WorldWideScience

Sample records for active joint-position sense

  1. The effects of knee direction, physical activity and age on knee joint position sense.

    Science.gov (United States)

    Relph, Nicola; Herrington, Lee

    2016-06-01

    Previous research has suggested a decline in knee proprioception with age. Furthermore, regular participation in physical activity may improve proprioceptive ability. However, there is no large scale data on uninjured populations to confirm these theories. The aim of this study was to provide normative knee joint position data (JPS) from healthy participants aged 18-82years to evaluate the effects of age, physical activity and knee direction. A sample of 116 participants across five age groups was used. The main outcome measures were knee JPS absolute error scores into flexion and extension, Tegner activity levels and General Practitioner Physical Activity Questionnaire results. Absolute error scores in to knee flexion were 3.6°, 3.9°, 3.5°, 3.7° and 3.1° and knee extension were 2.7°, 2.5°, 2.9°, 3.4° and 3.9° for ages 15-29, 30-44, 45-59, 60-74 and 75 years old respectively. Knee extension and flexion absolute error scores were significantly different when age group data were pooled. There was a significant effect of age and activity level on joint position sense into knee extension. Age and lower Tegner scores were also negatively correlated to joint position sense into knee extension. The results provide some evidence for a decline in knee joint position sense with age. Further, active populations may have heightened static proprioception compared to inactive groups. Normative knee joint position sense data is provided and may be used by practitioners to identify patients with reduced proprioceptive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cryotherapy impairs knee joint position sense.

    Science.gov (United States)

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  3. Joint position sense and vibration sense: anatomical organisation and assessment.

    Science.gov (United States)

    Gilman, S

    2002-11-01

    Clinical examination of joint position sense and vibration sense can provide important information concerning specific cutaneous sensory receptors, peripheral nerves, dorsal roots, and central nervous system pathways and should be included as a regular component of the neurological examination. Although these sensory modalities share a spinal cord and brainstem pathway, they arise in different receptors and terminate in separate distributions within the thalamus and cerebral cortex. Consequently, both modalities should be tested as part of the neurological examination. Clinical testing of these modalities requires simultaneous stimulation of tactile receptors; hence this review will include information about the receptors and pathways responsible for tactile sensation.

  4. Long-term neuromuscular training and ankle joint position sense.

    Science.gov (United States)

    Kynsburg, A; Pánics, G; Halasi, T

    2010-06-01

    Preventive effect of proprioceptive training is proven by decreasing injury incidence, but its proprioceptive mechanism is not. Major hypothesis: the training has a positive long-term effect on ankle joint position sense in athletes of a high-risk sport (handball). Ten elite-level female handball-players represented the intervention group (training-group), 10 healthy athletes of other sports formed the control-group. Proprioceptive training was incorporated into the regular training regimen of the training-group. Ankle joint position sense function was measured with the "slope-box" test, first described by Robbins et al. Testing was performed one day before the intervention and 20 months later. Mean absolute estimate errors were processed for statistical analysis. Proprioceptive sensory function improved regarding all four directions with a high significance (pneuromuscular training has improved ankle joint position sense function in the investigated athletes. This joint position sense improvement can be one of the explanations for injury rate reduction effect of neuromuscular training.

  5. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  6. Cryotherapy does not impair shoulder joint position sense.

    Science.gov (United States)

    Dover, Geoffrey; Powers, Michael E

    2004-08-01

    To determine the effects of a cryotherapy treatment on shoulder proprioception. Crossover design with repeated measures. University athletic training and sports medicine research laboratory. Thirty healthy subjects (15 women, 15 men). A 30-minute cryotherapy treatment. Joint position sense was measured in the dominant shoulder by using an inclinometer before and after receiving 30 minutes of either no ice or a 1-kg ice bag application. Skin temperature was measured below the tip of the acromion process and recorded every 5 minutes for the entire 30 minutes and immediately after testing. Three different types of error scores were calculated for data analyses and used to determine proprioception. Separate analyses of absolute, constant, and variable error failed to identify changes in shoulder joint proprioception as a function of the cryotherapy application. Application of an ice bag to the shoulder does not impair joint position sense. The control of proprioception at the shoulder may be more complex than at other joints in the body. Clinical implications may involve modifying rehabilitation considerations when managing shoulder injuries.

  7. Comparing Knee Joint Position Sense in Patellofemoral Pain and Healthy Futsal Women

    Directory of Open Access Journals (Sweden)

    Negar Kooroshfar

    2017-03-01

    Full Text Available Background: Proprioception, or joint position sense, probably plays an important role in joint function. A number of studies have shown that proper joint position sense can decrease the risk of injuries in sports. It is not very clear how patellofemoral pain syndrome (PFPS can affect athletes joint position sense (JPS. Regarding the importance of proper joint position sense for movement performance and injury prevention in athletes, the aim of this study was to evaluate knee JPS in athletes with PFPS and compare it with asymptomatic individuals under non-weight bearing (sitting conditions. Methods: The study design was comparative in which 15 patients and 15 healthy athletes participated. JPS was evaluated by active and passive replication of knee angles for 30, 45 and 60° of knee flexion target angle while visual cues were eliminated. Each test was repeated three times. By subtracting the test angle from the replicated angle, the absolute error was calculated as a dependent variable. T-statistical test was used to compare data between two groups and P value of 0.05 was considered as the level of statistical significance. Results: No significant difference (P<0.05 in active (A and passive (P knee JPS was found between two groups for three (30°, p-value (A =0.79, P=0.68, 45°, P value (A=0.12, P=0.54 and 60°, P value (A=0.74, P=0.71 target angles. Conclusion: According to results, both groups had the same JPS ability, it seems PFPS does not affect the knee JPS at least in athlete cases. It would be possible that deficiency of JPS compensated for the physical activity or on the other hand, maybe pain intensity was not high enough to interfere with JPS accuracy. According to our results, PFPS doesn’t reduce IPS but further investigation is needed to disclose if other factors such as skill

  8. Knee joint position sense of roller hockey players: a comparative study.

    Science.gov (United States)

    Venâncio, João; Lopes, Diogo; Lourenço, Joaquim; Ribeiro, Fernando

    2016-06-01

    This study aimed to compare knee joint position sense of roller hockey players with an age-matched group of non-athletes. Forty-three male participants voluntarily participated in this cross-sectional study: 21 roller hockey players (mean age: 23.2 ± 4.2 years old, mean weight: 81.8 ± 9.8 kg, mean height: 180.5 ± 4.1 cm) and 22 age-matched non-athletes (mean age: 23.7 ± 3.9 years old, mean weight: 85.0 ± 6.2 kg, mean height: 181.5 ± 5.0 cm). Knee joint position sense of the dominant limb was evaluated using a technique of open-kinetic chain and active knee positioning. Joint position sense was reported using absolute, relative and variable angular errors. The main results indicated that the group of roller hockey players showed significantly lower absolute (2.4 ± 1.2º vs. 6.5 ± 3.2º, p ≤ 0.001) and relative (1.7 ± 2.1º vs. 5.8 ± 4.4º, p ≤ 0.001) angular errors in comparison with the non-athletes group. In conclusion, the results from this present study suggest that proprioceptive acuity, assessed by measuring joint position sense, is increased in roller hockey players. The enhanced proprioception of the roller hockey players could contribute to injury prevention and improved performance during sporting activities.

  9. The Effectiveness of a Functional Knee Brace on Joint-Position Sense in Anterior Cruciate Ligament-Reconstructed Individuals.

    Science.gov (United States)

    Sugimoto, Dai; LeBlanc, Jessica C; Wooley, Sarah E; Micheli, Lyle J; Kramer, Dennis E

    2016-05-01

    It is estimated that approximately 350,000 individuals undergo anterior cruciate ligament (ACL) reconstruction surgery in each year in the US. Although ACL-reconstruction surgery and postoperative rehabilitation are successfully completed, deficits in postural control remain prevalent in ACL-reconstructed individuals. In order to assist the lack of balance ability and reduce the risk of retear of the reconstructed ACL, physicians often provide a functional knee brace on the patients' return to physical activity. However, it is not known whether use of the functional knee brace enhances knee-joint position sense in individuals with ACL reconstruction. Thus, the effect of a functional knee brace on knee-joint position sense in an ACL-reconstructed population needs be critically appraised. After systematically review of previously published literature, 3 studies that investigated the effect of a functional knee brace in ACL-reconstructed individuals using joint-position-sense measures were found. They were rated as level 2b evidence in the Centre of Evidence Based Medicine Level of Evidence chart. Synthesis of the reviewed studies indicated inconsistent evidence of a functional knee brace on joint-position improvement after ACL reconstruction. More research is needed to provide sufficient evidence on the effect of a functional knee brace on joint-position sense after ACL reconstruction. Future studies need to measure joint-position sense in closed-kinetic-chain fashion since ACL injury usually occurs under weight-bearing conditions.

  10. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Furmanek Mariusz P.

    2018-03-01

    Full Text Available The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS and force production sense (FPS. The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6. Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976, its relative error (p = 0.295, and its variable error (p = 0.489; the FPS’s absolute error (p = 0.688, its relative error (p = 0.193, and its variable error (p = 0.123. The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group.

  11. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Science.gov (United States)

    Furmanek, Mariusz P.; Słomka, Kajetan J.; Sobiesiak, Andrzej; Rzepko, Marian; Juras, Grzegorz

    2018-01-01

    Abstract The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS) and force production sense (FPS). The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6). Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA) did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976), its relative error (p = 0.295), and its variable error (p = 0.489); the FPS’s absolute error (p = 0.688), its relative error (p = 0.193), and its variable error (p = 0.123). The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group. PMID:29599858

  12. Test-retest reliability of joint position and kinesthetic sense in the elbow of healthy subjects

    DEFF Research Database (Denmark)

    Juul-Kristensen, B.; Lund, Hans Aage; Hansen, K.

    2008-01-01

    Proprioception is an important effect measure in neuromuscular function training in physiotherapy. Reliability studies of methods for measuring proprioception are few on joint position sense (JPS) and threshold to detection of a passive movement (TDPM) on the elbow. The aim was to study test-rete...

  13. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  14. A 200-m All-out Front-crawl Swim Modifies Competitive Swimmers' Shoulder Joint Position Sense

    NARCIS (Netherlands)

    Uematsu, A.; Kurita, Y.; Inoue, K.; Okuno, K.; Hortobagyi, T.; Suzuki, S.

    2015-01-01

    We tested the hypothesis that an all-out-effort 200-m front-crawl swim trial affects competitive swimmers' shoulder joint position sense. On Day 1, we measured shoulder joint position sense before and after the swim trial, and on Day 2 before and after 2 min of seated rest. On both days, shoulder

  15. ASSESSMENT AND COMPARISION OF CERVICAL JOINT POSITION SENSE IN SUBJECTS WITH CHRONIC NECK PAIN vs NORMALS

    Directory of Open Access Journals (Sweden)

    Oberoi Mugdha

    2015-06-01

    Full Text Available Background: The abundance of mechanoreceptors in the cervical spine and their central and reflex afferent connections to the vestibular, visual and postural control system suggests that the cervical proprioceptive information provides important somatosensory information influencing postural stability, head orientation and eye movement control. Disturbances to the afferent input from the cervical region is thought to underlie symptoms of dizziness, unsteadiness, visual disturbances and signs of altered postural stability, cervical proprioception and head and eye movement control in people with chronic neck pain. This study aimed to assess and compare cervical joint position sense in subjects with chronic neck pain vs normals. Methods: Total 60 subjects, divided into two groups chronic neck pain group (n=30 (12 males and 18 females with mean age of 40.7 years and control group (n=30 with age and gender matched normal individuals were assessed for baseline data and demographic variables. Head repositioning accuracy test was used to assess cervical joint position sense in degrees. Results: The difference in the head repositioning error values were found to be extremely significant (p<0.0001 for all the neck movements for subjects with chronic neck pain as compared to normals. Conclusion: Cervical joint position sense in subjects with chronic neck pain is found to be altered as compared to age and gender matched normals.

  16. Effect of proprioception training on knee joint position sense in female team handball players.

    Science.gov (United States)

    Pánics, G; Tállay, A; Pavlik, A; Berkes, I

    2008-06-01

    A number of studies have shown that proprioception training can reduce the risk of injuries in pivoting sports, but the mechanism is not clearly understood. To determine the contributing effects of propioception on knee joint position sense among team handball players. Prospective cohort study. Two professional female handball teams were followed prospectively for the 2005-6 season. 20 players in the intervention team followed a prescribed proprioceptive training programme while 19 players in the control team did not have a specific propioceptive training programme. The coaches recorded all exposures of the individual players. The location and nature of injuries were recorded. Joint position sense (JPS) was measured by a goniometer on both knees in three angle intervals, testing each angle five times. Assessments were performed before and after the season by the same examiner for both teams. In the intervention team a third assessment was also performed during the season. Complete data were obtained for 15 subjects in the intervention team and 16 in the control team. Absolute error score, error of variation score and SEM were calculated and the results of the intervention and control teams were compared. The proprioception sensory function of the players in the intervention team was significantly improved between the assessments made at the start and the end of the season (mean (SD) absolute error 9.78-8.21 degrees (7.19-6.08 degrees ) vs 3.61-4.04 degrees (3.71-3.20 degrees ), pteam between the start and the end of the season (mean (SD) absolute error 6.31-6.22 degrees (6.12-3.59 degrees ) vs 6.13-6.69 degrees (7.46-6.49 degrees ), p>0.05). This is the first study to show that proprioception training improves the joint position sense in elite female handball players. This may explain the effect of neuromuscular training in reducing the injury rate.

  17. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.

    Science.gov (United States)

    Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent

    2017-09-01

    Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by

  18. Cryotherapy and Joint Position Sense in Healthy Participants: A Systematic Review

    Science.gov (United States)

    Costello, Joseph T.; Donnelly, Alan E.

    2010-01-01

    Abstract Objective: To (1) search the English-language literature for original research addressing the effect of cryotherapy on joint position sense (JPS) and (2) make recommendations regarding how soon healthy athletes can safely return to participation after cryotherapy. Data Sources: We performed an exhaustive search for original research using the AMED, CINAHL, MEDLINE, and SportDiscus databases from 1973 to 2009 to gather information on cryotherapy and JPS. Key words used were cryotherapy and proprioception, cryotherapy and joint position sense, cryotherapy, and proprioception. Study Selection: The inclusion criteria were (1) the literature was written in English, (2) participants were human, (3) an outcome measure included JPS, (4) participants were healthy, and (5) participants were tested immediately after a cryotherapy application to a joint. Data Extraction: The means and SDs of the JPS outcome measures were extracted and used to estimate the effect size (Cohen d) and associated 95% confidence intervals for comparisons of JPS before and after a cryotherapy treatment. The numbers, ages, and sexes of participants in all 7 selected studies were also extracted. Data Synthesis: The JPS was assessed in 3 joints: ankle (n  =  2), knee (n  =  3), and shoulder (n  =  2). The average effect size for the 7 included studies was modest, with effect sizes ranging from −0.08 to 1.17, with a positive number representing an increase in JPS error. The average methodologic score of the included studies was 5.4/10 (range, 5–6) on the Physiotherapy Evidence Database scale. Conclusions: Limited and equivocal evidence is available to address the effect of cryotherapy on proprioception in the form of JPS. Until further evidence is provided, clinicians should be cautious when returning individuals to tasks requiring components of proprioceptive input immediately after a cryotherapy treatment. PMID:20446845

  19. Exercises focusing on rotator cuff and scapular muscles do not improve shoulder joint position sense in healthy subjects.

    Science.gov (United States)

    Lin, Yin-Liang; Karduna, Andrew

    2016-10-01

    Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    Directory of Open Access Journals (Sweden)

    Bartłomiej Niespodziński

    2018-01-01

    Full Text Available The aims of this study were (1 to assess the relationship between joint position (JPS and force sense (FS and muscle strength (MS and (2 to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR and passive reproduction (PR task and a force reproduction (FR task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72° than during the AR task (3.1 ± 1.93°. Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors.

  1. POSITION-SPECIFIC DEFICIT OF JOINT POSITION SENSE IN ANKLES WITH CHRONIC FUNCTIONAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    Shigeki Yokoyama

    2008-12-01

    Full Text Available The present study was aimed to test a hypothesis that individuals with functional ankle instability (FAI underestimate the joint angle at greater plantarflexion and inversion. Seventeen males with unilateral FAI and 17 controls (males without FAI consented for participation in this IRB-approved, case-control study. Using a passive reproduction test, we assessed ankle joint position sense (JPS for test positions between 30 and -10 degrees plantarflexion with an inclement of 10 degrees with or without 20° inversion at each plantarflexion angle. The constant error (CE was defined as the value obtained by subtracting the true angle of a test position from the corresponding perceived angle. At plantarflexed and inverted test positions, the CE values were smaller in negative with greater in the FAI group than in the control group. That is, in the FAI group, the FAI group underestimated the true plantarflexion angle at combined 30° plantarflexion and 20° inversion. We conclude that the ankle with FAI underestimate the amount of plantarflexion, which increases the chance of reaching greater planterflexion and inversion than patients' intention at high risk situations of spraining such as landing

  2. Joint position sense error in people with neck pain: A systematic review.

    Science.gov (United States)

    de Vries, J; Ischebeck, B K; Voogt, L P; van der Geest, J N; Janssen, M; Frens, M A; Kleinrensink, G J

    2015-12-01

    Several studies in recent decades have examined the relationship between proprioceptive deficits and neck pain. However, there is no uniform conclusion on the relationship between the two. Clinically, proprioception is evaluated using the Joint Position Sense Error (JPSE), which reflects a person's ability to accurately return his head to a predefined target after a cervical movement. We focused to differentiate between JPSE in people with neck pain compared to healthy controls. Systematic review according to the PRISMA guidelines. Our data sources were Embase, Medline OvidSP, Web of Science, Cochrane Central, CINAHL and Pubmed Publisher. To be included, studies had to compare JPSE of the neck (O) in people with neck pain (P) with JPSE of the neck in healthy controls (C). Fourteen studies were included. Four studies reported that participants with traumatic neck pain had a significantly higher JPSE than healthy controls. Of the eight studies involving people with non-traumatic neck pain, four reported significant differences between the groups. The JPSE did not vary between neck-pain groups. Current literature shows the JPSE to be a relevant measure when it is used correctly. All studies which calculated the JPSE over at least six trials showed a significantly increased JPSE in the neck pain group. This strongly suggests that 'number of repetitions' is a major element in correctly performing the JPSE test. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sex differences in the shoulder joint position sense acuity: a cross-sectional study.

    Science.gov (United States)

    Vafadar, Amir K; Côté, Julie N; Archambault, Philippe S

    2015-09-30

    Work-related musculoskeletal disorders (WMSD) is the most expensive form of work disability. Female sex has been considered as an individual risk factor for the development of WMSD, specifically in the neck and shoulder region. One of the factors that might contribute to the higher injury rate in women is possible differences in neuromuscular control. Accordingly the purpose of this study was to estimate the effect of sex on shoulder joint position sense acuity (as a part of shoulder neuromuscular control) in healthy individuals. Twenty-eight healthy participants, 14 females and 14 males were recruited for this study. To test position sense acuity, subjects were asked to flex their dominant shoulder to one of the three pre-defined angle ranges (low, mid and high-ranges) with eyes closed, hold their arm in that position for three seconds, go back to the starting position and then immediately replicate the same joint flexion angle, while the difference between the reproduced and original angle was taken as the measure of position sense error. The errors were measured using Vicon motion capture system. Subjects reproduced nine positions in total (3 ranges × 3 trials each). Calculation of absolute repositioning error (magnitude of error) showed no significant difference between men and women (p-value ≥ 0.05). However, the analysis of the direction of error (constant error) showed a significant difference between the sexes, as women tended to mostly overestimate the target, whereas men tended to both overestimate and underestimate the target (p-value ≤ 0.01, observed power = 0.79). The results also showed that men had a significantly more variable error, indicating more variability in their position sense, compared to women (p-value ≤ 0.05, observed power = 0.78). Differences observed in the constant JPS error suggest that men and women might use different neuromuscular control strategies in the upper limb. In addition, higher JPS

  4. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Directory of Open Access Journals (Sweden)

    Sarah B Clarke

    Full Text Available Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years. Postural control (sway velocity measured by a portable force platform during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation and at 3 research camps (3619m, 4600m and 5140m on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9 and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6 was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9. Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  5. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Science.gov (United States)

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  6. Effects of taping on knee joint position sense of female athletes across the menstrual cycle

    Directory of Open Access Journals (Sweden)

    Rose fouladi

    2013-06-01

    Full Text Available Introduction: The rate of anterior cruciate ligament (ACL tearing is more common in female athletes and one of thereasons is the effect of sex hormones. It was illustrated that knee joint position sense (JPS isaltered across the menstrual cycle and its lowest level is at menses. Therefore, it’s important to find a method to reduce injury risk at menses. Thus, the purpose of this study was to evaluate the effect of taping as a stimulator of skin, on the knee JPS in healthy female athletes across the menstrual cycle with different levels of estrogen and progesterone. Materials and Methods: In this semi-experimental study, 16 healthy female athletes with regular menstrual cycle voluntarily participated. Knee JPS was measured at 3 menstrual cycle phases, before and after patellataping. JPS was evaluated by reproduction of the target angle (30° flexion in standing position, from full extension. Serum estrogen and progesterone levels were collected in these 3 phases. Knee angles were measured by using a system comprised of skin markers, digital photography, and autoCAD software. Absolute error was considered as a dependent variable.Results: There was a significant difference between the knee JPS in 3 phases of measurement before taping (P=0.025, while no significant difference was found between knee JPS in 3 phases after taping (P=0.965. Conclusion: Findings of this study suggest that healthy female athletes have different levels of knee JPS across a menstrual cycle and its accuracy decreasesat menses. This differencecan be reduced by skin stimulatingmethods, such as taping. Therefore, kinesio taping would improve the knee JPSdeficiency at menses.

  7. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    Science.gov (United States)

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all Ppain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain

  8. Joint-position sense is altered by football pre-participation warm-up exercise and match induced fatigue.

    Science.gov (United States)

    Salgado, Eduardo; Ribeiro, Fernando; Oliveira, José

    2015-06-01

    The demands to which football players are exposed during the match may augment the risk of injury by decreasing the sense of joint position. This study aimed to assess the effect of pre-participation warm-up and fatigue induced by an official football match on the knee-joint-position sense of football players. Fourteen semi-professional male football players (mean age: 25.9±4.6 years old) volunteered in this study. The main outcome measures were rate of perceived exertion and knee-joint-position sense assessed at rest, immediately after a standard warm-up (duration 25 min), and immediately after a competitive football match (90 minutes duration). Perceived exertion increased significantly from rest to the other assessments (rest: 8.6±2.0; after warm-up: 12.1±2.1; after football match: 18.5±1.3; pfootball match compared to both rest (pfootball match-induced fatigue. Warm-up exercises could contribute to knee injury prevention, whereas the deleterious effect of match-induced fatigue on the sensorimotor system could ultimately contribute to knee instability and injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of a patellar strap on the joint position sense of the symptomatic knee in athletes with patellar tendinopathy.

    Science.gov (United States)

    de Vries, Astrid J; van den Akker-Scheek, Inge; Haak, Svenja L; Diercks, Ron L; van der Worp, Henk; Zwerver, Johannes

    2017-11-01

    The primary aim of this study was to investigate the effect of a patellar strap on the proprioception of the symptomatic leg in PT. Secondary aims were to investigate a possible difference in effectiveness between athletes with high and low proprioceptive acuity, and whether predictors of effectiveness could be found. Randomised cross-over pilot study. 24 athletes with PT (age 27.3±9.0, VISA-P 50.6±11.2) performed a joint position sense test with and without a patellar strap. The difference between both conditions was analysed using linear mixed-model analysis. No improvement in the joint position sense using the strap for the whole group was found, while those classified as having low proprioceptive acuity did improve using the strap (p=0.015, 17.2%). A larger knee girth, longer duration of symptoms and more tendon abnormalities were negatively associated with the strap's effectiveness. The use of a patellar strap improves the knee joint proprioception - measured with joint position sense - of the symptomatic leg in athletes with poor proprioceptive acuity. Especially athletes with relatively small knee girth, short duration of symptoms and small tendon abnormalities might benefit from the strap. As proprioception plays an important role in motor control, and deficits in proprioception may put an athlete at risk for (re-)injury, these findings may be relevant for prevention as well as rehabilitation purposes in those PT athletes with low proprioceptive acuity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. The effects of transcutaneous electrical nerve stimulation on joint position sense in patients with knee joint osteoarthritis.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Shafaee, Razieh; Abbasi, Leila

    2014-10-01

    To study the effects of transcutaneous electrical nerve stimulation (TENS) on joint position sense (JPS) in knee osteoarthritis (OA) subjects. Thirty subjects with knee OA (40-60 years old) using non-random sampling participated in this study. In order to evaluate the absolute error of repositioning of the knee joint, Qualysis Track Manager system was used and sensory electrical stimulation was applied through the TENS device. The mean errors in repositioning of the joint, in two position of the knee joint with 20 and 60 degree angle, after applying the TENS was significantly decreased (p knee OA could improve JPS in these subjects.

  11. Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study.

    Science.gov (United States)

    Granito, Renata Neves; Aveiro, Mariana Chaves; Renno, Ana Claudia Muniz; Oishi, Jorge; Driusso, Patricia

    2012-01-01

    Increased thoracic kyphosis is one of the most disfiguring consequences of osteoporotic spine fractures in the elderly. However, mechanisms involved in the increasing of the kyphosis degree among osteoporotic women are not completely understood. Then, the aims of this cross-sectional preliminary study were comparing thoracic kyphosis degree, trunk muscle peak torque and joint position sense among healthy and osteoporotic elderly women and investigating possible factors affecting the kyphosis degree. Twenty women were selected for 2 groups: healthy (n=10) and osteoporotic (n=10) elderly women. Bone mineral density (BMD), thoracic kyphosis degree, trunk muscles peak torque and joint position sense were measured. Differences among groups were analyzed by Student's Test T for unpaired data. Correlations between variables were performed by Pearson's coefficient correlation. The level of significance used for all comparisons was 5% (p≤0.05). We observed that the osteoporotic women demonstrated a significantly higher degree of kyphosis and lower trunk extensor muscle peak torque. Moreover, it was found that the BMD had a negative correlation with the thoracic kyphosis degree. Kyphosis degree showed a negative correlation between extensor muscle strength and joint position sense index. This study suggests that lower BMD may be associated to higher degree of kyphosis degree, lower trunk extensors muscle strength and an impaired joint position sense. It is also suggested that lower extensor muscle strength may be a factor that contributes to the increasing in kyphosis thoracic degree. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.

    Directory of Open Access Journals (Sweden)

    Sara Contu

    Full Text Available Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants' hand was passively moved to the target position guided by the H-Man robot (Criterion movement and were asked to indicate during a second passive movement towards the same target (Matching movement when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings.

  13. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in a Closed Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Jiménez-Reyes, Pedro

    2017-01-01

    Knee joint position sense (JPS) is a key parameter for optimum performance in many sports but is frequently negatively affected by injuries and/or fatigue during training sessions. Although evaluation of JPS may provide key information to reduce the risk of injury, it often requires expensive and/or complex tools that make monitoring proprioceptive deterioration difficult. To analyze the validity and reliability of a digital inclinometer to measure knee JPS in a closed kinetic chain (CKC). The validity and intertester and intratester reliability of a digital inclinometer for measuring knee JPS were assessed. Biomechanics laboratory. 10 athletes (5 men and 5 women; 26.2 ± 1.3 y, 71.7 ± 12.4 kg; 1.75 ± 0.09 m; 23.5 ± 3.9 kg/m 2 ). Knee JPS was measured in a CKC. Absolute angular error (AAE) of knee JPS in a CKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed that the inclinometer had a high level of validity compared with an isokinetic dynamometer (ICC = 1.0, SEM = 1.39, p AutoCAD video analysis, inclinometer validity was very high (ICC = 0.980, SEM = 3.46, p < 0.001) for measuring AAE during knee JPS in a CKC. In addition, the intertester reliability of the inclinometer for obtaining AAE was very high (ICC = .994, SEM = 1.67, p < 0.001). The inclinometer provides a valid and reliable method for assessing knee JPS in a CKC. Health and sports professionals could take advantage of this tool to monitor proprioceptive deterioration in athletes.

  14. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in an Open Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Fernández-Domínguez, Juan Carlos; Jiménez-Reyes, Pedro

    2017-12-18

    New methods are being validated to easily evaluate the knee joint position sense (JPS) due to its role in sports movement and the risk of injury. However, no studies to date have considered the open kinetic chain (OKC) technique, despite the biomechanical differences compared to closed kinetic chain movements. To analyze the validity and reliability of a digital inclinometer to measure the knee JPS in the OKC movement. The validity, inter-tester and intra-tester reliability of a digital inclinometer for measuring knee JPS were evaluated. Sports research laboratory. Eighteen athletes (11 males and 7 females; 28.4 ± 6.6 years; 71.9 ± 14.0 kg; 1.77 ± 0.09 m; 22.8 ± 3.2 kg/m 2 ) voluntary participated in this study. Absolute angular error (AAE), relative angular error (RAE) and variable angular error (VAE) of knee JPS in an OKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed excellent validity of the inclinometer to obtain proprioceptive errors compared to the video analysis in JPS tasks (AAE: ICC = 0.981, SEM = 0.08; RAE: ICC = 0.974, SEM = 0.12; VAE: ICC = 0.973, SEM = 0.07). Inter-tester reliability was also excellent for all the proprioceptive errors (AAE: ICC = 0.967, SEM = 0.04; RAE: ICC = 0.974, SEM = 0.03; VAE: ICC = 0.939, SEM = 0.08). Similar results were obtained for intra-tester reliability (AAE: ICC = 0.861, SEM = 0.1; RAE: ICC = 0.894, SEM = 0.1; VAE: ICC = 0.700, SEM = 0.2). The digital inclinometer is a valid and reliable method to assess the knee JPS in OKC. Sport professionals may evaluate the knee JPS to monitor its deterioration during training or improvements throughout the rehabilitation process.

  15. Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Kamizato Iwao

    2014-01-01

    Full Text Available Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.

  16. Influence of chronic neck pain on cervical joint position error (JPE): Comparison between young and elderly subjects.

