WorldWideScience

Sample records for active hippocampal cultures

  1. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.

    Science.gov (United States)

    Fischer, Yacov; Wittner, Lucia; Freund, Tamas F; Gähwiler, Beat H

    2002-03-15

    Hippocampal activity in vivo is characterized by concurrent oscillations at theta (4-15 Hz) and gamma (20-80 Hz) frequencies. Here we show that cholinergic receptor activation (methacholine 10-20 nm) in hippocampal slice cultures induces an oscillatory mode of activity, in which the intrinsic network oscillator (located in the CA3 area) expresses simultaneous theta and gamma network oscillations. Pyramidal cells display synaptic theta oscillations, characterized by cycles consisting of population EPSP-IPSP sequences that are dominated by population IPSPs. These rhythmic IPSPs most probably result from theta-modulated spiking activity of several interneurons. At the same time, the majority of interneurons consistently display synaptic gamma oscillations. These oscillatory cycles consist of fast depolarizing rhythmic events that are likely to reflect excitatory input from CA3 pyramidal cells. Interneurons comprising this functional group were identified morphologically. They include four known types of interneurons (basket, O-LM, bistratified and str. lucidum-specific cells) and one new type of CA3 interneuron (multi-subfield cell). The oscillatory activity of these interneurons is only weakly correlated between neighbouring cells, and in about half of these (44 %) is modulated by depolarizing theta rhythmicity. The overall characteristics of acetylcholine-induced oscillations in slice cultures closely resemble the rhythmicity observed in hippocampal field and single cell recordings in vivo. Both rhythmicities depend on intrinsic synaptic interactions, and are expressed by different cell types. The fact that these oscillations persist in a network lacking extra-hippocampal connections emphasizes the importance of intrinsic mechanisms in determining this form of hippocampal activity.

  2. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  3. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  4. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.

    Science.gov (United States)

    Rolseth, Veslemøy; Rundén-Pran, Elise; Neurauter, Christine Gran; Yndestad, Arne; Luna, Luisa; Aukrust, Pål; Ottersen, Ole Petter; Bjørås, Magnar

    2008-06-01

    The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.

  5. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  6. BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures.

    Science.gov (United States)

    Jacobi, Shimshon; Soriano, Jordi; Moses, Elisha

    2010-12-01

    Neurotrophins are known to promote synapse development as well as to regulate the efficacy of mature synapses. We have previously reported that in two-dimensional rat hippocampal cultures, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 significantly increase the number of excitatory input connections. Here we measure the effect of these neurotrophic agents on propagating fronts that arise spontaneously in quasi-one-dimensional rat hippocampal cultures. We observe that chronic treatment with BDNF increased the velocity of the propagation front by about 30%. This change is attributed to an increase in the excitatory input connectivity. We analyze the experiment using the Feinerman-Golomb/Ermentrout-Jacobi/Moses-Osan model for the propagation of fronts in a one-dimensional neuronal network with synaptic delay and introduce the synaptic connection probability between adjacent neurons as a new parameter of the model. We conclude that BDNF increases the number of excitatory connections by favoring the probability to form connections between neurons, but without significantly modifying the range of the connections (connectivity footprint).

  7. Rapid effect of stress concentration corticosterone on glutamate receptor and its subtype NMDA receptor activity in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    刘玲; 孙继虎; 王春安

    2003-01-01

    Objective:To study the rapid effect of glucocorticoids(GCs)on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms.Methods:Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone(B)on the responses of cultured hippocampal neurons to glutamate and NMDA(N-methy-D-asparatic acid).To make clear the target of B,intracellular dialysis of B(10 μ mol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA,10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current.Results:B had a rapid,reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons.Furthermore,B-BSA had the inhibitory effect on INMDA as that of B,but intracellularly dialyzed B had no significant effect on INMDA.Conclusion:These results suggest that under the condition of stress,GCs may rapidly,negatively regulate excitatory synaptic receptors-glutamate receptors(GluRs),especially NMDA receptor(NMDAR)in central nervous system,which is mediated by rapid membrane mechanisms,but not by classical,genomic mechanisms.

  8. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice.

    Science.gov (United States)

    Fan, Jing; Stemkowski, Patrick L; Gandini, Maria A; Black, Stefanie A; Zhang, Zizhen; Souza, Ivana A; Chen, Lina; Zamponi, Gerald W

    2016-01-01

    Genetic ablation of cellular prion protein (PrP(C)) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrP(C) profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrP(C). The amplitude of voltage sag, a characteristic of activating HCN channel current (I h), was decreased in null mice. Moreover, I h peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrP(C). These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  9. Glucose deprivation activates diversity of potassium channels in cultured rat hippocampal neurons.

    Science.gov (United States)

    Velasco, Myrian; García, Esperanza; Onetti, Carlos G

    2006-05-01

    1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K(+) channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons. 2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches. 3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K(+), and they were sensitive to ATP. For K(+) channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent. 4. We propose that neuronal glucose-sensitive K(+) channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.

  10. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Belrose Jillian C

    2012-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2 is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.

  11. Addition of glutamate to serum free culture promotes recovery of electrical activity in adult hippocampal neurons in vitro

    Science.gov (United States)

    Edwards, Darin; Das, Mainak; Molnar, Peter; Hickman, James J.

    2010-01-01

    A long-term cell culture system utilizing normal adult hippocampal neurons would represent an important tool that could be useful in research on the mature brain, neurological disorders and age-related neurological diseases. Historically, in vitro neuronal systems are derived from embryonic rather than mature brain tissue, a practice predicated upon difficulties in supporting regeneration, functional recovery and long-term survival of adult neurons in vitro. A few studies have shown that neurons derived from the hippocampal tissue of adult rats can survive and regenerate in vitro under serum-free conditions. However, while the adult neurons regenerated morphologically under these conditions, both the electrical activity characteristic of in vivo neurons as well as long-term neuronal survival was not consistently recovered in vitro. In this study, we report on the development of a defined culture system with the ability to support functional recovery and long-term survival of adult rat hippocampal neurons. In this system, the cell-adhesive substrate, N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine, supported neuronal attachment, regeneration, and long-term survival of adult neurons for more than 80 days in vitro. Additionally, the excitatory neurotransmitter glutamate, applied at 25 μM for 1 to 7 days after morphological neuronal regeneration in vitro, enabled full recovery of neuronal electrical activity. This low concentration of glutamate promoted the recovery of neuronal electrical activity but with minimal excitotoxicity. These improvements allowed electrically active adult neurons to survive in vitro for several months, providing a stable test-bed for the long-term study of regeneration in adult derived neuronal systems, especially for traumatic brain injury (TBI). PMID:20452373

  12. Addition of glutamate to serum-free culture promotes recovery of electrical activity in adult hippocampal neurons in vitro.

    Science.gov (United States)

    Edwards, Darin; Das, Mainak; Molnar, Peter; Hickman, James J

    2010-07-15

    A long-term cell culture system utilizing normal adult hippocampal neurons would represent an important tool that could be useful in research on the mature brain, neurological disorders and age-related neurological diseases. Historically, in vitro neuronal systems are derived from embryonic rather than mature brain tissue, a practice predicated upon difficulties in supporting regeneration, functional recovery and long-term survival of adult neurons in vitro. A few studies have shown that neurons derived from the hippocampal tissue of adult rats can survive and regenerate in vitro under serum-free conditions. However, while the adult neurons regenerated morphologically under these conditions, both the electrical activity characteristic of in vivo neurons as well as long-term neuronal survival was not consistently recovered in vitro. In this study, we report on the development of a defined culture system with the ability to support functional recovery and long-term survival of adult rat hippocampal neurons. In this system, the cell-adhesive substrate, N-1 [3-(trimethoxysilyl) propyl]-diethylenetriamine, supported neuronal attachment, regeneration, and long-term survival of adult neurons for more than 80 days in vitro. Additionally, the excitatory neurotransmitter glutamate, applied at 25muM for 1-7 days after morphological neuronal regeneration in vitro, enabled full recovery of neuronal electrical activity. This low concentration of glutamate promoted the recovery of neuronal electrical activity but with minimal excitotoxicity. These improvements allowed electrically active adult neurons to survive in vitro for several months, providing a stable test-bed for the long-term study of regeneration in adult-derived neuronal systems, especially for traumatic brain injury (TBI). Copyright 2010 Elsevier B.V. All rights reserved.

  13. Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); E.Y. van Battum (Eljo); M. Kuijpers (Marijn); V.R. Vangoor (Vamshidhar); M.L. Rietman (M. Liset); J. Pothof (Joris); L.F. Gumy (Laura); W.F.J. van IJcken (Wilfred); A.S. Akhmanova (Anna); R.J. Pasterkamp (Jeroen); C.C. Hoogenraad (Casper)

    2013-01-01

    textabstractMicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA exp

  14. Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases.

    Science.gov (United States)

    Ziemka-Nałęcz, Małgorzata; Stanaszek, Luiza; Zalewska, Teresa

    2013-01-01

    Organotypic hippocampal cultures are used as an alternative model for studying molecular mechanism(s) of neurogenesis after combined oxygen-glucose deprivation (OGD) mimicking ischemic conditions. The aim of the present work was to investigate the effect of OGD on stem/progenitor cells proliferation and/or differentiation in the hippocampus. Our attention was primarily focused on the relationship between neurogenesis-associated processes and activity of matrix metalloproteinases (MMPs). Cell proliferation was detected by using BrdU incorporation. Newly generated BrdU (+) cells were identified by labeling with specific cell markers. In order to check the activity and localization of MMPs we conducted in situ zymography in conjunction with immunohistochemistry. In our experimental conditions OGD-insult followed by 24 h of recovery caused the damage of neuronal cells in CA1. At 1 week cell death appears all over the hippocampus. We found that expected stimulation of endogenous neurogenesis fails as a source of compensation for the lost neurons in OGD-treated cultures. The modulation of culture microenvironment after ischemia favors the dominant proliferation of glial cells expressed by the enhancement of newly-generated oligodendrocyte progenitors. In addition, during our study we also detected some BrdU labeled nuclei encapsulated by GFAP positive processes. However, the majority of BrdU positive cells expressed microglial specific stain, particularly pronounced in CA1area. The OGD-promoted responses involved activation of metalloproteinases, which matches the progression of gliogenesis. On the other hand, the high activity of MMPs associated with microglial cells implicate their involvement in the mechanism participating in OGD-induced cell damage.

  15. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Zhi-ying LIN; Li-min CHEN; Jing ZHANG; Xiao-dong PAN; Yuan-gui ZHU; Qin-yong YE; Hua-pin HUANG; Xiao-chun CHEN

    2012-01-01

    Aim:To investigate the effect of ginsenoside Rb1 on voltage-gated calcium currents in cultured rat hippocampal neurons and the modulatory mechanism.Methods:Cultured hippocampal neurons were prepared from Sprague Dawley rat embryos.Whole-cell configuration of the patchclamp technique was used to record the voltage-gated calcium currents (VGCCs)from the hippocampal neurons,and the effect of Rb1 was examined.Results:Rb1 (2-100 μmol/L)inhibited VGCCs in a concentration-dependent manner,and the current was mostly recovered upon wash-out.The specific L-type Ca2+ channel inhibitor nifedipine (10 μmol/L)occluded Rb1-induced inhibition on VGCCs.Neither the selective N-type Ca2+ channel blocker ω-conotoxin-GVlA (1 μmoVL),nor the selective P/Q-type Ca2+ channel blocker ωo-agatoxin IVA (30 nmol/L)diminished Rb1-sensitive VGCCs.Rb1 induced a leftward shift of the steady-state inactivation curve of Ica to a negative potential without affecting its activation kinetics or reversal potential in the I-V curve.The inhibitory effect of Rb1 was neither abolished by the adenylyl cyclase activator forskolin (10 μmol/L),nor by the PKA inhibitor H-89 (10 μmol/L).Conclusion:Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels,without affecting the N-type or P/Q-type Ca2+ channels in hippocampal neurons,cAMP-PKA signaling pathway is not involved in this effect.

  16. Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons

    Science.gov (United States)

    Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav

    2006-01-01

    A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…

  17. Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LI; Hong-xia CHEN; Ying LIU; You-zhi ZHANG; Yan-qin LIU; Jin LI

    2006-01-01

    Aim:To explore the mechanism of agmatine's antidepressant action.Methods: Male mice were subjected to a variety of unpredictable stressors on a daily basis over a 24-d period.The open-field behaviors of the mice were displayed and recorded using a Videomex-V image analytic system automatically.For bromodeoxyuridine (BrdU;thymidine analog as a marker for dividing cells) labeling,the mice were injected with BrdU (100 mg/kg,ip,twice per d for 2 d),and the hippocampal neurogenesis in stressed mice was measured by immunohistochemistry.The proliferation of cultured hippocampal progenitor cells from neonatal rats was determined by colorimetric assay (cell counting kit-8) and 3H-thymidine incorporation assay.Results:After the onset of chronic stress,the locomotor activity of the mice in the open field significantly decreased,while coadministration of agmatine 10 mg/kg (po) blocked it.Furthermore,the number of BrdU-labeled cells in the hippocampal dentate gyrus significantly decreased in chronically stressed mice, which was also blocked by chronic coadministration with agmatine 10 mg/kg (po). Four weeks after the BrdU injection, some of the new born cells matured and became neurons, as determined by double labeling for BrdU and neuron specific enolase (NSE), a marker for mature neurons.In vitro treatment with agmatine 0.1-10 μmo1/L for 3 d significantly increased the proliferation of the cultured hippocampal progenitor cells in a dose-dependent manner.Conclusion:We have found that agmatine increases proliferation of hippocampal progenitor cells in vitro and the hippocampal neurogenesis in vivo in chronically stressed mice.This may be one of the important mechanisms involved in agmatine's antidepressant action.

