years) were used in the study. Activity limitations were assessed using 10 activity limitations questions from the Short Form 36 health survey. HRQOL was assessed using the Assessment of Quality of Life scale. Half of all respondents reported having joint problems, with 26%, 11%, and 13% reporting self-reported doctor-diagnosed arthritis, chronic joint symptoms, and transient joint symptoms, respectively. Chronic joint conditions (self-reported doctor-diagnosed arthritis and chronic joint symptoms) accounted for 74% of all joint problems and were associated with higher odds of activity limitations and poorer HRQOL. The frequency of transient and chronic joint symptoms was highest among middle-aged participants (ages 45-54 years for transient and 45-64 years for chronic joint symptoms) and those who had a body mass index in the obese range. Prevalence of self-reported doctor-diagnosed arthritis increased with age and was higher among women and those who were overweight or obese. This study documented the high prevalence and impact of joint conditions in the community. Chronic joint conditions affect daily life and are substantial barriers for effective public health interventions aimed at reducing obesity and inactivity.

  7. Sports activity after total joint arthroplasty: recommendations for the counseling physician.

    Science.gov (United States)

    Buza, John A; Fink, Leslie A; Levine, William N

    2013-02-01

    Sports activity after total joint arthroplasty (TJA) has become an increasingly important topic, as many younger patients seeking TJA have higher postoperative expectations with regard to return to athletic activity. Our current knowledge of this area is largely based on retrospective clinical studies and surveys of surgeon recommendations. The decision to participate in sports after TJA depends on the patient's general health, prior athletic experience, type of TJA, and desired sporting activity. Ultimately, patients should discuss these factors with their physician in order to make an educated decision regarding sports activity after TJA. This article summarizes the best available evidence to help guide physicians in their conversation with patients regarding safe and appropriate sports activity after TJA.

  8. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  9. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process

    Directory of Open Access Journals (Sweden)

    WU Lixin

    2017-10-01

    Full Text Available Research to the remote sensed thermal abnormity with fault activity and seismogenic process is a vital topic of the Earth observation and remote sensing application. It is presented that a systematic review on the international researches on the topic during the past 30 years, in the respects of remote sensing data applications, anomaly analysis methods, and mechanism understanding. Firstly, the outlines of remote sensing data applications are given including infrared brightness temperature, microwave brightness temperature, outgoing longwave radiation, and assimilated data from multiple earth observations. Secondly, three development phases are summarized as qualitative analysis based on visual interpretation, quantitative analysis based on image processing, and multi-parameter spatio-temporal correlation analysis. Thirdly, the theoretical hypotheses presented for the mechanism understanding are introduced including earth degassing, stress-induced heat, crustal rock battery conversion, latent heat release due to radon decay as well as multi-spheres coupling effect. Finally, three key directions of future research on this topic are proposed:anomaly recognizing by remote sensing monitoring and data analysis for typical tectonic activity areas; anomaly mechanism understanding based on earthquake-related earth system responses; spatio-temporal correlation analysis of air-based, space-based and ground-based stereoscopic observations.

  10. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement.

    Science.gov (United States)

    Luan, Congcong; Yao, Xinhua; Shen, Hongyao; Fu, Jianzhong

    2018-03-27

    Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers' longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  11. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement

    Directory of Open Access Journals (Sweden)

    Congcong Luan

    2018-03-01

    Full Text Available Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  12. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage.

    Science.gov (United States)

    Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie

    2014-01-29

    Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced

  13. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    Science.gov (United States)

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage

  14. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  15. Understanding and overcoming the “positive profits with negative surplus-value” paradox

    Directory of Open Access Journals (Sweden)

    GUSTAVO DAOU LUCAS

    Full Text Available ABSTRACT This paper explains the “positive profits with negative surplus-value” example of Steedman (1975 and shows that while in joint production systems individual labour values can be negative, the claim that the total labour embodied in the surplus product of the economy (surplus-value can also be negative is based on assumptions that have no economic meaning (such as negative activity levels.The paper also provides a way to measure the surplus-value of joint production systems which overcomes the problems of the traditional concept and restates the proposition that a positive amount of surplus labour is a necessary condition for positive profits.

  16. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  17. Joint Effects of Physical Activity and BMI on Risk of Hypertension in Women: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Caroline Jackson

    2014-01-01

    Full Text Available Introduction. There is debate as to whether physical activity counteracts the adverse effect of weight on health outcomes. We investigated how physical activity modifies the effect of body mass index (BMI on hypertension risk. Methods. BMI, physical activity, and hypertension were measured at baseline and at three-year interval for 14 years (from 1996 to 2010, in 10,339 participants in the Australian Longitudinal Study on Women’s Health. Generalised estimating equation models for binary repeated measures were performed to determine the individual and joint effects of BMI and physical activity on incident hypertension. Results. At baseline (mean age 47.6±1.5 SD, 57% were healthy weight, 28% overweight, and 14% obese. Increasing BMI and decreasing physical activity were associated with increased risk of hypertension. Physical activity attenuated the positive association between weight and risk of hypertension, especially for obese women. Compared to healthy weight high active women, risk of hypertension in obese high active women was 3.4 times greater (OR 3.43, 95% CI 2.68, 4.39 and in obese inactive women 4.9 times greater (OR 4.91, 95% CI 3.92, 6.13. Conclusions. Both physical activity and maintenance of a healthy body weight are associated with lower risk of hypertension. Physical activity reduced but did not remove the effect of obesity on hypertension risk.

  18. Interactive football training based on rebounders with hit position sensing and audio/light feedback

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj; Rasmussen, Majken Kirkegård

    A Danish football club has established a (24/7/365) football training facility, where the authors developed an interactive training installation (http://vimeo.com/28446312). The training installation consist of a 12*12 m square with 4 M­Station Pro rebounders equipped with sensors that enable hit...... position sensing. The rebounders are equipped with loudspeakers and lights being used to call for the ball. Here we discuss one game “Pass ­and ­Turn”, which is meant to train speed in controlling a returned ball, reaction to a call for the ball and turning to hit rebounders to the left, right, behind...

  19. Objective Assessment of Joint Stiffness: A Clinically Oriented Hardware and Software Device with an Application to the Shoulder Joint.

    Science.gov (United States)

    McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A

    2012-08-30

    Examination of articular joints is largely based on subjective assessment of the "end-feel" of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral joint during three common manual joint examination tests with the arm in six positions. An electromagnetic tracking system recorded three-dimensional positions of sensors attached to a clinician examiner and a patient. A hand-held force transducer recorded manually applied translational forces. The force and joint displacement were time-synchronized and the joint stiffness was calculated as a quantitative representation of the joint "end-feel." A methodology and specific system checks were developed to enhance clinical testing reproducibility and precision. The device and testing protocol were tested on 31 subjects (15 with healthy shoulders, and 16 with a variety of shoulder impairments). Results describe the stiffness responses, and demonstrate the feasibility of using the device and methods in clinical settings.

  20. Who Benefits From Humor-Based Positive Psychology Interventions? The Moderating Effects of Personality Traits and Sense of Humor.

    Science.gov (United States)

    Wellenzohn, Sara; Proyer, René T; Ruch, Willibald

    2018-01-01

    The evidence for the effectiveness of humor-based positive psychology interventions (PPIs; i.e., interventions aimed at enhancing happiness and lowering depressive symptoms) is steadily increasing. However, little is known about who benefits most from them. We aim at narrowing this gap by examining whether personality traits and sense of humor moderate the long-term effects of humor-based interventions on happiness and depressive symptoms. We conducted two placebo-controlled online-intervention studies testing for moderation effects. In Study 1 ( N = 104) we tested for moderation effects of basic personality traits (i.e., psychoticism, extraversion, and neuroticism) in the three funny things intervention, a humor-based PPI. In Study 2 ( N = 632) we tested for moderation effects of the sense of humor in five different humor-based interventions. Happiness and depressive symptoms were assessed before and after the intervention, as well as after 1, 3, and 6 months. In Study 2, we assessed sense of humor before and 1 month after the intervention to investigate if changes in sense of humor go along with changes in happiness and depressive symptoms. We found moderating effects only for extraversion. Extraverts benefitted more from the three funny things intervention than introverts. For neuroticism and psychoticism no moderation effects were found. For sense of humor, no moderating effects were found for the effectiveness of the five humor-based interventions tested in Study 2. However, changes in sense of humor from pretest to the 1-month follow-up predicted changes in happiness and depressive symptoms. Taking a closer look, the playful attitude- and sense of humor-subscales predicted changes in happiness and depression for up to 6 months. Overall, moderating effects for personality (i.e., extraversion) were found, but none for sense of humor at baseline. However, increases in sense of humor during and after the intervention were associated with the interventions

  1. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    Science.gov (United States)

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Novel Sensing Circuit with Large Sensing Margin for Embedded Spin-Transfer Torque MRAMs

    DEFF Research Database (Denmark)

    Bagheriye, Leila; Toofan, Siroos; Saeidi, Roghayeh

    -disturbance and high yield. In this paper, to deal with the read reliability challenge, a high sensing margin sensing circuit with strong positive feedback is proposed. It improves the sensing margin (SM) by 10.42X/3.3X and a with 1.24X/1.59X lower read energy at iso-sensing time (2ns) in comparison...

  3. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    Science.gov (United States)

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  4. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    Directory of Open Access Journals (Sweden)

    Gastone Ciuti

    2015-03-01

    Full Text Available Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  5. Stereosat: A proposed private sector/government joint venture in remote sensing from space

    Science.gov (United States)

    Anglin, R. L.

    1980-01-01

    Stereosat, a free flying Sun synchronous satellite whose purpose is to obtain worldwide cloud-free stereoscopic images of the Earth's land masses, is proposed as a joint private sector/government venture. A number of potential organization models are identified. The legal, economic, and institutional issues which could impact the continuum of potential joint private sector/government institutional structures are examined.

  6. A survey of joint activities and travel of household members in the Greater Copenhagen Metropolitan Region

    DEFF Research Database (Denmark)

    Thorhauge, Mikkel; Vuk, Goran; Kaplan, Sigal

    2012-01-01

    and family quality time, within a daily schedule. The current study unveils the joint activity and travel patterns of household members in the Copenhagen area, as part of the ACTUM research project, funded by the Danish Strategic Research Council, for the development of a new generation of activity......The traditional approach for modeling transport-related choices in Denmark refers to individual decision makers. However, in daily activities and travel choices individuals function according to the commitments as family members, and thus their choices derive from the welfare needs of other family...... members. A family-based approach enables to capture intra-household interactions and the priorities of household members in scheduling their daily activities, thus adding to the realism and the predictive strength of transport models. Joint activities and travel occur in order to maximize efficiency...

  7. Creative Mathematical Games: The Enhancement of Number Sense of Kindergarten Children Through Fun Activities

    Science.gov (United States)

    Mirawati

    2017-02-01

    The research departed from an issue found regarding the number sense of kindergarten children and as a solution to this problem, the research proposes the use of creative mathematical games in the teaching and learning. Departing from the issue and the offered solution, the following problems are about Children’s ability of number sense before and after the implementation of creative mathematical games; the forms of creative mathematical games in improving children’s number sense; the implementation of creative mathematical games in improving children’s number sense; and the factors possibly affecting the implementation of creative mathematical games. This study use action research method. The data were collected through observation, interview, and documentation and then qualitatively analysed using thematic analysis technique. The findings show that children respond positively to the creative mathematical games. They demonstrate fairly high enthusiasm and are able to understand number as well as its meaning in various ways. Children’s number sense has also improved in terms of one-on-one correspondence and mentioning and comparing many objects. The factors possibly affecting the implementation of these creative mathematical games are the media and the stages of teaching and learning that should be in accordance with the level of kindergarten children’s number sense.

  8. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  9. Second-site prosthetic joint infection in patients with multiple prosthetic joints.

    Science.gov (United States)

    Clesham, Kevin; Hughes, Andrew J; O' hEireamhoin, Sven; Fleming, Catherine; Murphy, Colin G

    2018-04-10

    Prosthetic joint infections (PJIs) are among the most serious complications in arthroplasty. A second-site PJI in patients with multiple prosthetic joints increases morbidity, with many requiring further revision procedures. We aimed to establish why some patients with multiple joints develop second-site infections. Our institution's arthroplasty database was reviewed from 2004 to 2017. All PJIs were identified, and all patients with more than one prosthetic joint in situ were included. We recorded risk factors, causative organisms, number of procedures and length of stay. Forty-four patients meeting the criteria were identified. Four patients (9.1%) developed second-site infection. Eight patients (18.2%) developed re-infection of the primary PJI. Positive MRSA carrier status and PJI of a total knee replacement were associated with an increased risk of a second episode of infection. Patients who developed further infection had more frequent admission and longer lengths of stay than isolated PJIs. Higher morbidity and use of hospital resources are associated with this cohort of patients. PJIs in total knee replacements and positive MRSA status are associated with higher rates of second infection. Identifying this vulnerable cohort of patients at an early stage is critical to ensure measures are taken to reduce the risks of further infection.