    Science.gov (United States)

    Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad

    2017-11-06

    Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (ppain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.

  17. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1998-01-01

    This study aims to develop a dispersed cooperative intellectualized system technique and a sensing system required for construction of a robot group inspectable in patrol and maintainable in selfish in a plant with large scale and complex variety. In particular, in order to establish a system with flexibility response to environment and soundness durable to abnormal accident, a cooperative active sensing technique and real-time active vision sensing technique were started. On the base of last two years results, in 1996 fiscal year, important and expansion of each element technique was conducted to start a study on movement of focussing point which was an important function of the active vision sensing. (G.K.)

  18. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  19. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  20. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  1. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  2. Study on a cooperative active sensing

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1997-01-01

    This study was made as a part of the research project ''Study on the evaluation of applicability of information collection·processing system to autonomous plant''. Previously, the basic techniques for 3-dimensional geometric modeling of working environments and for systemizing of information collection and processing have been developed. Thus, this study aimed to establish the techniques for a decentralized and cooperatively intellectualized system which allows to automatically perform patrol for inspection and maintenance in complicated plants. First, developments of cooperative active sensing for functioning in a multi-robot system and real-time active visual sensing were attempted and then the both were integrated to produce a prototype system for cooperative active sensing. The outcomes of the project in this year were as follows; a mobile platform with expanded functions, acoustic information processing, parallel EusLisp, a simulator for moving robot's behaviors, a visual monitoring system for moving objects, etc. All of these were usable for general purpose. (M.N.)

  3. Soft Smart Garments for Lower Limb Joint Position Analysis

    Directory of Open Access Journals (Sweden)

    Massimo Totaro

    2017-10-01

    Full Text Available Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  4. Soft Smart Garments for Lower Limb Joint Position Analysis.

    Science.gov (United States)

    Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia

    2017-10-12

    Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  5. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  6. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  7. ESA remote-sensing programme - Present activities and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Plevin, J [ESA, Directorate of Planning and Future Programmes, Paris, France; Pryke, I [ESA, Directorate of Applications Programmes, Toulouse, France

    1979-02-01

    The present activities and future missions of the ESA program of spaceborne remote sensing of earth resources and environment are discussed. Program objectives have been determined to be the satisfaction of European regional needs by agricultural, land use, water resources, coastal and polar surveys, and meeting the requirements of developing nations in the areas of agricultural production, mineral exploration and disaster warning and assessment. The Earthnet system of data processing centers presently is used for the distribution of remote sensing data acquired by NASA satellites. Remote sensing experiments to be flown aboard Spacelab are the Metric Camera, to test high resolution mapping capabilities of a large format camera, and the Microwave Remote-Sensing Experiment, which operates as a two-frequency scatterometer, a synthetic aperture radar and a passive microwave radiometer. Studies carried out on the definition of future remote sensing satellite systems are described, including studies of system concepts for land applications and coastal monitoring satellites.

  8. Educational activities of remote sensing archaeology (Conference Presentation)

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-10-01

    Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.

  9. Rigidity Sensing Explained by Active Matter Theory

    OpenAIRE

    Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques

    2011-01-01

    The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.

  10. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    Science.gov (United States)

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  11. Active Millimeter and Submillimeter Sensing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The utilization of active long wavelength (>10 cm) microwave techniques mostly in radars has been a central aspect of planetary and Earth science instrumentation...

  12. Mental activity and the sense of ownership

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2015-01-01

    that one can experience something as one's own without thinking about anything as one's own. I argue that we have no reason to favour phenomenal accounts over cognitive accounts, that cognitive accounts are plausible given that much of our mental activity has unnoticed effects on our mental life...

  13. Object texture recognition by dynamic tactile sensing using active exploration

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum Petersen, Mikkel; Bilberg, Arne

    with a dynamic tactile transducer based on polyvinylidene fluoride (PVDF) piezoelectric film. Different test surfaces are actively explored and the signal from the sensor is used for feature extraction, which is subsequently used for classification. A comparison between the significance of different extracted......For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped...

  14. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  15. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    Science.gov (United States)

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6

  16. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  17. Soft Active Materials for Actuation, Sensing, and Electronics

    OpenAIRE

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  18. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    Science.gov (United States)

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing.

    Science.gov (United States)

    Lau, C P; Stott, J R; Toff, W D; Zetlein, M B; Ward, D E; Camm, A J

    1988-09-01

    A clinically available model of an activity-sensing, rate-responsive pacemaker (Activitrax, Medtronic) utilizes body vibration during exercise as an indicator of the need for a rate increase. Although having the advantage of rapid onset of rate response, this system lacks specificity and the rate response does not closely correlate with the level of exertion. In addition, this pacemaker is susceptible to the effects of extraneous vibration. In this study involving 20 normal subjects fitted with an external Activitrax pacemaker, the rate responses to a variety of exercises were studied and were compared with the corresponding sinus rates. The vibration generated at the level of the pacemaker was also measured by accelerometers in three axes. Only a fair correlation (r = 0.51) was achieved between the pacemaker rate and the sinus rate. The total root mean square value of acceleration in either the anteroposterior or the vertical axes was found to have a better correlation (r = 0.8). As the main accelerations during physical activities were in the lower frequency range (0.1-4 Hz), a low-pass filter was used to reduce the influence of extraneous vibration. Selective sensing of the acceleration level may be usefully implemented in an algorithm for activity pacing.

  20. A Joint Positioning and Attitude Solving Method for Shearer and Scraper Conveyor under Complex Conditions

    Directory of Open Access Journals (Sweden)

    Jiacheng Xie

    2017-01-01

    Full Text Available In a fully mechanized coal-mining face, the positioning and attitude of the shearer and scraper conveyor are inaccurate. To overcome this problem, a joint positioning and attitude solving method that considers the effect of an uneven floor is proposed. In addition, the real-time connection and coupling relationship between the two devices is analyzed. Two types of sensors, namely, the tilt sensor and strapdown inertial navigation system (SINS, are used to measure the shearer body pitch angle and the scraper conveyor shape, respectively. To improve the accuracy, two pieces of information are fused using the adaptive information fusion algorithm. It is observed that, using a marking strategy, the shearer body pitch angle can be reversely mapped to the real-time shape of the scraper conveyor. Then, a virtual-reality (VR software that can visually simulate this entire operation process under different conditions is developed. Finally, experiments are conducted on a prototype experimental platform. The positioning error is found to be less than 0.38 times the middle trough length; moreover, no accumulated error is detected. This method can monitor the operation of the shearer and scraper conveyor in a highly dynamic and precise manner and provide strong technical support for safe and efficient operation of a fully mechanized coal-mining face.

  1. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    Science.gov (United States)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  2. Older active users of ICTs make sense of their engagement

    Directory of Open Access Journals (Sweden)

    Magdalena Kania-Lundholm

    2017-05-01

    Full Text Available Research on older people’s ICT usage tends to focus on either the ways in which they go about learning to use these technologies or the impact that ICTs have on their lives. This research seems, in other words, to take for granted that older people are ‘digital immigrants’ as the digital divide debate proposed. Research that specifically looks at the ways in which older ICT users make sense of their engagement with these technologies is still limited. This article explores therefore – through focus group interviews – how a group of older people who are active ICT users make sense of their ‘digital nativeness’. The analysis shows that the interviewees are well aware that their ICT proficiency differentiated them from their peers, which is why they make sense of their ICT usage by making reference to the issues that make them ‘exceptional’ older people. These include the fact that they have used computers for many years and therefore made ICT usage an everyday habit early on; the fact that most older people do not have the skills that they themselves have, which is why they feel the need to share them with others; and the fact that their lifelong experience means they can use these technologies in judicious ways. By bringing attention to how older active ICT users make sense of their engagement, this article contributes to the notion of the digital spectrum and the debate on the inequalities that ICT proficiency brings about. 

  3. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  4. Effect of a patellar strap on the joint position sense of the symptomatic knee in athletes with patellar tendinopathy

    NARCIS (Netherlands)

    de Vries, Astrid J.; van den Akker-Scheek, Inge; Haak, Svenja L.; Diercks, Ron L.; van der Worp, Henk; Zwerver, Johannes

    2017-01-01

    Objectives: The primary aim of this study was to investigate the effect of a patellar strap on the proprioception of the symptomatic leg in PT. Secondary aims were to investigate a possible difference in effectiveness between athletes with high and low proprioceptive acuity, and whether predictors

  5. The study of active tectonic based on hyperspectral remote sensing

    Science.gov (United States)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm

  6. Active sensing and its application to sensor node reconfiguration.

    Science.gov (United States)

    Lee, Sooyong

    2014-10-08

    This paper presents a perturbation/correlation-based active sensing method and its application to sensor node configuration for environment monitoring. Sensor networks are widely used as data measurement tools, especially in dangerous environments. For large scale environment monitoring, a large number of nodes is required. For optimal measurements, the placement of nodes is very important. Nonlinear spring force-based configuration is introduced. Perturbation/correlation-based estimation of the gradient is developed and it is much more robust because it does not require any differentiation. An algorithm for tuning the stiffness using the estimated gradient for node reconfiguration is presented. The performance of the proposed algorithm is discussed with simulation results.

  7. Soft Active Materials for Actuation, Sensing, and Electronics

    Science.gov (United States)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  8. Applying active learning to supervised word sense disambiguation in MEDLINE

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  9. Applying active learning to supervised word sense disambiguation in MEDLINE.

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  10. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  11. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  12. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  13. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.

    Science.gov (United States)

    Stamper, Sarah A; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2012-05-01

    Previous work has shown that animals alter their locomotor behavior to increase sensing volumes. However, an animal's own movement also determines the spatial and temporal dynamics of sensory feedback. Because each sensory modality has unique spatiotemporal properties, movement has differential and potentially independent effects on each sensory system. Here we show that weakly electric fish dramatically adjust their locomotor behavior in relation to changes of modality-specific information in a task in which increasing sensory volume is irrelevant. We varied sensory information during a refuge-tracking task by changing illumination (vision) and conductivity (electroreception). The gain between refuge movement stimuli and fish tracking responses was functionally identical across all sensory conditions. However, there was a significant increase in the tracking error in the dark (no visual cues). This was a result of spontaneous whole-body oscillations (0.1 to 1 Hz) produced by the fish. These movements were costly: in the dark, fish swam over three times further when tracking and produced more net positive mechanical work. The magnitudes of these oscillations increased as electrosensory salience was degraded via increases in conductivity. In addition, tail bending (1.5 to 2.35 Hz), which has been reported to enhance electrosensory perception, occurred only during trials in the dark. These data show that both categories of movements - whole-body oscillations and tail bends - actively shape the spatiotemporal dynamics of electrosensory feedback.

  14. Natural polysaccharides as active biomaterials in nanostructured films for sensing.

    Science.gov (United States)

    Eiras, Carla; Santos, Amanda C; Zampa, Maysa F; de Brito, Ana Cristina Facundo; Leopoldo Constantino, Carlos J; Zucolotto, Valtencir; dos Santos, José R

    2010-01-01

    The search for natural, biocompatible and degradable materials amenable to be used in biomedical/analytical applications has attracted attention, either from the environmental or medical point of view. Examples are the polysaccharides extracted from natural gums, which have found applications in the food and pharmaceutical industries as stabilizers or thickening agent. In a previous paper, however, it was shown that a Brazilian natural gum, chicha (Sterculia striata), is suitable for application as building block for nanostructured film fabrication in conjunction with phthalocyanines. The films displayed electroactivity and could be used in sensing. In the present paper, we introduce the use of two different natural gums, viz., angico (Anadenanthera colubrina) and caraia (Sterculia urens), as active biomaterials to be used to modification layers, in the form of nanostructured thin films, including the study of dopamine detection. The multilayer films were assembled in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPC) and displayed good chemical and electrochemical stability, allowing their use as transducer elements in sensors for detection of specific neurotransmitters. It is suggested here that nanoscale manipulation of new biodegradable natural polymers opens up a variety of new opportunities for the use of these materials in advanced biomedical and analytical devices.

  15. Identification of sewage leaks by active remote-sensing methods

    Science.gov (United States)

    Goldshleger, Naftaly; Basson, Uri

    2016-04-01

    The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.

  16. Interrelation of satisfaction educational activity and sense of justice of students of pedagogical high school

    Directory of Open Access Journals (Sweden)

    S M Szinkovskaya

    2010-09-01

    Full Text Available Formation of sense of justice of students is caused not only objective factors, but also subjective among which essential value has satisfaction study. In article the analysis of satisfaction of students is given by educational activity and its interrelation with levels of sense of justice of students is shown.

  17. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    Science.gov (United States)

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  18. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance.

    Science.gov (United States)

    Thomas, D Travis; Erdman, Kelly Anne; Burke, Louise M

    2016-03-01

    It is the position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine that the performance of, and recovery from, sporting activities are enhanced by well-chosen nutrition strategies. These organizations provide guidelines for the appropriate type, amount, and timing of intake of food, fluids, and supplements to promote optimal health and performance across different scenarios of training and competitive sport. This position paper was prepared for members of the Academy of Nutrition and Dietetics, Dietitians of Canada (DC), and American College of Sports Medicine (ACSM), other professional associations, government agencies, industry, and the public. It outlines the Academy's, DC's and ACSM's stance on nutrition factors that have been determined to influence athletic performance and emerging trends in the field of sports nutrition. Athletes should be referred to a registered dietitian/nutritionist for a personalized nutrition plan. In the United States and in Canada, the Certified Specialist in Sports Dietetics (CSSD) is a registered dietitian/nutritionist and a credentialed sports nutrition expert.

  19. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    Science.gov (United States)

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  20. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  1. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    Science.gov (United States)

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  2. Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence

    Directory of Open Access Journals (Sweden)

    Bey-Hing Goh

    2017-04-01

    Full Text Available Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile–bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection.

  3. Computerized Neuropsychological Assessment Devices: Joint Position Paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology†

    Science.gov (United States)

    Bauer, Russell M.; Iverson, Grant L.; Cernich, Alison N.; Binder, Laurence M.; Ruff, Ronald M.; Naugle, Richard I.

    2012-01-01

    This joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology sets forth our position on appropriate standards and conventions for computerized neuropsychological assessment devices (CNADs). In this paper, we first define CNADs and distinguish them from examiner-administered neuropsychological instruments. We then set forth position statements on eight key issues relevant to the development and use of CNADs in the healthcare setting. These statements address (a) device marketing and performance claims made by developers of CNADs; (b) issues involved in appropriate end-users for administration and interpretation of CNADs; (c) technical (hardware/software/firmware) issues; (d) privacy, data security, identity verification, and testing environment; (e) psychometric development issues, especially reliability, and validity; (f) cultural, experiential, and disability factors affecting examinee interaction with CNADs; (g) use of computerized testing and reporting services; and (h) the need for checks on response validity and effort in the CNAD environment. This paper is intended to provide guidance for test developers and users of CNADs that will promote accurate and appropriate use of computerized tests in a way that maximizes clinical utility and minimizes risks of misuse. The positions taken in this paper are put forth with an eye toward balancing the need to make validated CNADs accessible to otherwise underserved patients with the need to ensure that such tests are developed and utilized competently, appropriately, and with due concern for patient welfare and quality of care. PMID:22382386

  4. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Does dystonic muscle activity affect sense of effort in cervical dystonia?

    OpenAIRE

    Carment, Lo?c; Maier, Marc A.; Sangla, Sophie; Guiraud, Vincent; Mesure, Serge; Vidailhet, Marie; Lindberg, P?vel G; Bleton, Jean-Pierre

    2017-01-01

    International audience; BackgroundFocal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues.MethodsNeck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-match...

  6. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  7. Joint positions matter for ultrasound examination of RA patients-increased power Doppler signal in neutral versus flat position of hands.

    Science.gov (United States)

    Husic, Rusmir; Lackner, Angelika; Stradner, Martin H; Hermann, Josef; Dejaco, Christian

    2017-08-01

    Position of joints might influence the result of US examination in patients with RA. The purpose of this work was to compare grey-scale (GS) and power Doppler (PWD) findings obtained in neutral vs flat position of hands. A cross-sectional study of 42 RA patients with active disease. Two dimensional and 3D sonography of wrists and MCP joints were conducted in two different joint positions: neutral position, which is a slight flexion of the fingers with relaxed extensor muscles; and flat position, where all palm and volar sides of fingers touch the Table. Two dimensional GS synovitis (GSS) and PWD signals were scored semi-quantitatively (0-3). For 3D sonography, the percentage of PWD voxels within a region of interest was calculated. GSS was not quantified using 3D sonography. Compared with neutral position, 2D PWD signals disappeared in 28.3% of joints upon flattening. The median global 2D PWD score (sum of all PWD scores of an individual patient) decreased from 8 to 3 ( P < 0.001), and the global 3D PWD voxel score from 3.8 to 0.9 ( P < 0.001). The reduction of PWD scores was similar in all joints (2D: minus 50%, 3D: minus 66.4-80.1%). Inter- and intrareader agreement of PWD results was good (intraclass correlation coefficient: 0.75-0.82). In RA, a neutral position of the hands is linked to a higher sensitivity of 2D and 3D sonography in detecting PWD signals at wrists and MCP joints, compared with a flat position. Standardization of the scanning procedure is essential for obtaining comparable US results in RA patients in trials and clinical routines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  9. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  10. MobiGroup: Enabling Lifecycle Support to Social Activity Organization and Suggestion with Mobile Crowd Sensing

    OpenAIRE

    Guo, Bin; Yu, Zhiwen; Chen, Liming; Zhou, Xingshe; Ma, Xiaojuan

    2015-01-01

    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. This paper presents a group-aware mobile crowd sensing system called MobiGroup, which supports group activity organization in real-world settings. Acknowledging the complexity and diversity of group activities, this paper introduces a formal concept model to characterize group activities and classifies them into four organizational stages. We t...

  11. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)

    2007-06-15

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  12. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    International Nuclear Information System (INIS)

    Park, Seung Hee; Yun, Chung Bang; Inman, Daniel J.

    2007-01-01

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  13. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  14. The role of sense of coherence and physical activity in positive and negative affect of Turkish adolescents.

    Science.gov (United States)

    Oztekin, Ceyda; Tezer, Esin

    2009-01-01

    This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.

  15. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  16. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process

    Directory of Open Access Journals (Sweden)

    WU Lixin

    2017-10-01

    Full Text Available Research to the remote sensed thermal abnormity with fault activity and seismogenic process is a vital topic of the Earth observation and remote sensing application. It is presented that a systematic review on the international researches on the topic during the past 30 years, in the respects of remote sensing data applications, anomaly analysis methods, and mechanism understanding. Firstly, the outlines of remote sensing data applications are given including infrared brightness temperature, microwave brightness temperature, outgoing longwave radiation, and assimilated data from multiple earth observations. Secondly, three development phases are summarized as qualitative analysis based on visual interpretation, quantitative analysis based on image processing, and multi-parameter spatio-temporal correlation analysis. Thirdly, the theoretical hypotheses presented for the mechanism understanding are introduced including earth degassing, stress-induced heat, crustal rock battery conversion, latent heat release due to radon decay as well as multi-spheres coupling effect. Finally, three key directions of future research on this topic are proposed:anomaly recognizing by remote sensing monitoring and data analysis for typical tectonic activity areas; anomaly mechanism understanding based on earthquake-related earth system responses; spatio-temporal correlation analysis of air-based, space-based and ground-based stereoscopic observations.

  17. An Active Plasmonic to Explore on-Chip Sensing Applications

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2016-06-01

    Full Text Available We report the influence of top emission and transparent organic electroluminescence (OEL devices on the color tunability, viewing angle and enhancement light efficiency by surface plasmon grating coupled emission (SPGCE, the effects of coupled active SPPs on the metal nano-grating with organic material interface by cross-coupled into far-field space. Owing to the narrow band emission from the SPGCE, one can observe clear color changes at a certain viewing angle with different permittivities. The experimental and theoretical results showed that OEL-SPGCE at different pitch can match a linear shifting of momentum (DK of about 4.8 mm-1 per 100 nm pitch size. The color changes from -1.1 degree (water, -.07 degree (glucose 10 %, -2.5 degree (glucose 20 %, to 6 degree (glucose 40 % with the increasing permittivities. The OEL-SPGCE biosensor is proposed for the development of novel devices, which is expected to improve the capability of electroluminescent bio-plasmonic resonance measurement devices in the future.

  18. More than Activities: Using a "Sense of Place" to Enrich Student Experience in Adventure Sport

    Science.gov (United States)

    Leather, Mark; Nicholls, Fiona

    2016-01-01

    There has been increasing interest in recent years in the significance of a sense of place in the literature of outdoor adventure education. In the UK relationships between outdoor education and the environment still appear largely focused on the science of the natural environment and the activity in question. In this paper, we present empirical…

  19. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  20. Ethanol and LPG sensing characteristics of SnO2 activated Cr2 O3 ...

    Indian Academy of Sciences (India)

    Administrator

    between neighbouring grains in a material is an important factor, which determines sensitivity of the .... O2 (gas) f O2 (ads),. (3). Figure 4. Temperature dependence of conductance of pure and activated Cr2O3 sensors. Figure 5. Sensing response to ethanol (a–f) and LPG (g) for different dopant concentrations (0⋅5%) at ...

  1. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Science.gov (United States)

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  2. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  3. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    Science.gov (United States)

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  4. Microbial Growth and Quorum Sensing Antagonist Activities of Herbal Plants Extracts

    Directory of Open Access Journals (Sweden)

    Reema Al-Hussaini

    2009-09-01

    Full Text Available Antimicrobial and antiquorum sensing (AQS activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's for both bacteria and fungi were relatively high (0.5-3.0 mg. As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  5. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    Science.gov (United States)

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  6. Measurement of rain intensity by means of active-passive remote sensing

    Science.gov (United States)

    Linkova, Anna; Khlopov, Grygoriy

    2014-05-01

    Measurement of rain intensity is of great interest for municipal services and agriculture, particularly because of increasing number of floods and landslides. At that monitoring of amount of liquid precipitation allows to schedule work of hydrological services to inform the relevant public authorities about violent weather in time. That is why development of remote sensing methods for monitoring of rains is quite important task. The inverse problem solution of rain remote sensing is based on the measurements of scattering or radiation characteristics of rain drops. However liquid precipitation has a difficult structure which depends on many parameters. So using only scattering or radiation characteristics obtained by active and passive sensing at a single frequency does not allow to solve the inverse problem. Therefore double frequency sensing is widely used now for precipitation monitoring. Measurement of reflected power at two frequencies allows to find two parameters of drop size distribution of rain drops. However three-parameter distributions (for example gamma distribution) are the most prevalent now as a rain model, so in this case solution of the inverse problem requires the measurement of at least three uncorrelated variables. That is why a priori statistical meteorological data obtained by contact methods are used additionally to the double frequency sensing to solve the inverse problem. In particular, authors proposed and studied the combined method of double frequency sensing of rains based on dependence of the parameters of gamma distribution on rain intensity. The numerical simulation and experimental study shown that the proposed method allows to retrieve the profile of microstructure and integral parameters of rain with accuracy less than 15%. However, the effectiveness of the proposed method essentially depends on the reliability of the used statistical data which are tend to have a strong seasonal and regional variability led to significant

  7. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    Science.gov (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  8. Crack identification for reinforced concrete using PZT based smart rebar active sensing diagnostic network

    Science.gov (United States)

    Song, N. N.; Wu, F.

    2016-04-01

    An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.

  9. Efficient Active Sensing with Categorized Further Explorations for a Home Behavior-Monitoring Robot

    Directory of Open Access Journals (Sweden)

    Wenwei Yu

    2017-01-01

    Full Text Available Mobile robotics is a potential solution to home behavior monitoring for the elderly. For a mobile robot in the real world, there are several types of uncertainties for its perceptions, such as the ambiguity between a target object and the surrounding objects and occlusions by furniture. The problem could be more serious for a home behavior-monitoring system, which aims to accurately recognize the activity of a target person, in spite of these uncertainties. It detects irregularities and categorizes situations requiring further explorations, which strategically maximize the information needed for activity recognition while minimizing the costs. Two schemes of active sensing, based on two irregularity detections, namely, heuristic-based and template-matching-based irregularity detections, were implemented and examined for body contour-based activity recognition. Their time cost and accuracy in activity recognition were evaluated through experiments in both a controlled scenario and a home living scenario. Experiment results showed that the categorized further explorations guided the robot system to sense the target person actively. As a result, with the proposed approach, the robot system has achieved higher accuracy of activity recognition.

  10. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa

    OpenAIRE

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-01-01

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, bu...

  11. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    Science.gov (United States)

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  12. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  13. Spatio-Temporal Analysis of Human Activities in Indoor Environments through Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger

    with the intuition and personal experience of the planners. Lack of real-time information on task execution has made it difficult to adapt to changes in the schedules, such as delays or suddenly occurring urgent tasks. The recent advances in methods and devices for mobile sensing provides opportunities...... methods for spatio-temporal analysis of human activities in indoor environments based on mobile sensing. The methods aim to improve scheduling and facility utilization by providing information on the used route networks, transportation modes, travel times, and the flow of people through buildings....... The methods are based on large-scale real-time indoor positioning through the use of existing WiFi infrastructures, which allows for easy deployment even in very large building complexes. The methods are designed for real-time operation, which enables them to detect and adjust to changes as they occur...

  14. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  15. Classification of permafrost active layer depth from remotely sensed and topographic evidence

    International Nuclear Information System (INIS)

    Peddle, D.R.; Franklin, S.E.

    1993-01-01

    The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to this study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth

  16. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  17. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  18. Anti-quorum sensing activity of essential oils from Colombian plants.

    Science.gov (United States)

    Jaramillo-Colorado, Beatriz; Olivero-Verbel, Jesus; Stashenko, Elena E; Wagner-Döbler, Irene; Kunze, Brigitte

    2012-01-01

    Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250 µg mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.

  19. A framework for nowcasting and forecasting of rainfall-triggered landslide activity using remotely sensed data

    Science.gov (United States)

    Kirschbaum, Dalia; Stanley, Thomas

    2016-04-01

    Remote sensing data offers the unique perspective to provide situational awareness of hydrometeorological hazards over large areas in a way that is impossible to achieve with in situ data. Recent work has shown that rainfall-triggered landslides, while typically local hazards that occupy small spatial areas, can be approximated over regional or global scales in near real-time. This work presents a regional and global approach to approximating potential landslide activity using the landslide hazard assessment for situational awareness (LHASA) model. This system couples remote sensing data, including Global Precipitation Measurement rainfall data, Shuttle Radar Topography Mission and other surface variables to estimate where and when landslide activity may be likely. This system also evaluates the effectiveness of quantitative precipitation estimates from the Goddard Earth Observing System Model, Version 5 to provide a 24 forecast of potential landslide activity. Preliminary results of the LHASA model and implications for are presented for a regional version of this system in Central America as well as a prototype global approach.

  20. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian [Univ. of Macau, Macau (China)

    2012-10-15

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics.

  1. Modeling and analysis of rotating plates by using self sensing active constrained layer damping

    International Nuclear Information System (INIS)

    Xie, Zheng Chao; Wong, Pak Kin; Chong, Ian Ian

    2012-01-01

    This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure's modal characteristics

  2. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    Science.gov (United States)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  4. Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia

    Science.gov (United States)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul

    2015-04-01

    Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to

  5. Macrophysical properties of continental cumulus clouds from active and passive remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Riley, Erin A.; Kleiss, Jessica; Long, Charles N.; Riihimaki, Laura D.; Flynn, Donna M.; Flynn, Connor J M.; Berg, Larry K.

    2017-10-06

    Cloud amount is an essential and extensively used macrophysical parameter of cumulus clouds. It is commonly defined as a cloud fraction (CF) from zenith-pointing ground-based active and passive remote sensing. However, conventional retrievals of CF from the remote sensing data with very narrow field-of-view (FOV) may not be representative of the surrounding area. Here we assess its representativeness using an integrated dataset collected at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site in Oklahoma, USA. For our assessment with focus on selected days with single-layer cumulus clouds (2005-2016), we include the narrow-FOV ARM Active Remotely Sensed Clouds Locations (ARSCL) and large-FOV Total Sky Imager (TSI) cloud products, the 915-MHz Radar Wind Profiler (RWP) measurements of wind speed and direction, and also high-resolution satellite images from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that a root-mean-square difference (RMSD) between the 15-min averaged ARSCL cloud fraction (CF) and the 15-min averaged TSI fractional sky cover (FSC) is large (up to 0.3). We also discuss how the horizontal distribution of clouds can modify the obtained large RMSD using a new uniformity metric. The latter utilizes the spatial distribution of the FSC over the 100° FOV TSI images obtained with high temporal resolution (30 sec sampling). We demonstrate that cases with more uniform spatial distribution of FSC show better agreement between the narrow-FOV CF and large-FOV FSC, reducing the RMSD by up to a factor of 2.

  6. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement.

    Science.gov (United States)

    Colberg, Sheri R; Sigal, Ronald J; Fernhall, Bo; Regensteiner, Judith G; Blissmer, Bryan J; Rubin, Richard R; Chasan-Taber, Lisa; Albright, Ann L; Braun, Barry

    2010-12-01

    Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.

  7. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  8. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  9. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  10. A Feasibility Study on Timber Damage Detection Using Piezoceramic-Transducer-Enabled Active Sensing

    Directory of Open Access Journals (Sweden)

    Jicheng Zhang

    2018-05-01

    Full Text Available In recent years, piezoelectric-based transducers and technologies have made significant progress towards structural health monitoring and damage evaluation for various metal and concrete structures. Timber is still commonly used as a construction material in practical engineering; however, there is a lack of research on the health monitoring of timber-based structures using piezoelectric-based transducers and methods. This paper conducts a feasibility study on timber damage detection using surface-mounted piezoelectric patches, which enable the stress-wave-based active sensing approach. Typical damage modes in timber frame structures, such as surface cracks and holes, were investigated in this study. In the active sensing approach, one piezoceramic transducer is used as an actuator to generate stress waves, which propagate along the surface of the timber structure, and other piezoceramic transducers function as sensors to detect the propagating stress waves. Defects, such as a crack or a hole, induce additional attenuation to the propagating stress wave. Based on this attenuation, the proposed method can detect the defects using the wavelet-packet-based damage index, demonstrating its implementation potential for real-time timber damage detection.