  18. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus.

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; Sombati, Sompong; Falenski, Katherine W; Martin, Billy R; DeLorenzo, Robert J

    2006-06-01

    Cannabinoids have been shown to have anticonvulsant properties, but no studies have evaluated the effects of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy (AE) and status epilepticus (SE). This study investigated the anticonvulsant properties of the cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolol[1,2,3 de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone (WIN 55,212-2) in primary hippocampal neuronal culture models of both AE and SE. WIN 55,212-2 produced dose-dependent anticonvulsant effects against both spontaneous recurrent epileptiform discharges (SRED) (EC50 = 0.85 microM) and SE (EC50 = 1.51 microM), with total suppression of seizure activity at 3 microM and of SE activity at 5 microM. The anticonvulsant properties of WIN 55,212-2 in these preparations were both stereospecific and blocked by the cannabinoid type-1 (CB1) receptor antagonist N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A; 1 microM), showing a CB1 receptor-dependent pathway. The inhibitory effect of WIN 55,212-2 against low Mg2+-induced SE is the first observation in this model of total suppression of SE by a selective pharmacological agent. The clinically used anticonvulsants phenytoin and phenobarbital were not able to abolish low Mg2+-induced SE at concentrations up to 150 microM. The results from this study show CB1 receptor-mediated anticonvulsant effects of the cannabimimetic WIN 55,212-2 against both SRED and low Mg2+-induced SE in primary hippocampal neuronal cultures and show that these in vitro models of AE and SE may represent powerful tools to investigate the molecular mechanisms mediating the effects of cannabinoids on neuronal excitability.

  19. Long-Term Lithium Treatment Increases cPLA2 and iPLA2 Activity in Cultured Cortical and Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Vanessa de Jesus De-Paula

    2015-11-01

    Full Text Available Background: Experimental evidence supports the neuroprotective properties of lithium, with implications for the treatment and prevention of dementia and other neurodegenerative disorders. Lithium modulates critical intracellular pathways related to neurotrophic support, inflammatory response, autophagy and apoptosis. There is additional evidence indicating that lithium may also affect membrane homeostasis. Objective: To investigate the effect of lithium on cytosolic phospholipase A2 (PLA2 activity, a key player on membrane phospholipid turnover which has been found to be reduced in blood and brain tissue of patients with Alzheimer’s disease (AD. Methods: Primary cultures of cortical and hippocampal neurons were treated for 7 days with different concentrations of lithium chloride (0.02 mM, 0.2 mM and 2 mM. A radio-enzymatic assay was used to determine the total activity of PLA2 and two PLA2 subtypes: cytosolic calcium-dependent (cPLA2; and calcium-independent (iPLA2. Results: cPLA2 activity increased by 82% (0.02 mM; p = 0.05 and 26% (0.2 mM; p = 0.04 in cortical neurons and by 61% (0.2 mM; p = 0.03 and 57% (2 mM; p = 0.04 in hippocampal neurons. iPLA2 activity was increased by 7% (0.2 mM; p = 0.04 and 13% (2 mM; p = 0.05 in cortical neurons and by 141% (0.02 mM; p = 0.0198 in hippocampal neurons. Conclusion: long-term lithium treatment increases membrane phospholipid metabolism in neurons through the activation of total, c- and iPLA2. This effect is more prominent at sub-therapeutic concentrations of lithium, and the activation of distinct cytosolic PLA2 subtypes is tissue specific, i.e., iPLA2 in hippocampal neurons, and cPLA2 in cortical neurons. Because PLA2 activities are reported to be reduced in Alzheimer’s disease (AD and bipolar disorder (BD, the present findings provide a possible mechanism by which long-term lithium treatment may be useful in the prevention of the disease.

  20. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures.

    Science.gov (United States)

    Jung, Yeon Joo; Suh, Eun Cheng; Lee, Kyung Eun

    2012-12-01

    Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

  1. Staining protocol for organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6-9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

  2. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study

    National Research Council Canada - National Science Library

    Biffi, Emilia; Regalia, Giulia; Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    .... Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity...

  3. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert

    2003-01-01

    The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3...... weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated...... the formation of active caspase 3 protein and apoptotic nuclei induced by colchicine, but the formation of necrotic nuclei increased correspondingly and the PI uptake was unaffected. We conclude that colchicine induces caspase 3-dependent apoptotic cell death of dentate granule cells in hippocampal brain slice...

  4. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2011-08-01

    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  5. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  6. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  7. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    Science.gov (United States)

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  8. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hailer, Nils P; Vogt, Cornelia; Korf, Horst-Werner; Dehghani, Faramarz

    2005-05-01

    The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage.

  9. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition

    Science.gov (United States)

    Mahoney, Mark M.; Staley, Kevin J.

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy. PMID:28225808

  10. Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Jahnsen, Henrik; Blaabjerg, Morten

    2002-01-01

    with the muscarinic receptor antagonist atropine (100 microM). Regardless of dose and exposure time, the pilocarpine treatment induced very limited neuronal cell death, recorded as cellular propidium iodide uptake. Cultures exposed to 5 mM pilocarpine for up to 7 days displayed increased BDNF expression when analyzed...

  11. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  12. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures.

    Science.gov (United States)

    Rundén-Pran, E; Haug, F M; Storm, J F; Ottersen, O P

    2002-01-01

    BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.

  13. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M;

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  14. Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures.

    Science.gov (United States)

    Gerlach, Johannes; Donkels, Catharina; Münzner, Gert; Haas, Carola A

    2016-01-01

    Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential

  15. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  16. Preventive effect of piracetam and vinpocetine on hypoxia-reoxygenation induced injury in primary hippocampal culture.

    Science.gov (United States)

    Solanki, P; Prasad, D; Muthuraju, S; Sharma, A K; Singh, S B; Ilavzhagan, G

    2011-04-01

    The present study investigates the potential of Piracetam and Vinpocetine (nootropic drugs, known to possess neuroprotective properties) in preventing hypoxia-reoxygenation induced oxidative stress in primary hippocampal cell culture. The hippocampal culture was exposed to hypoxia (95% N(2), 5% CO(2)) for 3h and followed by 1h of reoxygenation (21% O(2) and 5% CO(2)) at 37 °C. The primary hippocampal cultures were supplemented with the optimum dose of Piracetam and Vinpocetine, independently, and the cultures were divided into six groups, viz. Control/Normoxia, Hypoxia, Hypoxia+Piracetam, Hypoxia+Vinpocetine, Normoxia + Piracetam and Normoxia+Vinpocetine. The cell-viability assays and biochemical oxidative stress parameters were evaluated for each of the six groups. Administration of 1mM Piracetam or 500 nM Vinpocetine significantly prevents the culture from hypoxia-reoxygenation injury when determined by Neutral Red assay, LDH release and Acetylcholine esterase activity. Results showed that Piracetam and Vinpocetine supplementation significantly prevented the fall of mitochondrial membrane potential, rise in ROS generation and reduction in antioxidant levels associated with the hypoxia-reoxygenation injury. In conclusion, the present study establishes that both Piracetam and Vinpocetine give neuroprotection against hypoxia-reoxygenation injury in primary hippocampal cell culture. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  18. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...... of TMT neurotoxicity....

  19. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  20. Appearance and distribution of peptidergic neurotransmitters in hippocampal primary culture

    OpenAIRE

    Thiele, Theodor

    2012-01-01

    The internal structure of the hippocampus, especially the development of neuronal circuits, is the subject of current research. The hippocampal primary culture represents a suitable model to study neuronal development and the impact of isolated stimuli and noxious. Focus of the following considerations are the neurons of the hippocampus, especially the peptidergic neurotransmitters somatostatin (SS), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK). By us...

  1. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  2. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    Science.gov (United States)

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  3. Neuroprotective effect of piperine on primarily cultured hippocampal neurons.

    Science.gov (United States)

    Fu, Min; Sun, Zhao-Hui; Zuo, Huan-Cong

    2010-01-01

    It was previously reported that piperine (PIP) significantly blocks convulsions induced by intracerebroventricular injection of threshold doses of kainate, but had no or only slight effects on convulsions induced by L-glutamate, N-methyl-D-aspartate and guanidinosuccinate. In traditional Chinese medicine, black pepper has been used for epileptic treatment; however, the exact mechanism is still unclear. We reported here in that appropriate concentration of PIP effectively inhibites the synchronized oscillation of intracellular calcium in rat hippocampal neuronal networks and represses spontaneous synaptic activities in terms of spontaneous synaptic currents (SSC) and spontaneous excitatory postsynaptic currents (sEPSC). Moreover, pretreatment with PIP expects protective effect on glutamate-induced decrease of cell viability and apoptosis of hippocampal neurons. These data suggest that the neuroprotective effects of PIP might be associated with suppression of synchronization of neuronal networks, presynaptic glutamic acid release, and Ca(2+) overloading.

  4. [Electrophysiological properties of inhibitory neurones in cultured dissociated hippocampal cells].

    Science.gov (United States)

    Moskaliuk, A O; Kolodin, Iu O; Kravchenko, M O; Fedulova, S A; Veselovs'kyĭ, M S

    2004-01-01

    Electrophysiological properties of inhibitory (GABAergic) neurones were studied in dissociated hippocampal culture using simultaneous whole cell recordings from pairs of monosynaptically coupled neurons. Reliable identification of GABAergic neuron was performed by presence of monosynaptic inhibitory currents at postsynaptic cell in response to action potentials at stimulated cell. It was shown that GABAergic neurons in hippocampal culture are divided in two groups by their firing characteristics: first type generates action potentials at high frequency in response to injection of current (duration 0.5 s)--fast-spiking neurons (FS), cells from second type has no ability for high-frequency action potential generation--regular spiking neurons (RS). These two groups were distinguished by kinetic characteristics of action potentials, adaptation characteristics during continuous generation of action potentials and inhibitory effect making on postsynaptic cell. Application of potassium channel blocker 4-AP to somas of FS neurons in concentration, which selectively inhibits Kv3 potassium channels evoked reversible changes in kinetic of action potentials, frequency and adaptation characteristics during continuous generation of action potentials. It was concluded that there is hight level of expression of Kv3 potassium channels in the first group of neurons.

  5. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons.

    Science.gov (United States)

    Mauri, Mario; Lentini, Daniela; Gravati, Marta; Foudah, Dana; Biella, Gerardo; Costa, Barbara; Toselli, Mauro; Parenti, Marco; Coco, Silvia

    2012-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent stem cells endowed with neurotrophic potential combined with immunological properties, making them a promising therapeutic tool for neurodegenerative disorders. However, the mechanisms through which MSCs promote the neurological recovery following injury or inflammation are still largely unknown, although cell replacement and paracrine mechanisms have been hypothesized. In order to find out what are the mechanisms of the trophic action of MSCs, as compared to glial cells, on CNS neurons, we set up a co-culture system where rat MSCs (or cortical astrocytes) were used as a feeding layer for hippocampal neurons without any direct contact between the two cell types. The analysis of hippocampal synaptogenesis, synaptic vesicle recycling and electrical activity show that MSCs were capable to support morphological and functional neuronal differentiation. The proliferation of hippocampal glial cells induced by the release of bioactive substance(s) from MSCs was necessary for neuronal survival. Furthermore, MSCs selectively increased hippocampal GABAergic pre-synapses. This effect was paralleled with a higher expression of the potassium/chloride KCC2 co-transporter and increased frequency and amplitude of mIPSCs and sIPSCs. The enhancement of GABA synapses was impaired by the treatment with K252a, a Trk/neurotrophin receptor blocker, and by TrkB receptor bodies hence suggesting the involvement of BDNF as a mediator of such effects. The results obtained here indicate that MSC-secreted factors induce glial-dependent neuronal survival and trigger an augmented GABAergic transmission in hippocampal cultures, highlighting a new effect by which MSCs could promote CNS repair. Our results suggest that MSCs may be useful in those neurological disorders characterized by an impairment of excitation versus inhibition balance.

  6. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  7. PACAP enhances axon outgrowth in cultured hippocampal neurons to a comparable extent as BDNF.