  10. Joint involvement in patients affected by systemic lupus erythematosus: application of the swollen to tender joint count ratio

    Directory of Open Access Journals (Sweden)

    E. Cipriano

    2015-09-01

    Full Text Available Joint involvement is a common manifestation in systemic lupus erythematosus (SLE. According to the SLE disease activity index 2000 (SLEDAI-2K, joint involvement is present in case of ≥2 joints with pain and signs of inflammation. However this definition could fail to catch all the various features of joint involvement. Alternatively the Swollen to Tender joint Ratio (STR could be used. This new index, which was originally proposed for rheumatoid arthritis (RA patients, is based on the count of 28 swollen and tender joints. Our study is, therefore, aimed to assess joint involvement in a SLE cohort using the STR. SLE patients with joint symptoms (≥1 tender joint were enrolled over a period of one month. Disease activity was assessed by SLEDAI-2K. We performed the swollen and tender joint count (0-28 and calculated the STR. Depending on the STR, SLE patients were grouped into three categories of disease activity: low (STR1.0. We also calculated the disease activity score based on a 28-joint count and the erythrocyte sedimentation rate (DAS28-ESR. We enrolled 100 SLE patients [F/M 95/5, mean±standard deviation (SD age 46.3±10.6 years, mean±SD disease duration 147.1±103.8 months]. The median of tender and swollen joints was 4 (IQR 7 and 1 (IQR 2.5, respectively. The median STR value was 0.03 (IQR 0.6. According to the STR, disease activity was low in 70 patients, moderate in 23 and high in 7. A significant correlation was identified between STR values and DAS28 (r=0.33, p=0.001. The present study suggests a correlation between STR and DAS28, allowing an easier and faster assessment of joint involvement with the former index.

  11. Prediction by promoter logic in bacterial quorum sensing.

    Directory of Open Access Journals (Sweden)

    Navneet Rai

    2012-01-01

    Full Text Available Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR to activate its cognate promoter (pR. By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable or abrupt (bistable density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR - its measured activity as a function of LuxI and LuxR levels - contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype.

  12. Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers

    Directory of Open Access Journals (Sweden)

    von Eisenhart-Rothe Ruediger

    2012-11-01

    Full Text Available Abstract Background The posterior cruciate ligament (PCL plays an important role in maintaining physiological kinematics and function of the knee joint. To date mainly in-vitro models or combined magnetic resonance and fluoroscopic systems have been used for quantifying the importance of the PCL. We hypothesized, that both tibiofemoral and patellofemoral kinematic patterns are changed in PCL-deficient knees, which is increased by isometric muscle flexion. Therefore the aim of this study was to simultaneously investigate tibiofemoral and patellofemoral 3D kinematics in patients suffering from PCL deficiency during different knee flexion angles and under neuromuscular activation. Methods We enrolled 12 patients with isolated PCL-insufficiency as well as 20 healthy volunteers. Sagittal MR-images of the knee joint were acquired in different positions of the knee joint (0°, 30°, 90° flexion, with and without flexing isometric muscle activity on a 0.2 Tesla open MR-scanner. After segmentation of the patella, femur and tibia local coordinate systems were established to define the spatial position of these structures in relation to each other. Results At full extension and 30° flexion no significant difference was observed in PCL-deficient knee joints neither for tibiofemoral nor for patellofemoral kinematics. At 90° flexion the femur of PCL-deficient patients was positioned significantly more anteriorly in relation to the tibia and both, the patellar tilt and the patellar shift to the lateral side, significantly increased compared to healthy knee joints. While no significant effect of isometric flexing muscle activity was observed in healthy individuals, in PCL-deficient knee joints an increased paradoxical anterior translation of the femur was observed at 90° flexion compared to the status of muscle relaxation. Conclusions Significant changes in tibiofemoral and patellofemoral joint kinematics occur in patients with isolated PCL

  13. Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers.

    Science.gov (United States)

    von Eisenhart-Rothe, Ruediger; Lenze, Ulrich; Hinterwimmer, Stefan; Pohlig, Florian; Graichen, Heiko; Stein, Thomas; Welsch, Frederic; Burgkart, Rainer

    2012-11-26

    The posterior cruciate ligament (PCL) plays an important role in maintaining physiological kinematics and function of the knee joint. To date mainly in-vitro models or combined magnetic resonance and fluoroscopic systems have been used for quantifying the importance of the PCL. We hypothesized, that both tibiofemoral and patellofemoral kinematic patterns are changed in PCL-deficient knees, which is increased by isometric muscle flexion. Therefore the aim of this study was to simultaneously investigate tibiofemoral and patellofemoral 3D kinematics in patients suffering from PCL deficiency during different knee flexion angles and under neuromuscular activation. We enrolled 12 patients with isolated PCL-insufficiency as well as 20 healthy volunteers. Sagittal MR-images of the knee joint were acquired in different positions of the knee joint (0°, 30°, 90° flexion, with and without flexing isometric muscle activity) on a 0.2 Tesla open MR-scanner. After segmentation of the patella, femur and tibia local coordinate systems were established to define the spatial position of these structures in relation to each other. At full extension and 30° flexion no significant difference was observed in PCL-deficient knee joints neither for tibiofemoral nor for patellofemoral kinematics. At 90° flexion the femur of PCL-deficient patients was positioned significantly more anteriorly in relation to the tibia and both, the patellar tilt and the patellar shift to the lateral side, significantly increased compared to healthy knee joints. While no significant effect of isometric flexing muscle activity was observed in healthy individuals, in PCL-deficient knee joints an increased paradoxical anterior translation of the femur was observed at 90° flexion compared to the status of muscle relaxation. Significant changes in tibiofemoral and patellofemoral joint kinematics occur in patients with isolated PCL-insufficiency above 30 degrees of flexion compared to healthy volunteers. Since

  14. Influence of the position of the foot on MRI signal in the deep digital flexor tendon and collateral ligaments of the distal interphalangeal joint in the standing horse.

    Science.gov (United States)

    Spriet, M; Zwingenberger, A

    2009-05-01

    Hyperintense signal is sometimes observed in ligaments and tendons of the equine foot on standing magnetic resonance examination without associated changes in size and shape. In such cases, the presence of a true lesion or an artifact should be considered. A change in position of a ligament or tendon relative to the magnetic field can induce increased signal intensity due to the magic angle effect. To assess if positional rotation of the foot in the solar plane could be responsible for artifactual changes in signal intensity in the collateral ligaments of the distal interphalangeal joint and in the deep digital flexor tendon. Six isolated equine feet were imaged with a standing equine magnetic resonance system in 9 different positions with different degrees of rotation in the solar plane. Rotation of the limb induced a linear hyperintense signal on all feet at the palmar aspect of one of the lobes of the deep digital flexor tendon and at the dorsal aspect of the other lobe. Changes in signal intensity in the collateral ligaments of the distal interphalangeal joint occurred with rotation of the limb only in those feet where mediolateral hoof imbalance was present. The position and conformation of the foot influence the signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint. The significance of increased signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint should be interpreted with regard to the position and the conformation of the foot.

  15. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    Science.gov (United States)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  16. Candidate lesion-based criteria for defining a positive sacroiliac joint MRI in two cohorts of patients with axial spondyloarthritis

    DEFF Research Database (Denmark)

    Weber, Ulrich; Østergaard, Mikkel; Lambert, Robert G W

    2015-01-01

    OBJECTIVE: To determine candidate lesion-based criteria for a positive sacroiliac joint (SIJ) MRI based on bone marrow oedema (BMO) and/or erosion in non-radiographic axial spondyloarthritis (nr-axSpA); to compare the performance of lesion-based criteria with global evaluation by expert readers. ...... for classification of axial SpA, reflecting the contextual information provided by T1SE and STIR sequences....

  17. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  18. Modeling and control of a self-sensing polymer metal composite actuator

    International Nuclear Information System (INIS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems. (paper)

  19. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  20. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  1. Effects of age, sex and arm on the precision of arm position sense-left-arm superiority in healthy right-handers.

    Science.gov (United States)

    Schmidt, Lena; Depper, Lena; Kerkhoff, Georg

    2013-01-01

    Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.

  2. The effect of low-load exercise on joint pain, function, and activities of daily living in patients with knee osteoarthritis.

    Science.gov (United States)

    Peeler, Jason; Ripat, Jacquie

    2018-01-01

    Knee osteoarthritis has a lifetime risk of nearly one in two, with obese individuals being most susceptible. While exercise is universally recognized as a critical component for management, unsafe or ineffective exercise frequently leads to exacerbation of joint symptoms. Evaluate the effect of a 12week lower body positive pressure (LBPP) supported low-load treadmill walking program on knee pain, joint function, and performance of daily activities in patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community based, multidisciplinary musculoskeletal medicine clinic. Thirty-one patients, aged 50-75, with a BMI ≥25kg/m 2 and radiographic confirmed mild to moderate knee OA. Twelve week LBPP treadmill walking exercise regimen. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Canadian Occupational Performance Measure (COPM) were used to quantify joint symptoms and patient function; isokinetic thigh muscle strength was evaluated; and a 10-point VAS was used to quantify acute knee pain while walking. Baseline and follow-up data were compared in order to examine the effect of the 12week exercise intervention. There was a significant difference between baseline and follow-up data: KOOS and COPM scores both improved; thigh muscle strength increased; and acute knee pain during full weight bearing walking diminished significantly. Participation in a 12week LBPP supported treadmill walking exercise regimen significantly enhanced patient function and quality of life, as well as the ability to perform activities of daily living that patient's self-identified as being important, yet difficult to perform. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Temporo-mandibular joint. Morpho-functional considerations].

    Science.gov (United States)

    Scutariu, M D; Indrei, Anca

    2004-01-01

    The temporo-mandibular joint is distinguished from most other synovial joints of the body by two features: 1. the two jointed components carry teeth whose position and occlusion introduce a very strong influence on the movements of the temporo-mandibular joint and 2. its articular surfaces are not covered by hyaline cartilage, but by a dense, fibrous tissue. This paper describes the parts of the temporo-mandibular joint: the articular surfaces (the condylar process of the mandible and the glenoid part of the temporal bone), the fibrocartilaginous disc which is interposed between the mandibular and the temporal surface, the fibrous capsule of the temporo-mandibular joint and the ligaments of this joint. All these parts present a very strong adaptation at the important functions of the temporo-mandibular joint.

  4. Differences in Activation Area Within Brodmann Area 2 Caused by Pressure Stimuli on Fingers and Joints: In Case of Male Subjects.

    Science.gov (United States)

    Choi, Mi-Hyun; Kim, Hyung-Sik; Baek, Ji-Hye; Lee, Jung-Chul; Park, Sung-Jun; Jeong, Ul-Ho; Gim, Seon-Young; Kim, Sung-Phil; Lim, Dae-Woon; Chung, Soon-Cheol

    2015-09-01

    In this study, a constant pressure stimulus was applied on the 3 joints (first [p1], second [p2], and third [p3] joints) of 4 fingers (index, middle, ring, and little fingers), and the activation areas within Brodmann area 2 (BA 2) were compared for these different fingers and joints by using functional magnetic resonance imaging. Eight healthy male college students (25.4 ± 1.32 years) participated in the study. Each session was composed of 3 blocks, and each block was composed of a Control phase (30 seconds) and a Pressure phase (30 seconds). No pressure stimulus was applied in the Control phase, during which the subjects would simply lay comfortably with their eyes closed. In the Pressure phase, a pressure stimulus was applied onto one of the joints of the selected finger. For each finger and joint, BA 2 areas activated by the pressure stimulus were extracted by the region of interest method. There was a significant difference in the activation areas for the different fingers (P = .042) as well as for the different joints (P = .050). The activation area decreased in the order of the little, index, and middle fingers, as well as in the order of p1, p3, and p2.

  5. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion.