  11. Compressed sensing method for human activity recognition using tri-axis accelerometer on mobile phone

    Institute of Scientific and Technical Information of China (English)

    Song Hui; Wang Zhongmin

    2017-01-01

    The diversity in the phone placements of different mobile users' dailylife increases the difficulty of recognizing human activities by using mobile phone accelerometer data.To solve this problem,a compressed sensing method to recognize human activities that is based on compressed sensing theory and utilizes both raw mobile phone accelerometer data and phone placement information is proposed.First,an over-complete dictionary matrix is constructed using sufficient raw tri-axis acceleration data labeled with phone placement information.Then,the sparse coefficient is evaluated for the samples that need to be tested by resolving L1 minimization.Finally,residual values are calculated and the minimum value is selected as the indicator to obtain the recognition results.Experimental results show that this method can achieve a recognition accuracy reaching 89.86%,which is higher than that of a recognition method that does not adopt the phone placement information for the recognition process.The recognition accuracy of the proposed method is effective and satisfactory.

  12. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  13. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.

    Science.gov (United States)

    Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob

    2013-07-01

    Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.

  14. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    Directory of Open Access Journals (Sweden)

    Jesus Olivero-Verbel

    2014-09-01

    Full Text Available Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs as signal molecules for quorum sensing (QS. This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  15. Effect of Traditional Chinese Herbal Medicine with Antiquorum Sensing Activity on Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Weihua Chu

    2013-01-01

    Full Text Available Traditional Chinese herbal medicines (TCHMs were tested for their ability of antiquorum sensing. Water extracts of Rhubarb, Fructus gardeniae, and Andrographis paniculata show antiquorumsensing activity when using Chromobacterium violaceum CV12472 as reporter; the sub-MIC concentrations of these TCHMs were tested against AHL-dependent phenotypic expressions of PAO1. Results showed significant reduction in pyocyanin pigment, protease, elastase production, and biofilm formation in PAO1 without inhibiting the bacterial growth, revealing that the QSI by the extracts is not related to static or killing effects on the bacteria. The results indicate a potential modulation of bacterial cell-cell communication, P. aeruginosa biofilm, and virulence factors by traditional Chinese herbal medicine. This study introduces not only a new mode of action for traditional Chinese herbal medicines, but also a potential new therapeutic direction for the treatment of bacterial infections, which have QSI activity and might be important in reducing virulence and pathogenicity of pathogenic bacteria.

  16. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-06-30

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, but never with P-PIV. Since the activity of M-PIV was restored by adding the CS of QS-positive and PIV-deficient strain, we hypothesized that the propeptide binds to and inhibits PIV, and is degraded to activate PIV by a QS-dependent factor. In fact, the CS of the QS-positive and PIV-deficient strain was able to degrade the propeptide. Since the responsible factor should be a QS-dependently expressed extracellular protease, we tested QS-dependent proteases of P. aeruginosa and found that LasB (elastase) can degrade the propeptide and activate M-PIV. We purified the propeptide of PIV and confirmed that the propeptide can bind to and inhibit PIV. We suggest that PIV is post-secretionally activated through the extracellular degradation of the propeptide by LasB, a QS-dependent protease.

  17. Quorum Sensing Extracellular Death Peptides Enhance the Endoribonucleolytic Activities of Mycobacterium tuberculosis MazF Toxins

    Science.gov (United States)

    Nigam, Akanksha; Kumar, Sathish

    2018-01-01

    ABSTRACT mazEF is a toxin-antitoxin module located on chromosomes of most bacteria. MazF toxins are endoribonucleases antagonized by MazE antitoxins. Previously, we characterized several quorum sensing peptides called "extracellular death factors" (EDFs). When secreted from bacterial cultures, EDFs induce interspecies cell death. EDFs also enhance the endoribonucleolytic activity of Escherichia coli MazF. Mycobacterium tuberculosis carries several mazEF modules. Among them, the endoribonucleolytic activities of MazF proteins mt-1, mt-3, and mt-6 were identified. MazF-mt6 and MazF-mt-3 cleave M. tuberculosis rRNAs. Here we report the in vitro effects of EDFs on the endoribonucleolytic activities of M. tuberculosis MazFs. Escherichia coli EDF (EcEDF) and the three Pseudomonas aeruginosa EDFs (PaEDFs) individually enhance the endoribonucleolytic activities of MazF-mt6 and MazF-mt3 and overcome the inhibitory effect of MazE-mt3 or MazE-mt6 on the endoribonucleolytic activities of the respective toxins. We propose that these EDFs can serve as a basis for a novel class of antibiotics against M. tuberculosis. PMID:29717013

  18. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  19. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  20. Active cellular sensing with quantum dots: Transitioning from research tool to reality; a review

    Energy Technology Data Exchange (ETDEWEB)

    Delehanty, James B., E-mail: james.delehanty@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Susumu, Kimihiro, E-mail: susumu@ccs.nrl.navy.mil [Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Manthe, Rachel L., E-mail: rmanthe@umd.edu [Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742 (United States); Algar, W. Russ, E-mail: russ.algar.ctr.ca@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); College of Science, George Mason University, Fairfax, VA 22030 (United States); Medintz, Igor L., E-mail: igor.medintz@nrl.navy.mil [Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Quantum dots (QDs) have evolved beyond mere cellular labeling reagents. Black-Right-Pointing-Pointer Significant advances have been made in QD materials, surface coatings and bioconjugation. Black-Right-Pointing-Pointer Cellular targeting/delivery has been achieved using polymers, peptides, proteins. Black-Right-Pointing-Pointer Numerous QD-based sensing applications: extracellular, membrane, intracellular. - Abstract: The application of luminescent semiconductor quantum dots (QDs) within a wide range of biological imaging and sensing formats is now approaching its 15th year. The unique photophysical properties of these nanomaterials have long been envisioned as having the potential to revolutionize biosensing within cellular studies that rely on fluorescence. However, it is only now that these materials are making the transition towards accomplishing this goal. With the idea of understanding how to actively incorporate QDs into different types of cellular biosensing, we review the progress in many of the areas relevant to achieving this goal. This includes the synthesis of the QDs themselves, with an emphasis on minimizing potential toxicity, along with the general methods for making these nanocrystalline structures stable in aqueous media. We next survey some methods for conjugating QDs to biomolecules to allow them to participate in active biosensing. Lastly, we extensively review many of the applications where QDs have been demonstrated in an active role in cellular biosensing. These formats cover a wide range of possibilities including where the QDs have contributed to: monitoring the cell's interaction with its extracellular environment; elucidating the complex molecular interplay that characterizes the plasma membrane; understanding how cells continuously endocytose and exocytose materials across the cellular membrane; visualizing organelle trafficking; and, perhaps most importantly, monitoring the intracellular

  1. Active cellular sensing with quantum dots: Transitioning from research tool to reality; a review

    International Nuclear Information System (INIS)

    Delehanty, James B.; Susumu, Kimihiro; Manthe, Rachel L.; Algar, W. Russ; Medintz, Igor L.

    2012-01-01

    Highlights: ► Quantum dots (QDs) have evolved beyond mere cellular labeling reagents. ► Significant advances have been made in QD materials, surface coatings and bioconjugation. ► Cellular targeting/delivery has been achieved using polymers, peptides, proteins. ► Numerous QD-based sensing applications: extracellular, membrane, intracellular. - Abstract: The application of luminescent semiconductor quantum dots (QDs) within a wide range of biological imaging and sensing formats is now approaching its 15th year. The unique photophysical properties of these nanomaterials have long been envisioned as having the potential to revolutionize biosensing within cellular studies that rely on fluorescence. However, it is only now that these materials are making the transition towards accomplishing this goal. With the idea of understanding how to actively incorporate QDs into different types of cellular biosensing, we review the progress in many of the areas relevant to achieving this goal. This includes the synthesis of the QDs themselves, with an emphasis on minimizing potential toxicity, along with the general methods for making these nanocrystalline structures stable in aqueous media. We next survey some methods for conjugating QDs to biomolecules to allow them to participate in active biosensing. Lastly, we extensively review many of the applications where QDs have been demonstrated in an active role in cellular biosensing. These formats cover a wide range of possibilities including where the QDs have contributed to: monitoring the cell's interaction with its extracellular environment; elucidating the complex molecular interplay that characterizes the plasma membrane; understanding how cells continuously endocytose and exocytose materials across the cellular membrane; visualizing organelle trafficking; and, perhaps most importantly, monitoring the intracellular presence of target molecules such as nucleic acids, nutrients, cofactors, and ions or, alternatively

  2. Activity, Abundance, and Localization of Quorum Sensing Receptors in Vibrio harveyi.

    Science.gov (United States)

    Lorenz, Nicola; Shin, Jae Yen; Jung, Kirsten

    2017-01-01

    Quorum sensing (QS) is a process enabling a bacterial population to communicate via small molecules called autoinducers (AIs). This intercellular communication process allows single cells to synchronize their behavior within a population. The marine bacterium Vibrio harveyi ATCC BAA-1116 channels the information of three AI signals into one QS cascade. Three receptors perceive these AIs, the hybrid histidine kinases LuxN, Lux(P)Q and CqsS, to transduce the information to the histidine phosphotransfer (HPt) protein LuxU via phosphorelay, and finally to the response regulator LuxO. Hence, the level of phosphorylated LuxO depends on the AI concentrations. The phosphorylated LuxO (P-LuxO) controls the expression of small regulatory RNAs (sRNAs), which together with the RNA chaperon Hfq, destabilize the transcript of the master regulator luxR . LuxR is responsible for the induction and repression of several genes (e.g., for bioluminescence, exoprotease and siderophore production). In vivo studies with various mutants have demonstrated that the ratio between kinase and phosphatase activities of the individual QS receptors and therefore the P-LuxO/LuxO ratio is crucial not only for the output strength but also for the degree of noise. This study was undertaken to better understand the inherent design principles of this complex signaling cascade, which allows sensing and integration of different signals, but also the differentiated output in individual cells. Therefore, we quantitatively analyzed not only the enzymatic activities, but also the abundance and localization of the three QS receptors. We found that LuxN presents the highest capacity to phosphorylate LuxU, while the phosphatase activity was comparable to LuxQ and CqsS in vitro . In whole cells the copy number of LuxN was higher than that of LuxQ and CqsS, and further increased in the late exponential growth phase. Microscopy experiments indicate that LuxN and LuxQ form independent clusters. Altogether, these

  3. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  4. Development of RISA (radiation induced surface activation) detectors for onsite sensing and microdosimetry

    International Nuclear Information System (INIS)

    Date, H.; Shimozuma, M.; Tomozawa, H.; Takamasa, T.; Okamoto, K.

    2003-01-01

    We investigate a new technique for radiation detection using radiation induced surface activation (RISA) phenomenon which is found in oxide materials (with high resistivity) causing current conduction through the irradiation of gamma or beta rays. The RISA current has been observed typically in Rutile-type TiO 2 . We have performed a Monte Carlo simulation of gamma ray photons in TiO 2 and backing layers to make clear carrier generation processes leading to the conduction and to develop new type detectors for onsite sensing and microdosimetry. Results show that the dominant process to generate electron-hole pairs in thin TiO 2 layer is collisional interaction of electrons generated in backing layer, which suggest the RISA detector can be used for estimating the absorbed dose in bio-materials. (author)

  5. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Directory of Open Access Journals (Sweden)

    Jan U. H. Eitel

    2010-03-01

    Full Text Available Active ground optical remote sensing (AGORS devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm and near-infrared (>760 nm reflectance AGORS devices have recently become available that also measure red-edge (730 nm reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris. Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69 when compared to those without (r2 = 0.57, RMSE = 2.11.

  6. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  7. Sensing surface mechanical deformation using active probes driven by motor proteins

    Science.gov (United States)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  8. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Yuriko [Department of Innovation Systems Engineering, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Kato, Norihiro, E-mail: katon@cc.utsunomiya-u.ac.jp [CREST, Japan Science and Technology Agency, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan)

    2016-09-02

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  9. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition

    International Nuclear Information System (INIS)

    Takayama, Yuriko; Kato, Norihiro

    2016-01-01

    The opportunistic human pathogen Serratia marcescens AS-1 produces the N-hexanoylhomoserine lactone (C6HSL) receptor SpnR, a homologue of LuxR from Vibrio fischeri, which activates pig clusters to produce the antibacterial prodigiosin. In this study, we attempted to artificially regulate quorum sensing (QS) by changing the role of SpnR in N-acylhomoserine lactone (AHL)-mediated QS. SpnR was obtained as a fusion protein tagged with maltose-binding protein (MBP) from overexpression in Escherichia coli, and its specific affinity to C6HSL was demonstrated by quartz crystal microbalance analysis and AHL-bioassay with Chromobacterium violaceum CV026. Prodigiosin production was effectively inhibited by externally added MBP-SpnR in both wild-type AS-1 and the AHL synthase-defective mutant AS-1(ΔspnI). For the mutant, the induced amount of prodigiosin was drastically reduced to approximately 4% with the addition of 18 μM MBP-SpnR to the liquid medium, indicating 81% trapping of C6HSL. A system for inhibiting QS can be constructed by adding exogenous AHL receptor to the culture broth to keep the concentration of free AHL low, whereas intracellular SpnR naturally functions as the activator in response to QS. - Highlights: • Quorum sensing (QS) regulates the expression of some bacterial genes. • We added an AHL receptor to culture media to inhibit QS in Serratia marcescens AS-1. • The exogenous receptor effectively bound C6HSL and inhibited QS. • This approach can be used to artificially regulate AHL-mediated QS.

  10. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  11. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  12. The Jellyfish: smart electro-active polymers for an autonomous distributed sensing node

    Science.gov (United States)

    Blottman, John B.; Richards, Roger T.

    2006-05-01

    The US Navy has recently placed emphasis on deployable, distributed sensors for Force Protection, Anti-Terrorism and Homeland Defense missions. The Naval Undersea Warfare Center has embarked on the development of a self-contained deployable node that is composed of electro-active polymers (EAP) for use in a covert persistent distributed surveillance system. Electro-Active Polymers (EAP) have matured to a level that permits their application in energy harvesting, hydrophones, electro-elastic actuation and electroluminescence. The problem to resolve is combining each of these functions into an autonomous sensing platform. The concept presented here promises an operational life several orders of magnitude beyond what is expected of a Sonobuoy due to energy conservation and harvesting, and at a reasonable cost. The embodiment envisioned is that of a deployed device resembling a jellyfish, made in most part of polymers, with the body encapsulating the necessary electronic processing and communications package and the tentacles of the jellyfish housing the sonar sensors. It will be small, neutrally buoyant, and will survey the water column much in the manner of a Cartesian Diver. By using the Electro-Active Polymers as artificial muscles, the motion of the jellyfish can be finely controlled. An increased range of detection and true node autonomy is achieved through volumetric array beamforming to focus the direction of interrogation and to null-out extraneous ambient noise.

  13. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  15. Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons

    Science.gov (United States)

    Kim, Mi Song

    2015-10-01

    Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called "Embodied Modeling-Mediated Activities" (EMMA) to support not only Singaporean learners' deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers' co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.

  16. Health activity in the context of the sense of coherence and self-esteem of participants of specialised training

    Directory of Open Access Journals (Sweden)

    Urszula Dębska

    2016-12-01

    Results: Training participants more frequently declared taking up diverse health behaviours. Comparing the group of training participants with non-training persons we found statistically significant differences in the general level of intensification of health behaviours (t-Student 3,06*** and in sub-scales: Active relaxation in the open (2,69* and Improvement of fitness by sport (4,23**. The persons with higher self-esteem declared using a significantly higher number of diverse health behaviours (0,62***. The training participants with higher sense of meaningfulnessand sense of comprehensibilitysignificantly more frequently declared taking up health activity (r=0,32*.

  17. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  18. Additive Effects of Quorum Sensing Anti-Activators on Pseudomonas aeruginosa Virulence Traits and Transcriptome

    Directory of Open Access Journals (Sweden)

    Kyle L. Asfahl

    2018-01-01

    Full Text Available In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS via acyl-homoserine lactone (AHL signals coordinates virulence gene expression. AHL signals must reach a critical threshold before enough is bound by cognate regulators LasR and RhlR to drive transcription of target genes. In addition, three anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the threshold for induction and delay expression of QS target genes. It remains unclear how multiple anti-activators work together to achieve the quorum threshold. Here, we employed a combination of mutational, kinetic, phenotypic, and transcriptomic analysis to examine regulatory effects and interactions of the three distinct anti-activators. We observed combinatorial, additive effects on QS gene expression. As measured by reporter gene fusion, individual deletion of each anti-activator gene increased lasB expression and QS-controlled virulence factor production. Deletion of qslA in combination with the deletion of any other anti-activator gene resulted in the greatest increase and earliest activation of lasB gene expression. Western analysis revealed that relative increases in soluble LasR in anti-activator mutants correlate with increased lasB expression and QS-controlled virulence factor production. RNA-seq of the previously uncharacterized QslA and QteE regulons revealed overlapping, yet distinct groups of differentially expressed genes. Simultaneous inactivation of qteE and qslA had the largest effect on gene expression with 999 genes induced and 798 genes repressed in the double mutant vs. wild-type. We found that LasR and RhlR-activated QS genes formed a subset of the genes induced in the qteE, qslA, and double mutant. The activation of almost all of these QS genes was advanced from stationary phase to log phase in the qteE qslA double mutant. Taken together, our results identify additive effects of anti-activation on QS gene expression, likely

  19. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  20. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  1. ANALYSIS OF ACTIVITY OF GERMAN S OCIETY OF PHOTOGRAMMETRY, REMOTE SENSING AND GEOINFORMATICS

    OpenAIRE

    Kresse Wolfgang

    2014-01-01

    DGPF is the German Society of Photogrammetry, Remote Sensing and Geoinformatics – established in 1909, with currently 800 people. The Society has 12 working committees to work on issues in the field of photogrammetry and remote sensing as well as geoinforatics. In international cooperation with societies of Austria and Switzerland joint congresses are organized every three years. Similar cooperation could arise between Polish Society of Photogrammetry and Remote Sensing and DGPF.

  2. IMPLEMENTATION OF ACTIVE TEACHING METHODS AND EMERGING TOPICS IN PHOTOGRAMMETRY AND REMOTE SENSING SUBJECTS

    Directory of Open Access Journals (Sweden)

    M. Kosmatin Fras

    2016-06-01

    Full Text Available Fast technological developments in photogrammetry and remote sensing areas demand quick and steady changes in the education programme and its realization. The university teachers and assistants are faced with ensuring the learning materials, data and software for practical lessons, as well as project proposals for student’s team work and bachelor or master thesis. In this paper the emerging topics that already have a considerable impact in the practice are treated mostly from the educational aspect. These relatively new topics that are considered in this paper are unmanned aerial systems for spatial data collection, terrestrial and aerial laser scanning, mobile mapping systems, and novelties in satellite remote sensing. The focus is given to practical implementation of these topics into the teaching and learning programme of Geodesy and Geoinformation at the University of Ljubljana, Faculty of Civil and Geodetic Engineering, and experiences gained by the authors so far. Together with the technological advances, the teaching approaches must be modernized as well. Classical approaches of teaching, where a lecturer gives lecture ex cathedra and students are only listeners, are not effective enough. The didactics science of teaching has developed and proved in the practice many useful approaches that can better motivate students for more active learning. We can use different methods of team work like pro et contra debate, buzzing groups, press conference, moderated discussion etc. An experimental study on active teaching methods in the class of students of the Master programme of Geodesy and Geoinformation has been made and the results are presented. After using some new teaching methods in the class, the students were asked to answer two types of a questionnaire. First questionnaire was the standard form developed by Noel Entwistle, an educational psychologist who developed the Approaches to Studying Inventory (ASI for identifying deep and

  3. Implementation of Active Teaching Methods and Emerging Topics in Photogrammetry and Remote Sensing Subjects

    Science.gov (United States)

    Kosmatin Fras, M.; Grigillo, D.

    2016-06-01

    Fast technological developments in photogrammetry and remote sensing areas demand quick and steady changes in the education programme and its realization. The university teachers and assistants are faced with ensuring the learning materials, data and software for practical lessons, as well as project proposals for student's team work and bachelor or master thesis. In this paper the emerging topics that already have a considerable impact in the practice are treated mostly from the educational aspect. These relatively new topics that are considered in this paper are unmanned aerial systems for spatial data collection, terrestrial and aerial laser scanning, mobile mapping systems, and novelties in satellite remote sensing. The focus is given to practical implementation of these topics into the teaching and learning programme of Geodesy and Geoinformation at the University of Ljubljana, Faculty of Civil and Geodetic Engineering, and experiences gained by the authors so far. Together with the technological advances, the teaching approaches must be modernized as well. Classical approaches of teaching, where a lecturer gives lecture ex cathedra and students are only listeners, are not effective enough. The didactics science of teaching has developed and proved in the practice many useful approaches that can better motivate students for more active learning. We can use different methods of team work like pro et contra debate, buzzing groups, press conference, moderated discussion etc. An experimental study on active teaching methods in the class of students of the Master programme of Geodesy and Geoinformation has been made and the results are presented. After using some new teaching methods in the class, the students were asked to answer two types of a questionnaire. First questionnaire was the standard form developed by Noel Entwistle, an educational psychologist who developed the Approaches to Studying Inventory (ASI) for identifying deep and surface approaches to

  4. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2018-05-01

    Full Text Available Bolted spherical joints are widely used to form space steel structures. The stiffness and load capacity of the structures are affected by the looseness of bolted spherical joint connections in the structures. The looseness of the connections, which can be caused by fabrication error, low modeling accuracy, and “false twist” in the installation process, may negatively impact the load capacity of the structure and even lead to severe accidents. Furthermore, it is difficult to detect bolted spherical joint connection looseness from the outside since the bolts connect spheres with rods together from the inside. Active sensing methods are proposed in this paper to monitor the tightness status of the bolted spherical connection using piezoceramic transducers. A triangle-on-triangle offset grid composed of bolted spherical joints and steel tube bars was fabricated as the specimen and was used to validate the active sensing methods. Lead Zirconate Titanate (PZT patches were used as sensors and actuators to monitor the bolted spherical joint tightness status. One PZT patch mounted on the central bolted sphere at the upper chord was used as an actuator to generate a stress wave. Another PZT patch mounted on the bar was used as a sensor to detect the propagated waves through the bolted spherical connection. The looseness of the connection can impact the energy of the stress wave propagated through the connection. The wavelet packet analysis and time reversal (TR method were used to quantify the energy of the transmitted signal between the PZT patches by which the tightness status of the connection can be detected. In order to verify the effectiveness, repeatability, and consistency of the proposed methods, the experiments were repeated six times in different bolted spherical connection positions. The experimental results showed that the wavelet packet analysis and TR method are effective in detecting the tightness status of the connections. The

  5. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    Science.gov (United States)

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  6. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    Directory of Open Access Journals (Sweden)

    Chi-Chun Chen

    Full Text Available This paper describes an infrared-sensing running wheel (ISRW system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA, with the IR sensors (which are connected to a conventional PC recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  7. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response.

    Directory of Open Access Journals (Sweden)

    Nicolas Tremblay

    2016-07-01

    Full Text Available Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33. Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1 to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV. This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response.

  8. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Rico, C.; Schmid, T.; Millan, R.; Gumuzzio, J.

    2010-01-01

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs

  9. SENSES FOR READING AND WRITING ACTIVITIES AT SCHOOLS OF FUNDAMENTAL TEACHING

    Directory of Open Access Journals (Sweden)

    Osmar de Souza

    2009-12-01

    Full Text Available This article have to present the contributions of a Extension Program of FURB - Regional University of Blumenau. The Program, until 2008, was entitled “Senses for reading and writting activities at school” - this article corresponds to a glance on the development of the Program in two years: 2007 and 2008. The contemplated communities are public schools of Blumenau, more precisely, groups of fourth series of the Fundamental Teaching. In the first contact with the groups, questionnaires were hand out to students, aiming to notice the children's knowledge regarding the proposed themes (community and family. In the other visits - one per week -, reading and writting activities were developed. The students were, still, guests to research: in the library, questioning relatives or residents of the street in that they live. One of the results - that will be presented in full detail along the article - is the enlargement of the knowledge on local history - for students, teachers and academics involved. In spite of there are objectives propellers of the Program - as "to create conditions to students of fourth series read and write texts, more precisely about family and community -, one of the conclusions, regarding the development of the Program, is the possibility to contribute in the dimensions institutional, academic and social. Sometimes, those contributions can't be imagined when a Program is idealized.

  10. Study for urbanization corresponding to socio-economic activities in Savannaket, Laos using satellite remote sensing

    International Nuclear Information System (INIS)

    Kimijiama, S; Nagai, M

    2014-01-01

    In Greater Mekong Sub-region (GMS), economic liberalization and deregulation facilitated by GMS Regional Economic Corporation Program (GMS-ECP) has triggered urbanization in the region. However, the urbanization rate and its linkage to socio-economic activities are ambiguous. The objectives of this paper are to: (a) determine the changes in urban area from 1972 to 2013 using remote sensing data, and (b) analyse the relationships between urbanization with respect to socio-economic activities in central Laos. The study employed supervised classification and human visible interpretation to determine changes in urbanization rate. Regression analysis was used to analyze the correlation between the urbanization rate and socio-economic variables. The result shows that the urban area increased significantly from 1972 to 2013. The socio-economic variables such as school enrollment, labour force, mortality rate, water source and sanitation highly correlated with the rate of urbanization during the period. The study concluded that identifying the highly correlated socio-economic variables with urbanization rate could enable us to conduct a further urbanization simulation. The simulation helps in designing policies for sustainable development

  11. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    Science.gov (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    Science.gov (United States)

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  13. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  14. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  15. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  16. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators

    Science.gov (United States)

    Ambur, Ramakrishnan; Rinderknecht, Stephan

    2018-03-01

    Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.

  17. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Directory of Open Access Journals (Sweden)

    Tianhong Yan

    2011-11-01

    Full Text Available This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM, and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China. Weak links in the information matrix in an extended information filter (EIF can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM. All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  18. Fast feedback in active sensing: touch-induced changes to whisker-object interaction.

    Directory of Open Access Journals (Sweden)

    Dudi Deutsch

    Full Text Available Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions were typically characterized by a single acceleration-deceleration event, whisking amplitude and velocity were correlated, and whisk duration correlated with neither amplitude nor velocity. Upon contact with an object, a second acceleration-deceleration event occurred in about 25% of whisk cycles, involving both contacting (C2 and non-contacting (C1, D1 whiskers ipsilateral to the object. In these cases, the rostral whisker (C2 remained in contact with the object throughout the double-peak phase, which effectively prolonged the duration of C2 contact. These "touch-induced pumps" (TIPs were detected, on average, 17.9 ms after contact. On a slower time scale, starting at the cycle following first touch, contralateral amplitude increased while ipsilateral amplitude decreased. Our results demonstrate that sensory-induced motor modulations occur at various timescales, and directly affect object palpation.

  19. Sensing capabilities of piezoelectric wafer active sensors in extreme nuclear environment

    Science.gov (United States)

    Faisal Haider, Mohammad; Lin, Bin; Yu, Lingyu; Giurgiutiu, Victor

    2017-04-01

    There is considerable demand for structural health monitoring (SHM) at locations where there are substantial radiation fields such as nuclear reactor components, dry cask storage canister, irradiated fuel assemblies, etc. Piezoelectric wafer active sensors (PWAS) have been emerged as one of the major SHM sensing technologies. In order to use PWAS to perform SHM in nuclear environment, radiation influence on sensor and sensing capability needs to be investigated to assure the reliability of the PWAS based method. Radiation may cause degradation or even complete failure of sensors. Gamma radiation is one of the major radiation sources near the nuclear source. Therefore, experimental investigation was completed on the gamma radiation endurance of piezoelectric sensors. The irradiation test was done in a Co-60 Gamma Irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS were exposed under gamma radiation at 100 Gy/hr rate for 20 hours. Electro-mechanical (E/M) admittance signatures and electrical capacitance were measured to evaluate the PWAS performance before and after every 4 hours exposure to gamma radiation. PWAS were kept at room temperature for 6 days after each 4 hours radiation exposure to investigate the effect of time on PWAS by gamma radiation. It was found that, PZT-PWAS show variation in resonance frequency for both in plane and thickness mode E/M admittance. Where, the changes in resonance amplitudes are larger for PZT-PWAS. GaPO4-PWAS E/M impedance/admittance spectra don't show any reasonable change after gamma irradiation. A degradation behavior of electrical properties in the PZT-PWAS was observed. Capacitance value of PZT-PWAS decreases from 3.2 nF to 3.07 nF after exposing to gamma radiation for 20 hours at 100Gy/hour. This degradation behavior of electrical properties may be explained by the pinning of domain walls by some radiation induced effect. GaPO4-PWAS doesn't show reasonable degradation in electrical properties

  20. Canadian Cardiovascular Society/Canadian Anesthesiologists' Society/Canadian Heart Rhythm Society joint position statement on the perioperative management of patients with implanted pacemakers, defibrillators, and neurostimulating devices.

    Science.gov (United States)

    Healey, Jeff S; Merchant, Richard; Simpson, Chris; Tang, Timothy; Beardsall, Marianne; Tung, Stanley; Fraser, Jennifer A; Long, Laurene; van Vlymen, Janet M; Manninen, Pirjo; Ralley, Fiona; Venkatraghavan, Lashmi; Yee, Raymond; Prasloski, Bruce; Sanatani, Shubhayan; Philippon, François

    2012-01-01

    There are more than 200,000 Canadians living with permanent pacemakers or implantable defibrillators, many of whom will require surgery or invasive procedures each year. They face potential hazards when undergoing surgery; however, with appropriate planning and education of operating room personnel, adverse device-related outcomes should be rare. This joint position statement from the Canadian Cardiovascular Society (CCS) and the Canadian Anesthesiologists' Society (CAS) has been developed as an accessible reference for physicians and surgeons, providing an overview of the key issues for the preoperative, intraoperative, and postoperative care of these patients. The document summarizes the limited published literature in this field, but for most issues, relies heavily on the experience of the cardiologists and anesthesiologists who contributed to this work. This position statement outlines how to obtain information about an individual's type of pacemaker or implantable defibrillator and its programming. It also stresses the importance of determining if a patient is highly pacemaker-dependent and proposes a simple approach for nonelective evaluation of dependency. Although the document provides a comprehensive list of the intraoperative issues facing these patients, there is a focus on electromagnetic interference resulting from electrocautery and practical guidance is given regarding the characteristics of surgery, electrocautery, pacemakers, and defibrillators which are most likely to lead to interference. The document stresses the importance of preoperative consultation and planning to minimize complications. It reviews the relative merits of intraoperative magnet use vs reprogramming of devices and gives examples of situations where one or the other approach is preferable. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  1. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  2. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes.