    Directory of Open Access Journals (Sweden)

    Katsuya Ogata

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP exerts neurotrophic activities including modulation of synaptic plasticity and memory, hippocampal neurogenesis, and neuroprotection, most of which are shared with brain-derived neurotrophic factor (BDNF. Therefore, the aim of this study was to compare morphological effects of PACAP and BDNF on primary cultured hippocampal neurons. At days in vitro (DIV 3, PACAP increased neurite length and number to similar levels by BDNF, but vasoactive intestinal polypeptide showed much lower effects. In addition, PACAP increased axon, but not dendrite, length, and soma size at DIV 3 similarly to BDNF. The PACAP antagonist PACAP6-38 completely blocked the PACAP-induced increase in axon, but not dendrite, length. Interestingly, the BDNF-induced increase in axon length was also inhibited by PACAP6-38, suggesting a mechanism involving PACAP signaling. K252a, a TrkB receptor inhibitor, inhibited axon outgrowth induced by PACAP and BDNF without affecting dendrite length. These results indicate that in primary cultured hippocampal neurons, PACAP shows morphological actions via its cognate receptor PAC1, stimulating neurite length and number, and soma size to a comparable extent as BDNF, and that the increase in total neurite length is ascribed to axon outgrowth.

  8. Influence of Ginkgo Biloba extract on beta-secretase in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions

    Institute of Scientific and Technical Information of China (English)

    Xueneng Guan; Fuling Yan

    2008-01-01

    BACKGROUND: Preparation of Ginkgo leaf has been widely used to improve cognitive deficits and dementia, in particular in Alzheimer's disease patients. However, the precise mechanism of action of Ginkgo leaf remains unclear.OBJECTIVE: To explore the effect of Ginkgo Biloba extract (Egb761), Ginaton, on β-secretase expression in rat hippocampal neuronal cultures following chronic hypoxic and hypoglycemic conditions.DESIGN, TIME AND SETTNG: Completely by randomized, grouping study. The experiment was performed at the Laboratory of Molecular Imaging, Southeast University between August 2006 and August 2007.MATERIALS: A total of 128 Wistar rats aged 24 hours were selected, and hippocampal neurons were harvested for primary cultures.METHODS: On day 7, primary hippocampal neuronal cultures were treated with Egb761 (0, 25, 50, 100, 150, and 200 μ g/mL) under hypoxic/hypoglycemic or hypoglycemic culture conditions for 12, 24, and 36 hours, respectively. Hippocampal neurons cultured in primary culture medium served as control.MAIN OUTCOME MEASURES: Cell viability was assayed using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); fluorescence detection of β-secretase activity was performed; Western Blot was used to measure β -secretase expression.RESULTS: Cell viability under hypoxic/hypoglycemic or hypoglycemic culture conditions was significantly less than control cells (P 25 μ g/mL Egb761 induced greater cell viability (P 0.05). Α -secretase activity was increased after 12 hours in hypoxic/hypoglycemic culture (P 0.05). Β -secretase activity was greater after 12, 24, and 36 hours in hypoxic/hypoglycemic culture conditions, compared with control conditions (P < 0.05). Β-secretase activity was significantly decreased in neurons treated with Egb761 for 12, 24, or 36 hours, compared with the hypoxic/hypoglycemic group (P < 0.05).β-secretase protein expression was significantly up-regulated in neurons cultured in hypoxic/hypoglycemic conditions for

  9. Loss of STAT3 signaling during elevated activity causes vulnerability in hippocampal neurons

    OpenAIRE

    2012-01-01

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2 and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylatio...

  10. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays

    DEFF Research Database (Denmark)

    Pisciotta, Marzia; Morgavi, Giovanna; Jahnsen, Henrik

    2010-01-01

    Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling epil......AnimalsAnimals, NewbornConvulsants/pharmacologyElectric Stimulation/methodsElectrophysiological Phenomena/drug effectsElectrophysiological Phenomena/physiology*Evoked Potentials/drug effectsEvoked Potentials/physiology*Hippocampus/anatomy & histologyHippocampus/drug effects......Hippocampus/physiology*Microelectrodes*Organ Culture TechniquesPicrotoxin/pharmacologyRatsRats, WistarReaction Time/drug effectsReaction Time/physiologyTime FactorsSubstancesConvulsantsPicrotoxin LinkOut - more resourcesFull Text SourcesElsevier ScienceEBSCOOhioLINK Electronic Journal CenterSwets Information ServicesMolecular Biology Databases...

  11. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  12. Delivery of recombinant alphavirus into hippocampal slice tissue culture.

    Science.gov (United States)

    Lundstrom, Kenneth

    2012-08-01

    The alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have shown reduced cytotoxicity and prolonged expression. This protocol describes gene delivery of recombinant alphavirus to hippocampal slice cultures. Organotypic slices are covered by a layer of glial cells that impedes the penetration of viral particles to the neurons. Thus, viral particles should be injected manually into the extracellular space of the tissue.

  13. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Kristensen, B W; Noraberg, J; Zimmer, J

    2001-10-26

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration

  14. MEK inhibitor PD98059 acutely inhibits synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks

    Institute of Scientific and Technical Information of China (English)

    Yan-fang RUI; Zhao-hui SUN; Jia-ping GU; Zhong-hua SHENG; Xiang-ping HE; Zuo-ping XIE

    2006-01-01

    Aim: To investigate the changes in synchronized spontaneous Ca2+ oscillations induced by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 at different concentrations in cultured hippocampal network. Methods: Hippocampal neurons in culture for 1-2 weeks were used for this study. Spontaneous synaptic activities of these hippocampal neurons were examined by Ca2+ imaging using calcium-sensitive dye. MEK inhibitor PD98059 (10,30, and 60 μmol/L) and SB202474 (10 and 60 μmol/L), a negative control for mitogen-activated protein kinase (MAPK) cascade study, were applied to the cells under the microscope while imaging was taking place. Results: PD98059 at a lower concentration of 10 μmol/L had little effect on the Ca2+ oscillation. At the higher concentration of 30 μmol/L, 5 min after application of PD98059, the spike frequency was decreased to 25.38%±7.40% (mean±SEM, n=16, F<0.01 vs medium control) of that of the control period. At an even higher concentration of 60 μmol/L, 5 min after application of PD98059, the spike frequency was decreased to 14.53%±5.34% (mean±SEM, n=16, P<0.01 vs medium control) of that of the control period. The spike amplitude underwent a corresponding decrease. However, the negative control SB202474 at concentrations of 10 and 60 μmol/L had little inhibition effect on the Ca2+ oscillation. Conclusion: These results indicate that PD98059 inhibits synchronized spontaneous Ca2+ oscillation through inhibition of MEK, which hints that the MAPK cascade is required to maintain synchronized spontaneous Ca2+ oscillation.

  15. Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Chao-Yin Chen

    Full Text Available Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM, concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM was similar at all kainate concentrations (3-100 µM, demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.

  16. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue;

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  17. Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures.

    Science.gov (United States)

    Domínguez-Alonso, Aline; Ramírez-Rodríguez, Gerardo; Benítez-King, Gloria

    2012-05-01

    Neuropsychiatric disorders are characterized by hippocampus decreased volume and loss of dendrite arborizations in the subiculum and prefrontal cortex. These structural changes are associated with diminished memory performance. Hilar neurons of the hippocampus integrate spatial memory and are lost in dementia. They receive information from dentate gyrus neurons through dendrites, while they send axonal tracts to the CA3 region. Dendrites are complex structures of neurons that receive chemical information from presynaptic and postsynaptic terminals. Melatonin, the main product of the pineal gland, has neuroprotective actions through its free radical-scavenging properties and decreases neuronal apoptosis. Recently, we found that melatonin increases dendrite maturation and complexity in new neurons formed in the dentate gyrus of mice. In addition, in N1E-115 cultured cells, the indole stimulates early stages of neurite formation, a process that is known to antecede dendrite formation and maturation. Thus, in this study, we explored whether melatonin stimulates dendrite formation and complexity in the adult rat hippocampus in organotypic slice cultures, which is a model that preserves the hippocampal circuitry and their tridimensional organizations of connectivity. The effects of melatonin were studied in nonpathological conditions and in the absence of harmful agents. The results showed that the indole at nocturnal concentrations reached in the cerebrospinal fluid stimulates dendritogenesis at formation, growth, and maturation stages. Also, data showed that dendrites formed became competent to form presynaptic specializations. Evidence strongly suggests that melatonin may be useful in the treatment of neuropsychiatric diseases to repair the loss of dendrites and re-establish lost synaptic connections.

  18. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons.

    Science.gov (United States)

    Li, Yan; Chen, Xin; Dzakpasu, Rhonda; Conant, Katherine

    2017-02-01

    Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the

  19. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures.

    Science.gov (United States)

    Feiner, John R; Bickler, Philip E; Estrada, Sergio; Donohoe, Paul H; Fahlman, Christian S; Schuyler, Jennifer A

    2005-01-01

    The neuroprotective potency of anesthetics such as propofol compared to mild hypothermia remains undefined. Therefore, we determined whether propofol at two clinically relevant concentrations is as effective as mild hypothermia in preventing delayed neuron death in hippocampal slice cultures (HSC). Survival of neurons was assessed 2 and 3 days after 1 h oxygen and glucose deprivation (OGD) either at 37 degrees C (with or without 10 or 100 microM propofol) or at an average temperature of 35 degrees C during OGD (mild hypothermia). Cell death in CA1, CA3, and dentate neurons in each slice was measured with propidium iodide fluorescence. Mild hypothermia eliminated death in CA1, CA3, and dentate neurons but propofol protected dentate neurons only at a concentration of 10 microM; the more ischemia vulnerable CA1 and CA3 neurons were not protected by either 10 microM or 100 microM propofol. In slice cultures, the toxicity of 100 muM N-methyl-D-aspartate (NMDA), 500 microM glutamate, and 20 microM alpha-amino-5-methyl-4-isoxazole propionic acid (AMPA) was not reduced by 100 microM propofol. Because propofol neuroprotection may involve gamma-aminobutyric acid (GABA)-mediated indirect inhibition of glutamate receptors (GluRs), the effects of propofol on GluR activity (calcium influx induced by GluR agonists) were studied in CA1 neurons in HSC, in isolated CA1 neurons, and in cortical brain slices. Propofol (100 and 200 microM, approximate burst suppression concentrations) decreased glutamate-mediated [Ca2+]i increases (Delta[Ca2+]i) responses by 25%-35% in isolated CA1 neurons and reduced glutamate and NMDA Delta[Ca2+]i in acute and cultured hippocampal slices by 35%-50%. In both CA1 neurons and cortical slices, blocking GABAA receptors with picrotoxin reduced the inhibition of GluRs substantially. We conclude that mild hypothermia, but not propofol, protects CA1 and CA3 neurons in hippocampal slice cultures subjected to oxygen and glucose deprivation. Propofol was not

  20. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Cardenas-Aguayo

    Full Text Available The level of brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD, Parkinson's disease (PD, depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5 corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18 primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706 of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2O(2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  1. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin...

  2. Hippocampal unit activity during classical aversive and appetitive conditioning.

    Science.gov (United States)

    Segal, M; Disterhoft, J F; Olds, J

    1972-02-18

    Rats were trained with a tone being followed by either food or electric shock, on alternate days. Unit activity during application of the conditioned stimulus was recorded from the dorsal hippocampus. The results indicate differentiation of the hippocampal system. Dentate units respond by augmentation to a conditioned stimulus which leads to food and by inhibition to the same stimulus when it precedes electric shock. The hippocampus proper responds by augmentation in both situations. The intensity of the hippocampal response to the conditioned stimulus on the first day of training is higher if the unconditioned stimulus is food than if it is electric shock. These data cast light on the functions of the dorsal dentate-hippocampal connections and the hippocampus proper during aversive and appetitive conditioning.

  3. Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures.

    Science.gov (United States)

    Weber, Astrid; Maier, Rolf F; Hoffmann, Ulrike; Grips, Martin; Hoppenz, Marc; Aktas, Ayse G; Heinemann, Uwe; Obladen, Michael; Schuchmann, Sebastian

    2002-12-27

    Erythropoietin (EPO) prevents neuronal damage following ischemic, metabolic, and excitotoxic stress. In this study evoked extracellular field potentials (FP) were used to investigate the effect of EPO on synaptic transmission in hippocampal slice cultures. EPO treated cultured slices (40 units/ml for 48 h) showed significantly increased FP during and following oxygen and glucose deprivation compared with untreated control slices. The addition of the Jak2 inhibitor AG490 (50 microM for 48 h) blocked the EPO effect. These data suggest that EPO improves synaptic transmission during and following ischemia in hippocampal slice cultures.

  4. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h...

  5. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    Science.gov (United States)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  6. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

    OpenAIRE

    Jung, Yeon Joo; Suh, Eun Cheng; Lee, Kyung Eun

    2012-01-01

    Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemic...

  7. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome.

    Science.gov (United States)

    González-Roldán, Ana María; Bomba, Isabelle C; Diesch, Eugen; Montoya, Pedro; Flor, Herta; Kamping, Sandra

    2016-12-01

    To examine the role of perceived control in pain perception, fibromyalgia patients and healthy controls participated in a reaction time experiment under different conditions of pain controllability. No significant differences between groups were found in pain intensity and unpleasantness ratings. However, during the expectation of uncontrollable pain, patients compared to controls showed higher hippocampal activation. In addition, hippocampal activity during the pain expectation period predicted activation of the posterior cingulate cortex (PCC), precuneus and hippocampus during pain stimulation in fibromyalgia patients. The increased activation of the hippocampus during pain expectation and subsequent activation of the PCC/precuneus during the lack of control phase points towards an influence of pain perception through heightening of alertness and anxiety responses to pain in fibromyalgia patients.