    Science.gov (United States)

    Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A

    2015-06-01

    Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P  .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P  .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. A clamping force measurement system for monitoring the condition of bolted joints on railway track joints and points

    International Nuclear Information System (INIS)

    Tesfa, B; Horler, G; Thobiani, F Al; Gu, F; Ball, A D

    2012-01-01

    Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. 1. Sense changes in the clamping force of the joint and report this fact. 2. Provide compatibility with the large dynamic range of clamping force. 3. Satisfy the limitations in terms of physical size. 4. Provide the means to electronically interface with the washer. 5. Provide a means of powering the washer in situ. 6. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show

  7. In vitro activity of ceftaroline against staphylococci from prosthetic joint infection.

    Science.gov (United States)

    Park, Kyung-Hwa; Greenwood-Quaintance, Kerryl E; Patel, Robin

    2016-02-01

    We tested the in vitro activity of ceftaroline by Etest against staphylococci recovered from patients with prosthetic joint infection, including 97 Staphylococcus aureus isolates (36%, oxacillin resistant) and 74 Staphylococcus epidermidis isolates (74%, oxacillin resistant). Ceftaroline inhibited all staphylococci at ≤0.5 μg/mL. The ceftaroline MIC(90/50) values for methicillin-susceptible S. aureus, methicillin-susceptible S. epidermidis, methicillin-resistant S. aureus, and methicillin-resistant S. epidermidis were 0.19/0.125, 0.094/0.047, 0.5/0.38, and 0.38/0.19 μg/mL, respectively. Based on these in vitro findings, ceftaroline should be further evaluated as a potential therapeutic option for the treatment of prosthetic joint infection caused by methicillin-susceptible and methicillin-resistant S. aureus and S. epidermidis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A technique for position sensing and improved momentum evaluation of microparticle impacts in space.

    Science.gov (United States)

    Mcdonnell, J. A. M.; Abellanas, C.

    1972-01-01

    The design of a three element piezoelectric microparticle impact sensing diaphragm is described which is sensitive to the detection of momentum propagated by the bending wave. The design achieves a sensitivity of .03 microdyn/sec and optimizes the detection of the direct-path pulse from impact relative to secondary reflections and interference from discontinuities. Measurement of the relative arrival times and the maximum amplitudes of the outputs from the three piezoelectric sensors leads to the determination of the impact position and the normally resolved impact momentum exchange. Coincidence of the signals and a partial redundancy of data leads to a very high noise discrimination.

  9. MR findings of the temporomandibular joint with crepitus

    International Nuclear Information System (INIS)

    Sano, Tsukasa; Yamamoto, Mika; Yamaga, Takayoshi; Takahashi, Koji; Masuda, Saeko; Tagaya, Atsuko; Michi, Ken-ichi; Okano, Tomohiro

    1997-01-01

    Crepitus is an important sign for diagnosis of arthrosis of the temporomandibular joint (TMJ). The presence of crepitus can be evaluated by the listening test previously proposed by our group. However, TMJ can be diagnosed by MR imaging showing the disc position and related findings including bony changes and joint effusion. This study investigated the relationship between the presence of crepitus and pathology of the joint. Fourteen joints with crepitus diagnosed by the listening test were examined in this study. TMJ was categorized into four types based on findings on double spin echo MR images. The results were as follows: Of fourteen joints with crepitus, five (36%) were showed as normal superior disc position. The remaining 9 joints (64%) were diagnosed with disc displacement, of which, 6 showed reduction, one was without reduction and 2 without reduction were associated with arthrosis. Statistical analysis using the data obtained here and other data showed that the joints with crepitus tended to show disk displacement. There was no significant difference between the degree of certainty about the presence of the crepitus and the distribution of joint pathology. Joint effusion was observed only in the joints with displacement. These results indicated that TMJ with crepitus is associated with varied joint pathology. (author)

  10. MR findings of the temporomandibular joint with crepitus

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Tsukasa; Yamamoto, Mika; Yamaga, Takayoshi; Takahashi, Koji; Masuda, Saeko; Tagaya, Atsuko; Michi, Ken-ichi; Okano, Tomohiro [Showa Univ., Tokyo (Japan). School of Dentistry

    1997-06-01

    Crepitus is an important sign for diagnosis of arthrosis of the temporomandibular joint (TMJ). The presence of crepitus can be evaluated by the listening test previously proposed by our group. However, TMJ can be diagnosed by MR imaging showing the disc position and related findings including bony changes and joint effusion. This study investigated the relationship between the presence of crepitus and pathology of the joint. Fourteen joints with crepitus diagnosed by the listening test were examined in this study. TMJ was categorized into four types based on findings on double spin echo MR images. The results were as follows: Of fourteen joints with crepitus, five (36%) were showed as normal superior disc position. The remaining 9 joints (64%) were diagnosed with disc displacement, of which, 6 showed reduction, one was without reduction and 2 without reduction were associated with arthrosis. Statistical analysis using the data obtained here and other data showed that the joints with crepitus tended to show disk displacement. There was no significant difference between the degree of certainty about the presence of the crepitus and the distribution of joint pathology. Joint effusion was observed only in the joints with displacement. These results indicated that TMJ with crepitus is associated with varied joint pathology. (author)

  11. Inflammatory disorders mimicking periprosthetic joint infections may result in false positive α-defensin.

    Science.gov (United States)

    Plate, Andreas; Stadler, Laura; Sutter, Reto; Anagnostopoulos, Alexia; Frustaci, Dario; Zbinden, Reinhard; Fucentese, Sandro F; Zinkernagel, Annelies S; Zingg, Patrick O; Achermann, Yvonne

    2018-02-26

    The antimicrobial peptide α-defensin has recently been introduced as potential "single" biomarker with a high sensitivity and specificity for the preoperative diagnosis of periprosthetic joint infections (PJIs). However, most studies assessed the benefits of the test with exclusion of patients with rheumatic diseases. We aimed to evaluate the α-defensin test in a cohort study without exclusion of cases with inflammatory diseases. Between June 2016 and June 2017, we prospectively included cases with a suspected PJI and an available lateral flow test α-defensin (Synovasure®) in synovial fluid. We compared the test result to the diagnostic criteria for PJIs published by an International Consensus Group in 2013. We included 109 cases (49 hips, 60 knees) in which preoperative α-defensin tests had been performed. Thereof, 20 PJIs (16 hips, 4 knees) were diagnosed. Preoperative α-defensin tests were positive in 25 cases (22.9%) with a test sensitivity and specificity of 90% and 92.1% (95% confidence interval [CI], 68.3 - 98.8% and 84.5 - 96.8%, respectively), and a high negative predictive value of 97.6% (95% CI, 91.7 - 99.4%). We interpreted seven α-defensin tests as false positive, mainly in cases with inflammatory rheumatic diseases, including crystal deposition diseases. A negative synovial α-defensin test can reliably rule out a PJI. However, the test can be false positive in conjunction with an underlying non-infectious inflammatory disease. We therefore propose to use the α-defensin test only in addition to MSIS criteria and assessment for crystals in synovial aspirates. Copyright © 2018. Published by Elsevier Ltd.

  12. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Hirose, T.; Ogiwara, H.; Enoeda, M.; Akiba, M.

    2007-01-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 μm and 10 μm were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  13. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ogiwara, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Enoeda, M. [Naka Fusion Research Establishment, J.A.E.R.I., Japan Atomic Energy Research Institute, Naka-gun, Ibaraki-ken (Japan); Akiba, M. [Naka Fusion Institute, Japan Atomic Energy Agency, Naka, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 {mu}m and 10 {mu}m were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  14. [The application of delayed skin grafting combined traction in severe joint cicatricial contracture].

    Science.gov (United States)

    Xu, Zihan; Zhang, Zhenxin; Wang, Benfeng; Sun, Yaowen; Guo, Yadong; Gao, Wenjie; Qin, Gaoping

    2014-11-01

    To investigate the effect of delayed skin grafting combined traction in severe joint cicatricial contracture. At the first stage, the joint cicatricial contracture was released completely with protection of vessels, nerves and tendons. The wound was covered with allogenetic skin or biomaterials. After skin traction for 7-14 days, the joint could reach the extension position. Then the skin graft was performed on the wound. 25 cases were treated from Mar. 2000 to May. 2013. Primary healing was achieved at the second stage in all the cases. The skin graft had a satisfactory color and elasticity. Joint function was normal. All the patients were followed up for 3 months to 11 years with no hypertrophic scar and contraction relapse, except for one case who didn' t have enough active exercise on shoulder joint. Delayed skin grafting combined traction can effectively increase the skin graft survival rate and improve the joint function recovery.

  15. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    International Nuclear Information System (INIS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-01-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station. (paper)

  16. Physical activity in the elderly who underwent joint replacement surgery in the course of rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Agnieszka Prusinowska

    2016-07-01

    Full Text Available According to the forecasts of the Central Statistical Office of Poland, in 2030 people at the age of 65 and older will account for 23.8%, i.e. their number will amount to approx. 8.5 m people. Geriatric rheumatic patients more often decide to undergo surgical joint replacement. According to the National Health Fund, the number of joint replacement services provided in 2014 increased by 93%, as compared to 2005. Improving the physical performance of this constantly expanding group of patients requires taking into account many factors to raise their functional status, reduce the risk of falling, teach rules of proper functioning with an artificial joint and encourage unassisted physical activity. Restoring fitness and independence is a difficult but necessary task due to an increasing number of seniors with replaced joint.

  17. Induction brazing of complex joints

    DEFF Research Database (Denmark)

    Henningsen, Poul; Zhang, Wenqi; Bay, Niels

    2003-01-01

    , or if the hottest area is located outside the joint interface, a number of defects may appear: the braze metal may flow away from the joint, the flux may burn off, poor binding of the braze metal may appear or the braze metal may be overheated. Joint geometry as well as electro-magnetic properties of the work piece...... presents a combined numerical and experimental method for fast determination of appropriate coil geometry and position in induction brazing tube-to-plate joints of different ratios between tube and plate thickness and different combinations of the materials stainless steel, brass and copper. The method has...... proven to give successful results in brazing tube-plate joints of copper-brass, copper-stainless steel, stainless steel-brass, and stainless steel-stainless steel....

  18. A Joint Positioning and Attitude Solving Method for Shearer and Scraper Conveyor under Complex Conditions

    Directory of Open Access Journals (Sweden)

    Jiacheng Xie

    2017-01-01

    Full Text Available In a fully mechanized coal-mining face, the positioning and attitude of the shearer and scraper conveyor are inaccurate. To overcome this problem, a joint positioning and attitude solving method that considers the effect of an uneven floor is proposed. In addition, the real-time connection and coupling relationship between the two devices is analyzed. Two types of sensors, namely, the tilt sensor and strapdown inertial navigation system (SINS, are used to measure the shearer body pitch angle and the scraper conveyor shape, respectively. To improve the accuracy, two pieces of information are fused using the adaptive information fusion algorithm. It is observed that, using a marking strategy, the shearer body pitch angle can be reversely mapped to the real-time shape of the scraper conveyor. Then, a virtual-reality (VR software that can visually simulate this entire operation process under different conditions is developed. Finally, experiments are conducted on a prototype experimental platform. The positioning error is found to be less than 0.38 times the middle trough length; moreover, no accumulated error is detected. This method can monitor the operation of the shearer and scraper conveyor in a highly dynamic and precise manner and provide strong technical support for safe and efficient operation of a fully mechanized coal-mining face.

  19. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  20. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-10-01

    Full Text Available In a cognitive sensor network (CSN, the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs becomes very large. In this paper, a novel wireless power transfer (WPT-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF energy of the primary node (PN to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  1. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    Science.gov (United States)

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  2. Evaluation of orthognathic surgery on articular disc position and temporomandibular joint symptoms in skeletal class II patients: A Magnetic Resonance Imaging study.

    Science.gov (United States)

    Firoozei, Gholamreza; Shahnaseri, Shirin; Momeni, Hasan; Soltani, Parisa

    2017-08-01

    The purpose of orthognathic surgery is to correct facial deformity and dental malocclusion and to obtain normal orofacial function. However, there are controversies of whether orthognathic surgery might have any negative influence on temporomandibular (TM) joint. The purpose of this study was to evaluate the influence of orthognathic surgery on articular disc position and temporomandibular joint symptoms of skeletal CI II patients by means of magnetic resonance imaging. For this purpose, fifteen patients with skeletal CI II malocclusion, aged 19-32 years (mean 23 years), 10 women and 5 men, from the Isfahan Department of Oral and Maxillofacial Surgery were studied. All received LeFort I and bilateral sagittal split osteotomy (BSSO) osteotomies and all patients received pre- and post-surgical orthodontic treatment. Magnetic resonance imaging was performed 1 day preoperatively and 3 month postoperatively. Descriptive statistics and Wilcoxon and Mc-Nemar tests were used for statistical analysis. P surgery (mean=5.74±1.21). After surgery disc position range was 4.36 to 7.40 (mean=5.65±1.06). Statistical analysis proved that although TM disc tended to move anteriorly after BSSO surgery, this difference was not statistically significant ( p valuesurgery does not alter the disc and condyle relationship. Therefore, it has minimal effects on intact and functional TM joint. Key words: Orthognathic surgery, skeletal class 2, magnetic resonance imaging, temporomandibular disc.