    Science.gov (United States)

    Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie

    2017-02-13

    Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.

  3. Creative Mathematical Games: The Enhancement of Number Sense of Kindergarten Children Through Fun Activities

    Science.gov (United States)

    Mirawati

    2017-02-01

    The research departed from an issue found regarding the number sense of kindergarten children and as a solution to this problem, the research proposes the use of creative mathematical games in the teaching and learning. Departing from the issue and the offered solution, the following problems are about Children’s ability of number sense before and after the implementation of creative mathematical games; the forms of creative mathematical games in improving children’s number sense; the implementation of creative mathematical games in improving children’s number sense; and the factors possibly affecting the implementation of creative mathematical games. This study use action research method. The data were collected through observation, interview, and documentation and then qualitatively analysed using thematic analysis technique. The findings show that children respond positively to the creative mathematical games. They demonstrate fairly high enthusiasm and are able to understand number as well as its meaning in various ways. Children’s number sense has also improved in terms of one-on-one correspondence and mentioning and comparing many objects. The factors possibly affecting the implementation of these creative mathematical games are the media and the stages of teaching and learning that should be in accordance with the level of kindergarten children’s number sense.

  4. Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase.

    Science.gov (United States)

    Berthier, Christine; Kutchukian, Candice; Bouvard, Clément; Okamura, Yasushi; Jacquemond, Vincent

    2015-04-01

    Phosphoinositides act as signaling molecules in numerous cellular transduction processes, and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) regulates the function of several types of plasma membrane ion channels. We investigated the potential role of PtdIns(4,5)P2 in Ca(2+) homeostasis and excitation-contraction (E-C) coupling of mouse muscle fibers using in vivo expression of the voltage-sensing phosphatases (VSPs) Ciona intestinalis VSP (Ci-VSP) or Danio rerio VSP (Dr-VSP). Confocal images of enhanced green fluorescent protein-tagged Dr-VSP revealed a banded pattern consistent with VSP localization within the transverse tubule membrane. Rhod-2 Ca(2+) transients generated by 0.5-s-long voltage-clamp depolarizing pulses sufficient to elicit Ca(2+) release from the sarcoplasmic reticulum (SR) but below the range at which VSPs are activated were unaffected by the presence of the VSPs. However, in Ci-VSP-expressing fibers challenged by 5-s-long depolarizing pulses, the Ca(2+) level late in the pulse (3 s after initiation) was significantly lower at 120 mV than at 20 mV. Furthermore, Ci-VSP-expressing fibers showed a reversible depression of Ca(2+) release during trains, with the peak Ca(2+) transient being reduced by ∼30% after the application of 10 200-ms-long pulses to 100 mV. A similar depression was observed in Dr-VSP-expressing fibers. Cav1.1 Ca(2+) channel-mediated current was unaffected by Ci-VSP activation. In fibers expressing Ci-VSP and a pleckstrin homology domain fused with monomeric red fluorescent protein (PLCδ1PH-mRFP), depolarizing pulses elicited transient changes in mRFP fluorescence consistent with release of transverse tubule-bound PLCδ1PH domain into the cytosol; the voltage sensitivity of these changes was consistent with that of Ci-VSP activation, and recovery occurred with a time constant in the 10-s range. Our results indicate that the PtdIns(4,5)P2 level is tightly maintained in the transverse tubule membrane of the muscle fibers

  5. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    Science.gov (United States)

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  6. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    Directory of Open Access Journals (Sweden)

    Gastone Ciuti

    2015-03-01

    Full Text Available Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  7. EFFECT OF DIFFERENT LEVELS OF LOCALIZED MUSCLE FATIGUE ON KNEE POSITION SENSE

    Directory of Open Access Journals (Sweden)

    William S. Gear

    2011-12-01

    Full Text Available There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001. Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02 and between the pre-test and following 50% of peak hamstring torque (p = 0.02. Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue.

  8. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  9. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator

    Science.gov (United States)

    Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.

    2018-04-01

    This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.

  10. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method

    Directory of Open Access Journals (Sweden)

    Heyue Yin

    2016-10-01

    Full Text Available Piezoceramic based active sensing methods have been researched to monitor preload on bolt connections. However, there is a saturation problem involved with this type of method. The transmitted energy is sometimes saturated before the maximum preload which is due to it coming into contact with flat surfaces. When it comes to flat contact surfaces, the true contact area will easily saturate with the preload. The design of a new type of bolt looseness monitoring sensor, a smart washer, is to mitigate the saturation problem. The smart washer is composed of two annular disks with contact surfaces that are machined into convex and concave respectively, to eliminate the complete flat contact surfaces and to reduce the saturation effect. One piezoelectric patch is bonded on the non-contact surface of each annular disk. These two mating annular disks form a smart washer. One of the two piezoelectric patches serves as an actuator to generate an ultrasonic wave that propagates through the contact surface; the other one serves as a sensor to detect the propagated waves. The wave energy propagated through the contact surface is proportional to the true contact area which is determined by the bolt preload. The time reversal method is used to extract the peak of the focused signal as the index of the transmission wave energy; then, the relationship between the signal peak and bolt preload is obtained. Experimental results show that the focused signal peak value changes with the bolt preload and presents an approximate linear relationship when the saturation problem is experienced. The proposed smart washer can monitor the full range of the rated preload.

  11. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Directory of Open Access Journals (Sweden)

    Jan M Ache

    2015-07-01

    Full Text Available Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs. First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This

  12. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    Science.gov (United States)

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Micić, Darko; Šljukić, Biljana; Zujovic, Zoran; Travas-Sejdic, Jadranka; Ćirić-Marjanović, Gordana

    2014-01-01

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO 2 − oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  14. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    Science.gov (United States)

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    Science.gov (United States)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  16. Sensors for the Senses: Meaning-making via self-active entertainment experiences

    Directory of Open Access Journals (Sweden)

    Anthony Brooks

    2015-08-01

    Full Text Available In his ACM Computers in Entertainment article, titled "Artist and Audience: Emerging the Nano-entertainment experience", the author posited on how Inhabited Information Spaces, created as core catalyst of research, may be questioned as a multisensory future virtual work of art. This themed Human-Computer Interaction for Entertainment contribution for the EAI INTETAIN 2015 conference builds upon the earlier work by questioning meaning making from such self-active entertainment experiences. Contextually, self-active relates to actor empowerment via ICT, whilst entertainment refers to HCI paradigms that are fun, engaging, and enjoyable. Conceptualizing, designing and realizing alternative digital media entertainment situations in stage performance, interactive installations and exhibitions at leading Museums for Modern Art, National and International major events, contributed to development of a sensor-based system conceived as a platform to investigate meaning making having societal impact beyond art. The system involves arrays of selectable sensor profiles mixed and matched according to requirements. Sensing of human input can be through worn (biosignal e.g. EEG, ECG, EMG, GSR, held, and/or non-worn sensors (volumetric, linear and planar interface profiles. Mapping of sourced human data is to a variety of digital content including art-based (music making, digital painting, lighting effects, video games, Virtual Reality and robotic devices. System adaptability promotes participant profile matching e.g. according to desired outcome. All ages and abilities are potential users. Preceding the commonly known camera-based game controllers such as EyeToy, Wii, and Kinect; the SoundScapes Virtual Interactive Space system has been used in institutes, hospitals and clinics to empower people with impairment to unconsciously push their limits of functionality via creative and playful expression. Rehabilitation is less mundane and boring, where variety of ICT

  17. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    Science.gov (United States)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  18. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    OpenAIRE

    Flávia de Andrade e Souza Mazuchi; Aline Bigongiari; Juliana Valente Francica; Patricia Martins Franciulli; Luis Mochizuki; Joseph Hamill; Ulysses Fernandes Ervilha

    2018-01-01

    Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients). To compare the effect of two exercise training protocols (walking in deep water and on a treadmill) on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the ...

  19. Gas Sensing Properties of Pure and Cr Activated WO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. GAIKWAD

    2010-09-01

    Full Text Available Thick films of WO3 (Tungsten Oxide were prepared by screen-printing techniques. The surfaces of the films were modified by dipping them into an aqueous solution of Chromium Oxide (CrO3 for different intervals of time, followed by firing at 550 oC for 30 min. The gas sensing performance of the pure and Cr2O3-modified films was tested for various gases at different temperatures. The unmodified films showed response to H2S, ethanol and cigar smoke. However Cr2O3- modified films suppresses gas sensing response to all gases except H2S. The surface modification, using dipping process, altered the adsorbate-adsorbent interactions, which gave the specific selectivity and enhanced sensitivity to H2S gas. The gas response, selectivity, thermal stability and recovery time of the sensor were measured and presented. The role played by surface chromium species to improve gas sensing performance is discussed.

  20. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models.

    Science.gov (United States)

    Dwyer, Jason M; Rizzo, Stacey J Sukoff; Neal, Sarah J; Lin, Qian; Jow, Flora; Arias, Robert L; Rosenzweig-Lipson, Sharon; Dunlop, John; Beyer, Chad E

    2009-03-01

    Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.

  2. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    Science.gov (United States)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  3. Design of an osmotic pressure sensor for sensing an osmotically active substance

    International Nuclear Information System (INIS)

    Ch, Nagesh; Paily, Roy P

    2015-01-01

    A pressure sensor based on the osmosis principle has been designed and demonstrated successfully for the sensing of the concentration levels of an osmotically active substance. The device is fabricated using the bulk micro-machining technique on a silicon on insulator (SOI) substrate. The substrate has a square cavity on the bottom side to fill with the reference glucose solution and a silicon (Si) membrane on the top side for the actuation. Two sets of devices, having membrane thicknesses of 10 µm and 25 µm, but the same area of 3 mm ×3 mm, are fabricated. The cavity is filled with a glucose solution of 100 mg dL −1 and it is sealed with a semi-permeable membrane made up of cellulose acetate material. The glucose solution is employed to prove the functionality of the device and it is tested for different glucose concentration levels, ranging from 50 mg dL −1 to 450 mg dL −1 . The output voltage obtained for the corresponding glucose concentration levels ranges from −6.7 mV to 22.7 mV for the 10 µm device and from −1.7 mV to 4 mV for the 25 µm device. The device operation was simulated using the finite element method (FEM) and the finite volume method (FVM), and the simulation and experimental results match closely. A response time of 40 min is obtained in the case of the 10 µm device compared to one of 30 min for the 25 µm device. The response times obtained for these devices are found to be small compared to those in similar works based on the osmosis principle. This pressure sensor has the potential to provide controlled drug delivery if it can be integrated with other microfluidic devices. (paper)

  4. Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18

    Science.gov (United States)

    Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak

    2013-01-01

    Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...

  5. Detection of Interfacial Debonding in a Rubber-Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers.

    Science.gov (United States)

    Feng, Qian; Kong, Qingzhao; Jiang, Jian; Liang, Yabin; Song, Gangbing

    2017-09-01

    Rubber-steel-layered structures are used in many engineering applications. Laminated rubber-steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber-steel-layered structures. Interfacial debonding in rubber-steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber-steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel-rubber debonding. When the rubber-steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber-steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber-steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber-steel debonding failure in real time. The active sensing

  6. Remote sensing as a preliminary analysis for the detection of active tectonic structures: an application to the Albanian orogenic system

    Directory of Open Access Journals (Sweden)

    Andrea Favretto

    2013-12-01

    Full Text Available As is well known, both the traditional direct geological and geophysical survey methods used to identify geologic features are very expensive and time-consuming procedures. In this regard, remote sensing methods applied to multispectral and medium spatial resolution satellite images allow a more focused approach with respect to the more specific geologic methods. This is achieved by a preliminary land inspection carried out by the semi-automated analysis of satellite imagery. This avoids wasting resources as the geological/geophysical survey methods can be later applied only to those zones suspected of having certain tectonic activity (derived by the remotely sensed imagery. This paper will evaluate an ASTER sensor satellite image (and its derived Digital Elevation Model or DEM, in order to point out the suspected presence of active geologic structures (faults. The area in question is west – central Albania. The results of the remote sensing procedures are later compared with the established data for the same area taken by satellite images, in order to verify the reliability of the adopted method. The source of the established data has been from the bibliography.

  7. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    Science.gov (United States)

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  8. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    Science.gov (United States)

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Remote Sensing based multi-temporal observation of North Korea mining activities : A case study of Rakyeon mine

    Science.gov (United States)

    Lim, J. H.; Yu, J.; Koh, S. M.; Lee, G.

    2017-12-01

    Mining is a major industrial business of North Korea accounting for significant portion of an export for North Korean economy. However, due to its veiled political system, details of mining activities of North Korea is rarely known. This study investigated mining activities of Rakyeon Au-Ag mine, North Korea based on remote sensing based multi-temporal observation. To monitor the mining activities, CORONA data acquired in 1960s and 1970s, SPOT and Landsat data acquired in 1980s and 1990s and KOMPSAT-2 data acquired in 2010s are utilized. The results show that mining activities of Rakyeon mine continuously carried out for the observation period expanding tailing areas of the mine. However, its expanding rate varies between the period related to North Korea's economic and political situations.

  10. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  11. Clean copy association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows.

    Science.gov (United States)

    Williams, J; Ntallaris, T; Routly, J E; Jones, D N; Cameron, J; Holman-Coates, A; Smith, R F; Humblot, P; Dobson, H

    2018-05-31

    We have previously established that the efficiency of identifying oestrus with activity-sensing devices can be compromised by common production diseases; the present study was undertaken to determine how these diseases may affect device readings. A total of 67 Holstein-Friesian cows, >20 days postpartum, were equipped with activity-sensing neck collars and pedometers, and simultaneous milk progesterone profiles were also monitored twice a week. The influences of common production stressors on maximum activity and progesterone values were analysed. Approximately 30% potential oestrus events (low progesterone value between two high values) remained unrecognised by both activity methods, and progesterone values in these animals were higher on the potential day of oestrus when both activity methods did not detect an event (0.043 ± 0.004 versus 0.029 ± 0.004 ng/mL; P = 0.03). Data from a subset of 45 cows (two events each) were subjected to mixed models and multiple regression modelling to investigate associations with production diseases. Cow motor activity was lower in lame cows. Maximum progesterone concentrations prior to oestrus increased as time postpartum and body condition score (BCS) increased. There were also fewer days of low progesterone prior to oestrus associated with increases in BCS and maximum progesterone concentrations prior to oestrus. In conclusion, lameness was associated with lower activity values, but this suppression was insufficient to account for lowered oestrus detection efficiency of either device. However, associations were identified between production diseases and progesterone profiles. Copyright © 2018. Published by Elsevier Inc.

  12. ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing.

  13. Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, groundnut bud necrosis virus.

    Science.gov (United States)

    Bhushan, Lokesh; Abraham, Ambily; Choudhury, Nirupam Roy; Rana, Vipin Singh; Mukherjee, Sunil Kumar; Savithri, Handanahal Subbarao

    2015-04-01

    The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 5' α phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.

  14. Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wang, Jun, E-mail: scwangjun2011@126.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wu, Wei-Ping [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Liu, Jian-Qiang [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Yadav, Reena [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India); Kumar, Abhinav, E-mail: abhinavmarshal@gmail.com [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India)

    2017-06-15

    Two new d{sup 10} based coordination polymers having formula [Cd(HL1)(L2)] (1) and [Zn(HL1)(L2)] (2) (H{sub 3}L1=5-(4-carboxyphenoxy)isophthalic acid and L2=3-(4-methyl-6-(pyridine-3-yl)pyridine-2-yl)pyridine) have been synthesized and characterized using IR, thermogravimetric analyses (TGA), photoluminescence and single-crystal X-ray diffraction techniques. The single-crystal X-ray investigation reveals that both of 1 and 2 show 2D layer architectures with square lattice topology. The photoluminescence investigation indicates that both 1 and 2 could be a prospective candidate for developing luminescence sensors for the highly sensing of nitroaromatic analytes. Furthermore, the luminescent property of 1 and 2 in different solvents analytes as well as nitrobenzene derivative have been investigated and the observed quenching in fluorescence have been corroborated by theoretical calculations. - Graphical abstract: Two new d{sup 10}-based luminescent MOFs synthesized and their sensing properties towards different nitroaromatics investigated.

  15. Using Multi-modal Sensing for Human Activity Modeling in the Real World

    Science.gov (United States)

    Harrison, Beverly L.; Consolvo, Sunny; Choudhury, Tanzeem

    Traditionally smart environments have been understood to represent those (often physical) spaces where computation is embedded into the users' surrounding infrastructure, buildings, homes, and workplaces. Users of this "smartness" move in and out of these spaces. Ambient intelligence assumes that users are automatically and seamlessly provided with context-aware, adaptive information, applications and even sensing - though this remains a significant challenge even when limited to these specialized, instrumented locales. Since not all environments are "smart" the experience is not a pervasive one; rather, users move between these intelligent islands of computationally enhanced space while we still aspire to achieve a more ideal anytime, anywhere experience. Two key technological trends are helping to bridge the gap between these smart environments and make the associated experience more persistent and pervasive. Smaller and more computationally sophisticated mobile devices allow sensing, communication, and services to be more directly and continuously experienced by user. Improved infrastructure and the availability of uninterrupted data streams, for instance location-based data, enable new services and applications to persist across environments.

  16. Summary of fiscal year 1994 near-infrared spectroscopy moisture sensing activities

    International Nuclear Information System (INIS)

    Reich, F.R.; Johnson, R.E.; Philipp, B.L.; Duncan, J.B.; Schutzenhofer, G.L.

    1995-01-01

    This report summarizes the work to develop and deploy near-infrared (NIR) moisture sensing technology for application to the Hanford Site's high-level nuclear waste materials. This work is jointly supported by the U.S. Department of Energy's (DOE) EM-50 Office of Technology Development Support and the EM-30 Tank Waste Safety and Tank Waste Remediation Systems Programs. A basic NIR system was developed at the Savannah River Laboratory (SRL) with support from DOE's EM-50 Office. The application of this technology to Hanford's high-level wastes (HLW). Including deployment, is supported by DOE's EM-30 Systems Programs. The need to know the moisture content in HLW is driven by concerns for the safety of underground storage tanks that contain or are suspected of containing ferrocyanide and organic types of materials. The NIR technology has application for both ex situ (hot cell core measurements) and in situ waste tank moisture sensing. The cold test/calibration data in this report was generated as part of the total life cycle development path being followed in the development and deployment of the NIR technology at the Hanford Site

  17. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents.

    Science.gov (United States)

    Bacha, Ketema; Tariku, Yinebeb; Gebreyesus, Fisseha; Zerihun, Shibru; Mohammed, Ali; Weiland-Bräuer, Nancy; Schmitz, Ruth A; Mulat, Mulugeta

    2016-07-11

    Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria. Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL). Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of

  18. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  19. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office

  20. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2014-01-01

    Full Text Available Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs. These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL and N-octanoyl-homoserine lactone (C8-HSL, was detected.

  1. Active In-Flight Load Redistribution Utilizing Fiber-Optic Shape Sensing and Multiple Control Surfaces

    Science.gov (United States)

    Pena, Francisco; Martins, Benjamin L.; Richards, W. Lance

    2018-01-01

    Morphing wing technologies have gained research interest in recent years as technological advancements pave the way for such innovations. A key benefit of such a morphing wing concept is the ability of the wing to transition into an optimal configuration at multiple flight conditions. Such a morphing wing will have applications not only in drag reduction but also in flutter suppression and gust alleviation. By manipulating the wing geometry to match a given flight profile it is likely that the wing will yield increases in not just aerodynamic efficiency but also structural efficiency. These structurally efficient designs will likely rely on some type of structural sensing system which will ensure the wing maintains positive margins throughout its flight profile.

  2. Remote sensing of earth resources: list of UK groups and individuals engaged in remote sensing, with a brief account of their activities and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This book gives details of some 250 organizations that use some means of remote sensing for earth surveys. It includes sections on water and marine resources, and appendices covering facilities for education and training and manufactures and suppliers of equipment and services.

  3. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin.

    Science.gov (United States)

    Magro, Massimiliano; Fasolato, Luca; Bonaiuto, Emanuela; Andreani, Nadia Andrea; Baratella, Davide; Corraducci, Vittorino; Miotto, Giovanni; Cardazzo, Barbara; Vianello, Fabio

    2016-10-01

    Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    Science.gov (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  5. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  7. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing.

    Science.gov (United States)

    Ehatisham-Ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar

    2017-09-06

    Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework.

  8. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing

    Science.gov (United States)

    Ehatisham-ul-Haq, Muhammad; Azam, Muhammad Awais; Loo, Jonathan; Shuang, Kai; Islam, Syed; Naeem, Usman; Amin, Yasar

    2017-01-01

    Smartphones are context-aware devices that provide a compelling platform for ubiquitous computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such as sending and receiving emails. The nature of tasks conducted with these devices has evolved with the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease of use and convenience, many users tend to store their private data, such as personal identifiers and bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However, these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks. The work in this paper addresses these challenges by proposing a novel authentication framework, which is based on recognizing the behavioral traits of smartphone users using the embedded sensors of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also provides a platform for carrying out multi-class smart user authentication, which provides different levels of access to a wide range of smartphone users. This work has been validated with a series of experiments, which demonstrate the effectiveness of the proposed framework. PMID:28878177

  9. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  10. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  11. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  12. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  13. Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey

    NARCIS (Netherlands)

    Avci, A.; Bosch, S.; Marin Perianu, Mihai; Marin Perianu, Raluca; Havinga, Paul J.M.

    This paper surveys the current research directions of activity recognition using inertial sensors, with potential application in healthcare, wellbeing and sports. The analysis of related work is organized according to the five main steps involved in the activity recognition process: preprocessing,

  14. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice

    NARCIS (Netherlands)

    Korsheninnikova, E.; van der Zon, G. C. M.; Voshol, P. J.; Janssen, G. M.; Havekes, L. M.; Grefhorst, A.; Kuipers, F.; Reijngoud, D. -J.; Romijn, J. A.; Ouwens, D. M.; Maassen, J. A.

    2006-01-01

    Aims/hypothesis Activation of nutrient sensing through mammalian target of rapamycin (mTOR) has been linked to the pathogenesis of insulin resistance. We examined activation of mTOR-signalling in relation to insulin resistance and hepatic steatosis in mice. Materials and methods Chronic hepatic

  15. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice

    NARCIS (Netherlands)

    Korsheninnikova, E.; van der Zon, G. C. M.; Voshol, P. J.; Janssen, G. M.; Havekes, L. M.; Grefhorst, A.; Kuipers, F.; Reijngoud, D.-J.; Romijn, J. A.; Ouwens, D. M.; Maassen, J. A.

    2006-01-01

    Activation of nutrient sensing through mammalian target of rapamycin (mTOR) has been linked to the pathogenesis of insulin resistance. We examined activation of mTOR-signalling in relation to insulin resistance and hepatic steatosis in mice. Chronic hepatic steatosis and hepatic insulin resistance

  16. Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2015-01-01

    The potential of using active coated nano-particles to determine the orientation of fluorescing molecules is reported. By treating each fluorescing molecule as an electric Hertzian dipole, single and multiple fluorescing molecules emitting coherently and incoherently in various orientations...... are considered in the presence of active coated nano-particles. It is demonstrated that in addition to offering a means to determine the orientation of a single molecule or the over-all orientation of the molecules surrounding it, the nature of the far-field response from the active coated nano...

  17. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  18. Using Remotely Sensed Data to Automate and Improve Census Bureau Update Activities

    Science.gov (United States)

    Desch, A., IV

    2017-12-01

    Location of established and new housing structures is fundamental in the Census Bureau's planning and execution of each decennial census. Past Census address list compilation and update programs have involved sending more than 100,000 workers into the field to find and verify housing units. The 2020 Census program has introduced an imagery based In-Office Address Canvassing Interactive Review (IOAC-IR) program in an attempt to reduce the in-field workload. The human analyst driven, aerial image based IOAC-IR operation has proven to be a cost effective and accurate substitute for a large portion of the expensive in-field address canvassing operations. However, the IOAC-IR still required more than a year to complete and over 100 full-time dedicated employees. Much of the basic image analysis work done in IOAC-IR can be handled with established remote sensing and computer vision techniques. The experience gained from the Interactive Review phase of In-Office Address Canvassing has led to the development of a prototype geo-processing tool to automate much of this process for future and ongoing Address Canvassing operations. This prototype utilizes high-resolution aerial imagery and LiDAR to identify structures and compare their location to existing Census geographic information. In this presentation, we report on the comparison of this exploratory system's results to the human based IOAC-IR. The experimental image and LiDAR based change detection approach has itself led to very promising follow-on experiments utilizing very current, high repeat datasets and scalable cloud computing. We will discuss how these new techniques can be used to both aid the US Census Bureau meet its goals of identify all the housing units in the US as well as aid developing countries better identify where there population is currently distributed.

  19. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  20. Sense of coherence predicts post-myocardial infarction trajectory of leisure time physical activity: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Gerber Yariv

    2011-09-01

    Full Text Available Abstract Background Physical activity confers a survival advantage after myocardial infarction (MI, yet the majority of post-MI patients are not regularly active. Since sense of coherence (SOC has been associated with health outcomes and some health behaviours, we investigated whether it plays a role in post-MI physical activity. We examined the predictive role of SOC in the long-term trajectory of leisure time physical activity (LTPA after MI using a prospective cohort design. Methods A cohort of 643 patients aged ≤ 65 years admitted to hospital in central Israel with incident MI between February 1992 and February 1993 were followed up for 13 years. Socioeconomic, clinical and psychological factors, including SOC, were assessed at baseline, and LTPA was self-reported on 5 separate occasions during follow-up. The predictive role of SOC in long-term trajectory of LTPA was assessed using generalized estimating equations. Results SOC was consistently associated with engagement in LTPA throughout follow-up. Patients in the lowest SOC tertile had almost twice the odds (odds ratio,1.99; 95% confidence interval,1.52-2.60 of decreasing their engagement in LTPA as those in the highest tertile. A strong association remained after controlling for disease severity, depression, sociodemographic and clinical factors. Conclusion Our evidence suggests that SOC predicts LTPA trajectory post-MI. Assessment of SOC can help identify high-risk MI survivors, who may require additional help in following secondary prevention recommendations which can dramatically improve prognosis.

  1. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  2. In vitro biomechanical comparison of three different types of single- and double-row arthroscopic rotator cuff repairs: analysis of continuous bone-tendon contact pressure and surface during different simulated joint positions.

    Science.gov (United States)

    Grimberg, Jean; Diop, Amadou; Kalra, Kunal; Charousset, Christophe; Duranthon, Louis-Denis; Maurel, Nathalie

    2010-03-01

    We assessed bone-tendon contact surface and pressure with a continuous and reversible measurement system comparing 3 different double- and single-row techniques of cuff repair with simulation of different joint positions. We reproduced a medium supraspinatus tear in 24 human cadaveric shoulders. For the 12 right shoulders, single-row suture (SRS) and then double-row bridge suture (DRBS) were used. For the 12 left shoulders, DRBS and then double-row cross suture (DRCS) were used. Measurements were performed before, during, and after knot tying and then with different joint positions. There was a significant increase in contact surface with the DRBS technique compared with the SRS technique and with the DRCS technique compared with the SRS or DRBS technique. There was a significant increase in contact pressure with the DRBS technique and DRCS technique compared with the SRS technique but no difference between the DRBS technique and DRCS technique. The DRCS technique seems to be superior to the DRBS and SRS techniques in terms of bone-tendon contact surface and pressure. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  3. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  4. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchapady-Devasya

    2014-05-01

    Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti-quorum sensing (QS) activity. The anti-QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL-fraction on QS-regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS-inhibition were studied by assessing violacein production in response to N-acyl homoserine lactone (AHL) synthesis in the presence of the FL-fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL-fraction were identified by liquid chromatography-mass spectrometry (LC-MS). Inhibition of violacein production by the FL-fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti-QS activity. The FL-fraction showed concentration-dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL-fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL-fraction induced violacein in the mutant C. violaceum CV026. LC-MS analysis revealed the presence of quercetin and quercetin-3-O-arabinoside in the FL-fraction. Both quercetin and quercetin-3-O-arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti-QS agents. © 2014 The Societies and Wiley Publishing

  5. Three exploratory studies of relations between young adults' preference for activities involving a specific sense modality and sensory attributes of early memories.

    Science.gov (United States)

    Westman, A S; Stuve, M

    2001-04-01

    Three studies explored whether young adults' preference for using a sense modality, e.g., hearing, correlated with presence or clarity of attributes of that sense modality in earliest memories from childhood, elementary school, or high school. In Study 1, 75 graduates or seniors in fine arts, fashion merchandising, music, conducting, or dance showed no greater frequency or clarity of any modality's sensory attributes. In Study 2, 213 beginning university students' ratings of current importance of activities emphasizing a sense modality correlated with sensory contents of recollections only for smell and taste. In Study 3, 102 beginning students' ratings of current enjoyment in using a sense modality and sensory contents of recollections were correlated and involved every modality except vision.

  6. The Crop Evaluation Research for Environmental Strategies (CERES) Remote Sensing 2008 Project Activities

    Science.gov (United States)

    Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George

    2009-01-01

    resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.

  7. Anti-quorum sensing activity of some medicinal plants | Al-Haidari ...

    African Journals Online (AJOL)

    On the other hand, Psidium guajava and Mentha longifolia extracts showed lower QSI activity. These extracts exhibited significant elimination of pyocyanin formation and biofilm development of Pseudomonas aeruginosa PA14. In addition, they significantly inhibited twitching and swimming motilities of P. aeruginosa PA14.