  8. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2014-06-01

    Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.

  9. Full Length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Ward Manus W

    2007-02-01

    Full Text Available Abstract Background Bcl-2 homology domain (BH 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid, which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM. Results Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. Conclusion Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.

  10. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Science.gov (United States)

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  11. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation.

    Science.gov (United States)

    Kern, M; Audesirk, G

    1995-09-01

    Inorganic lead inhibits neurite initiation in cultured rat hippocampal neurons at concentrations as low as 100 nM. Conflicting reports suggest that Pb2+ may stimulate or inhibit protein kinase C, adenylyl cyclase, phosphodiesterase, and calmodulin, or increase intracellular free Ca2+ concentrations. Therefore, Pb2+ may alter the activities of Ca2+/calmodulin-dependent protein kinase (CaM kinase) or protein kinases C or A. We cultured rat hippocampal neurons in 100 nM PbCI2 alone or in combination with kinase or calmodulin inhibitors. Inhibiting protein kinase C with calphostin C exacerbated the inhibition of neurite initiation caused by PbCI2, but inhibiting protein kinase A with KT5720, CaM kinase with KN62, or calmodulin with calmidazolium completely reversed the effects of PbCI2. These results indicate that Pb2+ may inhibit neurite initiation by inappropriately stimulating protein phosphorylation by CaM kinase or cyclic AMP-dependent protein kinase (PKA), possibly by stimulating calmodulin. This hypothesis is supported by findings that other treatments that should increase protein phosphorylation (okadaic acid, a protein phosphatase inhibitor, and Sp-cAMPS, a PKA activator) also reduced neurite initiation. Whole-cell intracellular free Ca2+ ion concentrations were not significantly altered by 100 nM PbCI2 at 4, 12, 24, or 48 hr. Therefore, the hypothesized stimulatory effects of Pb2+ exposure on calmodulin, CaM kinase, or PKA are probably not caused by increases in whole-cell intracellular free Ca2+, but may be attributable either to intracellular Pb2+ or to localized increases in [Ca2+]in that are not reflected in whole-cell measurements.

  12. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model

    Science.gov (United States)

    Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una

    2016-01-01

    Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258

  13. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  14. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  15. Cultural Activation of Consumers.

    Science.gov (United States)

    Siegel, Carole E; Reid-Rose, Lenora; Joseph, Adriana M; Hernandez, Jennifer C; Haugland, Gary

    2016-02-01

    This column discusses "cultural activation," defined as a consumer's recognition of the importance of providing cultural information to providers about cultural affiliations, challenges, views about, and attitudes toward behavioral health and general medical health care, as well as the consumer's confidence in his or her ability to provide this information. An aid to activation, "Cultural Activation Prompts," and a scale that measures a consumer's level of activation, the Cultural Activation Measurement Scale, are described. Suggestions are made about ways to introduce cultural activation as a component of usual care.

  16. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    Some anticonvulsants show neuroprotective effects, and may be of use in reducing neuronal death resulting from stroke or traumatic brain injury. Here I report that a broad range of anticonvulsants protect cells in hippocampal slice cultures from death induced by oxygen/glucose deprivation (OGD...

  17. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P

    2001-01-01

    In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn...

  18. Changes in mitochondrial function in primary culture of rat’s hippocampal neurons after exposure to electromagnetic field

    Directory of Open Access Journals (Sweden)

    Ming-yue QU

    2014-10-01

    Full Text Available Objective To investigate the changes in mitochondrial function in rat's hippocampal neurons of primary culture after exposure to electromagnetic field (EMF. Methods Rat's hippocampal neurons of primary culture were exposed to EMF irradiation (2.45GHz with average power density of 5, 10, 30 and 60 mW/cm2 for 10 minutes. CCK-8 kit and LDH kit were used to determine the injurious effects on rat hippocampal neurons at 0, 3, 6, 12, 24 and 48 hours after irradiation. Reactive oxygen species (ROS were detected using fluorescent probe DCFH-DA, mitochondrial membrane potential (ΔΨm was assessed using fluorescent probe JC-1, mitochondrial permeability transition pore (mPTP opening was determined by calcein-fluorescence quenching method, and the intracellular ATP levels were determined by ATP detection kit at 12 hours after irradiation. Results  Hippocampal neuron damage was found after EMF irradiation, and it was aggravated by an increase in power density. Compared with the control, the viability of hippocampal neurons decreased significantly at 12, 24 and 48 h (P<0.05, and LDH levels increased at 24 and 48 h (P<0.05 after 10 mW/cm2 irradiation, while their viability decreased at 3, 6, 12, 24 and 48 h (P<0.05, P<0.01, and LDH levels increased at 6, 12, 24 and 48 h (P<0.05, P<0.01 after 30 and 60 mW/cm2 irradiation. Compared with the control, the mitochondrial ROS level was elevated significantly (P<0.05, P<0.01 after 5, 10, 30 and 60 mW/cm2 irradiation, while ΔΨm and ATP levels lowered and mPTP was obviously opened and activated (P<0.05, P<0.01 after 10, 30 and 60 mW/cm2 irradiation. Conclusion EMF irradiation may induce damage to rat's hippocampal neurons of primary culture in dose- and time-dependent manners, and mitochondrial dysfunction occurs during the exposure. DOI: 10.11855/j.issn.0577-7402.2014.08.12

  19. Effects of GSM 1800 MHz on dendritic development of cultured hippo-campal neurons

    Institute of Scientific and Technical Information of China (English)

    Wei NING; Shu-jun XU; Huai CHIANG; Zheng-ping XU; Su-ya ZHOU; Wei YANG; Jian-hong LUO

    2007-01-01

    Aim: To evaluate the effects of global system for mobile communications (GSM)1800 MHz microwaves on dendritic filopodia, dendritic arborization, and spine maturation during development in cultured hippocampal neurons in rats. Methods: The cultured hippocampal neurons were exposed to GSM 1800 MHz microwaves with 2.4 and 0.8 W/kg, respectively, for 15 min each day from 6 days in vitro (DIV6) to DIV14. The subtle structures of dendrites were displayed by transfection with farnesylated enhanced green fluorescent protein (F-GFP) and GFP-actin on DIV5 into the hippocampal neurons. Results: There was a significant decrease in the density and mobility of dendritic filopodia at DIV8 and in the density of mature spines at DIV14 in the neurons exposed to GSM 1800 MHz microwaves with 2.4 W/kg. In addition, the average length of dendrites per neuron at DIV10 and DIV14 was decreased, while the dendritic arborization was unaltered in these neurons. However, there were no significant changes found in the neurons ex- posed to the GSM 1800 MHz microwaves with 0.8 W/kg. Conclusion: These data indicate that the chronic exposure to 2.4 W/kg GSM 1800 MHz micro- waves during the early developmental stage may affect dendritic development and the formation of excitatory synapses of hippocampal neurons in culture.

  20. Batroxobin Against Anoxic Damage of Rat Hippocampal Neurons in Culture: Morphological Changes and Hsp70 Expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Batroxobin,the thrombin-like enzyme,is used for therapeutic defibrination. We have found that batroxobin has good therapeutic effect in ischemic reperfusion rats and clinical practices in vivo. But we have not studied the neuroprotective effect of batroxobin on anoxic hippocampal neurons in vitro. The purpose of this study was to obtain further information on the mechanism of the batroxobin-induced neuroprotection and examine the neuroprotective effect on neurons exposed to anoxia. The effect of batroxobin on anoxic damages in cultured hippocampal neurons of neonatal rats was investigated by using morphological changes and heat shock protein 70Kd (Hsp70) immunoreactive expression as indicators. The results indicate that batroxobin, besides its defibrination, may have a direct neuroprotective effect on anoxic damage of hippocampal neurons.

  1. Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity

    Directory of Open Access Journals (Sweden)

    Maezawa Izumi

    2006-08-01

    Full Text Available Abstract Background Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4 co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE: APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice. Methods We measured in vivo changes in dendrite length in hippocampal CA1 neurons using Golgi staining and determined hippocampal apoE levels by Western blot. Neurite outgrowth of cultured primary neurons in response to astrocyte conditioned medium was assessed by measuring neuron length and branch number. Results Our results showed that TR APOE4 mice had slightly but significantly shorter dendrites at 6 weeks of age. Following exposure to intracerebroventricular LPS, there was comparable loss of dendrite length at 24 hr among the three TR APOE mice. Recovery of dendrite length over the next 48 hr was greater in TR APOE2 than TR APOE3 mice, while TR APOE4 mice had failure of dendrite regeneration. Cell culture experiments indicated that the enhanced neurotrophic effect of TR APOE2 was LDL related protein-dependent. Conclusion The data indicate that the environment within TR APOE2 mouse hippocampus was most supportive of dendrite regeneration

  2. Stiff substrates enhance cultured neuronal network activity.

    Science.gov (United States)

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  3. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures

    Science.gov (United States)

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  4. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity

    Institute of Scientific and Technical Information of China (English)

    Xiao-xue Zhang; Xiao-chun Min; Xu-lin Xu; Min Zheng; Lian-jun Guo

    2016-01-01

    The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimeth-yl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path–CA3 region in rat hippocampusin vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path–CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hip-pocampal neurons using high performance liquid chromatography, and determined intracellular Ca2+ concentration ([Ca2+]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspeciifc HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Further-more, ZD7288 attenuated glutamate-induced rises in [Ca2+]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca2+]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both gluta-mate release and resultant [Ca2+]i increases in rat hippocampal neurons.

  5. Activity-dependent plasticity of mouse hippocampal assemblies in vitro

    Directory of Open Access Journals (Sweden)

    Martin eKeller

    2015-05-01

    Full Text Available Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R, repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation. This function implies that repetition of specific SPW-R induces plastic changes which render the underlying neuronal assemblies more stable. We modeled this repetitive activation in an in vitro model of SPW-R in mouse hippocampal slices. Weak electrical stimulation upstream of the CA3-CA1 networks reliably induced SPW-R of stereotypic waveform, thus representing re-activation of similar neuronal activity patterns. Frequent repetition of these patterns (100 times reduced the variance of both, evoked and spontaneous SPW-R waveforms, indicating stabilization of pre-existing assemblies. These effects were most pronounced in the CA1 subfield and depended on the timing of stimulation relative to spontaneous SPW-R. Additionally, plasticity of SPW-R was blocked by application of a NMDA receptor antagonist, suggesting a role for associative synaptic plasticity in this process. Thus, repetitive activation of specific patterns of SPW-R causes stabilization of memory-related networks.

  6. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements

    National Research Council Canada - National Science Library

    Hannula, Deborah E; Ranganath, Charan

    2009-01-01

    ...) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when...

  7. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells

    OpenAIRE

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna

    2011-01-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  8. Deoxyschisandrin modulates synchronized Ca2+ oscillations and spontaneous synaptic transmission of cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Min FU; Zhao-hui SUN; Min ZONG; Xiang-ping HE; Huan-cong ZUO; Zuo-ping XIE

    2008-01-01

    Aim: Deoxyschisandrin is one of the most effective composites of Schisandra chinensis, a famous Chinese medicine widely used as an antistress, anti-aging, and neurological performance-improving herb. In this study, we examined its spe- cific mechanisms of action on cultured hippocampal neurons. Methods: Hippoc- ampal neurons, primarily cultured for 9-11 d in vitro, were used for this study. DS were dissolved in DMSO and applied to calcium imaging and whole-cell patch clamp. Results: The application of 3 mg/L DS decreased the frequency of sponta- neous and synchronous oscillations of intracellular Ca2+ to 72%±2% (mean±SEM), and the spontaneous inhibitory postsynaptic currents to 60%±3% (mean±SEM). The inhibitory concentraton 50% (IC50) for the effect of DS on calcium oscillations was 3.8 mg/L. DS also depressed the high voltage-gated Ca2+ channel and the voltage-gated Na+ channel currents at the same time point. It had no effect, however, on voltage-gated K+ and spontaneous excitatory postsynaptic currents. Conclusion: DS inhibited the spontaneous and synchronous oscillations of intra- cellular Ca2+ through the depression of influx of extracellular calcium and the initiation of action potential. By repressing the spontaneous neurotransmitter release, DS modulated the neuronal network activities.

  9. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    XU Zhong; XU Ru-xiang; LIU Bao-song; JIANG Xiao-dan; HUANG Tao; DING Lian-shu; YUAN Jun

    2005-01-01

    Objective: To explore cell death and apoptosis in rat hippocampal neurons at different time points after ischemia, hypoxia and reperfusion injury and to elucidate time window characteristics in ischemia neuronal injury.Methods: Hippocampal neurons were obtained from rat embryo and were cultured in vitro. The ischemia and reperfusion of cultured rat hippocampal neurons were simulated by oxygen-glucose deprivation (OGD) and recovery. OGD at different time points (0.25 h to 3.0 h) and then the same recovery (24 h) were prepared. Annexin V-PI staining and flow cytometry examined neuron death and apoptosis at different time after injury. Results: After OGD and recovery, both necrosis and apoptosis were observed. At different times after OGD, there were statistically significant differences in neuron necrosis rate (P0.05). At recovery, survival rate of hippocampal neurons further decreased while apoptosis rate increased. Furthermore, apoptosis rates of different time differed greatly (P<0.05). Apoptosis rate gradually increased with significant difference among those of different time points (P<0.05). However, 2 h after ischemia, apoptosis rate decreased markedly.Conclusions: Apoptosis is an important pathway of delayed neuron death. The therapeutic time window should be within 2 h after cerebral ischemia and hypoxia.