  3. The effect of balance training on cervical sensorimotor function and neck pain.

    Science.gov (United States)

    Beinert, Konstantin; Taube, Wolfgang

    2013-01-01

    The authors' aim was to evaluate the effect of balance training on cervical joint position sense in people with subclinical neck pain. Thirty-four participants were randomly assigned to balance training or to stay active. Sensorimotor function was determined before and after 5 weeks of training by assessing the ability to reproduce the neutral head position and a predefined rotated head position. After balance training, the intervention group showed improved joint repositioning accuracy and decreased pain whereas no effects were observed in the control group. A weak correlation was identified between reduced neck pain intensity and improved joint repositioning. The present data demonstrate that balance training can effectively improve cervical sensorimotor function and decrease neck pain intensity.

  4. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    Science.gov (United States)

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (Pneuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  5. Efficient Active Sensing with Categorized Further Explorations for a Home Behavior-Monitoring Robot

    Directory of Open Access Journals (Sweden)

    Wenwei Yu

    2017-01-01

    Full Text Available Mobile robotics is a potential solution to home behavior monitoring for the elderly. For a mobile robot in the real world, there are several types of uncertainties for its perceptions, such as the ambiguity between a target object and the surrounding objects and occlusions by furniture. The problem could be more serious for a home behavior-monitoring system, which aims to accurately recognize the activity of a target person, in spite of these uncertainties. It detects irregularities and categorizes situations requiring further explorations, which strategically maximize the information needed for activity recognition while minimizing the costs. Two schemes of active sensing, based on two irregularity detections, namely, heuristic-based and template-matching-based irregularity detections, were implemented and examined for body contour-based activity recognition. Their time cost and accuracy in activity recognition were evaluated through experiments in both a controlled scenario and a home living scenario. Experiment results showed that the categorized further explorations guided the robot system to sense the target person actively. As a result, with the proposed approach, the robot system has achieved higher accuracy of activity recognition.

  6. Interrelation of satisfaction educational activity and sense of justice of students of pedagogical high school

    Directory of Open Access Journals (Sweden)

    S M Szinkovskaya

    2010-09-01

    Full Text Available Formation of sense of justice of students is caused not only objective factors, but also subjective among which essential value has satisfaction study. In article the analysis of satisfaction of students is given by educational activity and its interrelation with levels of sense of justice of students is shown.

  7. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  8. Ego depletion and positive illusions: does the construction of positivity require regulatory resources?

    Science.gov (United States)

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2007-09-01

    Individuals frequently exhibit positive illusions about their own abilities, their possibilities to control their environment, and future expectations. The authors propose that positive illusions require resources of self-control, which is considered to be a limited resource similar to energy or strength. Five studies revealed that people with depleted self-regulatory resources indeed exhibited a less-optimistic sense of their own abilities (Study 1), a lower sense of subjective control (Study 2), and less-optimistic expectations about their future (Study 3). Two further studies shed light on the underlying psychological process: Ego-depleted (compared to nondepleted) individuals generated/retrieved less positive self-relevant attributes (Studies 4 and 5) and reported a lower sense of general self-efficacy (Study 5), which both partially mediated the impact of ego depletion on positive self-views (Study 5).

  9. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  10. SYMBIOTIC SENSING: Exploring and Exploiting Cooperative Sensing in Heterogeneous Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2016-01-01

    During the last several years we have witnessed the emergence of smartphone-based sensing applications that include activity recognition, urban sensing, social sensing, and health monitoring. In fact, most smartphones have various sensors, wireless communication interfaces, a large memory capacity,

  11. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  12. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  13. How does cryotherapy effect ankle proprioception in healthy individuals?

    Science.gov (United States)

    Houten, Daniel; Cooper, Darren

    2017-09-01

    Objectives To investigate how a 15-min cryotherapy intervention effects proprioception by measuring joint positional sense (JPS) and static single legged balance. Design Repeated measures design. Setting Laboratory. Participants Eighteen healthy university sports team students (11 males, 7 females) aged between 20 and 21 years old. Main outcome measures Participants were treated with 15 min of Aircast Cryo-cuff. The subject's skin temperature was measured before and immediately after 15 min of cryotherapy treatment. Ankle active joint positional sense (A-JPS) and passive joint positional sense (P-JPS) were measured at pre-test, immediately post-test, and 5 min post-test. Static balance was measured by centre of pressure (CoP) mean path length, medial-lateral (ML) CoP mean deviation, and anterior-posterior (AP) CoP mean deviation and mean time-to-boundary (TtB) minima for AP and ML directions. Results No significant differences were found for the variables of JPS and static single balance testing after 15 min of cryotherapy treatment. However, mean differences for CoP mean path length and ML mean deviation were shown to improve following cryotherapy treatment, results not previously found in the literature. Conclusion Results suggest that 15 min of Cryo-cuff treatment does not significantly affect proprioception. Although the effect of cryotherapy on proprioception depends on cooling modality used, time frame applied, and joint applied to.

  14. Soft Active Materials for Actuation, Sensing, and Electronics

    Science.gov (United States)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  15. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  16. Subtalar joint stress imaging with tomosynthesis.

    Science.gov (United States)

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  17. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    Directory of Open Access Journals (Sweden)

    Gero Barmeier

    2016-11-01

    Full Text Available In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat with four plot designs (single-row, wide double-row, three rows, and four rows was conducted. A GreenSeeker RT100 and a passive bi-directional spectrometer were used to assess biomass fresh and dry weight, as well as aboveground nitrogen content and uptake. Generally, spectral passive sensing and active sensing performed comparably in both crops. Spectral passive sensing was enhanced by the availability of optimized ratio vegetation indices, as well as by an optimized field of view and by reduced distance dependence. Further improvements of both sensors in detecting the performance of plants in single rows can likely be obtained by optimization of sensor positioning or orientation. The results suggest that even in early selection cycles, enhanced high-throughput phenotyping might be able to assess plant performance within plots comprising single or multiple rows. This method has significant potential for advanced breeding.

  18. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    Science.gov (United States)

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code

    Directory of Open Access Journals (Sweden)

    Marinkovic Slavica

    2006-01-01

    Full Text Available Quantized frame expansions based on block transforms and oversampled filter banks (OFBs have been considered recently as joint source-channel codes (JSCCs for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC or a fixed-length code (FLC. This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an -ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.

  20. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  1. Influence of joint direction and position of explosive charge on fragmentation

    International Nuclear Information System (INIS)

    Hafsaoui, Abdellah; Talhi, Korichi

    2009-01-01

    Although researchers have realized varying degrees of success in small-scale physical in situ testing, most will agree that the greatest uncertainty stems from the uncontrollable field variables. Given the diverse nature of field conditions encountered, there exists no reliable and proven method of predicting fragmentation. Due to the lack of adequate field controls, it is unlikely that a universal physical model will ever be developed for all blasting. This paper presents the results of a test conducted at the Hadjar Essoud quarry to investigate the problems associated with the discontinuities in the rock, which are among the factors causing the reduction of the resistance of the rocks to the explosive. Nevertheless, the distance between the joints, their dip and strike, and the position of the detonator play a significant role in the final fragmentation of the rock. In this work, we studied the role of the abovementioned factors on models of limestone rock of 150 X 375 X 450 mm. Accurate measurement of blast, fragmentation is important in mining and quarrying operations, in monitoring blasts, and optimizing their design. We shall use the Kuznetsov-Rammler method to measure fragmentation. It shows great potential as a practical aid to predict and control the quality of the fragmented material in the Hadjar Essoud quarry. (author)

  2. Body position reproducibility and joint alignment stability criticality on a muscular strength research device

    Science.gov (United States)

    Nunez, F.; Romero, A.; Clua, J.; Mas, J.; Tomas, A.; Catalan, A.; Castellsaguer, J.

    2005-08-01

    MARES (Muscle Atrophy Research and Exercise System) is a computerized ergometer for neuromuscular research to be flown and installed onboard the International Space Station in 2007. Validity of data acquired depends on controlling and reducing all significant error sources. One of them is the misalignment of the joint rotation axis with respect to the motor axis.The error induced on the measurements is proportional to the misalignment between both axis. Therefore, the restraint system's performance is critical [1]. MARES HRS (Human Restraint System) assures alignment within an acceptable range while performing the exercise (results: elbow movement:13.94mm+/-5.45, Knee movement: 22.36mm+/- 6.06 ) and reproducibility of human positioning (results: elbow movement: 2.82mm+/-1.56, Knee movement 7.45mm+/-4.8 ). These results allow limiting measurement errors induced by misalignment.

  3. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  4. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    Science.gov (United States)

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  5. Deep learning decision fusion for the classification of urban remote sensing data

    Science.gov (United States)

    Abdi, Ghasem; Samadzadegan, Farhad; Reinartz, Peter

    2018-01-01

    Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral-spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.

  6. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    Science.gov (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  7. EFFECT OF SPEED VARITION AND STRETCH-SHORTENING CYCLE ON LOWER MUSCLES ACTIVITY AND JOINT TORQUE DURING PARALLEL SQUAT

    OpenAIRE

    真鍋, 芳明; 横澤, 俊治; 島田, 一志; 尾縣, 貢

    2004-01-01

    The purpose of this study was to compare joint torque and the activity pattern of eight muscles crossing the ankle, knee and hip joints during three kinds of squats with different speeds (Slow, Normal, Quick). Ten male athletes performed squats at three different speeds. Variables such as net torque and power about the joint were calculated during the descending and ascending phase of each squat. At the same time, surface electrodes were placed over the eight lower extremity muscles,.and %iEM...

  8. Positive affect and physical activity: Testing effects on goal setting, activation, prioritisation, and attainment.

    Science.gov (United States)

    Cameron, David S; Bertenshaw, Emma J; Sheeran, Paschal

    2018-02-01

    The present research tested whether incidental positive affect promotes pursuit of physical activity goals. Four key features of goal pursuit were examined - setting physical activity goals (Study 1), goal activation (Study 2), and goal prioritization and goal attainment (Study 3). Participants (N s = 80, 81, and 59, in Studies 1-3, respectively) were randomized to positive affect (joy, hope) or neutral affect (control) conditions in each study. Questionnaire measures of goal level, goal commitment, and means selection (Study 1); a lexical decision task indexed goal activation (Study 2), a choice task captured goal prioritization and MET minutes quantified goal attainment (Study 3). Study 1 showed that positive affect led to a greater number of intended physical activities, and that joy engendered greater willingness to try activities. In Study 2, a positive affect induction led to heightened activation of the physical activity goal compared to the control condition. The joy induction in Study 3 led to greater physical activity, and a trend towards greater goal prioritization. These findings suggest that positive affect enhances the pursuit of physical activity goals. Implications for health behavior theories and interventions are outlined.

  9. Moving-Target Position Estimation Using GPU-Based Particle Filter for IoT Sensing Applications

    Directory of Open Access Journals (Sweden)

    Seongseop Kim

    2017-11-01

    Full Text Available A particle filter (PF has been introduced for effective position estimation of moving targets for non-Gaussian and nonlinear systems. The time difference of arrival (TDOA method using acoustic sensor array has normally been used to for estimation by concealing the location of a moving target, especially underwater. In this paper, we propose a GPU -based acceleration of target position estimation using a PF and propose an efficient system and software architecture. The proposed graphic processing unit (GPU-based algorithm has more advantages in applying PF signal processing to a target system, which consists of large-scale Internet of Things (IoT-driven sensors because of the parallelization which is scalable. For the TDOA measurement from the acoustic sensor array, we use the generalized cross correlation phase transform (GCC-PHAT method to obtain the correlation coefficient of the signal using Fast Fourier Transform (FFT, and we try to accelerate the calculations of GCC-PHAT based TDOA measurements using FFT with GPU compute unified device architecture (CUDA. The proposed approach utilizes a parallelization method in the target position estimation algorithm using GPU-based PF processing. In addition, it could efficiently estimate sudden movement change of the target using GPU-based parallel computing which also can be used for multiple target tracking. It also provides scalability in extending the detection algorithm according to the increase of the number of sensors. Therefore, the proposed architecture can be applied in IoT sensing applications with a large number of sensors. The target estimation algorithm was verified using MATLAB and implemented using GPU CUDA. We implemented the proposed signal processing acceleration system using target GPU to analyze in terms of execution time. The execution time of the algorithm is reduced by 55% from to the CPU standalone operation in target embedded board, NVIDIA Jetson TX1. Also, to apply large

  10. Italian Society of Surgery and Association of Stoma Care Nurses Joint Position Statement on Preoperative Stoma Siting.