  8. Activated carbon as a pseudo-reference electrode for potentiometric sensing inside concrete

    NARCIS (Netherlands)

    Abbas, Yawar; Pargar, Farhad; Olthuis, Wouter; van den Berg, Albert

    2014-01-01

    The half-cell potential of the Activated carbon (AC), due to its high double layer capacitance (EDL), remains stable in high ionic electrolyte. The open circuit potential (OCV) of the AC, with EDL of 40 – 50 F, shows a stable potential (10 mV variation) over two weeks in the cement pore solution

  9. Activated Carbon as a Pseudo-reference Electrode for Potentiometric Sensing Inside Concrete

    NARCIS (Netherlands)

    Abbas, Y.; Pargar, F.; Olthuis, W.; Van den Berg, A.

    2014-01-01

    The half-cell potential of the Activated carbon (AC), due to its high double layer capacitance (EDL), remains stable in high ionic electrolyte. The open circuit potential (OCV) of the AC, with EDL of 40 – 50 F, shows a stable potential (10 mV variation) over two weeks in the cement pore solution

  10. Leveraging the Potential of Peer Feedback in an Academic Writing Activity through Sense-Making Support

    Science.gov (United States)

    Wichmann, Astrid; Funk, Alexandra; Rummel, Nikol

    2018-01-01

    The act of revising is an important aspect of academic writing. Although revision is crucial for eliminating writing errors and producing high-quality texts, research on writing expertise shows that novices rarely engage in revision activities. Providing information on writing errors by means of peer feedback has become a popular method in writing…

  11. Feeling Better About Self After Receiving Negative Feedback: When the Sense That Ability Can Be Improved Is Activated.

    Science.gov (United States)

    Hu, Xinyi; Chen, Yinghe; Tian, Baowei

    2016-01-01

    Past studies suggest that managers and educators often consider negative feedback as a motivator for individuals to think about their shortcomings and improve their work, but delivering negative feedback does not always achieve desired results. The present study, based on incremental theory, employed an intervention method to activate the belief that a particular ability could be improved after negative feedback. Three experiments tested the intervention effect on negative self-relevant emotion. Study 1 indicated conveying suggestions for improving ability reduced negative self-relevant emotion after negative feedback. Study 2 tested whether activating the sense of possible improvement in the ability could reduce negative self-relevant emotion. Results indicated activating the belief that ability could be improved reduced negative self-relevant emotion after failure, but delivering emotion management information alone did not yield the same effect. Study 3 extended the results by affirming the effort participants made in doing the test, and found the affirmation reduced negative self-relevant emotion. Collectively, the findings indicated focusing on the belief that the ability could be improved in the future can reduce negative self-relevant emotion after negative feedback.

  12. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  13. Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students

    Science.gov (United States)

    Anderson, R. B.; Gaither, T. A.; Edgar, L. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    As part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project, we have developed an out-of-school time unit for middle school students focused on planetary remote sensing. The activity is divided into two exercises, with the goal of choosing a scientifically interesting and safe landing site for a future Mars mission. Students are introduced to NASA data from several actual and proposed landing sites and must use what they learn about remote sensing to choose a site that satisfies scientific and engineering criteria. The activity also includes background information for educators, including a summary of how landing on Mars helps answer major scientific questions, brief overviews of the data sets that the students will use, summaries of the site geology, and a list of relevant vocabulary. The first exercise introduces students to the concept of reflectance spectroscopy and how it can be used to identify the "fingerprints" of different minerals on the surface of Mars. Students are provided with simplified maps of mineral spectra at the four sites, based on Compact Reconnaissance Imaging Spectrometer (CRISM) observations, as well as a reference sheet with the spectra of common minerals on Mars. They can use this information to determine which sites have hydrated minerals, mafic minerals, or both. The second exercise adds data from the Mars Orbital Laser Altimeter (MOLA), and high resolution visible data from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. Students learn about laser altimetry and how to interpret topographic contours to assess whether a landing site is too rough. The CTX data allow students to study the sites at higher resolution, with annotations that indicate key landforms of interest. These data, along with the spectroscopy data, allow students to rank the sites based on science and engineering criteria. This activity was developed as a collaboration between subject matter experts at

  14. Quantified-self for obesity: Physical activity behaviour sensing to improve health outcomes

    Directory of Open Access Journals (Sweden)

    Jennifer Murphy

    2015-10-01

    We have shown that it is possible to passively monitor physical activity in a large patient population in a cost-effective way. The results demonstrate that while two thirds of bariatric patients achieved an average of 30 minutes walking per day, this was not of sufficient intensity to gain health-related benefits. Further analysis will examine whether increased activity is associated with successful weight loss outcomes, improved mood and psychological functioning, and increased quality of life. We will also employ machine-learning techniques to identify the factors that are critical for a successful outcome following bariatric surgery. Recruitment will continue to the end of the project (April 2016 and tracking will continue into 2017.

  15. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  16. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  17. The caldera of Volcan Fernandina: a remote sensing study of its structure and recent activity

    Science.gov (United States)

    Rowland, Scott K.; Munro, Duncan C.

    1992-12-01

    Air photographs taken in 1946, 1960, and 1982, together with SPOT HVR-1 images obtained in April and October of 1988, are used to characterize recent activity in and around the caldera of Fernandina Volcano, West Galapagos Islands. The eruptive and collapse events during this time span appear to be distributed in a NW-SE band across the summit and caldera. On the flanks of the volcano, subtle topographic ridges indicate that this is a long-term preferred orientation of extra-caldera activity as well (although radial and arcuate fissures are found on all sectors). The caldera is formed from the coalescence of multiple collapse features that are also distributed along a NW-SE direction, and these give the caldera its elongate and scalloped outline. The NW and SE benches consist of lavas that ponded in once-separated depressions that have been incorporated into the caldera by more recent collapse. The volume of individual eruptions within the caldera over the observed 42 years appears to be small (˜4x106 m3) in comparison to the volumes of individual flows exposed in the caldera walls (˜120 150x106 m3). Field observations (in 1989) of lavas exposed in the caldera walls and their cross-cutting relationships show that there have been at least three generations of calderas, and that at times each was completely filled. An interplay between a varying supply rate to the volcano and a regional stress regime is suggested to be the cause of long-term spatial and volumetric variations in activity. When supply is high, the caldera is filled in relative to collapse and dikes tend to propagate in all directions through the edifice. At other times (such as the present) supply is relatively low; eruptions are small, the caldera is far from being filled in, and dike propagation is influenced by an extra-volcano stress regime.

  18. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide.

    Directory of Open Access Journals (Sweden)

    Julien Santi-Rocca

    Full Text Available The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR. The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii induction of DNA repair and redox gene expression and iii up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis.

  19. Improving Oil Palm Classification in the Peruvian Amazon by Combining Active and Passive Remote Sensing Data

    Science.gov (United States)

    Gutierrez-Velez, V. H.; DeFries, R. S.

    2011-12-01

    Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm

  20. Highly active engineered-enzyme oriented monolayers: formation, characterization and sensing applications

    Directory of Open Access Journals (Sweden)

    Patolsky Fernando

    2011-06-01

    Full Text Available Abstract Background The interest in introducing ecologically-clean, and efficient enzymes into modern industry has been growing steadily. However, difficulties associated with controlling their orientation, and maintaining their selectivity and reactivity is still a significant obstacle. We have developed precise immobilization of biomolecules, while retaining their native functionality, and report a new, fast, easy, and reliable procedure of protein immobilization, with the use of Adenylate kinase as a model system. Methods Self-assembled monolayers of hexane-1,6-dithiol were formed on gold surfaces. The monolayers were characterized by contact-angle measurements, Elman-reagent reaction, QCM, and XPS. A specifically designed, mutated Adenylate kinase, where cysteine was inserted at the 75 residue, and the cysteine at residue 77 was replaced by serine, was used for attachment to the SAM surface via spontaneously formed disulfide (S-S bonds. QCM, and XPS were used for characterization of the immobilized protein layer. Curve fitting in XPS measurements used a Gaussian-Lorentzian function. Results and Discussion Water contact angle (65-70°, as well as all characterization techniques used, confirmed the formation of self-assembled monolayer with surface SH groups. X-ray photoelectron spectroscopy showed clearly the two types of sulfur atom, one attached to the gold (triolate and the other (SH/S-S at the ω-position for the hexane-1,6-dithiol SAMs. The formation of a protein monolayer was confirmed using XPS, and QCM, where the QCM-determined amount of protein on the surface was in agreement with a model that considered the surface area of a single protein molecule. Enzymatic activity tests of the immobilized protein confirmed that there is no change in enzymatic functionality, and reveal activity ~100 times that expected for the same amount of protein in solution. Conclusions To the best of our knowledge, immobilization of a protein by the method

  1. The modality-switch effect: Visually and aurally presented prime sentences activate our senses

    Directory of Open Access Journals (Sweden)

    Elisa eScerrati

    2015-10-01

    Full Text Available Verifying different sensory modality properties for concepts results in a processing cost known as the Modality-Switch Effect. It has been argued that this cognitive cost is the result of a perceptual simulation. This paper extends this argument and reports an experiment investigating whether the effect is the result of an activation of sensory information which can also be triggered by perceptual linguistically described stimuli. Participants were first exposed to a prime sentence describing a light or a sound’s perceptual property (e.g. The light is flickering, The sound is echoing, then required to perform a property-verification task on a target sentence (e.g. Butter is yellowish, Leaves rustle. The content modalities of the prime and target sentences could be compatible (i.e. in the same modality: e.g. visual-visual or not (i.e. in different modalities. Crucially, we manipulated the stimuli’s presentation modality such that half of the participants was faced with written sentences while the other half was faced with aurally presented sentences. Results show a cost when two different modalities alternate, compared to when the same modality is repeated with both visual and aural stimuli presentations. This result supports the embodied and grounded cognition view which claims that conceptual knowledge is grounded into the perceptual system. Specifically, this evidence suggests that sensory modalities can be pre-activated through the simulation of either read or listened linguistic stimuli describing visual or acoustic perceptual properties.

  2. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    Science.gov (United States)

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes.

    Science.gov (United States)

    Colberg, Sheri R; Albright, Ann L; Blissmer, Bryan J; Braun, Barry; Chasan-Taber, Lisa; Fernhall, Bo; Regensteiner, Judith G; Rubin, Richard R; Sigal, Ronald J

    2010-12-01

    Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes mellitus (T2DM), many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay T2DM, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower T2DM risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes, and safe and effective practices for PA with diabetes-related complications.

  4. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge.

    Science.gov (United States)

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-02-04

    The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.

  5. Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2014-02-01

    Full Text Available The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs. In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.

  6. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    Science.gov (United States)

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  7. Estimation of Hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing

    KAUST Repository

    Jonard, François

    2015-06-01

    In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8-2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green\\'s functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.

  8. Activation of calcium-sensing receptor accelerates apoptosis in hyperplastic parathyroid cells

    International Nuclear Information System (INIS)

    Mizobuchi, Masahide; Ogata, Hiroaki; Hatamura, Ikuji; Saji, Fumie; Koiwa, Fumihiko; Kinugasa, Eriko; Koshikawa, Shozo; Akizawa, Tadao

    2007-01-01

    Calcimimetic compounds inhibit not only parathyroid hormone (PTH) synthesis and secretion, but also parathyroid cell proliferation. The aim of this investigation is to examine the effect of the calcimimetic compound NPS R-568 (R-568) on parathyroid cell death in uremic rats. Hyperplastic parathyroid glands were obtained from uremic rats (subtotal nephrectomy and high-phosphorus diet), and incubated in the media only or the media which contained high concentration of R-568 (10 -4 M), or 10% cyclodextrin, for 6 h. R-568 treatment significantly suppressed medium PTH concentration compared with that of the other two groups. R-568 treatment not only increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay-positive cells, but also induced the morphologic changes of cell death determined by light or electron microscopy. These results suggest that CaR activation by R-568 accelerates parathyroid cell death, probably through an apoptotic mechanism in uremic rats in vitro

  9. Integrated Remote Sensing and Geophysical Investigations of the Geodynamic Activities at Lake Magadi, Southern Kenyan Rift

    Directory of Open Access Journals (Sweden)

    Akinola Adesuji Komolafe

    2012-01-01

    Full Text Available The tectonic lineaments and thermal structure of Lake Magadi, southern Kenyan rift system, were investigated using ASTER data and geophysical methods. Five N-S faults close to known hot springs were identified for geoelectric ground investigation. Aeromagnetic data were employed to further probe faults at greater depths and determine the Curie-point depth. Results indicate a funnel-shaped fluid-filled (mostly saline hydrothermal zone with relatively low resistivity values of less than 1 Ω-m, separated by resistive structures to the west and east, to a depth of 75 m along the resistivity profiles. There was evidence of saline hydrothermal fluid flow toward the surface through the fault splays. The observed faults extend from the surface to a depth of 7.5 km and are probably the ones that bound the graben laterally. They serve as major conduits for the upward heat flux in the study area. The aeromagnetics spectral analysis also revealed heat source emplacement at a depth of about 12 km. The relative shallowness implies a high geothermal gradient evidenced in the surface manifestations of hot springs along the lake margins. Correlation of the heat source with the hypocenters showed that the seismogenetic zone exists directly above the magmatic intrusion, forming the commencement of geodynamic activities.

  10. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  11. Active Damping of a Piezoelectric Tube Scanner using Self-Sensing Piezo Actuation

    Science.gov (United States)

    Kuiper, S.; Schitter, G.

    2010-01-01

    In most Atomic Force Microscopes (AFM), a piezoelectric tube scanner is used to position the sample underneath the measurement probe. Oscillations stemming from the weakly damped resonances of the tube scanner are a major source of image distortion, putting a limitation on the achievable imaging speed. This paper demonstrates active damping of these oscillations in multiple scanning axes without the need for additional position sensors. By connecting the tube scanner in a capacitive bridge circuit the scanner oscillations can be measured in both scanning axes, using the same piezo material as an actuator and sensor simultaneously. In order to compensate for circuit imbalance caused by hysteresis in the piezo element, an adaptive balancing circuit is used. The obtained measurement signal is used for feedback control, reducing the resonance peaks in both scanning axes by 18 dB and the cross-coupling at those frequencies by 30 dB. Experimental results demonstrate a significant reduction in scanner oscillations when applying the typical triangular scanning signals, as well as a strong reduction in coupling induced oscillations. Recorded AFM images show a considerable reduction in image distortion due to the proposed control method, enabling artifact free AFM imaging at a speed of 122 lines per second with a standard piezoelectric tube scanner. PMID:26412944

  12. Active Distribute Temperature Sensing to Estimate Vertical Water Content Variations in a Loamy-Sandy Soil

    Science.gov (United States)

    Ciocca, F.; Van De Giesen, N.; Assouline, S.; Huwald, H.; Hopmans, J. W.; Lunati, I.; Parlange, M. B.

    2011-12-01

    Optical fibers in combination with Raman scattering measurements (Distributed Temperature Sensor: DTS) have recently become more standard for the measurement of soil temperature. A recently developed technique to measure soil moisture called Active DTS (ADTS) is investigated in this study. ADTS consists of an application of a heat pulse for a fixed duration and power along the metal sheath covering the optical fiber placed in the soil. Soil moisture can be inferred from the increased temperature measured during the heating phase and the subsequent temperature decrease during the cooling phase. We assess this technique for a loamy-sandy soil as part of a field campaign that took place during the 2011 summer at EPFL. The measurements were taken within a weighing lysimeter (2.5 m depth and 1.2 m diameter) using an optical fiber arranged in 15 loops for a total measurement length of 52 m in the top 80 cm of the soil profile. Local soil moistures were simultaneously measured using capacity-based probes. Thermocouples, wrapped around the fiber, are used to account for the effects of the insulating cover surrounding the cable. Heat pulses of various duration and power have been applied for a range of soil moistures. Measurements were taken during periods of drainage and evaporation. The accuracy of the technique for the EPFL 2011 field campaign and the experiment are discussed and the soil moisture measurements are presented.

  13. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    Science.gov (United States)

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  15. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    Science.gov (United States)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion

  16. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    2016-12-01

    Full Text Available Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  17. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Science.gov (United States)

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  18. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  19. Nanostructured cerium oxide catalyst support: Effects of morphology on the electro activity of gold toward oxidative sensing of glucose

    International Nuclear Information System (INIS)

    Gougis, Maxime; Tabet-Aoul, Amel; Ma, Dongling; Mohamedi, Mohamed

    2014-01-01

    We report on the fabrication of nanostructured CeO 2 -gold electrodes by means of laser ablation. The synthetic conditions were varied in order to obtain different morphologies of CeO 2 . The physical and chemical properties of the samples were studied by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The effect of the morphology of CeO 2 on the electrocatalytic oxidation of glucose were studied by cyclic voltammetry and square-wave voltammetry. Among the various electrodes fabricated, the CeO 2 coating produced under 10 mTorr of oxygen showed the best supporting catalytic properties for gold by displaying 44 μA cm −2 mM −1 sensitivity for glucose oxidation at near neutral pH values. The detection limit is as low as 10 μM. This electrochemical activity makes the optimized nanostructured electrode potentially useful for non-enzymatic sensing of glucose. (author)

  20. Remotely-sensed active fire data for protected area management: eight-year patterns in the Manas National Park, India.

    Science.gov (United States)

    Takahata, Chihiro; Amin, Rajan; Sarma, Pranjit; Banerjee, Gitanjali; Oliver, William; Fa, John E

    2010-02-01

    The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.-Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000-2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.

  1. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  2. Herpes Simplex Virus 1 UL24 Abrogates the DNA Sensing Signal Pathway by Inhibiting NF-κB Activation.

    Science.gov (United States)

    Xu, Haiyan; Su, Chenhe; Pearson, Angela; Mody, Christopher H; Zheng, Chunfu

    2017-04-01

    Cyclic GMP-AMP synthase (cGAS) is a newly identified DNA sensor that recognizes foreign DNA, including the genome of herpes simplex virus 1 (HSV-1). Upon binding of viral DNA, cGAS produces cyclic GMP-AMP, which interacts with and activates stimulator of interferon genes (STING) to trigger the transcription of antiviral genes such as type I interferons (IFNs), and the production of inflammatory cytokines. HSV-1 UL24 is widely conserved among members of the herpesviruses family and is essential for efficient viral replication. In this study, we found that ectopically expressed UL24 could inhibit cGAS-STING-mediated promoter activation of IFN-β and interleukin-6 (IL-6), and UL24 also inhibited interferon-stimulatory DNA-mediated IFN-β and IL-6 production during HSV-1 infection. Furthermore, UL24 selectively blocked nuclear factor κB (NF-κB) but not IFN-regulatory factor 3 promoter activation. Coimmunoprecipitation analysis demonstrated that UL24 bound to the endogenous NF-κB subunits p65 and p50 in HSV-1-infected cells, and UL24 was also found to bind the Rel homology domains (RHDs) of these subunits. Furthermore, UL24 reduced the tumor necrosis factor alpha (TNF-α)-mediated nuclear translocation of p65 and p50. Finally, mutational analysis revealed that the region spanning amino acids (aa) 74 to 134 of UL24 [UL24(74-134)] is responsible for inhibiting cGAS-STING-mediated NF-κB promoter activity. For the first time, UL24 was shown to play an important role in immune evasion during HSV-1 infection. IMPORTANCE NF-κB is a critical component of the innate immune response and is strongly induced downstream of most pattern recognition receptors (PRRs), leading to the production of IFN-β as well as a number of inflammatory chemokines and interleukins. To establish persistent infection, viruses have evolved various mechanisms to counteract the host NF-κB pathway. In the present study, for the first time, HSV-1 UL24 was demonstrated to inhibit the activation of NF

  3. Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity- and Pressure-Sensing Skins.

    Science.gov (United States)

    Lai, Ying-Chih; Deng, Jianan; Liu, Ruiyuan; Hsiao, Yung-Chi; Zhang, Steven L; Peng, Wenbo; Wu, Hsing-Mei; Wang, Xingfu; Wang, Zhong Lin

    2018-06-04

    Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism-like adaptive bodies have shown great potential in vast robot-human and robot-environment applications. Developing skin-like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self-powered active triboelectric robotic skins (tribo-skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low-pressure regime. The tribo-skins can actively sense proximity, contact, and pressure to external stimuli via self-generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo-skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self-generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  5. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    Science.gov (United States)

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: preliminary results from a pilot study.

    Science.gov (United States)

    Kesler, Shelli R; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L

    2011-08-01

    Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerised programme that focused on number sense and general problem-solving skills. The study was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardised measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioural and neurobiological outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e., recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training programme. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development.

  7. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    Directory of Open Access Journals (Sweden)

    Gero Barmeier

    2016-11-01

    Full Text Available In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat with four plot designs (single-row, wide double-row, three rows, and four rows was conducted. A GreenSeeker RT100 and a passive bi-directional spectrometer were used to assess biomass fresh and dry weight, as well as aboveground nitrogen content and uptake. Generally, spectral passive sensing and active sensing performed comparably in both crops. Spectral passive sensing was enhanced by the availability of optimized ratio vegetation indices, as well as by an optimized field of view and by reduced distance dependence. Further improvements of both sensors in detecting the performance of plants in single rows can likely be obtained by optimization of sensor positioning or orientation. The results suggest that even in early selection cycles, enhanced high-throughput phenotyping might be able to assess plant performance within plots comprising single or multiple rows. This method has significant potential for advanced breeding.

  8. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    Science.gov (United States)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  9. Depressive symptoms among older adults with long-term spinal cord injury: Associations with secondary health conditions, sense of coherence, coping strategies and physical activity

    Directory of Open Access Journals (Sweden)

    Sophie Jörgensen

    2017-07-01

    Full Text Available Objectives: To assess the presence of depressive symptoms among older adults with long-term spinal cord injury and investigate the association with sociodemographic and injury characteristics; and to determine how potentially modifiable factors, i.e. secondary health conditions, sense of coherence, coping strategies and leisure-time physical activity, are associated with depressive symptoms. Design: Cross-sectional study. Subjects: A total of 122 individuals (70% men, injury levels C1–L5, American Spinal Injury Association Impairment Scale A–D, mean age 63 years, mean time since injury 24 years. Methods: Data from the Swedish Aging with Spinal Cord Injury Study, collected using the Geriatric Depression Scale-15, the 13-item Sense of Coherence Scale, the Spinal Cord Lesion-related Coping Strategies Questionnaire and the Physical Activity Recall Assessment for people with Spinal Cord Injury. Associations were analysed using multivariable linear regression. Results: A total of 29% reported clinically relevant depressive symptoms and 5% reported probable depression. Sense of coherence, the coping strategy Acceptance, neuropathic pain and leisure-time physical activity explained 53% of the variance in depressive symptoms. Conclusion: Older adults with long-term spinal cord injury report a low presence of probable depression. Mental health may be supported through rehabilitation that strengthens the ability to understand and confront life stressors, promotes acceptance of the injury, provides pain management and encourages participation in leisure-time physical activity.

  10. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  11. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  12. Analysis of Human Activities in Nature Reserves Based on Nighttime Light Remote Sensing and Microblogging Data - by the Case of National Nature Reserves in Jiangxi Province

    Science.gov (United States)

    Shi, F.; Li, X.; Xu, H.

    2017-09-01

    The study used the mainstream social media in china - Sina microblogging data combined with nighttime light remote sensing and various geographical data to reveal the pattern of human activities and light pollution of the Jiangxi Provincial National Nature Reserves. Firstly, we performed statistical analysis based on both functional areas and km-grid from the perspective of space and time, and selected the key areas for in-depth study. Secondly, the relationship between microblogging data and nighttime light remote sensing, population, GDP, road coverage, road distance and road type in nature reserves was analyzed by Spearman correlation coefficient method, so the distribution pattern and influencing factors of the microblogging data were explored. Thirdly, a region where the luminance value was greater than 0.2 was defined as a light region. We evaluated the management status by analyzing the distribution of microblogging data in both light area and non-light area. Final results showed that in all nature reserves, the top three were the Lushan Nature Reserve, the Jinggangshan Nature Reserve, the Taohongling National Nature Reserve of Sikas both on the total number and density of microblogging ; microblogging had a significant correlation with nighttime light remote sensing , the GDP, population, road and other factors; the distribution of microblogging near roads in protected area followed power laws; luminous radiance of Lushan Nature Reserve was the highest, with 43 percent of region was light at night; analysis combining nighttime light remote sensing with microblogging data reflected the status of management of nature reserves.

  13. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies.

    Science.gov (United States)

    Gurlo, Aleksander

    2011-01-01

    Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

  14. A point-wise fiber Bragg grating displacement sensing system and its application for active vibration suppression of a smart cantilever beam subjected to multiple impact loadings

    International Nuclear Information System (INIS)

    Chuang, Kuo-Chih; Ma, Chien-Ching; Liao, Heng-Tseng

    2012-01-01

    In this work, active vibration suppression of a smart cantilever beam subjected to disturbances from multiple impact loadings is investigated with a point-wise fiber Bragg grating (FBG) displacement sensing system. An FBG demodulator is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. To investigate the ability of the proposed FBG displacement sensor as a feedback sensor, velocity feedback control and delay control are employed to suppress the vibrations of the first three bending modes of the smart cantilever beam. To improve the control performance for the first bending mode when the cantilever beam is subjected to an impact loading, we improve the conventional velocity feedback controller by tuning the control gain online with the aid of information from a higher vibration mode. Finally, active control of vibrations induced by multiple impact loadings due to a plastic ball is performed with the improved velocity feedback control. The experimental results show that active vibration control of smart structures subjected to disturbances such as impact loadings can be achieved by employing the proposed FBG sensing system to feed back out-of-plane point-wise displacement responses with high sensitivity. (paper)

  15. Society position statement : Canadian Cardiovascular Society/Canadian Anesthesiologists' Society/Canadian Heart Rhythm Society joint position statement on the perioperative management of patients with implanted pacemakers, defibrillators, and neurostimulating devices.

    Science.gov (United States)

    Healey, Jeff S; Merchant, Richard; Simpson, Chris; Tang, Timothy; Beardsall, Marianne; Tung, Stanley; Fraser, Jennifer A; Long, Laurene; van Vlymen, Janet M; Manninen, Pirjo; Ralley, Fiona; Venkatraghavan, Lashmi; Yee, Raymond; Prasloski, Bruce; Sanatani, Shubhayan; Philippon, François

    2012-04-01

    There are more than 200,000 Canadians living with permanent pacemakers or implantable defibrillators, many of whom will require surgery or invasive procedures each year. They face potential hazards when undergoing surgery; however, with appropriate planning and education of operating room personnel, adverse device-related outcomes should be rare. This joint position statement from the Canadian Cardiovascular Society (CCS) and the Canadian Anesthesiologists' Society (CAS) has been developed as an accessible reference for physicians and surgeons, providing an overview of the key issues for the preoperative, intraoperative, and postoperative care of these patients. The document summarizes the limited published literature in this field, but for most issues, relies heavily on the experience of the cardiologists and anesthesiologists who contributed to this work. This position statement outlines how to obtain information about an individual's type of pacemaker or implantable defibrillator and its programming. It also stresses the importance of determining if a patient is highly pacemaker-dependent and proposes a simple approach for nonelective evaluation of dependency. Although the document provides a comprehensive list of the intraoperative issues facing these patients, there is a focus on electromagnetic interference resulting from electrocautery and practical guidance is given regarding the characteristics of surgery, electrocautery, pacemakers, and defibrillators which are most likely to lead to interference. The document stresses the importance of preoperative consultation and planning to minimize complications. It reviews the relative merits of intraoperative magnet use vs reprogramming of devices and gives examples of situations where one or the other approach is preferable.

  16. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  17. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    International Nuclear Information System (INIS)

    Cui, Jingjie; Xu, Ping; Li, Hong; Chen, Jing; Chen, Shaowei; Gao, Li

    2016-01-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO 2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs  and molecular biology research. (paper)

  18. Metabolites with Gram-negative bacteria quorum sensing inhibitory activity from the marine animal endogenic fungus Penicillium sp. SCS-KFD08.

    Science.gov (United States)

    Kong, Fan Dong; Zhou, Li Man; Ma, Qing Yun; Huang, Sheng Zhuo; Wang, Pei; Dai, Hao Fu; Zhao, You Xing

    2017-01-01

    Three new compounds named penicitor A, aculene E and penicitor B, as well as four known compounds, were isolated from the fermentation broth of Penicillium sp. SCS-KFD08 associated with a marine animal Sipunculus nudus from the Haikou bay of China. Their planar structures and absolute configurations were unambiguously elucidated by spectroscopic data, Mosher's method, CD spectrum analysis along with quantum ECD calculation. Among them, compounds 2-7 showed quorum sensing inhibitory activity against Chromobacterium violaceum CV026, and could significantly reduce violacein production in N-hexanoyl-l-homoserine lactone (C6-HSL) induced C. violaceum CV026 cultures at sub-inhibitory concentrations.

  19. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    OpenAIRE

    Barmeier, Gero;Schmidhalter, Urs

    2017-01-01

    In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat w...

  20. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca2+-Sensing Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2015-01-01

    Full Text Available Calcium phosphate- (CaP- based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca2+-sensing receptor signaling.

  1. Green Functions For Multiple Scattering As Mathematical Tools For Dense Cloud Remote Sensing: Theory, With Passive And Active Applications

    International Nuclear Information System (INIS)

    Davis, A.B.; Marshak, A.; Cahalan, R.F.

    2001-01-01

    We survey radiative Green function theory (1) in linear transport theory where numerical procedures are required to obtain specific results and (2) in the photon diffusion limit (large optical depths) where it is analytically tractable, at least for homogeneous plane-parallel media. We then describe two recent applications of Green function theory to passive cloud remote sensing in the presence of strong three-dimensional transport effects. Finally, we describe recent instrumental breakthroughs in 'off-beam' cloud lidar which is based on direct measurements of radiative Green functions with special attention to the data collected during the Shuttle-based Lidar In-space Technology Experiment (LITE) mission.

  2. The synthesis of porous Co3O4 micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    International Nuclear Information System (INIS)

    Jamil, Saba; Jing, Xiaoyan; Wang, Jun; Li, Songnan; Liu, Jingyuan; Zhang, Milin

    2013-01-01

    Graphical abstract: - Highlights: • Micro cuboid Co 3 O 4 particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co 3 O 4 from cuboid CoCO 3 . • Investigation of gas sensing properties of porous Co 3 O 4 . • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co 3 O 4 with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co 3 O 4 are also investigated

  3. The synthesis of porous Co{sub 3}O{sub 4} micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Saba, E-mail: saba_hrb@yahoo.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Li, Songnan; Liu, Jingyuan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Zhang, Milin [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Micro cuboid Co{sub 3}O{sub 4} particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co{sub 3}O{sub 4} from cuboid CoCO{sub 3}. • Investigation of gas sensing properties of porous Co{sub 3}O{sub 4}. • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co{sub 3}O{sub 4} with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co{sub 3}O{sub 4} are also investigated.