  10. Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Ma, Ning-Tian; Zhou, Ru; Chang, Ren-Yuan; Hao, Yin-Ju; Ma, Lin; Jin, Shao-Ju; Du, Juan; Zheng, Jie; Zhao, Cheng-Jun; Niu, Yang; Sun, Tao; Li, Wei; Koike, Kazuo; Yu, Jian-Qiang; Li, Yu-Xiang

    2015-10-01

    Aloperine (ALO), one of the alkaloids isolated from Sophora alopecuroides L., is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of ALO on neonatal rat primary-cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Treatment with ALO (25, 50, and 100 mg/l) attenuated neuronal damage (p oxygen species and malondialdehyde production and enhanced the antioxidant enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase and the total antioxidant capacity. The results suggested that ALO has significant neuroprotective effects that can be attributed to anti-oxidative stress.

  11. Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Yiren Chen; Xiaosong Gu; Fei Ding

    2009-01-01

    We have prepared an aqueous extract of Achyranthes bidentata Blume,a commonly prescribed Chinese medicinal herb,and reported,in previous studies,that A.bidentata extract benefits nerve growth and prevents neuron apoptosis.In this study,we investigated the actions of ,4.bidentata extract on survival and growth of primarily cultured rat hippocampal neurons.The morphological observation revealed that neurite growth from hippocampal neurons was significantly enhanced by A.bidentata extract with similar effects to those induced by nerve growth factor (NGF),and the greatest neurite growth appeared on treatment with A.bidentata extract at 1 ttg/ml for 24 h.DNA microarray analysis indicated that there were 25 upregulated genes and 47 downregulated genes exhibiting significantly differential expression in hippocampal neurons treated with A.bidentata extract at 1 μg/ml for 6 h when compared to those in untreated hippocampal neurons.Real-time quantitative RT-PCR and Western blot analysis demonstrated that the expression of growth-associated protein-43 in hippocampal neurons was upregulated at both mRNA and protein levels after treatment with A.bidentata extract,and the optimal dosage of the extract was also 1 μg/ml.These data confirm that A.bidentata extract could promote in vitro hippocampal neuronal growth in a dose- and time-dependent manner.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  12. Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation.

    Science.gov (United States)

    Strasser, U; Fischer, G

    1995-04-01

    Organotypic hippocampal cultures were used to study cell degeneration during the recovery period after defined periods (30 and 60 min) of combined oxygen/glucose deprivation mimicking transient ischemic conditions. Staining with the fluorescent dye propidium iodide allowed detection of damaged cells. Fluorescence intensity was measured by an image analysis system and used to quantify cell damage at different time points during the recovery period (up to 22 h). At 30 min of oxygen/glucose deprivation cells in the CA1 area were relatively more sensitive compared to CA3 and dentate gyrus cells, with respect to the time course of degeneration and the percentage of affected cells. Expanding the oxygen/glucose deprivation period from 30 to 60 min drastically increased the percentage of cells dying in all hippocampal areas. Still, however, cells in CA1 degenerated faster compared to those in the CA3 area and dentate gyrus. A histological analysis of toluidine blue as well as MAP2-immunostained sections revealed that almost all neurons degenerated in all hippocampal areas following the 60-min deprivation period, whereas GFAP-stained astrocytes appeared to be unaffected. Therefore, neuronal degeneration could be quantified by taking the fluorescence intensity values 22 h after 60 min of oxygen/glucose deprivation as 100% neuronal damage. The possibility to quantify neuronal damage in organotypic cultures offers a useful tool for detailed studies on mechanisms of neuronal cell death in a cell culture system which is closer to in situ conditions than monolayer cell cultures.

  13. Complement C1q expression induced by Abeta in rat hippocampal organotypic slice cultures.

    Science.gov (United States)

    Fan, Rong; Tenner, Andrea J

    2004-02-01

    Amyloid beta peptide (Abeta) is a major component of senile plaques, one of the principle pathological features in Alzheimer's disease (AD) brains. Fibrillar Abeta has been shown to bind C1 via C1q, the recognition component of the classical complement pathway, resulting in the activation of the complement pathway, thereby initiating an inflammatory cascade in the brain. C1q has also been shown to enhance phagocytic activities of microglia, which could benefit in clearance of apoptotic cells or cellular debris. To begin to define the role of C1q in tissue injury mediated by Abeta, we assessed the appearance of C1q in hippocampal slice cultures treated with freshly solubilized or fibrillar Abeta 1-42. Here we demonstrate a dose- and time-dependent uptake of exogenously applied Abeta by pyramidal neurons in organotypic slice cultures from rat hippocampus. Importantly, when slices were immunostained with antibody against rat C1q, a distinct reactivity for C1q in cells within the neuronal cell layer of cornu ammonis (CA) of hippocampus, primarily the CA1/CA2, was observed in the Abeta-treated slices. No such immunoreactivity was detected in untreated cultures or upon addition of control peptides. ELISA assays also showed an increase in C1q in tissue extracts from slices of the treated group. Similarly, the mRNA level of C1q in slices was increased within 24 h after Abeta treatment. These data demonstrate that upon exposure to Abeta, C1q is expressed in neurons in this organotypic system. The induction of C1q may be an early, perhaps beneficial, tissue or cellular response to injury triggered by particular pathogenic stimuli.

  14. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R;

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  15. A simplified micropatterning method for straight-line neurite extension of cultured hippocampal neurons.

    Science.gov (United States)

    Suzuki, Ikuro; Nakamura, Kosuke; Odawara, Aoi; Alhebshi, Amani; Gotoh, Masao

    2013-01-01

    We report a simplified micropatterning method for the straight-line extension of the neurites of cultured neurons. We prepared a poly-D-lysine (PDL)-patterned surface using a polydimethylsiloxane microfluidic stamp. Hippocampal neurons were cultured on the PDL-bound substrate with the stamp removed, allowing for conventional cell seeding and detailed optical observation without fluorescent label. Cultured neurons elongated neurites along straight lines at the single-cell level and displayed spontaneous firing as detected by time-lapse imaging and Ca(2+) imaging.

  16. Isolated hippocampal neurons in cryopreserved long-term cultures: development of neuroarchitecture and sensitivity to NMDA.

    Science.gov (United States)

    Mattson, M P; Kater, S B

    1988-01-01

    Isolated neurons in long-term culture provide a unique opportunity to address important problems in neuronal development. In the present study we established conditions for cryopreservation and long-term primary culture of isolated embryonic hippocampal neurons. This culture system was then used for initial characterizations of the development of neuroarchitecture and neurotransmitter response systems. Cryoprotection with 8% dimethylsulfoxide, slow freezing, and rapid thawing provided high-yield cultures which appeared normal in terms of cell types, mitotic ability, axonal and dendritic outgrowth, and sensitivity to glutamate neurotoxicity. A reduced medium volume and moderate elevation in extracellular K+ to 20 mM promoted survival of isolated neurons through 3 weeks of culture. The outgrowth of axons and dendrites in pyramidal-like neurons was found to differ over a 3-week culture period such that axons continued to grow at a relatively constant rate while dendritic outgrowth slowed during the second week and ceased by the end of week 3. Developmental changes were also observed in the sensitivity of pyramidal neurons to glutamate neurotoxicity; functional kainate/quisqualate receptors were present during the first week of culture, while responses to N-methyl-D-aspartic acid (NMDA) did not appear until the second week. The technologies for cryopreservation and long-term culture of isolated hippocampal neurons reported here provide a useful system in which to address a variety of problems in development neuroscience.

  17. Enhanced mossy fiber sprouting and synapse formation in organotypic hippocampal cultures following transient domoic acid excitotoxicity.

    Science.gov (United States)

    Pérez-Gómez, Anabel; Tasker, R Andrew

    2014-05-01

    We have previously reported evidence of BDNF upregulation and increased neurogenesis in rat organotypic hippocampal slice cultures (OHSC) after a transient excitotoxic injury to the hippocampal CA1 area induced by low concentrations of the AMPA/kainate receptor agonist domoic acid (DOM). The changes observed in OHSC were consistent with observations in vivo, where low concentrations of DOM administered to rats during perinatal development caused increased BDNF and TrkB expression in the resulting adult animals. The in vivo low dose-DOM treatment also results in permanent alterations in hippocampal structure and function, including abnormal formation of dentate granule cell axons projecting to area CA3 (mossy fiber sprouting). Our objective in the current study is to determine if low concentrations of DOM induce mossy fiber sprouting and/or synaptogenesis in OHSC in order to facilitate future studies on the mechanisms of structural hippocampal plasticity induced by DOM. We report herein that application of a low concentration of DOM (2 μM) for 24 h followed by recovery induced a significant increase in the expression of the mossy fiber marker ZnT3 that progressed over time in culture. The DOM insult (2 μM, 24 h) also resulted in a significant upregulation of both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. All of the observed effects were fully antagonized by co-administration of the AMPA/kainate antagonists CNQX or NBQX but only partly by the NMDA antagonist CPP and not by the calcium channel blocker nifedipine. We conclude that exposure of OHSC to concentrations of DOM below those required to induce permanent neurotoxicity can induce a progressive change in hippocampal structure that can effectively model DOM effects in vivo.

  18. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro.

    Science.gov (United States)

    Zou, Linqing; Li, Haoming; Jin, Guohua; Tian, Meiling; Qin, Jianbing; Zhao, Heyan

    2014-03-01

    Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.

  19. The up-regulation of voltage-gated sodium channels subtypes coincides with an increased sodium current in hippocampal neuronal culture model.

    Science.gov (United States)

    Guo, Feng; Xu, Xiaoxue; Cai, Jiqun; Hu, Huiyuan; Sun, Wei; He, Guilin; Shao, Dongxue; Wang, Lei; Chen, Tianbao; Shaw, Chris; Zhu, Tong; Hao, Liying

    2013-02-01

    Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly-inactivating Na(+) current (I(Na,T)) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch-clamp. In addition, channel activity of persistent, non-inactivating Na(+) current (I(Na,P)) was obviously increased in the hippocampal neuronal culture model as judged by single-channel patch-clamp recording. Furthermore, VGSC subtypes Na(V)1.1, Na(V)1.2 and Na(V)1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.

  20. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Cho, Seongeun; Liu, Danni; Fairman, Denise; Li, Ping; Jenkins, Lorayne; McGonigle, Paul; Wood, Andrew

    2004-07-01

    Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.

  1. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells.

    Science.gov (United States)

    Skaper, S D; Facci, L; Kee, W J; Strijbos, P J

    2001-01-01

    Excessive glutamatergic neurotransmission, particularly when mediated by the N:-methyl-D-aspartate (NMDA) subtype of glutamate receptor, is thought to underlie neuronal death in a number of neurological disorders. Histamine has been reported to potentiate NMDA receptor-mediated events under a variety of conditions. In the present study we have utilized primary hippocampal neurone cultures to investigate the effect of mast cell-derived, as well as exogenously applied, histamine on neurotoxicity evoked by excessive synaptic activity. Exposure of mature cultures for 15 min to an Mg(2+)-free/glycine-containing buffer to trigger synaptic transmission through NMDA receptors, caused a 30-35% neuronal loss over 24 h. When co-cultured with hippocampal neurones, activated mast cells increased excitotoxic injury to 60%, an effect that was abolished in the presence of histaminase. Similarly, addition of histamine during magnesium deprivation produced a concentration-dependent potentiation (+ 60%; EC(50) : 5 microM) of neuronal death which was inhibited by sodium channel blockers and NMDA receptor antagonists, although this effect did not involve known histamine receptors. The histamine effect was further potentiated by acidification of the culture medium. Cultures 'preconditioned' by sublethal (5 min) Mg(2+) deprivation exhibited less neuronal death than controls when exposed to a more severe insult. NMDA receptor activation and the extracellular regulated kinase cascade were required for preconditioning neuroprotection. The finding that histamine potentiates NMDA receptor-mediated excitotoxicity may have important implications for our understanding of conditions where enhanced glutamatergic neurotransmission is observed in conjunction with tissue acidification, such as cerebral ischaemia and epilepsy.