    Science.gov (United States)

    Roveron, Gabriele; De Toma, Giorgio; Barbierato, Maria

    2016-01-01

    Drawing on the existing position statements approved by the Wound, Ostomy and Continence Nursing Society in collaboration with the American Society of Colon & Rectal Surgeons and the American Urological Association, the Italian Association of Stoma care Nurses and the Italian Society of Surgery jointly developed and approved this document on July 27, 2013. Its purpose was to provide a formal recommendation for preoperative stoma siting and associated counseling for all patients undergoing enterostomy or urostomy surgery, with the goals of preventing complications, enhancing health-related quality of life, improving care, achieving better health outcomes, and reducing health care costs.

  11. Simultaneous Dorsal Dislocation of the Proximal and Distal Interphalangeal Joints in the Middle Finger: A Case Report

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Sbai

    2017-07-01

    Full Text Available Introduction Dorsal dislocation of a proximal or distal interphalangeal joint is a common clinical problem. However, simultaneous dislocation of both joints in the same digit is rare. Case Presentation A 32-year-old male injured his left hand third finger while biking. Examination revealed a stepladder deformity. Neurovascular examination was normal. Radiographs revealed dorsal dislocation of both the proximal and distal interphalangeal joints. The finger was reduced easily by longitudinal manual traction under the digital block. The finger was splinted in the intrinsic plus position for 3 weeks accompanied with active range of motion. After 6 months, the patient returned to normal sporting activity without limitation of motion. Conclusions In case of simultaneous dorsal dislocation of a proximal and distal interphalangeal joint, closed reduction is the treatment of choice and it could result in good and normal range of motion.

  12. Explanations pertaining to the Hip Joint Flexor Moment During the Stance Phase of Human Walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Cappelen, Katrine L; Skorini, Ragnhild

    2012-01-01

    A hip joint flexor moment in the last half of the stance phase during walking has repeatedly been reported. However, the purpose of this moment remains uncertain and it is unknown how it is generated. Nine male subjects were instructed to walk at 4.5 km/h with their upper body in three different...... positions: normal, inclined and reclined. Net joint moments were calculated about the hip, knee and ankle joint. The peak hip joint flexor moment during late stance was significantly lower during inclined walking than in the two other conditions. During normal walking the iliacus muscle showed no or very...... weak activity and first at the transition from stance to swing. When walking reclined, a clear but rather low activity level of the iliacus muscle was seen in the first half of the stance phase, which could contribute to the hip moment. In the inclined condition the iliacus showed much increased...

  13. Temporomandibular Joint Disorder

    Science.gov (United States)

    ... Baby Bottle Tooth Decay? Pacifiers Have Negative and Positive Effects What is Dental Amalgam (Silver Filling)? Check Menstrual Calendar for Tooth Extraction Temporomandibular Joint Disorder Learn what those dental words mean. Check out how your teeth and mouth ...

  14. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  15. Nociceptive nerve fibers in the sacroiliac joint in humans

    NARCIS (Netherlands)

    Szadek, K.M.; Hoogland, P.V.J.M.; Zuurmond, W.W.A.; de Lange, J.J.; Perez, R.S.G.M.

    2008-01-01

    Background and Objectives: A positive response to sacroiliac joint intra-articular infiltration with local anesthetics is used to confirm sacroiliac joint pain. However, current anatomical and histological knowledge concerning the anatomy of pain perception within the sacroiliac joint intra- and

  16. Elevated sacroilac joint uptake ratios in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    De Smet, A.A.; Mahmood, T.; Robinson, R.G.; Lindsley, H.B.

    1984-01-01

    Sacroiliac joint radiographs and radionuclide sacroiliac joint uptake ratios were obtained on 14 patients with active systemic lupus erythematosus. Elevated joint ratios were found unilaterally in two patients and bilaterally in seven patients when their lupus was active. In patients whose disease became quiescent, the uptake ratios returned to normal. Two patients had persistently elevated ratios with continued clinical and laboratory evidence of active lupus. Mild sacroiliac joint sclerosis and erosions were detected on pelvic radiographs in these same two patients. Elevated quantitative sacroiliac joint uptake ratios may occur as a manifestation of active systemic lupus erythematosus

  17. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  18. Structural mapping based on potential field and remote sensing data ...

    Indian Academy of Sciences (India)

    Swarnapriya Chowdari

    2017-08-31

    Aug 31, 2017 ... to comprehend the tectonic development of the ... software for the analysis and interpretation of G– .... The application of remote sensing for mapping ..... Pf1 and Pf2 show profile locations adopted for joint G–M modelling.

  19. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    International Nuclear Information System (INIS)

    Livingston, Roderick

    1999-01-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranch in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions

  20. Effects of joint attention on long-term memory in 9-month-old infants: an event-related potentials study.

    Science.gov (United States)

    Kopp, Franziska; Lindenberger, Ulman

    2011-07-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.

  1. Efficiency assessment of phytocomplex phonophoresis in rehabilitation of patients with knee joint osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Kotenko К.V.

    2013-12-01

    Full Text Available Objective: the comparative research of phytocomplex phonophoresis rehabilitation efficiency of patients with knee joint osteoarthrosis. Material and Methods, the study included 100 patients with knee joint osteoarthrosis; the effectiveness evaluation was made in terms of American Rheumatologic Association (ARA, the data of visual-analogue scale (VAS and goniometry, indexes WOMAC, Lekena and the index of activity SIA, criteria of life quality questionnaire HAQ. Results. The complex use of phyto- and ultrasonic therapy in conjunction with an medicamentous treatment of patients have a more pronounced positive effect on pain (by 26-28%, function of the knee joint (by 22-26% and the quality of life (by 24% compared to treatment with medicamentous only treatment or combined using ultrasonic and medicamentous therapy. Conclusion. The new method of phytocomplex phonophoresis leads to the expressed regress of clinical symptomatology at patients with knee joint osteoarthrosis, improves locomotor function of knee joints and quality of life.

  2. Evaluation of orthognathic surgery on articular disc position and temporomandibular joint symptoms in skeletal class II patients: A Magnetic Resonance Imaging study

    Science.gov (United States)

    Firoozei, Gholamreza; Shahnaseri, Shirin; Momeni, Hasan

    2017-01-01

    Background The purpose of orthognathic surgery is to correct facial deformity and dental malocclusion and to obtain normal orofacial function. However, there are controversies of whether orthognathic surgery might have any negative influence on temporomandibular (TM) joint. The purpose of this study was to evaluate the influence of orthognathic surgery on articular disc position and temporomandibular joint symptoms of skeletal CI II patients by means of magnetic resonance imaging. Material and Methods For this purpose, fifteen patients with skeletal CI II malocclusion, aged 19-32 years (mean 23 years), 10 women and 5 men, from the Isfahan Department of Oral and Maxillofacial Surgery were studied. All received LeFort I and bilateral sagittal split osteotomy (BSSO) osteotomies and all patients received pre- and post-surgical orthodontic treatment. Magnetic resonance imaging was performed 1 day preoperatively and 3 month postoperatively. Descriptive statistics and Wilcoxon and Mc-Nemar tests were used for statistical analysis. Psurgery (mean=5.74±1.21). After surgery disc position range was 4.36 to 7.40 (mean=5.65±1.06). Statistical analysis proved that although TM disc tended to move anteriorly after BSSO surgery, this difference was not statistically significant (p valueorthognathic surgery does not alter the disc and condyle relationship. Therefore, it has minimal effects on intact and functional TM joint. Key words:Orthognathic surgery, skeletal class 2, magnetic resonance imaging, temporomandibular disc. PMID:28936287

  3. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  4. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    Science.gov (United States)

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  5. Parent-adolescent joint projects involving leisure time and activities during the transition to high school.

    Science.gov (United States)

    Marshall, Sheila K; Young, Richard A; Wozniak, Agnieszka; Lollis, Susan; Tilton-Weaver, Lauree; Nelson, Margo; Goessling, Kristen

    2014-10-01

    Leisure research to date has generally overlooked planning and organizing of leisure time and activities between parents and adolescents. This investigation examined how a sample of Canadian adolescents and their parents jointly constructed and acted on goals related to adolescents' leisure time during the move from elementary to high school. Using the Qualitative Action-Project Method, data were collected over an 8-10 month period from 26 parent-adolescent dyads located in two urban sites, through video-taped conversations about leisure time, video recall interviews, and telephone monitoring interviews. Analysis of the data revealed that the joint projects of the 26 dyads could be grouped into three clusters: a) governance transfer or attempts to shift, from parent to adolescent, responsibility over academic demands, organizing leisure time, and safety with peers, b) balancing extra-curricular activities with family life, academics, and social activities, and c) relationship adjustment or maintenance. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  7. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  8. Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding.

    Science.gov (United States)

    Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A; Swanik, Charles Buz; Kaminski, Thomas W

    2016-02-01

    Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Cross-sectional study. Research laboratory. Thirty-three participants aged 20.2 ± 1.7 years were tested. The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury.

  9. A comparison of force sensing techniques for planetary manipulation

    Science.gov (United States)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  10. HuAc: Human Activity Recognition Using Crowdsourced WiFi Signals and Skeleton Data

    Directory of Open Access Journals (Sweden)

    Linlin Guo

    2018-01-01

    Full Text Available The joint of WiFi-based and vision-based human activity recognition has attracted increasing attention in the human-computer interaction, smart home, and security monitoring fields. We propose HuAc, the combination of WiFi-based and Kinect-based activity recognition system, to sense human activity in an indoor environment with occlusion, weak light, and different perspectives. We first construct a WiFi-based activity recognition dataset named WiAR to provide a benchmark for WiFi-based activity recognition. Then, we design a mechanism of subcarrier selection according to the sensitivity of subcarriers to human activities. Moreover, we optimize the spatial relationship of adjacent skeleton joints and draw out a corresponding relationship between CSI and skeleton-based activity recognition. Finally, we explore the fusion information of CSI and crowdsourced skeleton joints to achieve the robustness of human activity recognition. We implemented HuAc using commercial WiFi devices and evaluated it in three kinds of scenarios. Our results show that HuAc achieves an average accuracy of greater than 93% using WiAR dataset.

  11. Report of first LASFLEUR field campaign for remote sensing of vegetation health: ENEA contribution

    International Nuclear Information System (INIS)

    Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S.

    1992-11-01

    The first European joint field campaign for the remote sensing of vegetation health was held in Viterbo (October 6 to 18, 1991) within the framework of the EUREKA/LASFLEUR project. Italian groups, from universities, ENEA (Italian Agency for Energy, New Technologies and the Environment) and CNR (Italian National Research Council), participated in this campaign together with several German groups from different institutes. The LIDAR (light detection and ranging) fluorosensor system built at the ENEA Frascati Research Center for the remote sensing of water and land was modified to detect fluorescence from trees in a field experiment. The new version of the set-up is presented in this paper together with the spectral and time resolved measurements that were performed. Results are discussed in view of correlating present data with the plant photosynthesis activity under different weather conditions and water stresses

  12. Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers.

    Science.gov (United States)

    Schmidt, Lena; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2013-04-01

    The human brain is organized asymmetrically in two hemispheres with different functional specializations. Left- and right-handers differ in many functional capacities and their anatomical representations. Right-handers often show a stronger functional lateralization than left-handers, the latter showing a more bilateral, symmetrical brain organization. Recent functional imaging evidence shows a different lateralization of the cortical vestibular system towards the side of the preferred hand in left- vs. right-handers as well. Since the vestibular system is involved in somatosensory processing and the coding of body position, vestibular stimulation should affect such capacities differentially in left- vs. right-handers. In the present, sham-stimulation-controlled study we explored this hypothesis by studying the effects of galvanic vestibular stimulation (GVS) on proprioception in both forearms in left- and right-handers. Horizontal arm position sense (APS) was measured with an opto-electronic device. Second, the polarity-specific online- and after-effects of subsensory, bipolar GVS on APS were investigated in different sessions separately for both forearms. At baseline, both groups did not differ in their unsigned errors for both arms. However, right-handers showed significant directional errors in APS of both arms towards their own body. Right-cathodal/left-anodal GVS, resulting in right vestibular cortex activation, significantly deteriorated left APS in right-handers, but had no detectable effect on APS in left-handers in either arm. These findings are compatible with a right-hemisphere dominance for vestibular functions in right-handers and a differential vestibular organization in left-handers that compensates for the disturbing effects of GVS on APS. Moreover, our results show superior arm proprioception in left-handers in both forearms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. ACTIVITY OF CANONICAL WNT SIGNAL SYSTEM IN HYALINE CARTILAGE ARTICULAR CHONDROCYTES IN PROCESS OF SYNOVIAL JOINT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.O. Molotkov

    2009-03-01

    Full Text Available Canonical and non-canonical Wnt systems are essential regulators of chondrogenesis and bone development. However, the roles of these systems in synovial joint development are not well studied. To determine if canonical Wnt system is active in developing articular chondrocytes we used immunohistochemistry for в-galactosidase and doublecortin (cell-type specific marker for articular chondrocytes to double label sections through joint regions of E14.5, E18.5, P10 and adult mice. Here the following results are presented. Canonical Wnt signal system does not work in developing articular chondrocytes at early embryonic stages (E14.5; it is active in the articular chondrocytes at late embryonic stages (E16.5-E18.5 and during postnatal development (P7-P10, but is turned off again in the adult articular chondrocytes. These results suggest that canonical Wnt signaling is being regulated during articular chondrocytes differentiation and joint formation.