  4. Engaging All the Senses

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2017-01-01

    Based on an analysis of the process of making and inaugurating a Torah scroll, this article describes what is likely to trigger sensory responses in the participants in each phase of the process and the function of activating the five senses of touch, hearing, vision, smell, and taste. By disting...

  5. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  6. Advanced mineral and lithological mapping using high spectral resolution TIR data from the active CO2 remote sensing system; CO2 laser wo mochiita kosupekutoru bunkaino netsusekigai remote sensing data no ganseki kobutsu shikibetsu eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Cudahy, T; Tapley, I

    1997-05-27

    A study was conducted on rock/mineral mapping technology for the metal ore deposit survey using MIRACO2LAS, an active type thermal infrared ray remote sensing system which was developed by CSIRO of Australia and is now the highest in spectral resolution in the world, and TIMS of NASA which is a passive type system. The area for the survey is the area of Olary/Broken Hill and Mt. Fitton of Australia. A good correlation is seen between the ground reflectance measured by MIRACO2LAS and the value measured by the chamber CO2 laser of rocks sampled at the above-mentioned area. In case that the width of spectral characteristics is below 300nm, the inspection ability by MIRACO2LAS`s high spectral resolution is more determined in mineral mapping as compared with TIMS which is large in band width. Minerals mapped using MIRACO2LAS are quartz, talc, amphibole, hornblende, garnet, supessartine, dolomite, magnesite, etc. 4 refs., 3 figs.

  7. Flexible camphor sulfonic acid-doped PAni/α-Fe{sub 2}O{sub 3} nanocomposite films and their room temperature ammonia sensing activity

    Energy Technology Data Exchange (ETDEWEB)

    Bandgar, D.K. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Navale, S.T. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Navale, Y.H.; Ingole, S.M. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Stadler, F.J. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Ramgir, N.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Babha Atomic Research Centre, Mumbai, M.S. (India); Mane, R.S. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Patil, V.B., E-mail: drvbpatil@gmail.com [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2017-03-01

    Composite nanostructures play a crucial role in gas sensing applications owing to their tunable properties and sizes. The main goal of this article is to prepare camphor sulfonic acid (10–50 wt%)-doped PAni/α-Fe{sub 2}O{sub 3} (PFC) composite nanostructured films on flexible polyethylene terephthalate (PET) substrate through in-situ polymerization process and study their gas sensing activity towards various gases. Structural and morphological measurements along with gas sensing properties in terms of selectivity, response, stability, and response-recovery times are investigated and reported. The gas selectivity tests of flexible PFC nanostructured composite films are performed towards different gases such as NO{sub 2}, NH{sub 3}, LPG, CH{sub 3}OH, and C{sub 2}H{sub 5}OH etc., wherein all the flexible PFC (10–50%) films demonstrate a superior selectivity towards NH{sub 3} gas even in the presence of other test gases. Among the different compositions, 30% PFC flexible film exhibits highest response of 72% to 100 ppm NH{sub 3} with good response time of 65 s. The systematic study between PFC flexible nanocomposite films and NH{sub 3} gas is conducted and reported. In addition, the interfacial charge transfer kinetics across NH{sub 3} and PFC film interface was investigated by means of impendence spectroscopy study. - Highlights: • Novel route of preparation of camphor sulfonic acid doped PAni-Fe{sub 2}O{sub 3} (PFC) flexible films. • XRD, FTIR, and RAMAN analysis confirms the formation of PFC composites. • PFC films are highly selective towards NH{sub 3} gas at room temperature. • PFC films able to detect as low as 2.5 ppm concentration of NH{sub 3} gas. • 30% PFC flexible film exhibits highest response of 72%–100 ppm NH{sub 3} gas with good response time of 65 s.

  8. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    Traumatic minor cervical strains are common place in high-impact sports (e.g. tackling) and premature degenerative changes have been documented in sports people exposed to recurrent impact trauma (e.g. scrummaging in rugby) or repetitive forces (e.g. Formula 1 racing drivers, jockeys). While proprioceptive exercises have been an integral part of rehabilitation of injuries in the lower limb, they have not featured as prominently in the treatment of cervical injuries. However, head and neck position sense (HNPS) testing and re-training may have relevance in the management of minor sports-related neck injuries, and play a role in reducing the incidence of ongoing pain and problems with function. For efficacious programmes to be developed and tested, fundamental principles associated with proprioception in the cervical spine should be considered. Hence, this article highlights the importance of anatomical structures in the cervical spine responsible for position sense, and how their interaction with the CNS affects our ability to plan and execute effective purposeful movements. This article includes a review of studies examining position sense in subjects with and without pathology and describes the effects of rehabilitation programmes that have sought to improve position sense. In respect to the receptors providing proprioceptive information for the CNS, the high densities and complex arrays of spindles found in cervical muscles suggest that these receptors play a key role. There is some evidence suggesting that ensemble encoding of discharge patterns from muscle spindles is relayed to the CNS and that a pattern recognition system is used to establish joint position and movement. Sensory information from neck proprioceptive receptors is processed in tandem with information from the vestibular system. There are extensive anatomical connections between neck proprioceptive inputs and vestibular inputs. If positional information from the vestibular system is inaccurate or

  9. Evaluation of Yield and Drought Using Active and Passive Spectral Sensing Systems at the Reproductive Stage in Wheat

    OpenAIRE

    Becker, Elisabeth; Schmidhalter, Urs

    2017-01-01

    Active and passive sensors are available for ground-based, high-throughput phenotyping in the field. However, these sensor systems have seldom been compared with respect to their determination of plant water status and water use efficiency related parameters under drought conditions. In this study, five passive and active reflectance sensors, including a hyperspectral passive sensor, an active flash sensor (AFS), the Crop Circle, and the GreenSeeker, were evaluated to assess drought-related d...

  10. Criterion validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF) for use in patients with rheumatoid arthritis: comparison with the SenseWear Armband.

    Science.gov (United States)

    Tierney, M; Fraser, A; Kennedy, N

    2015-06-01

    The International Physical Activity Questionnaire Short Form (IPAQ-SF) is a self-report questionnaire commonly used in patients with rheumatoid arthritis (RA) to measure physical activity. However, despite its frequent use in patients with RA, its validity has not been ascertained in this population. The aim of this study was to examine the criterion validity of energy expenditure from physical activity recorded with the IPAQ-SF in patients with RA compared with the objective criterion measure, the SenseWear Armband (SWA) which has been validated previously in this population. Cross-sectional criterion validation study. Regional hospital outpatient setting. Twenty-two patients with RA attending outpatient rheumatology clinics. Subjects wore an SWA for 7 full consecutive days and completed the IPAQ-SF. Energy expenditure from physical activity recorded by the SWA and the IPAQ-SF. Energy expenditure from physical activity recorded by the IPAQ-SF and the SWA showed a small, non-significant correlation (r=0.407, P=0.60). The IPAQ-SF underestimated energy expenditure from physical activity by 41% compared with the SWA. This was corroborated using Bland and Altman plots, as the IPAQ-SF was found to overestimate energy expenditure from physical activity in nine of the 22 individuals, and underestimate energy expenditure from physical activity in the remaining 13 individuals. The IPAQ-SF has limited use as an accurate and absolute measure for estimating energy expenditure from physical activity in patients with RA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  11. Surface study and sensing activity of nanotubular indium trioxide to NH{sub 3}, H{sub 2}S, NO{sub 2} and CO environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Mehdi, E-mail: m.zamani@du.ac.ir

    2016-02-15

    Graphical abstract: - Highlights: • Molecular and electronic structures of indium oxide nanotube were investigated. • Gas sensing performance of this compound was studied using DFT. • Interaction of environmental pollutants with nanotube surface was examined. - Abstract: Molecular and electronic structures of nanotubular indium trioxide were studied using B3LYP and CAM-B3LYP density functional methods. Three nanotube models including nanotubes with closed ends (CENT), one opened end (OOENT) and two opened ends (TOENT) were considered. The highest occupied molecular orbital (HOMO) of CENT is distributed over the entire nanotube; while it is distributed on the end cap of OOENT. In both CENT and OOENT, the distribution of the lowest unoccupied molecular orbital (LUMO) is on the end caps. HOMO and LUMO of TOENT are distributed on the center of nanotube. The sensing activity of OOENT to environmental pollutants was evaluated regarding the interaction of nanotube with NH{sub 3}, H{sub 2}S, NO{sub 2} and CO molecules. Adsorptions over different positions of OOENT are exothermic and the NH{sub 3} adsorption is thermodynamically more favorable. The selectivity of OOENT toward gaseous pollutants is investigated as NH{sub 3} > H{sub 2}S > CO > NO{sub 2}. Interaction of NO{sub 2} and CO over the closed end (end cap) of nanotube is preferred; while adsorption of NH{sub 3} and H{sub 2}S on the opened end is more favorable.

  12. Nanorods of a new metal-biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing.

    Science.gov (United States)

    Yang, Jiao; Zhou, Bo; Yao, Jie; Jiang, Xiao-Qing

    2015-05-15

    Metal organic coordination polymers (CPs), as most attractive multifunctional materials, have been studied extensively in many fields. However, metal-biomolecule CPs and CPs' electrochemical properties and applications were studied much less. We focus on this topic aiming at electrochemical biosensors with excellent performance and high biocompatibility. A new nanoscaled metal-biomolecule CP, Mn-tyr, containing manganese and tyrosine, was synthesized hydrothermally and characterized by various techniques, including XRD, TEM, EDS, EDX mapping, elemental analysis, XPS, and IR. Electrode modified with Mn-tyr showed novel bidirectional electrocatalytic ability toward both reduction and oxidation of H2O2, which might be due to Mn. With the assistance of CNTs, the sensing performance of Mn-tyr/CNTs/GCE was improved to a much higher level, with high sensitivity of 543 mA mol(-1) L cm(-2) in linear range of 1.00×10(-6)-1.02×10(-4) mol L(-1), and detection limit of 3.8×10(-7) mol L(-1). Mn-tyr/CNTs/GCE also showed fast response, high selectivity, high steadiness and reproducibility. The excellent performance implies that the metal-biomolecule CPs are promising candidates for using in enzyme-free electrochemical biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. ASPIRE: Added-value Sensing

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Cetin, Kamil; Mihovska, Albena D.

    2010-01-01

    and privacy friendly RFID middleware. Advances in active RFID integration with WSNs allow for more RFID-based applications to be developed. In order to fill the gap between the active RFID system and the existing middleware, a HAL for active reader and ALE server extension to support sensing data from active...

  14. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  15. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    Science.gov (United States)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from

  16. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  17. Synthesis, selective pH-sensing activity and logic behavior of highly water-soluble 1,8-naphthalimide and dihydroimidazonaphthalimide derivatives

    International Nuclear Information System (INIS)

    Georgiev, Nikolai I.; Dimov, Stefan M.; Asiri, Abdullah M.; Alamry, Khalid A.; Obaid, Abdullah Y.; Bojinov, Vladimir B.

    2014-01-01

    This paper reports on the design, synthesis and fluorescence pH-sensing activity of a novel highly water-soluble 1,8-naphthalimide and its 9,10-dihydro-7H-imidazo[1,2-b]benz[d,e]isoqionolin-7-one derivative. The changes in the photophysical properties of the compounds as a function of pH were investigated in 100% aqueous medium. The 1,8-naphthalimide dye manifests “off–on” pH sensing properties based on photoinduced electron transfer, while its condensed heterocyclic derivative revealed ratiometric “off–on–off” fluorescence pH probe activity. Due to the two different “off”-states the dihydroimidazonaphthalimide derivative is able to execute the logical functions INH and XNOR and as such, to act as a magnitude digital comparator. The synthesized compounds show excellent selectivity toward protons over the representative transition metal ions (Co 2+ , Cu 2+ , Fe 3+ , Ni 2+ , Cd 2+ , Pb 2+ , Zn 2+ , Hg 2+ and Ag + ) is commonly used buffer solutions. The high water solubility and excellent pH selectivity of both probes as well as the ratiometric pH sensitivity of dihydroimidazonaphthalimide derivative may be beneficially for monitoring pH variations in complex samples. - Highlights: • Two novel highly water-soluble fluorescent dihydroimidazonaphthalimide and 1,8-naphthalimide derivatives are synthesized. • Compounds are designed as fluorescent “off–on” and “off–on–off” molecular pH probes based on PET and ICT. • Probes manifest selective response to protons over representative transition metal ions in 100% aqueous medium. • Logic functions INH and XNOR are achieved for dihydroimidazonaphthalimide derivative. • A combinatorial logic circuit (magnitude digital comparator) is demonstrated

  18. Synthesis, selective pH-sensing activity and logic behavior of highly water-soluble 1,8-naphthalimide and dihydroimidazonaphthalimide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, Nikolai I.; Dimov, Stefan M. [Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Street, 1756 Sofia (Bulgaria); Asiri, Abdullah M. [Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Alamry, Khalid A.; Obaid, Abdullah Y. [Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Bojinov, Vladimir B., E-mail: vlbojin@uctm.edu [Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Street, 1756 Sofia (Bulgaria); Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2014-05-01

    This paper reports on the design, synthesis and fluorescence pH-sensing activity of a novel highly water-soluble 1,8-naphthalimide and its 9,10-dihydro-7H-imidazo[1,2-b]benz[d,e]isoqionolin-7-one derivative. The changes in the photophysical properties of the compounds as a function of pH were investigated in 100% aqueous medium. The 1,8-naphthalimide dye manifests “off–on” pH sensing properties based on photoinduced electron transfer, while its condensed heterocyclic derivative revealed ratiometric “off–on–off” fluorescence pH probe activity. Due to the two different “off”-states the dihydroimidazonaphthalimide derivative is able to execute the logical functions INH and XNOR and as such, to act as a magnitude digital comparator. The synthesized compounds show excellent selectivity toward protons over the representative transition metal ions (Co{sup 2+}, Cu{sup 2+}, Fe{sup 3+}, Ni{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, Hg{sup 2+} and Ag{sup +}) is commonly used buffer solutions. The high water solubility and excellent pH selectivity of both probes as well as the ratiometric pH sensitivity of dihydroimidazonaphthalimide derivative may be beneficially for monitoring pH variations in complex samples. - Highlights: • Two novel highly water-soluble fluorescent dihydroimidazonaphthalimide and 1,8-naphthalimide derivatives are synthesized. • Compounds are designed as fluorescent “off–on” and “off–on–off” molecular pH probes based on PET and ICT. • Probes manifest selective response to protons over representative transition metal ions in 100% aqueous medium. • Logic functions INH and XNOR are achieved for dihydroimidazonaphthalimide derivative. • A combinatorial logic circuit (magnitude digital comparator) is demonstrated.

  19. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    Science.gov (United States)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  20. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  1. SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing.

    Directory of Open Access Journals (Sweden)

    Ye Cui

    2017-01-01

    Full Text Available Cyclic GMP-AMP (cGAMP synthase (cGAS, a.k.a. MB21D1, a cytosolic DNA sensor, catalyzes formation of the second messenger 2'3'-cGAMP that activates the stimulator of interferon genes (STING signaling. How the cGAS activity is modulated remains largely unknown. Here, we demonstrate that sentrin/SUMO-specific protease 7 (SENP7 interacted with and potentiated cGAS activation. The small ubiquitin-like modifier (SUMO was conjugated onto the lysine residues 335, 372 and 382 of cGAS, which suppressed its DNA-binding, oligomerization and nucleotidyl-transferase activities. SENP7 reversed this inhibition via catalyzing the cGAS de-SUMOylation. Consistently, silencing of SENP7 markedly impaired the IRF3-responsive gene expression induced by cGAS-STING axis. SENP7-knockdown mice were more susceptible to herpes simplex virus 1 (HSV-1 infection. SENP7 was significantly up-regulated in patients with SLE. Our study highlights the temporal modulation of the cGAS activity via dynamic SUMOylation, uncovering a novel mechanism for fine-tuning the STING signaling in innate immunity.

  2. On the Ability of Space- Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    Science.gov (United States)

    Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.

  3. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. On the Ability of Space-Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    Science.gov (United States)

    Crowell, Sean M. R.; Randolph Kawa, S.; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.

  5. Research on Chemical Composition and Biological Properties Including Antiquorum Sensing Activity of Angelica pancicii Vandas Aerial Parts and Roots.

    Science.gov (United States)

    Mileski, Ksenija S; Trifunović, Snežana S; Ćirić, Ana D; Šakić, Željana M; Ristić, Mihailo S; Todorović, Nina M; Matevski, Vlado S; Marin, Petar D; Tešević, Vele V; Džamić, Ana M

    2017-12-20

    The essential oil, different extracts, and isolated compounds of Angelica pancicii Vandas (Apiaceae) were investigated for the first time. The GC-FID and GC-MS analyses revealed sesquiterpenoids as the main constituents of A. pancicii essential oil of aerial parts with bornyl acetate (8.08%), n-octanol (5.82%), kessane (4.26%), and β-selinene (4.26%) as the main constituents. Analysis of methanol extracts, using an HPLC-DAD/ESI-ToF-MS system, showed a total of 52 compounds in the aerial parts and 53 in the roots, indicating coumarins as the main constituents. In addition, new chromone (1) and six known furanocoumarins (2-7) were isolated from the roots and structurally elucidated by combined spectroscopic methods. The aerial part extracts exhibited higher polyphenolic contents and antioxidant activity evaluated by three radical scavenging assays. Using a microwell dilution method, the strongest antibacterial activity profiles were determined for ethanol and methanol root extracts (minimum bactericidal concentrations (MBCs) = 0.25-3.00 mg/mL), which were comparable to the activity of streptomycin (MBCs = 0.34-1.24 mg/mL), while the strongest antibacterial compound of A. pancicii was oxypeucedanin hydrate (MBCs = 0.50-8.00 mg/mL). Antifungal potential was in moderate extent, and the highest activity was obtained for root methanol extract (minimum fungicidal concentrations (MFCs) = 4.00-14.00 mg/mL). Tested sub-minimum inhibitory concentrations (subMICs) of the extracts and isolated compounds inhibited selected Pseudomonas aeruginosa PAO1 virulence determinants. The most reduced growth of P. aeruginosa colony was in the presence of isolated oxypeucedanin. Ethanol (17.36-46.98%) and methanol (34.54-52.43%) root extracts showed higher anti-biofilm activity compared to streptomycin (49.40-88.36%) and ampicillin (56.46-92.16%).

  6. A Waterline Extraction Method from Remote Sensing Image Based on Quad-tree and Multiple Active Contour Model

    Directory of Open Access Journals (Sweden)

    YU Jintao

    2016-09-01

    Full Text Available After the characteristics of geodesic active contour model (GAC, Chan-Vese model(CV and local binary fitting model(LBF are analyzed, and the active contour model based on regions and edges is combined with image segmentation method based on quad-tree, a waterline extraction method based on quad-tree and multiple active contour model is proposed in this paper. Firstly, the method provides an initial contour according to quad-tree segmentation. Secondly, a new signed pressure force(SPF function based on global image statistics information of CV model and local image statistics information of LBF model has been defined, and then ,the edge stopping function(ESF is replaced by the proposed SPF function, which solves the problem such as evolution stopped in advance and excessive evolution. Finally, the selective binary and Gaussian filtering level set method is used to avoid reinitializing and regularization to improve the evolution efficiency. The experimental results show that this method can effectively extract the weak edges and serious concave edges, and owns some properties such as sub-pixel accuracy, high efficiency and reliability for waterline extraction.

  7. Cortical regions activated by the subjective sense of perceptual coherence of environmental sounds: a proposal for a neuroscience of intuition.

    Science.gov (United States)

    Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves

    2008-09-01

    According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.

  8. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction?

    Science.gov (United States)

    Watabe, Motoki; Kato, Takahiro A; Monji, Akira; Horikawa, Hideki; Kanba, Shigenobu

    2012-04-01

    Minocycline has long been applied to various infectious diseases as a tetracycline antibiotic and recently has found new application in the treatment of brain diseases such as stroke and multiple sclerosis. In addition, minocycline has also been suggested as an effective drug for psychiatric diseases. These suggestions imply that minocycline may modulate our mental activities, while the underlying mechanism remains to be clarified. To investigate how minocycline influences human mental activity, we experimentally examined how minocycline works on human social decision making in a double-blind randomized trial. Forty-nine healthy volunteers were administered minocycline or placebo over four days, after which they played (1) a trust game, in which they decided how much to trust an anonymous partner, and (2) a dictator game, in which they decided how to divide resources between themselves and an anonymous partner. The minocycline group did not display increased trusting behavior or more altruistic resource allocation. In fact, the minocycline group displayed a slight reduction in trusting behavior. However, the minocycline group did show a strong positive correlation between the degree of risk taking in the trust game and in a separate evaluation of others' trustworthiness, whereas the placebo group showed no such correlation. These results suggest that minocycline led to more rational decision-making strategies, possibly by increasing emotion regulation. Since minocycline is a well-known inhibitor of microglial activation, our findings may open a new optional pathway for treating mental states in which a component of rational decision making is impaired.

  9. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  10. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR

    Directory of Open Access Journals (Sweden)

    Van Calenbergh Serge

    2008-09-01

    Full Text Available Abstract Background To date, only few compounds targeting the AI-2 based quorum sensing (QS system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i inhibit biofilm formation in several Vibrio spp., (ii result in a reduced ability to survive starvation and antibiotic treatment, (iii reduce pigment and protease production in Vibrio anguillarum and (iv protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs.

  11. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR

    Science.gov (United States)

    Brackman, Gilles; Defoirdt, Tom; Miyamoto, Carol; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans; Coenye, Tom

    2008-01-01

    Background To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs. PMID:18793453

  12. SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Olea-Mejía, Oscar, E-mail: oleaoscar@yahoo.com.mx [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Fernández-Mondragón, Mariana; Rodríguez-de la Concha, Gabriela [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50925, México (Mexico)

    2015-09-01

    Highlights: • We synthesized Ag/Au nanoparticles by laser ablation in liquids. • We characterized such particles by UV–vis, TEM and EDS/STEM. • The SERS effect was studied for the obtained nanoparticles. • Pure silver nanoparticles showed the highest SERS signals. • We can sense methylene blue at a concentration of 10{sup −10} mole/L. - Abstract: We have synthesized Ag–Au nanoparticles by laser ablation in liquids using five different targets: 100% Ag, 80%Ag/20%Au, 50%Ag/50%Au, 20%Ag/80%Au and 100% Au (weight percentages). We used ethanol and methylene blue solutions in ethanol as the liquid media. The nanoparticles were mostly spherical with diameters 15, 19, 18, 23 and 11 nm, respectively. When alloyed targets were used, the resulting nanoparticles were completely alloyed forming solid solutions as evidenced by UV–vis Spectroscopy and Scanning Transmission Electron Microscopy. The obtained nanoparticles were employed to study the SERS effect of the methylene blue molecule. All the samples showed good SERS activity, however the ones composed of pure silver showed the greatest Raman signal enhancement. Finally, pure Ag nanoparticles were used for sensing methylene blue at different concentrations. While almost no signal can be discerned from the Raman spectrum when no particles are used at a concentration of methylene blue of 1 × 10{sup −2} M (∼3000 ppm), when Ag nanoparticles are used one can observe the characteristic peak of the molecule at concentrations as low as 1 × 10{sup −10} M (∼3 × 10{sup −5} ppm)

  13. MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing

    Directory of Open Access Journals (Sweden)

    Sat Kumar Tomer

    2016-12-01

    Full Text Available Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR and passive microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil Moisture—uses a spatio-temporal approach based on the concept of the Water Change Capacity (WCC which represents the amplitude and direction of change in the soil moisture at the fine spatial resolution. The algorithm is applied and validated during a period of 3 years spanning from 2010 to 2013 over the Berambadi watershed which is located in a semi-arid tropical region in the Karnataka state of south India. Passive microwave products are provided from ESA Level 2 soil moisture products derived from Soil Moisture and Ocean Salinity (SMOS satellite (3 days temporal resolution and 40 km nominal spatial resolution. Active microwave are based on soil moisture retrievals from 30 images of RADARSAT-2 data (24 days temporal resolution and 20 m spatial resolution. The results show that MAPSM is able to provide a good estimate of soil moisture at a spatial resolution of 500 m with an RMSE of 0.025 m3/m3 and 0.069 m3/m3 when comparing it to soil moisture from RADARSAT-2 and in-situ measurements, respectively. The use of Sentinel-1 and RISAT products in MAPSM algorithm is envisioned over other areas where high number of revisits is available. This will need an update of the algorithm to take into account the angle sampling and resolution of Sentinel-1 and RISAT data.

  14. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  15. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition.

    Science.gov (United States)

    Zhang, Zelun; Poslad, Stefan

    2013-11-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.

  16. Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and Its Application in Self-Powered Active Acetylene Gas Sensing.

    Science.gov (United States)

    Uddin, A S M Iftekhar; Yaqoob, Usman; Chung, Gwiy-Sang

    2016-11-09

    Herein we report an enhanced triboelectric nanogenerator (TENG) based on the contact-separation mode between a patterned film of polydimethylsiloxane (PDMS) with a semimetallic elastomer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nylon fiber film. The addition of ethylene glycol to the PEDOT:PSS film improves the functionality of the TENG significantly, yielding promising applicability in both indoor and outdoor (i.e., under sunlight) environments, with the maximum instantaneous power of 0.09 mW (indoors) and 0.2 mW (outdoors) for the load resistance of 3.8 MΩ. The device can also generate 11.2 V and 0.08 μA cm -2 in response to the forearm movement of a human. Additionally, by replacing the bare nylon fiber in the TENG design with a Ag@ZnO/nylon fiber film, a self-powered active sensor (triboelectric nanogenerator-based sensor; TENS) has been realized to detect acetylene (C 2 H 2 ) gas. The TENS exhibits excellent sensitivity of 70.9% (indoors) and 89% (outdoors) to C 2 H 2 gas of 1000 ppm concentration. The proposed approach for harvesting energy and sensing can be advantageous in practical applications and may stimulate new research that will enhance nanogenerators as well as wearable, self-powered active sensors.

  17. Raw cow’s milk relatively inhibits quorum sensing activity of Cromobacterium violaceum in comparison to raw she-camel’s milk

    Directory of Open Access Journals (Sweden)

    A.A. Moawad

    2011-10-01

    Full Text Available Milk from different animal species has variable levels of antimicrobial factors against some of spoilage bacteria. For example, they are significantly present in higher concentration in she-camel’s milk than in cattle or buffalo and they are more heat-resistant than their counterparts in cattle and buffalo. Spoilage bacteria are known to communicate with each other by release of signaling molecules, a phenomenon described as quorum sensing (QS. Some food matrices inhibit these signaling compounds. In this study we screened QS inhibitory activities in raw milk of cattle and camel. Ten samples each of fresh raw cow’s milk and she-camel’s milk from apparently healthy animals were screened using the bacterial model Cromobacterium violaceum. The tested cow’s raw milk samples were able to inhibit the production of QS signalling molecules acyl-homoserine lactones (AHLs produced by C. violaceum. However, she-camel’s milk samples were less effective in inhibiting such AHLs. Thus, one of the factors which influence the inhibitory activity could be derived from variation in milk chemical composition, especially in the percentage of fat which is significantly higher in tested cow’s milk samples (2.22±0.12 than in tested she-camel’s milk samples (1.44±0.35. Natural inhibition of QS signaling by cow’s milk may offer a unique means to control foodborne pathogens and reduce microbial spoilage.

  18. Sensing interstitial glucose to nudge active lifestyles (SIGNAL): feasibility of combining novel self-monitoring technologies for persuasive behaviour change.

    Science.gov (United States)

    Whelan, Maxine E; Kingsnorth, Andrew P; Orme, Mark W; Sherar, Lauren B; Esliger, Dale W

    2017-10-08

    Increasing physical activity (PA) reduces the risk of developing diabetes, highlighting the role of preventive medicine approaches. Changing lifestyle behaviours is difficult and is often predicated on the assumption that individuals are willing to change their lifestyles today to reduce the risk of developing disease years or even decades later. The self-monitoring technologies tested in this study will present PA feedback in real time, parallel with acute physiological data. Presenting the immediate health benefits of being more physically active may help enact change by observing the immediate consequences of that behaviour. The present study aims to assess user engagement with the self-monitoring technologies in individuals at moderate-to-high risk of developing type 2 diabetes. 45 individuals with a moderate-to-high risk, aged ≥40 years old and using a compatible smartphone, will be invited to take part in a 7-week protocol. Following 1 week of baseline measurements, participants will be randomised into one of three groups: group 1- glucose feedback followed by biobehavioural feedback (glucose plus PA); group 2-PA feedback followed by biobehavioural feedback; group 3-biobehavioural feedback. A PA monitor and a flash glucose monitor will be deployed during the intervention. Participants will wear both devices throughout the intervention but blinded to feedback depending on group allocation. The primary outcome is the level of participant engagement and will be assessed by device use and smartphone usage. Feasibility will be assessed by the practicality of the technology and screening for diabetes risk. Semistructured interviews will be conducted to explore participant experiences using the technologies. ISRCTN17545949. Registered on 15/05/2017. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fenfen; He, Juan; Zeng, Mulang; Hao, Juan; Guo, Qiaohui; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2016-05-15

    In this work, a facile strategy to synthesize Cu–hemin metal-organic frameworks (MOFs) with peroxidase-like activity was reported. The prepared Cu–hemin MOFs were characterized by various techniques such as scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, UV–visible absorbance spectra, and so on. The results showed that the prepared Cu–hemin MOFs looked like a ball-flower with an average diameter of 10 μm and provided a large specific surface area. The Cu–hemin MOFs possessing peroxidase-like activity could be used to catalyze the peroxidase substrate of 3,3,5,5-tetramethylbenzidine in the presence of H{sub 2}O{sub 2}, which was employed to detect H{sub 2}O{sub 2} quantitatively with the linear range from 1.0 μM to 1.0 mM and the detection limit was 0.42 μM. Furthermore, with the additional help of glucose oxidase, a sensitive and selective method to detect glucose was developed by using the Cu–hemin MOFs as catalyst and the linear range was from 10.0 μM to 3.0 mM and the detection limit was 6.9 μM. This work informs researchers of the advantages of MOFs for preparing biomimetic catalysts and extends the functionality of MOFs for biosensor application.Graphical Abstract.