  2. S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Ting-yu CHIN; Sheau-huei CHUEH; Pao-luh TAO

    2006-01-01

    Aim: To characterize the effect of combined pre- and postnatal morphine exposure on Af-methyl-D-aspartate receptor (NMDA) receptor signaling in hippocampal neurons of the offspring of morphine-addicted female rats. Methods: Cultured hippocampal neurons and synaptosomes were prepared from neonatal and 2-week-old offspring, respectively, of control or morphine-addicted female rats. The increase in the cytosolic Ca2+ concentration ([Ca2+]i) of cultured cells was measured using Fura-2, and glutamate release from synaptosomes was measured enzymatically. Results: Both glutamate and NMDA caused a dose-dependent increase in the [Ca2+]i. The nitric oxide (NO) donor, S-nitrosoglutathione (GSNO), but not 3-morpholinosydnonimine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine, also induced a [Ca2+]i increase. GSNO and glutathione caused a dose-dependent increase in the [Ca2+]i with respective EC50 values of 56 and 414 μmol/L. Both effects were inhibited by Mg2+ or an NMDA receptor antagonist and were unaffected by the presence of a glutamate scavenger. The other glutathione derivatives, oxidized glutathione, S-methylglutathione, S-ethylglutathione, S-propylglutathione, and S-butylglutathione, the dipeptides, Glu-Cys and Cys-Gly, and the antioxidants, dithiothreitol and mercaptoethanol, failed to induce a [Ca2+]i increase. In addition, glutathione caused a dose-dependent increase in glutamate release from synaptosomes. The maximal responses and the EC50 values for the glutamate-, NMDA-, GSNO-, and glutathione-induced [Ca2+]i increases and the glutathione-induced glutamate release were indistinguishable in the neurons of the offspring from control and morphine-addicted female rats. Conclusion: GSNO and glutathione act as NMDA receptor agonists and, in contrast to hippocampal brain slice, combined pre- and postnatal morphine exposure does not modulate NMDA receptor signaling in the cultured hippocampal neurons.

  3. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert;

    2003-01-01

    with the colchicine-induced apoptosis in 1-week-old cultures showed that colchicine-induced PI uptake and formation of apoptotic nuclei were temporarily prevented by coapplication of the protein synthesis inhibitor cycloheximide. Application of the pancaspase inhibitor z-VAD-fmk almost completely abolished...

  4. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...

  5. 3-nitropropionic acid neurotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noer, Helle; Kristensen, Bjarne W; Noraberg, Jens

    2002-01-01

    iodide (PI) uptake and lactate dehydrogenase (LDH) efflux into the medium revealed time- and dose-dependent cell death by 3-NP, with EC(50) values of about 60 microM in high or normal glucose. Regional vulnerability, as assessed by PI uptake and MAP2 immunostaining, in 3-week-old cultures was as follows...

  6. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M;

    2000-01-01

    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN......-producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN...

  7. Hippocampal novelty activations in schizophrenia: disease and medication effects.

    Science.gov (United States)

    Tamminga, Carol A; Thomas, Binu P; Chin, Ronald; Mihalakos, Perry; Youens, Kenneth; Wagner, Anthony D; Preston, Alison R

    2012-07-01

    We examined hippocampal activation in schizophrenia (SZ) with fMRI BOLD in response to the presentation of novel and familiar scenes. Voxel-wise analysis showed no group differences. However, anatomical region-of-interest analyses contrasting normal (NL), SZ-on-medication (SZ-ON), SZ-off-medication (SZ-OFF) showed substantial differences in MTL-based novelty responding, accounted for by the reduction in novelty responses in the SZ-OFF predominantly in the anterior hippocampus and parahippocampal cortex. These differences in novelty-based activation in the SZ-OFF group represent disease characteristics of schizophrenia without confounding effects of antipsychotic medication and illustrate the tendency of antipsychotic drug treatment to improve memory functions in schizophrenia.

  8. Hippocampal activity during the transverse patterning task declines with cognitive competence but not with age

    Directory of Open Access Journals (Sweden)

    Leirer Vera M

    2010-09-01

    Full Text Available Abstract Background The hippocampus is a brain region that is particularly affected by age-related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive decline. In a combined cross-sectional behavioural and magnetoencephalography (MEG study we investigated whether hippocampal-associated neural current flow during a transverse patterning task - which requires learning relational associations between stimuli - correlates with age and whether it is modulated by cognitive competence. Results Better performance in several tests of verbal memory, verbal fluency and executive function was indeed associated with higher hippocampal neural activity. Age, however, was not related to the strength of hippocampal neural activity: elderly participants responded slower than younger individuals but on average produced the same neural mass activity. Conclusions Our results suggest that in non-pathological aging, hippocampal neural activity does not decrease with age but is rather related to cognitive competence.

  9. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    Science.gov (United States)

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  10. Enhancement of dendritic branching in cultured hippocampal neurons by 17beta-estradiol is mediated by nitric oxide.

    Science.gov (United States)

    Audesirk, T; Cabell, L; Kern, M; Audesirk, G

    2003-06-01

    Both 17beta-estradiol (E2) and nitric oxide (NO) are important in neuronal development, learning and memory, and age-related memory changes. There is growing evidence that a number of estrogen receptor-mediated effects of estradiol utilize nitric oxide as an intermediary. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. Low levels of estradiol (10nM) significantly increase dendritic branching in cultured embryonic rat hippocampal neurons (158% of control). This study investigates the hypothesis that the estrogen-stimulated increase in dendritic branching is mediated by nitric oxide. We found that nitric oxide donors also produce significantly increased dendritic branching S-nitroso-N-acetylpenicillamine (SNAP: 119%; 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC-18): 128% of control). We then determined that the increases in dendritic branching stimulated by estradiol or by a nitric oxide donor were both blocked by an inhibitor of guanylyl cyclase. Dendritic branching was also stimulated by a cell permeable analog of cyclic guanosine monophosphate (dibutyryl-cGMP: 173% of control). Estradiol-stimulated dendritic branching was reversed by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (carboxy-PTIO). This study provides evidence that estradiol influences the development of embryonic hippocampal neurons in culture by increasing the production of nitric oxide or by increasing the sensitivity of the neurons to nitric oxide. Nitric oxide in turn stimulates dendritic branching via activation of guanylyl cyclase.

  11. PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms.

    Science.gov (United States)

    Yang, Dongren; Kania-Korwel, Izabela; Ghogha, Atefeh; Chen, Hao; Stamou, Marianna; Bose, Diptiman D; Pessah, Isaac N; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-04-01

    We recently demonstrated that polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substitutions sensitize ryanodine receptors (RyRs), and this activity promotes Ca²⁺-dependent dendritic growth in cultured neurons. Many ortho-substituted congeners display axial chirality, and we previously reported that the chiral congener PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) atropselectively sensitizes RyRs. Here, we test the hypothesis that PCB 136 atropisomers differentially alter dendritic growth and other parameters of neuronal connectivity influenced by RyR activity. (-)-PCB 136, which potently sensitizes RyRs, enhances dendritic growth in primary cultures of rat hippocampal neurons, whereas (+)-PCB 136, which lacks RyR activity, has no effect on dendritic growth. The dendrite-promoting activity of (-)-PCB 136 is observed at concentrations ranging from 0.1 to 100 nM and is blocked by pharmacologic RyR antagonism. Neither atropisomer alters axonal growth or cell viability. Quantification of PCB 136 atropisomers in hippocampal cultures indicates that atropselective effects on dendritic growth are not due to differential partitioning of atropisomers into cultured cells. Imaging of hippocampal neurons loaded with Ca²⁺-sensitive dye demonstrates that (-)-PCB 136 but not (+)-PCB 136 increases the frequency of spontaneous Ca²⁺ oscillations. Similarly, (-)-PCB 136 but not (+)-PCB 136 increases the activity of hippocampal neurons plated on microelectrode arrays. These data support the hypothesis that atropselective effects on RyR activity translate into atropselective effects of PCB 136 atropisomers on neuronal connectivity, and suggest that the variable atropisomeric enrichment of chiral PCBs observed in the human population may be a significant determinant of individual susceptibility for adverse neurodevelopmental outcomes following PCB exposure.

  12. Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons.

    Science.gov (United States)

    Murase, Sachiko; Kim, Eunyoung; Lin, Lin; Hoffman, Dax A; McKay, Ronald D

    2012-10-31

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.

  13. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available BACKGROUND: Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex. CONCLUSIONS: Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  14. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  15. Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability

    Directory of Open Access Journals (Sweden)

    Zha YY

    2012-06-01

    Full Text Available Ying-ying Zha,1 Bo Yang,1 Ming-liang Tang,2 Qiu-chen Guo,1 Ju-tao Chen,1 Long-ping Wen,3 Ming Wang11CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 2Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 3Laboratory of Nano-biology, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of ChinaBackground: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol, are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons.Methods and results: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins.Conclusion: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.Keywords: fullerenol, nanomaterial, neurotoxicity, neuroprotection, hippocampal neuron

  16. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    Science.gov (United States)

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  17. ATP induces NO production in hippocampal neurons by P2X(7 receptor activation independent of glutamate signaling.

    Directory of Open Access Journals (Sweden)

    Juan Francisco Codocedo

    Full Text Available To assess the putative role of adenosine triphosphate (ATP upon nitric oxide (NO production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3'-O-(4-Benzoylbenzoyl ATP (Bz-ATP elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG or by N(ω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV, but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  18. ATP Induces NO Production in Hippocampal Neurons by P2X7 Receptor Activation Independent of Glutamate Signaling

    Science.gov (United States)

    Codocedo, Juan Francisco; Godoy, Juan Alejandro; Poblete, Maria Ines; Inestrosa, Nibaldo C.; Huidobro-Toro, Juan Pablo

    2013-01-01

    To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2′(3′)-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by Nω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity. PMID:23472093

  19. Effects of inorganic lead on the differentiation and growth of cultured hippocampal and neuroblastoma cells.

    Science.gov (United States)

    Audesirk, T; Audesirk, G; Ferguson, C; Shugarts, D

    1991-01-01

    Lead exposure has devastating effects on the developing nervous system, and has been implicated in variety of behavioral and cognitive deficits as well as neural morphological abnormalities. Since lead impacts many calcium-dependent processes, one likely mechanism of lead toxicity is its disruption of calcium dependent processes, among which is neuronal differentiation. We investigated the effects of inorganic lead on survival and several parameters of differentiation of cultured neurons. Three different cell types were used: Rat hippocampal neurons (a primary CNS cell type), B50 rat neuroblastoma cells (a transformed CNS-derived cell line), and N1E-115 mouse neuroblastoma cells (a transformed peripherally-derived cell line). Lead concentrations ranged from low nM to 1 mM. Lead effects differed considerably among the three cell types, with B50 cells least affected. Lead effects were generally multimodal, with fewest effects observed at intermediate concentrations. Lead inhibited neurite initiation in hippocampal neurons, but stimulated initiation in N1E-115 cells. In those cells that differentiated, lead increased dendrite numbers in hippocampal neurons and neurite numbers in N1E-115 cells. Lead exposure increased both the length and the degree of branching of axons in hippocampal neurons and the length of neurites in N1E-115 cells. We hypothesize that lead impacts multiple regulatory processes that influence neuron survival and differentiation, and that its effects show differing dose-dependencies. The differing responses of the different cell types to lead suggests that differentiation may be regulated in different ways by the three types of cells. Alternatively, or additionally, the cell types may differ in their ability to compensate for, sequester, or expel lead.

  20. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez-Muñoz

    Full Text Available The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f, during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV. By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60% and multipolar Glutamatergic (≤40% neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC: dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively, in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  1. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Science.gov (United States)

    Rodríguez-Muñoz, Rafael; Cárdenas-Aguayo, María Del Carmen; Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  2. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten

    2005-01-01

    ), Alzheimer's disease (AD) and epilepsia. Studies of non-excitotoxic neurotoxic compounds and the experimental use of slice cultures in studies of HIV neurotoxicity, traumatic brain injury (TBI) and neurogenesis are included. For cerebral ischemia, experimental models with oxygen-glucose deprivation (OGD......) and exposure to glutamate receptor agonists (excitotoxins) are reviewed. For epilepsia, focus is on induction of seizures with effects on neuronal loss, axonal sprouting and neurogenesis. For Alzheimer's disease, the review centers on the use of beta-amyloid (Abeta) in different models, while the section...... on repair is focused on neurogenesis and cell migration. The culturing techniques, set-up of models, and analytical tools, including markers for neurodegeneration, like the fluorescent dye propidium iodide (PI), are reviewed and discussed. Comparisons are made between hippocampal slice cultures and other...

  3. Long-term live imaging of neuronal circuits in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method for imaging organotypic slice cultures from the mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute, and yields slice cultures that can be imaged repeatedly after they are isolated on postnatal day 6-9 and for up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice, or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over time periods ranging from seconds to months. Imaging can be repeated at least eight times without detectable morphological damage to neurons. Subsequent to imaging, the slices can be processed for immunocytochemistry or electron microscopy, to collect further information about the structures that have been imaged. This protocol can be completed in 35 min.

  4. Preparation of organotypic hippocampal slice cultures for long-term live imaging.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to establish organotypic slice cultures from mouse hippocampus, which can be maintained for several months. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly--from when they are isolated at postnatal day 6-9, and up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Monitoring of defined cellular and molecular components in the slices can be achieved by preparing slices from transgenic mice or by introducing transgenes through transfection or viral vectors. This protocol can be completed in 3 h.

  5. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor.

    Science.gov (United States)

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M

    2016-04-01

    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.

  6. Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons.