  14. Muscle and reflex changes with varying joint angle in hemiparetic stroke

    Directory of Open Access Journals (Sweden)

    Alibiglou Laila

    2008-02-01

    Full Text Available Abstract Background Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint. Methods Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM. Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls. Results Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position. Conclusion In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated. Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects

  15. Classification of permafrost active layer depth from remotely sensed and topographic evidence

    International Nuclear Information System (INIS)

    Peddle, D.R.; Franklin, S.E.

    1993-01-01

    The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to this study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth

  16. Immediate effects of neuromuscular joint facilitation intervention after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Wang, Lei

    2016-07-01

    [Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.

  17. Stress radiographs in the evaluation of degenerative femorotibial joint disease

    Energy Technology Data Exchange (ETDEWEB)

    Tallroth, K.; Lindholm, T.S.

    1987-11-01

    Thirty-eight osteoarthrotic knees were examined to assess the widths of the femorotibial joint spaces. Radiographs were exposed with the patient lying, in a standing position, and with an adduction and abduction force. Forced compression of the osteoarthrotic joint compartment caused, on average, 18% greater narrowing than when loading it in the standing position. Compared to the joint space at rest, the non-weight-bearing compartment widened by 16% in the standing position and narrowed by 20% when stress was applied. Furthermore, the results showed an increase in laxity proportional to the degree of arthrosis. Stress radiographs significantly display the real cartilage width of both joint compartments. Knowledge of the condition of the articular cartilage in the non-weight-bearing compartment is important when considering a transfer of loading stresses by means of osteotomy. (orig.)

  18. Stress radiographs in the evaluation of degenerative femorotibial joint disease

    International Nuclear Information System (INIS)

    Tallroth, K.; Lindholm, T.S.

    1987-01-01

    Thirty-eight osteoarthrotic knees were examined to assess the widths of the femorotibial joint spaces. Radiographs were exposed with the patient lying, in a standing position, and with an adduction and abduction force. Forced compression of the osteoarthrotic joint compartment caused, on average, 18% greater narrowing than when loading it in the standing position. Compared to the joint space at rest, the non-weight-bearing compartment widened by 16% in the standing position and narrowed by 20% when stress was applied. Furthermore, the results showed an increase in laxity proportional to the degree of arthrosis. Stress radiographs significantly display the real cartilage width of both joint compartments. Knowledge of the condition of the articular cartilage in the non-weight-bearing compartment is important when considering a transfer of loading stresses by means of osteotomy. (orig.)

  19. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    Science.gov (United States)

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  20. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    Science.gov (United States)

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  1. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    Science.gov (United States)

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Does generalized joint hypermobility predict joint injury in sport? A review.

    LENUS (Irish Health Repository)

    Donaldson, Peter R

    2012-02-01

    OBJECTIVE: To determine whether persons with generalized joint hypermobility have an increased risk of lower limb joint injury during sport. DATA SOURCES: PubMed, CINAHL, EMBASE, and SportDiscus were searched through February 2009, without language restrictions, using terms related to risk; hip, ankle, and knee injuries; and joint instability. Reference lists of included studies and relevant reviews were searched by hand. STUDY SELECTION: Selection criteria were peer-reviewed studies with a prospective design that used an objective scale to measure generalized joint hypermobility; the participants were engaged in sport activity, and the injury data were quantitative and based on diagnosis by a health professional, were self-reported, or resulted in time lost to athletic participation. The studies were screened by 1 researcher and checked by a second. Study methods were independently assessed by 2 investigators using the 6-point scale for prognostic studies developed by Pengel. Disagreements were resolved through discussion. Of 4841 studies identified, 18 met inclusion criteria. Of these, 8 were included in random-effects meta-analyses. DATA EXTRACTION: The data extracted by 2 reviewers included participant and sport characteristics and details of joint hypermobility and injury measurements. More detailed data for 4 investigations were obtained from the study authors. Where possible, hypermobility was defined as >\\/=4 of 9 points on the British Society of Rheumatology Scale (BSRS). MAIN RESULTS: Lower limb joint injuries (3 studies, 1047 participants) occurred in 14% of participants. Using the BSRS of joint hypermobility, any lower limb injury was not associated with hypermobility [odds ratio (OR), 1.43; 95% confidence interval (CI), 0.56-3.67]. Using the original authors\\' definitions, hypermobility was associated with risk of knee joint injuries (OR, 2.62; 95% CI, 1.04-6.58) in 5 studies. In 4 studies in which the BSRS could be used (1167 participants; incidence

  3. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Directory of Open Access Journals (Sweden)

    Bart Malfait

    Full Text Available The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ.Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM,vastus lateralis(VL}, {vastus medialis(VM,hamstring medialis(HM}, {hamstring medialis(HM,hamstring lateralis(HL} and the {vastus lateralis(VL,hamstring lateralis(HL}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05. Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001. The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05. Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001. Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001.This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior

  4. Three-dimensional motion of the uncovertebral joint during head rotation.

    Science.gov (United States)

    Nagamoto, Yukitaka; Ishii, Takahiro; Iwasaki, Motoki; Sakaura, Hironobu; Moritomo, Hisao; Fujimori, Takahito; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2012-10-01

    The uncovertebral joints are peculiar but clinically important anatomical structures of the cervical vertebrae. In the aged or degenerative cervical spine, osteophytes arising from an uncovertebral joint can cause cervical radiculopathy, often necessitating decompression surgery. Although these joints are believed to bear some relationship to head rotation, how the uncovertebral joints work during head rotation remains unclear. The purpose of this study is to elucidate 3D motion of the uncovertebral joints during head rotation. Study participants were 10 healthy volunteers who underwent 3D MRI of the cervical spine in 11 positions during head rotation: neutral (0°) and 15° increments to maximal head rotation on each side (left and right). Relative motions of the cervical spine were calculated by automatically superimposing a segmented 3D MR image of the vertebra in the neutral position over images of each position using the volume registration method. The 3D intervertebral motions of all 10 volunteers were standardized, and the 3D motion of uncovertebral joints was visualized on animations using data for the standardized motion. Inferred contact areas of uncovertebral joints were also calculated using a proximity mapping technique. The 3D animation of uncovertebral joints during head rotation showed that the joints alternate between contact and separation. Inferred contact areas of uncovertebral joints were situated directly lateral at the middle cervical spine and dorsolateral at the lower cervical spine. With increasing angle of rotation, inferred contact areas increased in the middle cervical spine, whereas areas in the lower cervical spine slightly decreased. In this study, the 3D motions of uncovertebral joints during head rotation were depicted precisely for the first time.

  5. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Science.gov (United States)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  6. Bone scan and joint scan of hands and feet in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Carpentier, N.; Verbeke, S.; Perdrisot, R.; Grilo, R.M.; Quenesson, E.; Bonnet, C.; Vergne, P.; Treves, R.; Bertin, P.; Boutros-Toni, F.

    2000-01-01

    The aim of this study was to determine the ability of joint scan and bone scan of hands and feet, in patients with rheumatoid arthritis, to localize the altered joints. The sensitivity, the specificity, the positive predictive value (PPV) and the negative predictive value (NPV) of joint scan were determined in comparison with clinical joint assessment. Fifteen patients (780 joints) were clinically examined (pain and synovitis); during the same day, a bone scan and a joint scan were realized by oxidronate 99m Tc intravenous injection. Patients were scanned 5 minutes (tissual time, T t ) and 3 hours 1/4 (bone time, T 0 ) after the administration. The uptake of the bi-phosphonate was evaluated with a qualitative method using a grey scale. The uptake of 99m Tc oxidronate was quantitated using an extra-articular region of interest. The sensitivity, specificity, PPV and NPV of the scan at Tt were 46%, 96%, 85% et 78%. The same parameters were 75%, 66%, 53% and 84% for the scan realized at T 0 . The joint scan has showed 22% of false positive. These false positives could be a consequence of an earlier detection of joint alterations by scan. The joint scan should forecast the evolution of joints in patients with rheumatoid arthritis. (author)

  7. Making sense of the Sense Model: translation priming with Japanese-English bilinguals

    OpenAIRE

    Allen, David; Conklin, Kathy; Van Heuven, Walter J.B.

    2015-01-01

    Many studies have reported that first language (L1) translation primes speed responses to second language (L2) targets, whereas L2 translation primes generally do not speed up responses to L1 targets in lexical decision. According to the Sense Model (Finkbeiner, Forster, Nicol & Nakamura, 2004) this asymmetry is due to the proportion of senses activated by the prime. Because L2 primes activate only a subset of the L1 translations senses, priming is not observed. In this study we test the pred...

  8. Joint assessment in von Willebrand disease : Validation of the Haemophilia Joint Health score and Haemophilia Activities List

    NARCIS (Netherlands)

    van Galen, Karin P. M.; Timmer, Merel A.; de Kleijn, Piet; Fischer, Kathelijn; Foppen, Wouter; Schutgens, Roger E. G.; Eikenboom, Jeroen; Meijer, Karina; Cnossen, Marjon H.; Fijnvandraat, Karin; van der Bom, Johanna G.; Laros-van Gorkom, Britta A. P.; Leebeek, Frank W. G.; Mauser-Bunschoten, Eveline P.

    Assessment of clinical outcome after joint bleeding is essential to identify joint damage and optimise treatment, to prevent disability. However, disease-specific tools to assess the musculoskeletal status in patients with von Willebrand disease (VWD) are lacking. We aimed to determine validity and

  9. Designing and Managing Successful International Joint Development Programs

    Science.gov (United States)

    2016-04-30

    joint development programs are important because of their potential to reduce costs and increase partnership benefits such as interoperability, economies ...have actualized by discussing what characteristics research has shown as crucial to international joint development program outcomes. The study team... characteristics of international joint development programs that result in positive or negative cost, scheduling, and end-product outcomes, such as a final

  10. Impact properties of reduced activation ferritic/martensitic steel, F82H jointed by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, H.; Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Enoeda, M. [Naka Fusion Research Establishment, J.A.E.R.I., Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: Reduced-activation ferritic/martensitic steels are the leading candidate structural material for the blanket system of fusion reactors. The important issue at the current stage is the finalization of a detailed manufacturing specification for ITER test blanket module. Hot isostatic pressing (HIP) process is one of the most important methods to fabricate the first wall with cooling channels. The objective of this paper is to optimize HIP condition to obtain the excellent joints mechanical properties. The materials used were F82H steels. The joint was produced by solid state HIP method. Before HIP treatments, specimens were heated in vacuum condition to out-gas. This treatment was conducted to decrease oxidation on the surfaces. HIP treatments were carried out for 2 h at 1100 deg. C - 140 MPa. The specimens were normalized at 960 deg. C for 0.5 h and tempered at 750 deg. C for 1.5 h. The bonding interface was characterized by scanning electron microscopy. Charpy impact tests and tensile tests were conducted to evaluate the mechanical properties of the HIP joint. Impact tests revealed that there were no significant differences in the ductile-brittle transition temperatures of HIP jointed specimens and base metal specimens, but the upper-shelf energy (USE) of the HIP joint specimens at room temperature was only about 10% of that of the base metal specimens. SEM observations of the fracture surface of HIP joint specimens revealed that a large number of oxides were formed on the HIP joint. This result indicates that oxides formed on the HIP joint are the dominant factor of the impact properties. Based on these results, the pre-HIP treatment conditions had been optimized to reduce the number of oxides, and USE of HIP joint specimens increased to about 50% of that of the base metal. The detailed analyses on the HIP joint microstructure will be reported. (authors)

  11. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  12. Prediction of Positions of Active Compounds Makes It Possible To Increase Activity in Fragment-Based Drug Development

    Directory of Open Access Journals (Sweden)

    Yoshifumi Fukunishi

    2011-05-01

    Full Text Available We have developed a computational method that predicts the positions of active compounds, making it possible to increase activity as a fragment evolution strategy. We refer to the positions of these compounds as the active position. When an active fragment compound is found, the following lead generation process is performed, primarily to increase activity. In the current method, to predict the location of the active position, hydrogen atoms are replaced by small side chains, generating virtual compounds. These virtual compounds are docked to a target protein, and the docking scores (affinities are examined. The hydrogen atom that gives the virtual compound with good affinity should correspond to the active position and it should be replaced to generate a lead compound. This method was found to work well, with the prediction of the active position being 2 times more efficient than random synthesis. In the current study, 15 examples of lead generation were examined. The probability of finding active positions among all hydrogen atoms was 26%, and the current method accurately predicted 60% of the active positions.