  20. Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing.

    Directory of Open Access Journals (Sweden)

    Shereif H Mahmoud

    Full Text Available The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.

  1. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  2. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

    Science.gov (United States)

    Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina

    2017-09-01

    Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A sense of agency

    DEFF Research Database (Denmark)

    Laerkner, Eva; Egerod, Ingrid; Olesen, Finn

    2017-01-01

    familiar in the unfamiliar situation" and "Awareness of surrounding activities". Patients had the ability to interact from the first days of critical illness and a sense of agency was expressed through initiating, directing and participating in communication and other activities. Patients appreciated...... competent and compassionate nurses who were attentive and involved them as individual persons. Initiatives to enhance familiar aspects such as relatives, personal items and care, continuity and closeness of nurses contributed to the patients' experience of feeling safe and secure in the unfamiliar setting...

  5. Comparison of the EPIC Physical Activity Questionnaire with Combined Heart Rate and Movement Sensing in a Nationally Representative Sample of Older British Adults

    Science.gov (United States)

    España-Romero, Vanesa; Golubic, Rajna; Martin, Kathryn R.; Hardy, Rebecca; Ekelund, Ulf; Kuh, Diana; Wareham, Nicholas J.; Cooper, Rachel; Brage, Soren

    2014-01-01

    Objectives To compare physical activity (PA) subcomponents from EPIC Physical Activity Questionnaire (EPAQ2) and combined heart rate and movement sensing in older adults. Methods Participants aged 60–64y from the MRC National Survey of Health and Development in Great Britain completed EPAQ2, which assesses self-report PA in 4 domains (leisure time, occupation, transportation and domestic life) during the past year and wore a combined sensor for 5 consecutive days. Estimates of PA energy expenditure (PAEE), sedentary behaviour, light (LPA) and moderate-to-vigorous PA (MVPA) were obtained from EPAQ2 and combined sensing and compared. Complete data were available in 1689 participants (52% women). Results EPAQ2 estimates of PAEE and MVPA were higher than objective estimates and sedentary time and LPA estimates were lower [bias (95% limits of agreement) in men and women were 32.3 (−61.5 to 122.6) and 29.0 (−39.2 to 94.6) kJ/kg/day for PAEE; −4.6 (−10.6 to 1.3) and −6.0 (−10.9 to −1.0) h/day for sedentary time; −171.8 (−454.5 to 110.8) and −60.4 (−367.5 to 246.6) min/day for LPA; 91.1 (−159.5 to 341.8) and 55.4 (−117.2 to 228.0) min/day for MVPA]. There were significant positive correlations between all self-reported and objectively assessed PA subcomponents (rho  = 0.12 to 0.36); the strongest were observed for MVPA (rho = 0.30 men; rho = 0.36 women) and PAEE (rho = 0.26 men; rho = 0.25 women). Conclusion EPAQ2 produces higher estimates of PAEE and MVPA and lower estimates of sedentary and LPA than objective assessment. However, both methodologies rank individuals similarly, suggesting that EPAQ2 may be used in etiological studies in this population. PMID:24516543

  6. Comparison of the EPIC Physical Activity Questionnaire with combined heart rate and movement sensing in a nationally representative sample of older British adults.

    Directory of Open Access Journals (Sweden)

    Vanesa España-Romero

    Full Text Available To compare physical activity (PA subcomponents from EPIC Physical Activity Questionnaire (EPAQ2 and combined heart rate and movement sensing in older adults.Participants aged 60-64y from the MRC National Survey of Health and Development in Great Britain completed EPAQ2, which assesses self-report PA in 4 domains (leisure time, occupation, transportation and domestic life during the past year and wore a combined sensor for 5 consecutive days. Estimates of PA energy expenditure (PAEE, sedentary behaviour, light (LPA and moderate-to-vigorous PA (MVPA were obtained from EPAQ2 and combined sensing and compared. Complete data were available in 1689 participants (52% women.EPAQ2 estimates of PAEE and MVPA were higher than objective estimates and sedentary time and LPA estimates were lower [bias (95% limits of agreement in men and women were 32.3 (-61.5 to 122.6 and 29.0 (-39.2 to 94.6 kJ/kg/day for PAEE; -4.6 (-10.6 to 1.3 and -6.0 (-10.9 to -1.0 h/day for sedentary time; -171.8 (-454.5 to 110.8 and -60.4 (-367.5 to 246.6 min/day for LPA; 91.1 (-159.5 to 341.8 and 55.4 (-117.2 to 228.0 min/day for MVPA]. There were significant positive correlations between all self-reported and objectively assessed PA subcomponents (rho= 0.12 to 0.36; the strongest were observed for MVPA (rho = 0.30 men; rho = 0.36 women and PAEE (rho = 0.26 men; rho = 0.25 women.EPAQ2 produces higher estimates of PAEE and MVPA and lower estimates of sedentary and LPA than objective assessment. However, both methodologies rank individuals similarly, suggesting that EPAQ2 may be used in etiological studies in this population.

  7. Development of a modified two-scale electromagnetic model simulating both active and passive microwave measurements: Comparison to data remotely sensed over the ocean

    Science.gov (United States)

    Boukabara, S. A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A.

    2002-08-01

    Spaceborne microwave remote sensing allows the determination of oceanic and atmospheric parameters. Operational payloads such as ERS-1 and ERS-2 and TOPEX/Poseidon as well as missions such as Jason (from NASA-Centre National d'Etudes) or Envisat (from the European Space Agency), have contained or contain paired microwave instruments looking at the nadir direction. This combination consists of microwave radiometers and a radar-altimeter. For the frequencies chosen in oceanographic satellite payloads, the active mode signal is mostly dependent on the surface state through its reflectivity and thus used for the near-surface wind speed retrieval. The active mode can also be attenuated by the atmosphere. On the other hand, the passive mode is related to the surface emissivity and the atmospheric radiation through the radiative transfer equation. Until now, the oceanic and atmospheric parameters have been retrieved separately, the latter being used to correct radar measurements. However, the reflectivity and the emissivity of a target are not independent quantities; hence the synergistic use of these two kinds of microwave measurements should allow one to improve the retrieval quality of the sea and atmosphere parameters. For this purpose, a unified model has been developed for the simulation of both the microwave backscattering coefficient σ° (active measurement) and the microwave emissivity, an important factor for the brightness temperature TB simulation, for every configuration (incidence angles, frequency, polarizations), taking into account the fact that the reflectivity and the emissivity are complementary to unity. The atmospheric absorption is computed following a widely used model from the literature. This paper gives a description and a first attempt of validation of this approach through a comparison with real data. The performance of the model is assessed by comparing the simulations to both brightness temperatures and backscattering coefficients from ERS

  8. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  9. Blue Light-excited Light-Oxygen-Voltage-sensing Domain 2 (LOV2) Triggers a Rearrangement of the Kinase Domain to Induce Phosphorylation Activity in Arabidopsis Phototropin1.

    Science.gov (United States)

    Oide, Mao; Okajima, Koji; Kashojiya, Sachiko; Takayama, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-09-16

    Phototropin1 is a blue light (BL) receptor in plants and shows BL-dependent kinase activation. The BL-excited light-oxygen-voltage-sensing domain 2 (LOV2) is primarily responsible for the activation of the kinase domain; however, the molecular mechanism by which conformational changes in LOV2 are transmitted to the kinase domain remains unclear. Here, we investigated BL-induced structural changes of a minimum functional fragment of Arabidopsis phototropin1 composed of LOV2, the kinase domain, and a linker connecting the two domains using small-angle x-ray scattering (SAXS). The fragment existed as a dimer and displayed photoreversible SAXS changes reflected in the radii of gyration of 42.9 Å in the dark and 48.8 Å under BL irradiation. In the dark, the molecular shape reconstructed from the SAXS profiles appeared as two bean-shaped lobes in a twisted arrangement that was 170 Å long, 80 Å wide, and 50 Å thick. The molecular shape under BL became slightly elongated from that in the dark. By fitting the crystal structure of the LOV2 dimer and a homology model of the kinase domain to their inferred shapes, the BL-dependent change could be interpreted as the positional shift in the kinase domain relative to that of the LOV2 dimer. In addition, we found that lysine 475, a functionally important residue, in the N-terminal region of LOV2 plays a critical role in transmitting the structural changes in LOV2 to the kinase domain. The interface between the domains is critical for signaling, suitably changing the structure to activate the kinase in response to conformational changes in the adjoining LOV2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    Science.gov (United States)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  11. SYMBIOTIC SENSING: Exploring and Exploiting Cooperative Sensing in Heterogeneous Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2016-01-01

    During the last several years we have witnessed the emergence of smartphone-based sensing applications that include activity recognition, urban sensing, social sensing, and health monitoring. In fact, most smartphones have various sensors, wireless communication interfaces, a large memory capacity,

  12. The potential of the synergistic use of passive and active remote sensing measurements for the validation of a regional dust model

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2009-08-01

    Full Text Available A long-lasting Saharan dust event affected Europe on 18–23 May 2008. Dust was present in the free troposphere over Greece, in height ranges between the surface and approximately 4–5 km above sea level. The event was monitored by ground-based CIMEL sunphotometric and multi-wavelength combined backscatter/Raman lidar measurements over Athens, Greece. The dust event had the maximum of its intensity on 20 May. Three-dimensional dust spatial distribution over Greece on that day is presented through satellite synergy of passive and active remote sensing using MODIS and CALIPSO data, respectively. For the period under study, the ground-based measurements are used to characterize the dust event and evaluate the latest version of the BSC Dust Regional Atmospheric Modeling (BSC-DREAM system. Comparisons of modeled and measured aerosol optical depths over Athens show that the Saharan dust outbreak is fairly well captured by BSC-DREAM simulations. Evaluation of BSC-DREAM using Raman lidar measurements on 20 May shows that the model consistently reproduces the dust vertical distribution over Athens.

  13. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  14. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frédéric Satgé

    2017-02-01

    Full Text Available In 2015, an emergency state was declared in Bolivia when Poopó Lake dried up. Climate variability and the increasing need for water are potential factors responsible for this situation. Because field data are missing over the region, no statements are possible about the influence of mentioned factors. This study is a preliminary step toward the understanding of Poopó Lake drought using remote sensing data. First, atmospheric corrections for Landsat (FLAASH and L8SR, seven satellite derived indexes for extracting water bodies, MOD16 evapotranspiration, PERSIANN-CDR and MSWEP rainfall products potentiality were assessed. Then, the fluctuations of Poopó Lake extent over the last 26 years are presented for the first time jointly, with the mean regional annual rainfall. Three main droughts are highlighted between 1990 and 2015: two are associated with negative annual rainfall anomalies in 1994 and 1995 and one associated with positive annual rainfall anomaly in 2015. This suggests that other factors than rainfall influenced the recent disappearance of the lake. The regional evapotranspiration increased by 12.8% between 2000 and 2014. Evapotranspiration increase is not homogeneous over the watershed but limited over the main agriculture regions. Agriculture activity is one of the major factors contributing to the regional desertification and recent disappearance of Poopó Lake.

  15. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.

    Science.gov (United States)

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Liu, Bingyi; Lin, Gong; Wei, Jianwei; Li, Xiaolong

    2018-05-01

    Inversion of the total absorption (a) and backscattering coefficients of bulk water through a fusion of remote sensing reflectance (R rs ) and Secchi disk depth (Z SD ) is developed. An application of such a system to a synthesized wide-range dataset shows a reduction of ∼3 folds in the uncertainties of inverted a(λ) (in a range of ∼0.01-6.8  m -1 ) from R rs (λ) for the 350-560 nm range. Such a fusion is further proposed to process concurrent active (ocean LiDAR) and passive (ocean-color) measurements, which can lead to nearly "exact" analytical inversion of an R rs spectrum. With such a fusion, it is found that the uncertainty in the inverted total a in the 350-560 nm range could be reduced to ∼2% for the synthesized data, which can thus significantly improve the derivation of a coefficients of other varying components. Although the inclusion of Z SD places an extra constraint in the inversion of R rs , no apparent improvement over the quasi-analytical algorithm (QAA) was found when the fusion of Z SD and R rs was applied to a field dataset, which calls for more accurate determination of the absorption coefficients from water samples.

  16. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    Science.gov (United States)

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle Ann; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  17. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  18. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    Science.gov (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  19. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, T A; Burstein, E S

    2000-01-01

    The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found......, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR....

  20. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  1. Sound & The Senses

    DEFF Research Database (Denmark)

    Schulze, Holger

    2012-01-01

    How are those sounds you hear right now technically generated and post-produced, how are they aesthetically conceptualized and how culturally dependant are they really? How is your ability to hear intertwined with all the other senses and their cultural, biographical and technological constructio...... over time? And how is listening and sounding a deeply social activity – constructing our way of living together in cities as well as in apartment houses? A radio feature with Jonathan Sterne, AGF a.k.a Antye Greie, Jens Gerrit Papenburg & Holger Schulze....

  2. Ion sensing method

    Science.gov (United States)

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  3. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Yu, Zhi; Park, Yeonju; Chen, Lei; Zhao, Bing; Jung, Young Mee; Cong, Qian

    2015-10-28

    In this paper, we propose a novel and simple method for preparing a dual-biomimetic functional array possessing both superhydrophobic and peroxidase-like activity that can be used for hydrogen peroxide (H2O2) sensing. The proposed method is an integration innovation that combines the above two properties and surface-enhanced Raman scattering (SERS). We integrated a series of well-ordered arrays of Au points (d = 1 mm) onto a superhydrophobic copper (Cu)/silver (Ag) surface by replicating an arrayed molybdenum template. Instead of using photoresists and the traditional lithography method, we utilized a chemical etching method (a substitution reaction between Cu and HAuCl4) with a Cu/Ag superhydrophobic surface as the barrier layer, which has the benefit of water repellency. The as-prepared Au points were observed to possess peroxidase-like activity, allowing for catalytic oxidation of the chromogenic molecule o-phenylenediamine dihydrochloride (OPD). Oxidation was evidenced by a color change in the presence of H2O2, which allows the array chip to act as an H2O2 sensor. In this study, the water repellency of the superhydrophobic surface was used to fabricate the array chip and increase the local reactant concentration during the catalytic reaction. As a result, the catalytic reaction occurred when only 2 μL of an aqueous sample (OPD/H2O2) was placed onto the Au point, and the enzymatic product, 2,3-diaminophenazine, showed a SERS signal distinguishable from that of OPD after mixing with 2 μL of colloidal Au. Using the dual-biomimetic functional array chip, quantitative analysis of H2O2 was performed by observing the change in the SERS spectra, which showed a concentration-dependent behavior for H2O2. This method allows for the detection of H2O2 at concentrations as low as 3 pmol per 2 μL of sample, which is a considerable advantage in H2O2 analysis. The as-prepared substrate was convenient for H2O2 detection because only a small amount of sample was required in

  4. Active vitamin D potentiates the anti-neoplastic effects of calcium in the colon: A cross talk through the calcium-sensing receptor.

    Science.gov (United States)

    Aggarwal, Abhishek; Höbaus, Julia; Tennakoon, Samawansha; Prinz-Wohlgenannt, Maximilian; Graça, João; Price, Sally A; Heffeter, Petra; Berger, Walter; Baumgartner-Parzer, Sabina; Kállay, Enikö

    2016-01-01

    Epidemiological studies suggest an inverse correlation between dietary calcium (Ca(2+)) and vitamin D intake and the risk of colorectal cancer (CRC). It has been shown in vitro that the active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25-D3) can upregulate expression of the calcium-sensing receptor (CaSR). In the colon, CaSR has been suggested to regulate proliferation of colonocytes. However, during tumorigenesis colonic CaSR expression is downregulated and we hypothesized that the loss of CaSR could influence the anti-tumorigenic effects of Ca(2+) and vitamin D. Our aim was to assess the impact of CaSR expression and function on the anti-neoplastic effects of 1,25-D3 in colon cancer cell lines. We demonstrated that in the healthy colon of mice, high vitamin D diet (2500 IU/kg diet) increased expression of differentiation and apoptosis markers, decreased expression of proliferation markers and significantly upregulated CaSR mRNA expression, compared with low vitamin D diet (100 IU/kg diet). To determine the role of CaSR in this process, we transfected Caco2-15 and HT29 CRC cells with wild type CaSR (CaSR-WT) or a dominant negative CaSR mutant (CaSR-DN) and treated them with 1,25-D3 alone, or in combination with CaSR activators (Ca(2+) and NPS R-568). 1,25-D3 enhanced the anti-proliferative effects of Ca(2+) and induced differentiation and apoptosis only in cells with a functional CaSR, which were further enhanced in the presence of NPS R-568, a positive allosteric modulator of CaSR. The mutant CaSR inhibited the anti-tumorigenic effects of 1,25-D3 suggesting that the anti-neoplastic effects of 1,25-D3 are, at least in part, mediated by the CaSR. Taken together, our data provides molecular evidence to support the epidemiological observation that both, vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR. This article is part of a Special Issue

  5. GPR surveying of transport infrastructures and buildings; underground utility and void sensing - ongoing activities in Working Group 2 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Plati, Christina; Derobert, Xavier

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Four Working Groups (WGs) carry out the research activities. WG1 focuses on the development of innovative GPR equipment dedicated for civil engineering applications. WG2 deals with the development of guidelines and protocols for the surveying, through the use of a GPR system, of transport infrastructure and buildings, as well as for the sensing of utilities and voids. WG3 deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. WG4 is concerned with the use of GPR in fields different from the civil engineering, as well as with the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. WG2 includes five Projects. Project 2.1 focuses on outlining 'Innovative inspection procedures for effective GPR surveying of critical transport infrastructures (pavements, bridges and tunnels).' Project 2.2 is concerned with the development of 'Innovative inspection procedures for effective GPR surveying of buildings.' Project 2.3 deals with identifying 'Innovative inspection procedures for effective GPR sensing and mapping of underground utilities and voids, with a focus to urban

  6. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  7. Forest structural assessment using remote sensing technologies: an ...

    African Journals Online (AJOL)

    -Natal and MONDI Business Paper have recently embarked on a remote sensing cooperative. The primary focus of this cooperative is to explore the potential benefits associated with using remote sensing for forestry-related activities.

  8. Energy sense is common sense

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, K.

    1979-07-01

    Background information about the West Midlands Region of British Gas is presented and this sets the scene for the subsequent description of the action taken to conserve energy in all West Midlands Gas operational activities. The basic organizational structure for dealing with energy throughout the Region is outlined. The objectives of the Energy Conservation Working Party are defined and the achievements in energy saving since April 1975 are highlighted. The monitoring and control action taken to save energy in buildings and functional engineering and transport activities is described and reference is made to special projects undertaken to improve performance in energy utilization. Special emphasis is given to the promotion of energy conservation through the use of specially designed posters and stickers, by publicity in the in-house newspaper Boost, and by annual Energy Conservation Conferences and Awards for the Conservation of Energy in the form of an ACE Trophy for group achievement and ACE Merit Awards for individual achievement. The motivational aspects of the Region's energy conservation campaign are discussed and plans for continuing to gain the cooperation of employees to conserve energy are outlined. It is concluded that the success achieved by the Region in saving energy has been significantly influenced by the special attention which has been given to mounting an imaginative, intensive, and long term campaign aimed at involving all employees and to gaining their continuing commitment to energy conservation.

  9. Animal cognition: an insect's sense of time?

    Science.gov (United States)

    Skorupski, Peter; Chittka, Lars

    2006-10-10

    For Immanuel Kant, time was the very form of the inner sense, the bedrock of our consciousness and also the origin of arithmetic ability. New research on bumblebees has shown that even an invertebrate with a brain the size of a pinhead can actively sense the passage of elapsed time, allowing it to predict when certain salient events will occur in the future.

  10. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  11. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  12. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  13. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    DEFF Research Database (Denmark)

    Song, Z; Kong, K F; Wu, H

    2010-01-01

    Virulent factors produced by pathogens play an important role in the infectious process, which is regulated by a cell-to-cell communication mechanism called quorum sensing (QS). Pseudomonas aeruginosa is an important opportunistic human pathogen, which causes infections in patients with compromis...

  14. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  15. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  16. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath; Fan, Shanhui

    2011-01-01

    related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical

  17. Effect of body orientation on proprioception during active and passive motions

    NARCIS (Netherlands)

    Niessen, M.H.M.; Veeger, H.E.J.; Janssen, T.W.J.

    2009-01-01

    Objective: To investigate whether passive and active reproduction of joint position, as well as detection of passive motion (as measures of a subject's proprioception) of the shoulder differ while sitting compared with lying supine. Design: Shoulder proprioception of 28 healthy subjects (age, 22.2 ±

  18. The effect of spasticity, sense and walking aids in falls of people after chronic stroke.

    Science.gov (United States)

    Soyuer, Ferhan; Oztürk, Ahmet

    2007-05-15

    To study the effects of spasticity, sensory impairment, and type of walking aid on falls in community dwellers with chronic stroke. Functional Independence Measure (FIM) Instrument, Joint Position Sense Evaluation (JPS), the Rivermead motor assessment scale (RMA), Ashworth Scale, Tinetti Assessment Tool were used to assess 100 cases. Fifty-three of the cases were grouped as nonfallers, 36 as one-time fallers and 11 as repeat fallers. These 3 groups were found to be different from each other in respect to FIM, Tinetti test and RMA (p cane, 41.9% high cane). According to Ordinal logistic regression analysis, it was found that the possibility of fall increased (p fall of the individuals with stroke decreased (p falls, spasticity is also an indicator for chronic stroke patients, as is motor impairment, functional situation, impairment of balance and walking. Sensory impairment, using a walking aid and the type were found to be ineffective.

  19. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Flávia de Andrade e Souza Mazuchi

    2018-03-01

    Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.

  20. The reliability of knee joint position testing using electrogoniometry

    Directory of Open Access Journals (Sweden)

    Winter Adele

    2008-01-01

    Full Text Available Abstract Background The current investigation examined the inter- and intra-tester reliability of knee joint angle measurements using a flexible Penny and Giles Biometric® electrogoniometer. The clinical utility of electrogoniometry was also addressed. Methods The first study examined the inter- and intra-tester reliability of measurements of knee joint angles in supine, sitting and standing in 35 healthy adults. The second study evaluated inter-tester and intra-tester reliability of knee joint angle measurements in standing and after walking 10 metres in 20 healthy adults, using an enhanced measurement protocol with a more detailed electrogoniometer attachment procedure. Both inter-tester reliability studies involved two testers. Results In the first study, inter-tester reliability (ICC[2,10] ranged from 0.58–0.71 in supine, 0.68–0.79 in sitting and 0.57–0.80 in standing. The standard error of measurement between testers was less than 3.55° and the limits of agreement ranged from -12.51° to 12.21°. Reliability coefficients for intra-tester reliability (ICC[3,10] ranged from 0.75–0.76 in supine, 0.86–0.87 in sitting and 0.87–0.88 in standing. The standard error of measurement for repeated measures by the same tester was less than 1.7° and the limits of agreement ranged from -8.13° to 7.90°. The second study showed that using a more detailed electrogoniometer attachment protocol reduced the error of measurement between testers to 0.5°. Conclusion Using a standardised protocol, reliable measures of knee joint angles can be gained in standing, supine and sitting by using a flexible goniometer.

  1. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  2. User-centric incentive design for participatory mobile phone sensing

    Science.gov (United States)

    Gao, Wei; Lu, Haoyang

    2014-05-01

    Mobile phone sensing is a critical underpinning of pervasive mobile computing, and is one of the key factors for improving people's quality of life in modern society via collective utilization of the on-board sensing capabilities of people's smartphones. The increasing demands for sensing services and ambient awareness in mobile environments highlight the necessity of active participation of individual mobile users in sensing tasks. User incentives for such participation have been continuously offered from an application-centric perspective, i.e., as payments from the sensing server, to compensate users' sensing costs. These payments, however, are manipulated to maximize the benefits of the sensing server, ignoring the runtime flexibility and benefits of participating users. This paper presents a novel framework of user-centric incentive design, and develops a universal sensing platform which translates heterogenous sensing tasks to a generic sensing plan specifying the task-independent requirements of sensing performance. We use this sensing plan as input to reduce three categories of sensing costs, which together cover the possible sources hindering users' participation in sensing.

  3. A Study of Curriculum and Instruction in Sex Education : Toward the Better Formation of a Sense of Value through Classroom Activity and Guidance(Educational Philosophy)

    OpenAIRE

    町田, 健一; マチダ, ケンイチ; Kenichi, Machida

    2000-01-01

    The Purpose of Research Much attention has recently been paid to the importance of sex education. Conversely, it is often said that in sex education we should teach only biological facts about human bodies, but no further aspects such as the sense of value towards sex. To support this opinion, it is said that in the modern world sex does not necessarily mean love and that sex issues are too complex to be able to clarify in the domain of educational purpose. Is this really the way sex educatio...

  4. New α-Pyridones with Quorum-Sensing Inhibitory Activity from Diversity-Enhanced Extracts of a Streptomyces sp. Derived from Marine Algae.

    Science.gov (United States)

    Du, Yuqi; Sun, Jian; Gong, Qianhong; Wang, Yi; Fu, Peng; Zhu, Weiming

    2018-02-28

    Four new α-pyrones (1-4) and eight known analogues (5-12) were identified from the secondary metabolites of Streptomyces sp. OUCMDZ-3436 derived from the marine green algae Enteromorpha prolifera. Seven new α-pyridones (14-20) were constructed by diversity-oriented synthesis, which has been an effective approach to expanding the chemical space of natural-product-like compounds. Compounds 16, 17, 19, and 20 were found to have inhibitory effect on the gene expression controlled by quorum sensing in Pseudomonas aeruginosa QSIS-lasI.

  5. Sensing of triacylglycerol in the gut

    DEFF Research Database (Denmark)

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G

    2015-01-01

    KEY POINTS: Digestion is required for intestinal sensing of triacylglycerol in this behavioural model. The hydrolysis products of triacylglycerol, fatty acids and 2-monoacylglycerol, regulate feeding via separate mechanisms. Sensing of long-chain fatty acids, but not of 2-monoacylglycerol......, stimulated central dopaminergic signalling. Fatty acid chain length regulates behavioural responses to fatty acids. ABSTRACT: Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking...... intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol...

  6. Assessment of physical activity and inactivity in multiple domains of daily life: a comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary

    Directory of Open Access Journals (Sweden)

    Scheers Tineke

    2012-06-01

    Full Text Available Abstract Background Although differences between paper-and-pencil questionnaires and accelerometers have been reported for overall physical activity and time spent in moderate and vigorous activity, few studies have looked at domain-specific behavior. This study compared estimates of domain-specific physical (inactivity obtained with the Flemish physical activity computerized questionnaire (FPACQ with those obtained from a combination of the SenseWear Armband and an electronic diary. Furthermore, it was investigated whether the correspondence between the two methods varied with gender and age. Methods Data were obtained from 442 Flemish adults (41.4±9.8 years. Physical activity was questioned with the FPACQ and measured for seven consecutive days using the SenseWear Armband together with an electronic activity diary (SWD. Analogous variables were calculated from the FPACQ and SWD. Mean differences and associations between FPACQ and SWD outcomes were examined with paired t-tests and Pearson correlations. The Bland-Altman method was used to assess the level of agreement between the two methods. Main effects and interaction of gender and age groups (20–34; 35–49; 50–64 years on differences between FPACQ and SWD outcomes were analyzed using two-way ANOVAs. Results All parameters of the FPACQ were significantly correlated with SWD assessments (r = 0.21 to 0.65. Reported activity was significantly different from SWD-obtained values for all parameters, except screen time. Physical activity level, total energy expenditure and time spent in vigorous activities were significantly higher (+0.14 MET, +25.09 METhours·week-1 and +1.66 hours·week-1, respectively, and moderate activities and sedentary behavior significantly lower (-5.20 and -25.01 hours·week-1, respectively with the FPACQ compared to SWD. Time and energy expenditure of job activities and active transport were significantly higher, while household chores, motorized transport

  7. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  8. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  9. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  10. Lavandula angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    So Hyun Yu

    2017-01-01

    Full Text Available Pain and urinary symptoms following colorectal cancer (CRC surgery are frequent and carry a poor recovery. This study tested the effects of inhalation of Lavandula angustifolia Mill. (lavender oil or linalyl acetate on pain relief and lower urinary tract symptoms (LUTS following the removal of indwelling urinary catheters from patients after CRC surgery. This randomised control study recruited 66 subjects with indwelling urinary catheters after undergoing CRC surgery who later underwent catheter removal. Patients inhaled 1% lavender, 1% linalyl acetate, or vehicle (control group for 20 minutes. Systolic and diastolic blood pressure (BP, heart rate, LUTS, and visual analog scales of pain magnitude and quality of life (QoL regarding urinary symptoms were measured before and after inhalation. Systolic BP, diastolic BP, heart rate, LUTS, and QoL satisfaction with urinary symptoms were similar in the three groups. Significant differences in pain magnitude and urinary residual sense of indwelling catheters were observed among the three groups, with inhalation of linalyl acetate being significantly more effective than inhalation of lavender or vehicle. Inhalation of linalyl acetate is an effective nursing intervention to relieve pain and urinary residual sense of indwelling urinary catheters following their removal from patients who underwent CRC surgery.