    Science.gov (United States)

    Micheva, Kristina D; Taylor, Charles P; Smith, Stephen J

    2006-08-01

    Pregabalin [S-[+]-3-isobutylGABA or (S)-3-(aminomethyl)-5-methylhexanoic acid, Lyrica] is an anticonvulsant and analgesic medication that is both structurally and pharmacologically related to gabapentin (Neurontin; Pfizer Inc., New York, NY). Previous studies have shown that pregabalin reduces the release of neurotransmitters in several in vitro preparations, although the molecular details of these effects are less clear. The present study was performed using living cultured rat hippocampal neurons with the synaptic vesicle fluorescent dye probe FM4-64 to determine details of the action of pregabalin to reduce neurotransmitter release. Our results indicate that pregabalin treatment, at concentrations that are therapeutically relevant, slightly but significantly reduces the emptying of neurotransmitter vesicles from presynaptic sites in living neurons. Dye release is reduced in both glutamic acid decarboxylase (GAD)-immunoreactive and GAD-negative (presumed glutamatergic) synaptic terminals. Furthermore, both calcium-dependent release and hyperosmotic (calcium-independent) dye release are reduced by pregabalin. The effects of pregabalin on dye release are masked in the presence of l-isoleucine, consistent with the fact that both of these compounds have a high binding affinity to the calcium channel alpha(2)-delta protein. The effect of pregabalin is not apparent in the presence of an N-methyl-d-aspartate (NMDA) antagonist [D(-)-2-amino-5-phosphonopentanoic acid], suggesting that pregabalin action depends on NMDA receptor activation. Finally, the action of pregabalin on dye release is most apparent before and early during a train of electrical stimuli when vesicle release preferentially involves the readily releasable pool.

  7. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Science.gov (United States)

    Pamenter, Matthew E; Ryu, Julie; Hua, Serena T; Perkins, Guy A; Mendiola, Vincent L; Gu, Xiang Q; Ellisman, Mark H; Haddad, Gabriel G

    2012-01-01

    During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus

  8. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  9. Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Mele, Maria; Morelli, Sabrina; Fazzari, Gilda; Avolio, Ennio; Alò, Raffaella; Piscioneri, Antonella; De Bartolo, Loredana; Facciolo, Rosa Maria; Canonaco, Marcello

    2016-11-05

    Depletion of oxygen and glucose even for brief periods is sufficient to cause cerebral ischemia, which is a predominant worldwide cause of motor deficits with the reduction of life quality and subsequently death. Hence, more insights regarding protective measures against ischemic events are becoming a major research goal. Among the many neuronal factors, N-methyl-D-aspartate receptors (NMDAR), orexinergic neuroreceptors (ORXR), and sympatho-inhibitory neuropeptide catestatin (CST) are widely involved with ischemic episodes. In this study, it was possible to induce in vitro ischemic conditions of the hamster (Mesocricetus auratus) hippocampal and hypothalamic neuronal cultures, grown on a newly compartmentalized membrane system, via oxygen and glucose deprivation (OGD). These cultures displayed notably differentiated NMDARergic and ORXergic receptor expression activities along with evident brain-derived neurotrophic factor (BDNF) plus orexin A (ORX-A) secretion, especially under co-cultured conditions. Interestingly, addition of CST in OGD-insulted hippocampal cells accounted for upregulated GluN1 and ORX1R transcripts that in the case of the latter neuroreceptor was very strongly (p BDNF and ORX-A secretion in the presence of hippocampal cells. Overall, the preferential CST effects on BDNF plus ORX-A production together with altered NMDAR and ORXR levels, especially in co-cultured hypothalamic cells pointed to ORX-containing neurons as major protective constituents against ischemic damages thus opening new scenarios on the cross-talking roles of CST during ischemic disorders.

  10. Role of the Proteasome in Excitotoxicity-Induced Cleavage of Glutamic Acid Decarboxylase in Cultured Hippocampal Neurons

    Science.gov (United States)

    Armelão, Mário; Herrmann, Dennis; Pimentel, Diogo O.; Leal, Graciano; Caldeira, Margarida V.; Bahr, Ben A.; Bengtson, Mário; Almeida, Ramiro D.; Duarte, Carlos B.

    2010-01-01

    Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms—GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during excitotoxicity

  11. Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Márcio S Baptista

    Full Text Available Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms--GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during

  12. Reduction of beta-amyloid-induced neurotoxicity on hippocampal cell cultures by moderate acidosis is mediated by transforming growth factor beta.

    Science.gov (United States)

    Uribe-San Martín, R; Herrera-Molina, R; Olavarría, L; Ramírez, G; von Bernhardi, R

    2009-02-18

    Progression of Alzheimer's disease (AD) is associated with chronic inflammation and microvascular alterations, which can induce impairment of brain perfusion because of vascular pathology and local acidosis. Acidosis can promote amyloidogenesis, which could further contribute to neurodegenerative changes. Nevertheless, there is also evidence that acidosis has neuroprotective effects in hypoxia models. Here we studied the effect of moderate acidosis on beta-amyloid (Abeta)-mediated neurotoxicity. We evaluated morphological changes, cell death, nitrite production and reductive metabolism of hippocampal cultures from Sprague-Dawley rats exposed to Abeta under physiological (pH 7.4) or moderate acidosis (pH 7.15-7.05). In addition, because transforming growth factor beta (TGFbeta) 1 is neuroprotective and is induced by several pathophysiological conditions, we assessed its presence at the different pHs. The exposure of hippocampal cells to Abeta induced a conspicuous reduction of neurites' arborization, as well as increased neuronal death and nitric oxide production. However, Abeta neurotoxicity was significantly attenuated when hippocampal cultures were kept at pH 7.15-7.05, showing a 68% reduction on lactate dehydrogenase release compared with cultures exposed to Abeta at pH 7.4 (Pacidosis compared with basal pH media (Pacidosis decreased intracellular TGFbeta1 precursor (latency associated protein-TGFbeta1) and increased up to fourfold TGFbeta1 bioactivity, detecting a 43% increase in the active TGFbeta levels in cultures exposed to Abeta and moderate acidosis. Inhibition of TGFbeta signaling abolished the neuroprotective effect of moderate acidosis. Our results show that moderate acidosis protected hippocampal cells from Abeta-mediated neurotoxicity through the increased activation and signaling potentiation of TGFbeta.

  13. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons.

    Science.gov (United States)

    Losonczy, Attila; Biró, Agota A; Nusser, Zoltan

    2004-02-03

    Cortical information processing requires an orchestrated interaction between a large number of pyramidal cells and albeit fewer, but highly diverse GABAergic interneurons (INs). The diversity of INs is thought to reflect functional and structural specializations evolved to control distinct network operations. Consequently, specific cortical functions may be selectively modified by altering the input-output relationship of unique IN populations. Here, we report that persistently active cannabinoid receptors, the site of action of endocannabinoids, and the psychostimulants marijuana and hashish, switch off the output (mute) of a unique class of hippocampal INs. In paired recordings between cholecystokinin-immunopositive, mossy fiber-associated INs, and their target CA3 pyramidal cells, no postsynaptic currents could be evoked with single presynaptic action potentials or with repetitive stimulations at frequencies <25 Hz. Cannabinoid receptor antagonists converted these "mute" synapses into high-fidelity ones. The selective muting of specific GABAergic INs, achieved by persistent presynaptic cannabinoid receptor activation, provides a state-dependent switch in cortical networks.

  14. Corticosterone activates Erk1/2 mitogen-activated protein kinase in primary hippocampal cells through rapid nongenomic mechanism

    Institute of Scientific and Technical Information of China (English)

    QI Aiqun; QIU Jian; XIAO Lin; CHEN Yizhang

    2005-01-01

    Nongenomic effects of glucocorticoids (GC) in various cell types have been well documented, but it still remains unknown whether the mechanism also works in hippocampus which is a crucial target of glucocorticoids in neural system during physiological and/or pathophysiological processes. We present here that corticosterone (B) could rapidly activate Erk1/2 mitogen-activated protein kinase (MAPK) in primarily cultured hippocampal cells within minutes, with a bell-shaped time dependent curve which peaked at 15min and then went down to normal level in 30 min. This activation was blocked by protein kinase C (PKC) inhibitor (Go6976), G protein inhibitor (GDPβs), and MEK(MAPK/extracellular signal-regulated kinase kinase) inhibitor(PD98059), but not by protein kinase A (PKA) inbibitor (H89), tyrosine kinase inhibitor (genistein), and glucocorticoid receptor ( GR ) antagonist (RU38486). Thus, the rapid activation of Erk1/2 MAPK in primary hippocampal cells induced by B was likely mediated by a G protein coupled receptor (GPCR) pathway with involvement of PKC, which belonged to the nongenomic rather than genomic mechanism of GC' s effects.

  15. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering

    Science.gov (United States)

    Hu, Fanghao; Lamprecht, Michael R.; Wei, Lu; Morrison, Barclay; Min, Wei

    2016-12-01

    Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.

  16. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jian-quan ZHENG; Xie-chuan WENG; Xiao-dan GAI; Jin LI; Wen-bin XIAO

    2004-01-01

    AIM: To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS: The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS: Verapamil (100 μmol/L), a selective blocker of L-type calcium channel, significantly inhibited VGCC current by 80 %± 7 %. Agmatine (100 μmol/L) could further depress the remained currents by 25 %±6 %. The α2-adrenoceptor antagonist yohimbine (10 μmol/L) and the I2 imidazoline receptor antagonist idazoxon (10 and 40 μmol/L) had no significant effect on VGCC currents when used respectively. When the mixture of yohimbine and agmatine was applied, VGCC currents were still depressed remarkably. However, the blocking effect of agmatine was decreased by 29 %± 8 % in the presence of idazoxon (10 μmol/L). The effect of idazoxon did not increase at a higher concentration (40 μmol/L). CONCLUSION: Agmatine could block the L- and other types of VGCC currents in the cultured rat hippocampal neurons. Blocking effect of agmatine on VGCC was partially related to I2 imidazoline receptor and had no relationship with α2-adrenoceptors.

  17. Block by a putative antiarrhythmic agent of a calcium-dependent potassium channel in cultured hippocampal neurons.

    Science.gov (United States)

    McLarnon, J G

    1990-05-04

    The actions of a new, putative antiarrhythmic drug, KC-8851 on single channel currents in hippocampal CA1 neurons have been studied. A calcium-dependent potassium current IK(Ca) was activated in the cultured neurons when a solution containing 140 mM K+ and 0.2 mM Ca2+ was applied to inside-out patches. Addition of the compound KC-8851, at concentrations between 1-50 microM, resulted in significant, dose-dependent, decreases in the mean open times of the K channel. The onward (blocking) rate constant was determined from a simple channel blockade scheme and was 5 x 10(7) M-1s-1; this rate constant was not dependent on voltage. Addition of KC-8851 to the solution bath with outside-out patches also caused significant decreases in the mean open times of the IK(Ca) channel consistent with channel blockade by the drug.

  18. Effect of polybrominated diphenyl ether on development of cultured hippocampal neuron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polybrominated diphenyl ether (PBDE) is a persistently environmental pollutant ubiquitously found in wildlife and humans. Although concern on PBDE's toxic effects is steadily increasing, its action on the central nervous system (CNS) remains largely unknown. To address this issue, the present study examined the development inhibition of PBDE in neurons. The primary cultured hippocampal neurons of rat were exposed to the commercial decabromodiphenyl ether (deca-BDE), and the neurite length, bifurcation, and synapse formation and maturation were evaluated, based on the confocal microscope imaging. The results showed that the development inhibition in neurons occurred at 15 μmol/L, indicating that PBDE is a potent neurotoxicant and it might obviously inhibit the development of cultured neurons.

  19. Effect of polybrominated diphenyl ether on development of cultured hippocampal neuron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polybrominated diphenyl ether (PBDE) is a persistently environmental pollutant ubiquitously found in wildlife and humans. Although concern on PBDE’s toxic effects is steadily increasing, its action on the central nervous system (CNS) remains largely unknown. To address this issue, the present study ex- amined the development inhibition of PBDE in neurons. The primary cultured hippocampal neurons of rat were exposed to the commercial decabromodiphenyl ether (deca-BDE), and the neurite length, bi- furcation, and synapse formation and maturation were evaluated, based on the confocal microscope imaging. The results showed that the development inhibition in neurons occurred at 15 μmol/L, indi- cating that PBDE is a potent neurotoxicant and it might obviously inhibit the development of cultured neurons.

  20. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  1. Cultured hippocampal neurons from trisomy 16 mouse, a model for Down's syndrome, have an abnormal action potential due to a reduced inward sodium current.

    Science.gov (United States)

    Galdzicki, Z; Coan, E; Rapoport, S I

    1993-02-26

    Mouse trisomy 16 is an animal model for Down's syndrome (human trisomy 21). The whole-cell patch-clamp technique was used to compare passive and active electrical properties of trisomy 16 and diploid mouse 16 fetal hippocampal neurons maintained in culture for 2-5 weeks. There was no significant difference in any mean passive property, including resting potential, membrane resistance, capacitance and time constant. However, in trisomic neurons, the action potential had a 20% significantly slower rising phase and a 20% significantly smaller inward sodium current and inward sodium conductance than did control neurons. The outward conductance was not altered. The ratio of maximum inward conductance to maximum outward conductance was 30% less in the trisomy 16 cells. These results indicate that trisomy 16 hippocampal neurons have abnormal active electrical properties, most likely reflecting reduced sodium channel membrane density. Such subtle differences may influence elaboration of the hippocampus during development.