  13. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.

    Science.gov (United States)

    Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi

    2012-06-01

    The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, Phemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    Science.gov (United States)

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  15. Three-dimensional versus two-dimensional sonography of the temporomandibular joint in comparison to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Landes, Constantin A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: c.landes@lycos.com; Goral, Wojciech A. [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: w.goral@gmx.de; Sader, Robert [Oral, Maxillofacial and Plastic Facial Surgery, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: r.sader@em.uni-frankfurt.de; Mack, Martin G. [Department of Diagnostic and Interventional Radiology, Frankfurt University Medical Centre, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)]. E-mail: martinmack@arcor.de

    2007-02-15

    Aim: To compare clinical feasibility of static two-dimensional (2D) to three-dimensional (3D) sonography of the temporomandibular joint (TMJ) in assessment of disk dislocation and joint degeneration compared to magnetic resonance imaging (MRI). Method: Thirty-three patients, 66 TMJ were prospectively sonographed 2D and 3D (8-12.5 MHz step motor scan), in occlusion and maximum opening with a probe position parallel inferior to the zygomatic arch. Axial 2D images were judged independent from the 3D scans; 3D volumes were cut axial, sagittal, frontal and rotated in real-time. Disk position and joint degeneration were assessed and compared to a subsequent MRI examination. Results: The specific appearance of the disk was hypoechogenic overlying a hyperechogenic condyle in axial (2D) or sagittal and frontal (3D) viewing. Specificity of 2D sonography for disk dislocation was 63%, sensitivity 58%, accuracy 64%, positive predictive value 46%, negative predictive value 73%; for joint degeneration synonymously 59/68/61/38/83%. 3D sonography for disk displacement reached synonymously 68/60/69/51/76%, for joint degeneration 75/65/73/48/86%. 2D sonographic diagnoses of disk dislocation in the closed mouth position and of joint degeneration showed significantly different results from the expected values (MRI) in {chi} {sup 2} testing; 3D diagnoses of disk dislocation in closed mouth position, of joint degeneration, 2D and 3D diagnoses in open mouth position were nonsignificant. Conclusions: Acceptable was the overall negative predictive value, as specificity and accuracy for joint degeneration in 3D. 3D appears superior diagnosing disk dislocation in closed mouth position as for overall joint degeneration. Sensitivity, accuracy and positive predictive value will have to ameliorate with future equipment of higher resolution in real-time 2D and 3D, if sonographic screening shall be clinically applied prior to MRI.

  16. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.

    Science.gov (United States)

    Stamper, Sarah A; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2012-05-01

    Previous work has shown that animals alter their locomotor behavior to increase sensing volumes. However, an animal's own movement also determines the spatial and temporal dynamics of sensory feedback. Because each sensory modality has unique spatiotemporal properties, movement has differential and potentially independent effects on each sensory system. Here we show that weakly electric fish dramatically adjust their locomotor behavior in relation to changes of modality-specific information in a task in which increasing sensory volume is irrelevant. We varied sensory information during a refuge-tracking task by changing illumination (vision) and conductivity (electroreception). The gain between refuge movement stimuli and fish tracking responses was functionally identical across all sensory conditions. However, there was a significant increase in the tracking error in the dark (no visual cues). This was a result of spontaneous whole-body oscillations (0.1 to 1 Hz) produced by the fish. These movements were costly: in the dark, fish swam over three times further when tracking and produced more net positive mechanical work. The magnitudes of these oscillations increased as electrosensory salience was degraded via increases in conductivity. In addition, tail bending (1.5 to 2.35 Hz), which has been reported to enhance electrosensory perception, occurred only during trials in the dark. These data show that both categories of movements - whole-body oscillations and tail bends - actively shape the spatiotemporal dynamics of electrosensory feedback.

  17. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  18. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Science.gov (United States)

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  19. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Directory of Open Access Journals (Sweden)

    Jin Qi

    Full Text Available Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  20. Can symptomatic acromioclavicular joints be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging?

    Science.gov (United States)

    Choo, Hye Jung; Lee, Sun Joo; Kim, Jung Han; Cha, Seong Sook; Park, Young Mi; Park, Ji Sung; Lee, Jun Woo; Oh, Minkyung

    2013-04-01

    To evaluate retrospectively whether symptomatic acromioclavicular joints can be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging. This study included 146 patients who underwent physical examination of acromioclavicular joints and 3-T MR imaging of the shoulder. Among them, 67 patients showing positive results on physical examination were assigned to the symptomatic group, whereas 79 showing negative results were assigned to the asymptomatic group. The following MR findings were compared between the symptomatic and asymptomatic groups: presence of osteophytes, articular surface irregularity, subchondral cysts, acromioclavicular joint fluid, subacromial fluid, subacromial bony spurs, joint capsular distension, bone edema, intraarticular enhancement, periarticular enhancement, superior and inferior joint capsular distension degree, and joint capsular thickness. The patients were subsequently divided into groups based on age (younger, older) and the method of MR arthrography (direct MR arthrography, indirect MR arthrography), and all the MR findings in each subgroup were reanalyzed. The meaningful cutoff value of each significant continuous variable was calculated using receiver operating characteristic analysis. The degree of superior capsular distension was the only significant MR finding of symptomatic acromioclavicular joints and its meaningful cutoff value was 2.1mm. After subgroup analyses, this variable was significant in the older age group and indirect MR arthrography group. On 3-T MR imaging, the degree of superior joint capsular distension might be a predictable MR finding in the diagnosis of symptomatic acromioclavicular joints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    Science.gov (United States)

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  2. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Science.gov (United States)

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  3. [Range of Hip Joint Motion and Weight of Lower Limb Function under 3D Dynamic Marker].

    Science.gov (United States)

    Xia, Q; Zhang, M; Gao, D; Xia, W T

    2017-12-01

    To explore the range of reasonable weight coefficient of hip joint in lower limb function. When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss. Copyright© by the Editorial Department of Journal of Forensic Medicine

  4. Elbow joint fatigue and bench-press training.

    Science.gov (United States)

    Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2014-01-01

    Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Controlled laboratory study. Motion research laboratory. A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Participants performed bench-press training until fatigued. Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.

  5. 25 years of the Joint Institute for Nuclear Research in Dubna and Czechoslovakia's part in its activities

    International Nuclear Information System (INIS)

    Simane, C.; Tucek, J.

    1981-01-01

    The main tasks and results attained by the individual units of the Joint Institute for Nuclear Research in Dubna are briefly described: by the high energy laboratory, the nuclear problems laboratory, the laboratory of theoretical physics, the laboratory of neutron physics, the laboratory of nuclear reactions, the laboratory of computer technology and automation, and by the unit responsible for the implementation of the project for accelerators of positively charged ions based on the principle of collective acceleration using electron rings. Czechoslovakia contributes approximately 6% to the financing of the Institute. Also briefly described are the main fields of cooperation between Czechoslovak research institutes and the laboratories of the Joint Institute for Nuclear Research. (Z.M.)

  6. Joint imaging

    International Nuclear Information System (INIS)

    Hengst, W.

    1984-01-01

    Joint imaging is a proven diagnostic procedure which has become indispensable to the detection and treatment of different joint diseases in almost all disciplines. The method is suited for early diagnosis of joint affections both in soft tissue and bone which cannot be detected by X-ray or other procedures. The local activity accumulation depends on the rate of metabolism and is visualized in the scan, which in turn enables the extension and floridity of focal lesions to be evaluated and followed-up. Although joint scans may often give hints to probabilities relevant to differential diagnosis, the method is non-specific and only useful if based on the underlying clinical picture and X-ray finding, if possible. The radiation exposure is very low and does not represent a hazard in cases of adequate assessment of indication. In pregnant women and children the assessment of indication has to be based on very strict principles. The method is suited for out-patient diagnosis and can be applied in all installations equipped with a gamma camera and a technetium generator. (orig.) [de

  7. Figurativeness in the Sense of Distraction (Studies by Lithuanian Authors

    Directory of Open Access Journals (Sweden)

    Laimutė Monginaitė

    2017-04-01

    Full Text Available The phenomenon of the sense of distraction and the feature of figurativeness in it are analysed with the help of phenomenological description, the concept of sense of Juozas Mureika and the conception of imagination of Kristupas Sabolius. The position is followed that the acts of sense and the being of those existing found in them cannot be known in a purely rational way. Knowing is reached with intuitive insights. The experiencing of distraction is approached as one of the norms or intentions of consciousness. The sense of distraction is acknowledged to be a basic value becoming more and more important in a modern stressful life. The article indicates that the intentional beings of the sense of distraction are expressed in really various human activities and are distinguished with mono-subjectivity and unrepeatable feeling. Figurativeness is perceived as the result of imaginary, creative activity of the imagination and aesthetical quality. The peculiarities of the formation of figurativeness are revealed through the phenomenological description of imagination by Sabolius. Four features of the act of visualisation, determining the quality of figurativeness, are emphasized: intentionality, power of transformation, relation with emotions and the symbolism of the image. The conclusion is made that figurativeness, being the result of the creative act (visualisation of imagination, appears as aesthetical quality or the ensemble of qualities. Figurativeness sharpens the sense of distraction and calls the wave of new experiences.

  8. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  9. Russian upstream joint ventures logging progress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Occidental Petroleum Corp. has begun exporting oil from Russia as part of an enhanced recovery joint venture in western Siberia. Oxy holds a 50% interest in the joint venture company, Vanyoganneft, and will market the oil. In other activity, two Canadian companies are marking progress with Russian upstream joint ventures

  10. Results of total joint arthroplasty and joint preserving surgery in younger patients evaluated by alternative outcome measures.

    Science.gov (United States)

    Klit, Jakob

    2014-04-01

    studies. Consecutive patients less than 60 years of age scheduled for (study II) unilateral or bilateral simultaneous primary TKA or (study III) scheduled for unilateral or bilateral simultaneous primary THA or HR were eligible for inclusion. Study II consisted of 115 primary TKA patients; 103 unilateral and 12 simultaneous, and Study III consisted of 136 primary THA patients; 86 unilateral THA, six simultaneous bilateral THA, and 44 HR. The study groups received a paper-format questionnaire within one month before surgery and at three, six, and 12 months postoperatively. Study I showed a high willingness to undergo PAO again with the experience and knowledge they have today and improvements were seen in all quality of life parameters except for ability in sex-life for males. Study II showed significantly improvements in joint function and HRQoL. Satisfaction and fulfillment of expectations do, however, not fully mirror the observed significant improvements in knee function and HRQoL. Patients with a depression preoperatively experience an inferior result evaluated by OKS and SF-36 PCS and MCS, but not concerning satisfaction, work-life, income or sex-life. In general TKA surgery in younger patients cannot be expected to change relation to work or annual income. Patients stay sexually active after TKA, but a decrease in frequency and a negative affection of sexual practice should be expected. Study III showed significantly improvements in joint function and HRQoL and a high degree of satisfaction and fulfillment of expectations. Only patients with major complications were not willing to repeat. THA surgery in younger patients cannot be expected to change the patient's relation to work or annual income. Patients stay sexually active after THA, and female patients experiences positive changes. Based on the findings in this thesis PAO patients are satisfied with the outcome at medium to long-term follow-up, and lasting improvements is seen in the patients' sex life, ability

  11. Semi-quantitative SPECT for anterior dislocation of the disc in the temporo-mandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreich, F.U.; Jend-Rossmann, I.; Jend, H.H.; Triebel, H.J.