  11. Lavandula angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial

    Science.gov (United States)

    Yu, So Hyun

    2017-01-01

    Pain and urinary symptoms following colorectal cancer (CRC) surgery are frequent and carry a poor recovery. This study tested the effects of inhalation of Lavandula angustifolia Mill. (lavender) oil or linalyl acetate on pain relief and lower urinary tract symptoms (LUTS) following the removal of indwelling urinary catheters from patients after CRC surgery. This randomised control study recruited 66 subjects with indwelling urinary catheters after undergoing CRC surgery who later underwent catheter removal. Patients inhaled 1% lavender, 1% linalyl acetate, or vehicle (control group) for 20 minutes. Systolic and diastolic blood pressure (BP), heart rate, LUTS, and visual analog scales of pain magnitude and quality of life (QoL) regarding urinary symptoms were measured before and after inhalation. Systolic BP, diastolic BP, heart rate, LUTS, and QoL satisfaction with urinary symptoms were similar in the three groups. Significant differences in pain magnitude and urinary residual sense of indwelling catheters were observed among the three groups, with inhalation of linalyl acetate being significantly more effective than inhalation of lavender or vehicle. Inhalation of linalyl acetate is an effective nursing intervention to relieve pain and urinary residual sense of indwelling urinary catheters following their removal from patients who underwent CRC surgery. PMID:28154606

  12. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    Science.gov (United States)

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  13. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  14. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  15. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  16. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  17. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  18. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  19. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  20. Supporting Craft Sense in Early Education

    Directory of Open Access Journals (Sweden)

    Kalle Virta

    2013-10-01

    Full Text Available The research task was to describe and construct theoretical background for Craft Sense in early education. Craft Sense represents a learner’s skill for obtaining Sloyd (Craft, Design & Technology related knowledge, skills and understanding. The development of Craft Sense is based on producing artefacts and evaluating the production process. In this research, the concept of Craft Sense is based on the integration of Sloyd and meta-cognitive regulation of learning activities. Based on theoretical information, an empirical research question was formulated: “What kind of Craft Sense do children have in early education Sloyd?” The method of study was assessing picture supported learning on a Sloyd course for young children. The data was analyzed by qualitative content analysis and Child Behaviour Rating Scale (CBRS. Findings indicate that the development of children’s Craft Sense can be supported with pictures. Furthermore, the CBRS can be used to evaluate and understand children’s Craft Sense. Keywords: Craft Sense, Sloyd, Sloyd Education, Meta-cognition

  1. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  2. Identification of active erosion areas and areas at risk by remote sensing: an example in the Esera Isabena watershed, Central Spanish Pyrenees

    International Nuclear Information System (INIS)

    Alatorre, L. C.; Begueria, S.; Vicente Serrano, S. M.

    2009-01-01

    The identification of eroded areas at basin scale can be very useful for environmental planning and can help to reduce land degradation and sediments yield. In this paper remote sensing technique are used to discriminate eroded areas and areas at risk in a badlands landscape developed on Eocene marls. In the Esera Isabena watershed (Spanish Pyrenees). The spatial distribution, the scarce vegetal cover and the high level of erosion let a good visual and digital discrimination of badlands, as opposed to other land covers and surfaces. A maximum likelihood supervised method was used to discriminate heavily eroded areas (badlands) from scarce or densely vegetated lands. the classification distance was used to obtain thresholds for eroded areas and areas at risk. Two error statistics (sensitivity and specificity), where used to determine the most adequate threshold values. The resulting map shows that most areas at risk are located surrounding the badlands areas. (Author) 8 refs.

  3. Identification of active erosion areas and areas at risk by remote sensing: an example in the Esera Isabena watershed, Central Spanish Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    Alatorre, L. C.; Begueria, S.; Vicente Serrano, S. M.

    2009-07-01

    The identification of eroded areas at basin scale can be very useful for environmental planning and can help to reduce land degradation and sediments yield. In this paper remote sensing technique are used to discriminate eroded areas and areas at risk in a badlands landscape developed on Eocene marls. In the Esera Isabena watershed (Spanish Pyrenees). The spatial distribution, the scarce vegetal cover and the high level of erosion let a good visual and digital discrimination of badlands, as opposed to other land covers and surfaces. A maximum likelihood supervised method was used to discriminate heavily eroded areas (badlands) from scarce or densely vegetated lands. the classification distance was used to obtain thresholds for eroded areas and areas at risk. Two error statistics (sensitivity and specificity), where used to determine the most adequate threshold values. The resulting map shows that most areas at risk are located surrounding the badlands areas. (Author) 8 refs.

  4. A bistable mechanism for directional sensing

    International Nuclear Information System (INIS)

    Beta, C; Amselem, G; Bodenschatz, E

    2008-01-01

    We present a generic mechanism for directional sensing in eukaryotic cells that is based on bistable dynamics. As the key feature of this modeling approach, the velocity of trigger waves in the bistable sensing system changes its sign across cells that are exposed to an external chemoattractant gradient. This is achieved by combining a two-component activator/inhibitor system with a bistable switch that induces an identical symmetry breaking for arbitrary gradient input signals. A simple kinetic example is designed to illustrate the dynamics of a bistable directional sensing mechanism in numerical simulations

  5. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  6. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  7. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  8. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  9. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  10. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  11. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  12. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    Science.gov (United States)

    Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Dunlea, E. J.; Roberts, G. C.; Tomlinson, J. M.; Collins, D. R.; Howell, S. G.; Kapustin, V. N.; McNaughton, C. S.; Zhou, J.

    2009-09-01

    Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF) as 0.34-0.20×OMF over Central Mexico and 0.47-0.43×OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(-1/3), within measurement uncertainty (~20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70×OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

  13. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  14. Making sense of the Sense Model: translation priming with Japanese-English bilinguals

    OpenAIRE

    Allen, David; Conklin, Kathy; Van Heuven, Walter J.B.

    2015-01-01

    Many studies have reported that first language (L1) translation primes speed responses to second language (L2) targets, whereas L2 translation primes generally do not speed up responses to L1 targets in lexical decision. According to the Sense Model (Finkbeiner, Forster, Nicol & Nakamura, 2004) this asymmetry is due to the proportion of senses activated by the prime. Because L2 primes activate only a subset of the L1 translations senses, priming is not observed. In this study we test the pred...

  15. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  16. Husserl’s theory of noematic sense

    Directory of Open Access Journals (Sweden)

    Nikolić Olga

    2016-01-01

    Full Text Available After Husserl’s transcendental turn and the discovery of the correlation between consciousness and the world the concept of the noema becomes one of the constant leitmotifs of Husserl’s philosophy. My paper will be devoted to the clarification of this concept and its implications for Husserl’s theory of sense. The leading question will be: How can the noema play the role of both the sense and the objective correlate of the intentional act? I will start with presenting the problematic of sense in Husserl’s phenomenology from the Logical Investigations to the Ideas I. The central part of my paper will be devoted to the influential debate regarding the interpretation of the noema. Finally, I intend to point out the most important ways in which the notion of the noema becomes enriched in later Husserl’s philosophy, as well as the difference between linguisitic and non-linguistic sense, based on the Analyses Concerning Passive and Active Synthesis. I hope to show that Husserl’s phenomenological theory of sense offers a valuable alternative to the exclusively language-oriented theories of sense. [This paper is the abridged and reworked version of my Master’s Thesis "Husser’s Notion of the Noema: The Phenomenological Theory of Sense" defended at KU Leuven in January 2016.

  17. Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism.

    Science.gov (United States)

    Yu, Binwei; Fu, Yongming; Wang, Penglei; Zhao, Yayu; Xing, Lili; Xue, Xinyu

    2015-04-28

    Highly sensitive humidity sensing has been realized from a Cd-doped ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active gas sensor. The piezoelectric output of the device acts not only as a power source, but also as a response signal to the relative humidity (RH) in the environment. The response of Cd-ZnO (1 : 10) NWs reached up to 85.7 upon exposure to 70% relative humidity, much higher than that of undoped ZnO NWs. Cd dopant can increase the number of oxygen vacancies in the NWs, resulting in more adsorption sites on the surface of the NWs. Upon exposure to a humid environment, a large amount of water molecules can displace the adsorbed oxygen ions on the surface of Cd-ZnO NWs. This procedure can influence the carrier density in Cd-ZnO NWs and vary the screening effect on the piezoelectric output. Our study can stimulate a research trend on exploring composite materials for piezo-gas sensing.

  18. Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In{sub 2}O{sub 3} and Eu{sup 3+}:In{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Kanica; Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Jalandhar (India); Kaur, Jasmeet; Singh, R. C. [Laboratory for sensors and physical education, Department of Physics, GND University, Amritsar (India)

    2015-05-15

    In the present endeavor, Indium oxide (In{sub 2}O{sub 3}) and Europium doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:0.5%Eu{sup 3+} and In{sub 2}O{sub 3}:5%Eu{sup 3+}) nanoparticles were prepared by co-precipitation method. Synthesized nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry (UV-vis). XRD revealed that nanoparticles were of pure bixbyite-type cubic phase and the crystallite size decreased with the Eu{sup 3+} doping. SEM micrographs showed that particles were spherical in shape. Synthesized nanoparticles were used for photo degradation of methylene blue (MB) dye under sunlight and the results clearly showed that In{sub 2}O{sub 3}:5%Eu{sup 3+} nanoparticles exhibited higher activity than pure In{sub 2}O{sub 3} nanoparticles. For gas sensing characteristics, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of the gas sensors prepared from synthesized nanoparticles is 300°C. The investigations revealed that the addition of Eu{sup 3+} as a dopant enhanced the sensing response of In{sub 2}O{sub 3} nanoparticles appreciably.

  19. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  20. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    Directory of Open Access Journals (Sweden)

    Daejin Park

    2014-01-01

    Full Text Available A specially designed sensor processor used as a main processor in IoT (internet-of-thing device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG. Using an event signal processing unit (EPU as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio- based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  1. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  2. Anti-sigma factor YlaD regulates transcriptional activity of sigma factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis.

    Science.gov (United States)

    Kwak, Min-Kyu; Ryu, Han-Bong; Song, Sung-Hyun; Lee, Jin-Won; Kang, Sa-Ouk

    2018-05-14

    YlaD, a membrane-anchored anti-sigma factor of Bacillus subtilis , contains a HX 3 CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc-coordinated anti-sigma factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained zinc and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX 3 CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese. The ylaC gene expression using βGlu activity from P yla : gusA was observed at the late-exponential and early-stationary phase and the ylaC -overexpressing mutant constitutively expressed gene transcripts of clpP and sigH , an important alternative sigma factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in manganese ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and manganese-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function sigma factors during sporulation via a manganese-dependent redox-sensing molecular switch. ©2018 The Author(s).

  3. The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements

    Science.gov (United States)

    Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews

    2018-01-01

    The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...

  4. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  5. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  6. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  7. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  8. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.

    Science.gov (United States)

    Sun, Zhoumin; Fu, Haiying; Deng, Liu; Wang, Jianxiu

    2013-01-25

    In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through π-π stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H(2)O(2) reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H(2)O(2) of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  10. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    Science.gov (United States)

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  11. A diamine ligand with long 'arms' and its corresponding dinuclear rhenium(I) complex: Synthesis, characterization, photophysical property, and sensing activity towards molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaoyong, E-mail: dreamxxy01@163.com [Center for Functional Materials of Pingxiang, Pingxiang 337055 (China) and College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2012-09-15

    In this paper, we synthesize a novel diamine ligand of 4,7-dinonadecyl-1,10-phenanthroline (DN-Phen) with two long alkyl chain arms serving as a shield and its corresponding dinuclear Re(I) complex of Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2} (bpy=4,4 Prime -bipyridine), aiming at an optical sensor immune to the surrounding interferences. Its geometric and electronic structures are investigated, which suggest that the introduced long alkyl chains act as a shield for the excited state of emissive center. The promising photophysical parameters of Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2}, including the immunity of emission towards the surrounding interferences and long excited state lifetime, make itself a potential probe for oxygen detection. By doping Re{sub 2}(CO){sub 6}(bpy)(DN-Phen){sub 2} into two silica matrixes of MCM-41 and SBA-15, oxygen sensing performances of the resulted composite materials are investigated. Finally, a high sensitivity of 20.1 is realized, with short response/recovery time of 8 s/42 s. Here, sensitivity is defined as the ratio of emission maximum under pure nitrogen to emission minimum under pure oxygen, response and recovery times are the times for a sample to lose (response time) or recover (recovery time) 95% of its emission maximum upon periodically changed atmosphere. - Highlights: Black-Right-Pointing-Pointer A ligand with two long alkyl chain arms serving as a shield is synthesized. Black-Right-Pointing-Pointer The shield protects the excited state emissive center. Black-Right-Pointing-Pointer The emission of Re(I) complex is immune towards surrounding interference. Black-Right-Pointing-Pointer A high sensitivity of 20.1 is realized.

  12. Orientation decoding: Sense in spirals?

    Science.gov (United States)

    Clifford, Colin W G; Mannion, Damien J

    2015-04-15

    The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core-Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties.

    Science.gov (United States)

    Saravanan, Adhimoorthy; Huang, Bohr-Ran; Kathiravan, Deepa; Prasannan, Adhimoorthy

    2017-11-15

    Granular activated carbon (GAC) materials were prepared via simple gas activation of silkworm cocoons and were coated on ZnO nanorods (ZNRs) by the facile hydrothermal method. The present combination of GAC and ZNRs shows a core-shell structure (where the GAC is coated on the surface of ZNRs) and is exposed by systematic material analysis. The as-prepared samples were then fabricated as dual-functional sensors and, most fascinatingly, the as-fabricated core-shell structure exhibits better UV and H 2 sensing properties than those of as-fabricated ZNRs and GAC. Thus, the present core-shell structure-based H 2 sensor exhibits fast responses of 11% (10 ppm) and 23.2% (200 ppm) with ultrafast response and recovery. However, the UV sensor offers an ultrahigh photoresponsivity of 57.9 A W -1 , which is superior to that of as-grown ZNRs (0.6 A W -1 ). Besides this, switching photoresponse of GAC/ZNR core-shell structures exhibits a higher switching ratio (between dark and photocurrent) of 1585, with ultrafast response and recovery, than that of as-grown ZNRs (40). Because of the fast adsorption ability of GAC, it was observed that the finest distribution of GAC on ZNRs results in rapid electron transportation between the conduction bands of GAC and ZNRs while sensing H 2 and UV. Furthermore, the present core-shell structure-based UV and H 2 sensors also well-retained excellent sensitivity, repeatability, and long-term stability. Thus, the salient feature of this combination is that it provides a dual-functional sensor with biowaste cocoon and ZnO, which is ecological and inexpensive.

  14. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    after the withdrawal of water, for the estimation of damage and flood recovery. Usage of satellite images in detectingearthquakes Remote sensing is widely used in the procedure of detecting and locating earthquakes. Earthquakes can be detected by the combination of geophysical methods with multispectral and radar images. By combining these nethods, we can monitor the conditions of seizmic areas. The obtained information can be computed and sent to information centres in stationary stations where the modelling of earthquake-affected terrains is carried out. Usage of satellite images in monitoring volcanos Remote sensing has been used ifor examining a large number of active vulcanos. Monitoring is performed several times, during and after eruptions. The modelling of volcanic areas enables the definition of lava-effusion zones,and  potentially dangerous zones, which is further used for  planning the protection of affected areas. Usage of satellite images in monitoring fire (blaze One of important methods of investigating, forecasting and monitoring forest fires is remote sensing. Satellite images are valuable in discovering fires and in mapping affected areas within the geographical-information system (GIS, as well as in the estimation of demage caused by fire. Satellite images can also be usedto estimate the temperature on the Earth surface. Conclusion Remote sensing becomes an increasingly important and unavoidable method of the acquisition of data on  geospacein general. The importance of thus obtained data  is invaluable in all phases of monitoring  catastrophic events, from detecting their onsets through monitoring their spreading and effects  to the phase of recovery. New generations of sensors enable systematic monitoring, recording and measuring different data important for detecting changes and processes in the sea, on the ground and in the atmosphere. The procedures of remote sensing enable surveying (recording and registration of different natural

  15. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  16. Influence of Elastic Bandage and Neoprene Sleeve on Knee Position Sense and Pain in Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2003-12-01

    Full Text Available Objective: to investigate whether a neoprene sleeve and elastic bandage around the knee joint of subjects with knee osteoarthritis (OA would , in short term (a reduce pain (b improve knee joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (11 men, 19 women, age between 33-75 with unilateral knee OA. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of knee pain for study entry.All patients were randomly assigned to either an elastic bandage or a neoprene sleeve. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. Knee pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene sleeve application. Results: the mean of scores for knee variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene sleeve had significant effect on knee JPS (P=0.037. But elastic bandage had no effect (P=0.631. Both of them had significantly reduced knee pain. (P=0.000 Conclusion: In subjects with both neoprene sleeve and elastic bandage reduced knee pain with more effect of neoprene sleeve. Only the neoprene sleeve had effect on knee JPS.

  17. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    Science.gov (United States)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  18. The Elderly’s Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development

    Science.gov (United States)

    Ni, Qin; García Hernando, Ana Belén; de la Cruz, Iván Pau

    2015-01-01

    Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of “activity” as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people’s independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application. PMID:26007717

  19. The Elderly’s Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development

    Directory of Open Access Journals (Sweden)

    Qin Ni

    2015-05-01

    Full Text Available Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of “activity” as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people’s independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application.

  20. Redox-active thionine-graphene oxide hybrid nanosheet: One-pot, rapid synthesis, and application as a sensing platform for uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhoumin; Fu Haiying [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Deng Liu, E-mail: dengliu@csu.edu.cn [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Wang Jianxiu [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs). Black-Right-Pointing-Pointer T-GOs serve as a biocompatible matrix for enzyme assembly and a mediator. Black-Right-Pointing-Pointer A simple and effective sensor for assay of uric acid at physiological levels. Black-Right-Pointing-Pointer Demonstrate further application of GOs for biosensors and other fields. - Abstract: In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through {pi}-{pi} stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H{sub 2}O{sub 2} reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H{sub 2}O{sub 2} of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 {mu}M. The application

  1. Sensing behaviour in healthcare design

    DEFF Research Database (Denmark)

    Thorpe, Julia Rosemary; Hysse Forchhammer, Birgitte; Maier, Anja

    2017-01-01

    We are entering an era of distributed healthcare that should fit and respond to individual needs, behaviour and lifestyles. Designing such systems is a challenging task that requires continuous information about human behaviour on a large scale, for which pervasive sensing (e.g. using smartphones...... specifically on activity and location data that can easily be obtained from smartphones or wearables. We further demonstrate how these are applied in healthcare design using an example from dementia care. Comparing a current and proposed scenario exemplifies how integrating sensor-derived information about...... user behaviour can support the healthcare design goals of personalisation, adaptability and scalability, while emphasising patient quality of life....

  2. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity.

    Science.gov (United States)

    Vanli, Güliz; Peltzer, Nieves; Dubuis, Gilles; Widmann, Christian

    2014-12-01

    The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity.

    Science.gov (United States)

    Matsuda, Makoto; Takeshita, Kohei; Kurokawa, Tatsuki; Sakata, Souhei; Suzuki, Mamoru; Yamashita, Eiki; Okamura, Yasushi; Nakagawa, Atsushi

    2011-07-01

    Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.

  4. Sensing sense and mobility at the end of the life course

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    2015-01-01

    is struggling with memory loss, which is impeding his life as a retired migrant. The method of embodied interaction is used in order to sense and understand his sensing of the process of mental decline. This is exemplified by three analytic perspectives: touch, embodied map, and materialised mind....... The methodology presented contributes with a focus on understanding based on sensouos theory which implies embodied interaction and an active co-construction of meaning by ethnographer as well as by reader. This chapter's discussion of a methodology that values the senses adds richness to research on the life...

  5. Health Participatory Sensing Networks

    Directory of Open Access Journals (Sweden)

    Andrew Clarke

    2014-01-01

    Full Text Available The use of participatory sensing in relation to the capture of health-related data is rapidly becoming a possibility due to the widespread consumer adoption of emerging mobile computing technologies and sensing platforms. This has the potential to revolutionize data collection for population health, aspects of epidemiology, and health-related e-Science applications and as we will describe, provide new public health intervention capabilities, with the classifications and capabilities of such participatory sensing platforms only just beginning to be explored. Such a development will have important benefits for access to near real-time, large-scale, up to population-scale data collection. However, there are also numerous issues to be addressed first: provision of stringent anonymity and privacy within these methodologies, user interface issues, and the related issue of how to incentivize participants and address barriers/concerns over participation. To provide a step towards describing these aspects, in this paper we present a first classification of health participatory sensing models, a novel contribution to the literature, and provide a conceptual reference architecture for health participatory sensing networks (HPSNs and user interaction example case study.

  6. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  7. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing.

    Science.gov (United States)

    Chen, Lijian; Sun, Kaifang; Li, Peipei; Fan, Xianzhong; Sun, Jianchao; Ai, Shiyun

    2013-11-21

    LDH nanosheets were obtained via continuous impaction and exfoliation by herring sperm DNA molecules using a constant vibration method. DNA-LDH nanohybrids were composed by electrostatic forces and they exhibited DNA-enhanced peroxidase-like activity. The morphology and structure of DNA-LDH nanohybrids were analyzed by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and atomic force microscopy (AFM) characterization. On the basis of the high catalytic activity of DNA/CuAl-LDH nanosheets, a rapid, sensitive, and convenient approach was developed for colorimetric detection of H2O2 and blood glucose. This method can be potentially applied in medical diagnostics and biotechnology fields.

  8. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling.

    Science.gov (United States)

    Resch, Jon M; Fenselau, Henning; Madara, Joseph C; Wu, Chen; Campbell, John N; Lyubetskaya, Anna; Dawes, Brian A; Tsai, Linus T; Li, Monica M; Livneh, Yoav; Ke, Qingen; Kang, Peter M; Fejes-Tóth, Géza; Náray-Fejes-Tóth, Anikó; Geerling, Joel C; Lowell, Bradford B

    2017-09-27

    Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTS HSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTS HSD2 neuron activation, identify the circuit by which NTS HSD2 neurons drive appetite, and uncover an interaction between the NTS HSD2 circuit and ATII signaling. NTS HSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Na v 1.5 channels. Remarkably, NTS HSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTS HSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTS HSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  10. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  11. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  12. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Science.gov (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  13. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  14. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  15. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  16. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  17. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2016-06-01

    Full Text Available The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  18. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System

    Directory of Open Access Journals (Sweden)

    Jörg Willenborg

    2016-07-01

    Full Text Available Streptococcus (S. suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.

  19. Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer.

    Science.gov (United States)

    Cheng, Shun-Wen; Han, Ting; Huang, Teng-Yung; Chang Chien, Yu-Hsin; Liu, Cheng-Liang; Tang, Ben Zhong; Liou, Guey-Sheng

    2018-05-30

    A novel aggregation enhanced emission (AEE)-active polyamide TPA-CN-TPE with a high photoluminesence characteristic was successfully synthesized by the direct polymerization of 4-cyanotriphenyl diamine (TPA-CN) and tetraphenylethene (TPE)-containing dicarboxylic acid. The obtained luminescent polyamide plays a significant role as the polymer electret layer in organic field-effect transistors (OFETs)-type memory. The strong green emission of TPA-CN-TPE under ultraviolet (UV) irradiation can be directly absorbed by the pentacene channel, displaying a light-induced programming and voltage-driven erasing organic phototransistor-based nonvolatile memory. Memory window can be effectively manipulated between the programming and erasing states by applying UV light illumination and electrical field, respectively. The photoinduced memory behavior can be maintained for over 10 4 s between these two states with an on/off ratio of 10 4 , and the memory switching can be steadily operated for many cycles. With high photoresponsivity ( R) and photosensitivity ( S), this organic phototransistor integrated with AEE-active polyamide electret layer could serve as an excellent candidate for UV photodetectors in optical applications. For comparison, an AEE-inactive aromatic polyimide TPA-PIS electret with much weaker solid-state emission was also applied in the same OFETs device architecture, but this device did not show any UV-sensitive and UV-induced memory characteristics, which further confirmed the significance of the light-emitting capability of the electret layer.

  20. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques; Estudio de la Influencia de las Actividades Mineras de Mercurio en la Comarca de Almaden Aplicando Tecnicas de Teledeteccion

    Energy Technology Data Exchange (ETDEWEB)

    Rico, C; Schmid, T; Millan, R; Gumuzzio, J

    2010-11-17

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs.

  1. A graphene oxide-based sensing platform for the label-free assay of DNA sequence and exonuclease activity via long range resonance energy transfer.

    Science.gov (United States)

    Jiang, Yixuan; Tian, Jianniao; Chen, Sheng; Zhao, Yanchun; Wang, Yuan; Zhao, Shulin

    2013-07-01

    Graphene oxide (GO) was introduced as an efficient quencher for label-free and sensitive detection of DNA. Probe DNA (pDNA) was mixed with ethidium bromide (EB) and graphene oxide (GO). The interaction between EB and GO led to the fluorescent quenching. Upon the recognition of the target, EB was intercalated into duplex DNA and kept away from GO, which significantly hindered the long range resonance energy transfer (LrRET) from EB to GO and, thus, increased the fluorescence of EB. The changes in fluorescent intensity produced a novel method for sensitivity, and specificity detection of the target. Based on the structure-switching of aptamers, this strategy could be conveniently extended for detection of other biomolecules, which had been demonstrated by the detection of exonuclease activity.

  2. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  3. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  4. Nanocontainer-based corrosion sensing coating

    International Nuclear Information System (INIS)

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-01-01

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer. The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings. (paper)

  5. A Sense of Place

    Directory of Open Access Journals (Sweden)

    Rachel Black

    2012-09-01

    Full Text Available People increasingly want to know where their food and wine comes from and who produces it. This is part of developing a taste of place, or what the French call terroir. The academic and industry debates surrounding the concept of terroir are explored, and the efforts of Massachusetts wine producers to define their sense of place are discussed.

  6. Remote sensing: best practice

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gareth [Sgurr Energy (Canada)

    2011-07-01

    This paper presents remote sensing best practice in the wind industry. Remote sensing is a technique whereby measurements are obtained from the interaction of laser or acoustic pulses with the atmosphere. There is a vast diversity of tools and techniques available and they offer wide scope for reducing project uncertainty and risk but best practice must take into account versatility and flexibility. It should focus on the outcome in terms of results and data. However, traceability of accuracy requires comparison with conventional instruments. The framework for the Boulder protocol is given. Overviews of the guidelines for IEA SODAR and IEA LIDAR are also mentioned. The important elements of IEC 61400-12-1, an international standard for wind turbines, are given. Bankability is defined based on the Boulder protocol and a pie chart is presented that illustrates the uncertainty area covered by remote sensing. In conclusion it can be said that remote sensing is changing perceptions about how wind energy assessments can be made.

  7. The sense of agency

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina

    Imagine that you are reaching for a cup of coffee. You experience that you are moving and that you have control of the movement you are executing. This feeling of control of your own body and the movements it is performing is called the sense of agency. This thesis consists of four studies which ...

  8. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  9. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  10. Sense and Sanitation

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Spaargaren, G.

    2010-01-01

    Historically, sanitation infrastructures have been designed to do away with sensory experiences. As in the present phase of modernity the senses are assigned a crucial role in the perception of risks, a paradigm shift has emerged in the infrastructural provision of energy, water and waste services.

  11. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  12. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  13. Remote sensing and change detection in rangelands | Palmer ...

    African Journals Online (AJOL)

    To most land managers, remote sensing has remained illusive, seldom allowing the manager to use it to its full potential. In contrast, the policy maker, backed by GIS laboratories and remote sensing specialists, is confronted by plausible scenarios of degradation and transformation. After intervening, he is seldom active long ...

  14. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  15. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  16. Embodiment and sense-making in autism

    Science.gov (United States)

    De Jaegher, Hanne

    2013-01-01

    In this article, I sketch an enactive account of autism. For the enactive approach to cognition, embodiment, experience, and social interaction are fundamental to understanding mind and subjectivity. Enaction defines cognition as sense-making: the way cognitive agents meaningfully connect with their world, based on their needs and goals as self-organizing, self-maintaining, embodied agents. In the social realm, the interactive coordination of embodied sense-making activities with others lets us participate in each other's sense-making (social understanding = participatory sense-making). The enactive approach provides new concepts to overcome the problems of traditional functionalist accounts of autism, which can only give a piecemeal and disintegrated view because they consider cognition, communication, and perception separately, do not take embodied into account, and are methodologically individualistic. Applying the concepts of enaction to autism, I show: How embodiment and sense-making connect, i.e., how autistic particularities of moving, perceiving, and emoting relate to how people with autism make sense of their world. For instance, restricted interests or preference for detail will have certain sensorimotor correlates, as well as specific meaning for autistic people.That reduced flexibility in interactional coordination correlates with difficulties in participatory sense-making. At the same time, seemingly irrelevant “autistic behaviors” can be quite attuned to the interactive context. I illustrate this complexity in the case of echolalia. An enactive account of autism starts from the embodiment, experience, and social interactions of autistic people. Enaction brings together the sensorimotor, cognitive, social, experiential, and affective aspects of autism in a coherent framework based on a complex non-linear multi-causality. This foundation allows to build new bridges between autistic people and their often non-autistic context, and to improve quality

  17. Embodiment and sense-making in autism.

    Science.gov (United States)

    De Jaegher, Hanne

    2013-01-01

    In this article, I sketch an enactive account of autism. For the enactive approach to cognition, embodiment, experience, and social interaction are fundamental to understanding mind and subjectivity. Enaction defines cognition as sense-making: the way cognitive agents meaningfully connect with their world, based on their needs and goals as self-organizing, self-maintaining, embodied agents. In the social realm, the interactive coordination of embodied sense-making activities with others lets us participate in each other's sense-making (social understanding = participatory sense-making). The enactive approach provides new concepts to overcome the problems of traditional functionalist accounts of autism, which can only give a piecemeal and disintegrated view because they consider cognition, communication, and perception separately, do not take embodied into account, and are methodologically individualistic. Applying the concepts of enaction to autism, I show: How embodiment and sense-making connect, i.e., how autistic particularities of moving, perceiving, and emoting relate to how people with autism make sense of their world. For instance, restricted interests or preference for detail will have certain sensorimotor correlates, as well as specific meaning for autistic people.That reduced flexibility in interactional coordination correlates with difficulties in participatory sense-making. At the same time, seemingly irrelevant "autistic behaviors" can be quite attuned to the interactive context. I illustrate this complexity in the case of echolalia. An enactive account of autism starts from the embodiment, experience, and social interactions of autistic people. Enaction brings together the sensorimotor, cognitive, social, experiential, and affective aspects of autism in a coherent framework based on a complex non-linear multi-causality. This foundation allows to build new bridges between autistic people and their often non-autistic context, and to improve quality of

  18. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  19. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  20. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...