    1987-01-01

    SPECT-examination of the TMJ using 99m-Tc-MDP was performed in 43 patients with arthrographically proven anterior dislocation of the disc and in 30 normals. The results were evaluated visually and also in a semi-quantitative manner that took account of relative 99m Tc activity in the TMJ and of the age of the patient. In the presence of arthrographically proven anterior, but reversible, disc dislocation, the semi-quantitative method proved positive in 75% of cases (28 cases). In joints with fixed anterior dislocation (29 cases), bone changes were demonstrated in 26%. Visual evaluation was positive in 50% of reversible, and in 72% of non-reversible dislocations. Semi-quantitative SPECT of the TMJ is excellent for demonstrating bone reaction resulting from TMJ dysfunction and for indicating the severity of the joint abnormality.

  12. Self-healing bolted joint employing a shape memory actuator

    Science.gov (United States)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  13. [Joint contractures in nursing textbooks].

    Science.gov (United States)

    Bartoszek, G; Meyer, G; Thiesemann, R

    2014-01-01

    The transparency criteria of the German statutory health insurance on joint contracture prevention have led to controversies about the appropriate assessment, prevention and treatment as well as to various actions in nursing practice. However, appropriate nursing assessments and proven treatment options are lacking so far. It is unclear whether textbooks on nursing reflect these uncertainties. Search for textbooks on nursing through internet-based search engines and publisher registers, data extraction by one investigator and control by a second. A total of 35 textbooks with contributions on joint contractures were identified of which 25 included a definition, causes/risk factors are presented in 32 textbooks and assessments are presented in 5 books. Most often positioning into a physiological or functional neutral position and passive moving of limbs are recommended as passive prophylaxis. Recommended therapeutic and preventive options do not differ. None of the textbooks reflect that there is a lack of scientific knowledge on the subject. Textbooks on nursing do not deal with complete and scientific sound information on joint contractures.

  14. The temporomandibular joint

    International Nuclear Information System (INIS)

    Campbell, W.

    1984-01-01

    Whilst the temporomandibular joint is in many ways unique, it is subject to all the diseases and disorders found in joints in other parts of the human skeleton. By far the most common disorder is injury, followed by arthropathy, acute and chronic dislocations, ankylosis, and in rare instances, neoplasms. The diagnosis and management of the temporomandibular joint are the primary responsibility of the oral surgeon. Nevertheless, this anatomical region is an area in which the cooperation of medical and dental disciplines may be required for the satisfactory conclusion of treatment. The more so when the disease process involves either associated psychosomatic illness or malignancy. The mainstay of the diagnosis is a careful radiological examination of the joint. There exists a delicate relationship between the dentition, the muscles of mastication, and the temporomandibular articulation, which is controlled by arthrokinetic reflex activity of the branches of the 5th cranial nerve. Imbalance between one or more of the components of this integrated system frequently leads to disturbances in function. Pain-dysfunction disorders constitute the larger part of temporomandibular joint disturbances generally encountered

  15. Determining loads acting on the pelvis in upright and recumbent birthing positions: A case study.

    Science.gov (United States)

    Hemmerich, Andrea; Geens, Emily; Diesbourg, Tara; Dumas, Geneviève A

    2018-05-24

    The biomechanics of mothers' birthing positions and their impact on maternal and newborn health outcomes are poorly understood. Our objectives were to determine the loads applied to the female pelvis during dynamic movement that may occur during childbirth; findings are intended to inform clinical understanding and further research on birth positioning mechanics. An optical motion capture system and force platforms were used to collect upright and supine movement data from two pregnant and three non-pregnant participants. Using an inverse dynamics approach, normalized three-dimensional hip and sagittal plane lumbosacral joint moments were estimated during squatting, all-fours, and supine activities. During squatting, peak hip abduction moments were greater for our pregnant (compared with non-pregnant) participants and lumbosacral extension moments substantially exceeded those during walking. The all-fours activity, conversely, generated flexion moments at the L5/S1 joint throughout most of the cycle. In supine, the magnitude of the ground reaction force reached 100% body weight with legs and upper body raised (McRoberts' position); the centre of pressure remained cranial to the sacrum. Squatting generated appreciable moments at the hip and lumbosacral joints that could potentially affect pelvic motion during childbirth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    Science.gov (United States)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  17. HLA-B27 and gender independently determine the likelihood of a positive MRI of the sacroiliac joints in patients with early inflammatory back pain: a 2-year MRI follow-up study

    NARCIS (Netherlands)

    van Onna, M.; Jurik, A. G.; van der Heijde, D.; van Tubergen, A.; Heuft-Dorenbosch, L.; Landewé, R.

    2011-01-01

    To describe how inflammation on MRI of the sacroiliac joints in patients with recent-onset inflammatory back pain (IBP) evolves over time, and to study determinants of activity on MRI of the sacroiliac joint. A 2-year follow-up study with annual MRI of the sacroiliac joints was conducted in patients

  18. Stretchable Triboelectric-Photonic Smart Skin for Tactile and Gesture Sensing.

    Science.gov (United States)

    Bu, Tianzhao; Xiao, Tianxiao; Yang, Zhiwei; Liu, Guoxu; Fu, Xianpeng; Nie, Jinhui; Guo, Tong; Pang, Yaokun; Zhao, Junqing; Xi, Fengben; Zhang, Chi; Wang, Zhong Lin

    2018-04-01

    Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa -1 . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of the environment in the body position attitude during the practice of the physical activity

    Directory of Open Access Journals (Sweden)

    Valia Alina Crespo Almeira

    2016-04-01

    Full Text Available The paper addresses the importance of postural attitude in environmental ergonomics considering that ergonomics is a multidisciplinary discipline that studies the systemic interactions between human machine in the development of different physical activities in their environment with the purpose of obtaining a state health, safety, mechanical efficiency and productivity to prevent repetitive strain injuries, positions held and musculoskeletal problems which can develop over time and can reach disabilities short or long term. Considering the influence of the environment on man to work: thermal, sound, light environments and its impact on health; anthropometric and biomechanical data: measures of bone, amplitudes segments of joint movements; the characteristics of muscular effort: The efficiency and effectiveness in physical activities in its various manifestations is contingent on first order to study the physical conditions such as; thermal environment, noise levels, air conditioning level, vibration hygienic conditions, including conditions schedules and secondly the attitude that sums the man in front of the activities which in one way or another affect job performance. It addresses the influence of postural attitude in environmental ergonomics while performing physical activities of man from the importance and prevalence of health problems related to the non-application of standards of environmental ergonomics.

  20. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  1. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    Science.gov (United States)

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  2. Joint Costs in Electricity and Natural Gas Distribution Infrastructures: The Role of Urban Factors

    Directory of Open Access Journals (Sweden)

    Muzeyyen Anil Senyel

    2018-04-01

    Full Text Available This paper analyzes the joint cost structure of electricity and natural gas distribution investments. Assessing the joint costs is critical for urban development and public policy regarding competition at the local level. The paper accounts for the urban and geographic factors at the local level, while the previous literature primarily used company-level data with a few or no site-specific variables in joint cost analyses. An empirical analysis of the multi-utility capital costs suggests that the local urban and geographic conditions affect such costs, with economies of scope present in electricity and natural gas both in terms of total costs and underground investment costs. Hence, the joint service provision makes economic and environmental sense for urban policy makers.

  3. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    International Nuclear Information System (INIS)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively

  4. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  5. Traumatic injuries of the temporomandibular joint

    International Nuclear Information System (INIS)

    Puig, S.; Krestan, C.; Lomoschitz, F.; Robinson, S.; Glaser, C.; Staudenherz, A.

    2001-01-01

    Injuries of the temporomandibular joint are mostly due to injuries or fractures of the mandibular condyle. Fractures of the skull base involving the temporomandibular joint are rare. Classification of fractures refers to their anatomical positions and the presence or absence of a luxation. Further, it is important whether the fracture is intra- or extra-capsular. The primary imaging method should be orthopantomography. As for therapy planning, especially surgery, also evaluation of soft tissue is necessary, computed tomography is the imaging method of choice. For diagnosis of complications or internal derangement of the temporomandibular joint, magnetic resonance imaging is to be recommended. (orig.) [de

  6. Ubiquitous positioning

    CERN Document Server

    Mannings, Robin

    2008-01-01

    This groundbreaking resource offers a practical, in-depth understanding of Ubiquitous Positioning - positioning systems that identify the location and position of people, vehicles and objects in time and space in the digitized networked economy. The future and growth of ubiquitous positioning will be fueled by the convergence of many other areas of technology, from mobile telematics, Internet technology, and location systems, to sensing systems, geographic information systems, and the semantic web. This first-of-its-kind volume explores ubiquitous positioning from a convergence perspective, of

  7. Extension joints: a tool to infer the active stress field orientation (case study from southern Italy)

    Science.gov (United States)

    De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo

    2013-04-01

    An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress

  8. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa

    OpenAIRE

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-01-01

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, bu...

  9. Flexible coordination of stationary and mobile conversations with gaze: Resource allocation among multiple joint activities

    Directory of Open Access Journals (Sweden)

    Eric Mayor

    2016-10-01

    Full Text Available Gaze is instrumental in coordinating face-to-face social interactions. But little is known about gaze use when social interactions co-occur with other joint activities. We investigated the case of walking while talking. We assessed how gaze gets allocated among various targets in mobile conversations, whether allocation of gaze to other targets affects conversational coordination, and whether reduced availability of gaze for conversational coordination affects conversational performance and content. In an experimental study, pairs were videotaped in four conditions of mobility (standing still, talking while walking along a straight-line itinerary, talking while walking along a complex itinerary, or walking along a complex itinerary with no conversational task. Gaze to partners was substantially reduced in mobile conversations, but gaze was still used to coordinate conversation via displays of mutual orientation, and conversational performance and content was not different between stationary and mobile conditions. Results expand the phenomena of multitasking to joint activities.

  10. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    Science.gov (United States)

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  11. Generalised joint hypermobility and knee joint hypermobility

    DEFF Research Database (Denmark)

    Junge, Tina; Henriksen, Peter; Hansen, Sebrina

    2018-01-01

    . Respondents with GJHk and KJH reported lower HRQoL. CONCLUSION: GJHk and KJH were frequently reported in the Danish adult population, mostly in women. Respondents with GJHk and KJH were two times more likely to report knee joint-related symptoms such as pain, reduced performance of usual activity and lower...

  12. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Directory of Open Access Journals (Sweden)

    Angelo Palombo

    2011-01-01

    Full Text Available The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme. To exploit the effectiveness of the high-resolution remote sensing techniques applied we will use the high-frequency thermal camera to measure the structures oscillations by high-frequency analysis and ground-based microwave radar interferometer to measure the dynamic displacement of several points belonging to a large structure. The paper describes the preliminary research results and discusses on the future applicability and techniques developments for integrating high-frequency time series data of the thermal imagery and ground-based microwave radar interferometer data.

  13. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    Science.gov (United States)

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P push-off in different ways, depending on the phase of stance considered.

  14. Joint Power Allocation for Multicast Systems with Physical-Layer Network Coding

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Ping

    2010-01-01

    Full Text Available This paper addresses the joint power allocation issue in physical-layer network coding (PLNC of multicast systems with two sources and two destinations communicating via a large number of distributed relays. By maximizing the achievable system rate, a constrained optimization problem is first formulated to jointly allocate powers for the source and relay terminals. Due to the nonconvex nature of the cost function, an iterative algorithm with guaranteed convergence is developed to solve the joint power allocation problem. As an alternative, an upper bound of the achievable rate is also derived to modify the original cost function in order to obtain a convex optimization solution. This approximation is shown to be asymptotically optimal in the sense of maximizing the achievable rate. It is confirmed through Monte Carlo simulations that the proposed joint power allocation schemes are superior to the existing schemes in terms of achievable rate and cumulative distribution function (CDF.

  15. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  16. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    International Nuclear Information System (INIS)

    Serizawa, Hisashi; Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki

    2013-01-01

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam

  17. The active straight leg raising test and mobility of the pelvic joints

    OpenAIRE

    Mens, J. M. A.; Vleeming, Andry; Snijders, Chris J.; Stam, Henk J.; Ginai, Abida Z.

    1999-01-01

    Objective signs to assess impairment in patients who are disabled by peripartum pelvic girdle pain hardly exist. The purpose of this study was to develop a clinical test to quantify and qualify disability in these patients. The study examined the relationship between impaired active straight leg raising (ASLR) and mobility of pelvic joints in patients with peripartum pelvic girdle pain, focusing on (1) the reduction of impairment of ASLR when the patient was wearing a pelvic belt, and (2) mot...

  18. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.

    Science.gov (United States)

    Freites, J Alfredo; Tobias, Douglas J

    2015-06-01

    Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.

  19. Microstructure and mechanical properties of Chi