  2. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Thomas eAndreska

    2014-04-01

    Full Text Available In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic synapses and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM. Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.

  3. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons.

    Science.gov (United States)

    Mao, Xiao-Yuan; Cao, Yong-Gang; Ji, Zhong; Zhou, Hong-Hao; Liu, Zhao-Qian; Sun, Hong-Li

    2015-07-01

    Topiramate (TPM) was previously found to have neuroprotection against neuronal injury in epileptic and ischemic models. However, whether TPM protects against glutamate-induced excitotoxicity in hippocampal neurons is elusive. Our present work aimed to evaluate the protective effect of TPM against glutamate toxicity in hippocampal neurons and further figure out the potential molecular mechanisms. The in vitro glutamate excitotoxic model was prepared with 125μM glutamate for 20min. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) analysis and Hoechst 33342 staining were conducted to detect neuronal survival. The protein expressions of brain-derived neurotrophic factor (BDNF), TrkB, mitogen-activated protein kinase (MAPK) cascade (including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK), cyclic AMP response element binding protein (CREB), Bcl-2, Bax and β-actin were detected via Western blot assay. Our results demonstrated that TPM protected hippocampal neurons from glutamate toxicity. Meanwhile, the pretreatment of TPM for 10min significantly prevented the down-regulation of BDNF and the phosphorylation of TrkB. Furthermore, the elevation of phosphorylated EKR expression was significantly inhibited after blockade of TrkB by TrkB IgG, while no alterations of phosphorylated JNK and p38 MAPK were found in the cultured hippocampal neurons. Besides, it was also found that the enhanced phosphorylation of CREB was evidently reversed under excitotoxic conditions after treating with U0126 (the selective inhibitor of ERK). The protein level of Bcl-2 was also observed to be remarkably increased after TPM treatment. In conclusion, these findings implicate that TPM exerts neuroprotective effects against glutamate excitotoxicity in hippocampal neurons and its protection may be modulated through BDNF/TrkB-dependent ERK pathway.

  4. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Cabell, L; Kern, M

    1997-09-20

    The control of branching of axons and dendrites is poorly understood. It has been hypothesized that branching may be produced by changes in the cytoskeleton [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419; P. Friedrich, A. Aszodi, MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture, FEBS Lett. 295 (1991) 5-9]. The assembly and stability of microtubules, which are prominent cytoskeletal elements in both axons and dendrites, are regulated by microtubule-associated proteins, including tau (predominantly found in axons) and MAP2 (predominantly found in dendrites). The phosphorylation state of tau and MAP2 modulates their interactions with microtubules. In their low-phosphorylation states, tau and MAP2 bind to microtubules and increase microtubule assembly and/or stability. Increased phosphorylation decreases these effects. Diez-Guerra and Avila [F.J. Diez-Guerra, J. Avila, MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture, NeuroReport 4 (1993) 412-419] found that protein phosphorylation correlates with neurite branching in cultured rat hippocampal neurons, and hypothesized that increased protein phosphorylation stimulates neurite branching. To test this hypothesis, we cultured rat hippocampal neurons in the presence of specific modulators of serine-threonine protein kinases and phosphatases. Inhibitors of several protein kinases, which would be expected to decrease protein phosphorylation, reduced branching. KT5720, an inhibitor of cyclic AMP-dependent protein kinase, and KN62, an inhibitor of Ca(2+)-calmodulin-dependent protein kinases, inhibited branching of both axons and dendrites. Calphostin C and chelerythrine, inhibitors of protein kinase C, inhibited branching of axons but not dendrites. Treatments that would be expected to increase protein phosphorylation, including inhibitors of protein

  5. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons.

    Science.gov (United States)

    Schaub, Christina; Uebachs, Mischa; Beck, Heinz; Linnebank, Michael

    2013-04-01

    Homocystinuria is an inborn error of metabolism characterized by plasma homocysteine levels up to 500 μM, premature vascular events and mental retardation. Mild elevations of homocysteine plasma levels up to 25 μM, which are common in the general population, are associated with vascular disease, cognitive impairment and neurodegeneration. Several mechanisms of homocysteine neurotoxicity have been investigated. However, information on putative effects of hyperhomocysteinemia on the electrophysiology of neurons is limited. To screen for such effects, we examined primary cultures of mouse hippocampal neurons with the whole-cell patch-clamp technique. Homocysteine was applied intracellularly (100 μM), or cell cultures were incubated with 100 μM homocysteine for 24 h. Membrane voltage was measured in current-clamp mode, and action potential firing was induced with short and prolonged current injections. Single action potentials induced by short current injections (5 ms) were not altered by acute application or incubation of homocysteine. When we elicited trains of action potentials with prolonged current injections (200 ms), a broadening of action potentials during repetitive firing was observed in control neurons. This spike broadening was unaltered by acute application of homocysteine. However, it was significantly diminished when incubation with homocysteine was extended to 24 h prior to recording. Furthermore, the number of action potentials elicited by low current injections was reduced after long-term incubation with homocysteine, but not by the acute application. After 24 h of homocysteine incubation, the input resistance was reduced which might have contributed to the observed alterations in membrane excitability. We conclude that homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons as a mechanism of neurological symptoms of hyperhomocysteinemia.

  6. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  7. Sleep restriction by forced activity reduces hippocampal cell proliferation

    NARCIS (Netherlands)

    Roman, Viktor; Van der Borght, K; Leemburg, SA; Van der Zee, EA; Meerlo, P

    2005-01-01

    Mounting evidence suggests that sleep loss negatively affects learning and memory processes through disruption of hippocampal function. In the present study, we examined whether sleep loss alters the generation, differentiation, and survival of new cells in the dentate gyrus. Rats were sleep restric

  8. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons.

    Directory of Open Access Journals (Sweden)

    Jie Peng

    Full Text Available Microglial cells are normally activated in response to brain injury or immunological stimuli to protect central nervous system (CNS. However, over-activation of microglia conversely amplifies the inflammatory effects and mediates cellular degeneration, leading to the death of neurons. Recently, cordycepin, an active component found in Cordyceps militarisa known as a rare Chinese caterpillar fungus, has been reported as an effective drug for treating inflammatory diseases and cancer via unclear mechanisms. In this study, we attempted to identify the anti-inflammatory role of cordycepin and its protective effects on the impairments of neural growth and development induced by microglial over-activation. The results indicate that cordycepin could attenuate the lipopolysaccharide (LPS-induced microglial activation, evidenced by the dramatically reduced release of TNF-α and IL-1β, as well as the down-regulation of mRNA levels of iNOS and COX-2 after cordycepin treatment. Besides, cordycepin reversed the LPS-induced activation of NF-κB pathway, resulting in anti-inflammatory effects. Furthermore, by employing the conditioned medium (CM, we found cordycepin was able to recover the impairments of neural growth and development in the primary hippocampal neurons cultured in LPS-CM, including cell viability, growth cone extension, neurite sprouting and outgrowth as well as spinogenesis. This study expands our knowledge of the anti-inflammatory function of cordycepin and paves the way for the biomedical applications of cordycepin in the therapies of neural injuries.

  9. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.

    Science.gov (United States)

    Zhang, Shuzhuo; Jin, Yuelei; Liu, Xiaoyan; Yang, Lujia; Ge, Zhi juan; Wang, Hui; Li, Jin; Zheng, Jianquan

    2014-09-25

    Methamphetamine (METH) is a psychostimulant drug. Abuse of METH produces long-term behavioral changes including behavioral, sensitization, tolerance, and dependence. It induces neurotoxic effects in several areas of the brain via enhancing dopamine (DA) level abnormally, which may cause a secondary release of glutamate (GLU). However, repeated administration of METH still increases release of GLU even when dopamine content in tissue is significantly depleted. It implies that some other mechanisms are likely to involve in METH-induced GLU release. The goal of this study was to observe METH affected glutamatergic synaptic transmission in rat primary cultured hippocampal neurons and to explore the mechanism of METH modulated GLU release. Using whole-cell patch-clamp recordings, we found that METH (0.1-50.0μM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). However, METH decreased the frequency of sEPSCs and mEPSCs at high concentration of 100μM. The postsynaptic NMDA receptor currents and P/Q-type calcium channel were not affected by the use of METH (10,100μM). METH did not present visible effect on N-type Ca(2+) channel current at the concentration lower than 50.0μM, but it was inhibited by use of METH at a 100μM. The effect of METH on glutamatergic synaptic transmission was not revered by pretreated with DA receptor antagonist SCH23390. These results suggest that METH directly modulated presynaptic GLU release at a different concentration, while dopaminergic system was not involved in METH modulated release of GLU in rat primary cultured hippocampal neurons.

  10. Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons.

    Science.gov (United States)

    Rubini, Patrizia; Pagel, Gregor; Mehri, Soghra; Marquardt, Peter; Riedel, Thomas; Illes, Peter

    2014-10-01

    P2X7 receptors have been suggested to be located both on neurons and astrocytes of the central and peripheral nervous systems. In the present Ca(2+)-imaging and patch-clamp study, we reinvestigated these findings on mixed neuronal-astrocytic cell cultures prepared from embryonic or newborn rat hippocampi. We found in a Mg(2+)-free bath medium that the prototypic P2X7 receptor agonist dibenzoyl-adenosine triphosphate (Bz-ATP) increased the intracellular Ca(2+) concentration ([Ca(2+)]i) both in the neuronal cell bodies and in their axo-dendritic processes only to a very minor extent. However, Bz-ATP produced marked [Ca(2+)]i transients in the neuronal processes, when they grew above a glial carpet, which was uniformly sensitive to Bz-ATP. These glial signals might be misinterpreted as neuronal responses because of the poor focal discrimination by a fluorescent microscope. Most astrocytes had a polygonal shape without clearly circumscribable boundaries, but a subgroup of them had neuron-like appearance. The cellular processes of this astrocytic subgroup, just as their cell somata and their polygonal counterparts, appeared to possess a high density of functional P2X7 receptors. In contrast to astrocytes, in a low Ca(2+)/no Mg(2+)-containing bath medium, hippocampal neurons failed to respond to Bz-ATP with membrane currents. In addition, neither the amplitude nor the frequency of spontaneous excitatory postsynaptic currents, representing the quantal release of glutamate, was modified by Bz-ATP. We conclude that cultured hippocampal neurons, in contrast to astrocytes, possess P2X7 receptors, if at all, only at a low density.

  11. Cognitive training-related changes in hippocampal activity associated with recollection in older adults.

    Science.gov (United States)

    Kirchhoff, Brenda A; Anderson, Benjamin A; Smith, Staci E; Barch, Deanna M; Jacoby, Larry L

    2012-09-01

    Impairments in the ability to recollect specific details of personally experienced events are one of the main cognitive changes associated with aging. Cognitive training can improve older adults' recollection. However, little is currently known regarding the neural correlates of these training-related changes in recollection. Prior research suggests that the hippocampus plays a central role in supporting recollection in young and older adults, and that age-related changes in hippocampal function may lead to age-related changes in recollection. The present study investigated whether cognitive training-related increases in older adults' recollection are associated with changes in their hippocampal activity during memory retrieval. Older adults' hippocampal activity during retrieval was examined before and after they were trained to use semantic encoding strategies to intentionally encode words. Training-related changes in recollection were positively correlated with training-related changes in activity for old words in the hippocampus bilaterally. Positive correlations were also found between training-related changes in activity in prefrontal and left lateral temporal regions associated with self-initiated semantic strategy use during encoding and training-related changes in right hippocampal activity associated with recollection during retrieval. These results suggest that cognitive training-related improvements in older adults' recollection can be supported by changes in their hippocampal activity during retrieval. They also suggest that age differences in cognitive processes engaged during encoding are a significant contributor to age differences in recollection during retrieval.

  12. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline

    Science.gov (United States)

    Leal, Stephanie L; Landau, Susan M; Bell, Rachel K; Jagust, William J

    2017-01-01

    The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baseline was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline. DOI: http://dx.doi.org/10.7554/eLife.22978.001 PMID:28177283

  13. Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology

    Directory of Open Access Journals (Sweden)

    Li XinMin

    2007-09-01

    Full Text Available Abstract Background Calcium (Ca2+ has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A, a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD. Results Incubation with Ca2+ selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca2+ ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K, a Ca2+-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation associated with either A23187 or the AD-related β-amyloid peptide, which also increases free intracellular Ca2+, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures. Conclusion These data suggest that increases in intracellular Ca2+ availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress.

  14. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis.

    Science.gov (United States)

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-02-18

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression.

  15. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens;

    2007-01-01

    of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...

  16. Developmental Changes in Hippocampal CA1 Single Neuron Firing and Theta Activity during Associative Learning

    Science.gov (United States)

    Kim, Jangjin; Goldsberry, Mary E.; Harmon, Thomas C.; Freeman, John H.

    2016-01-01

    Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US). Learning increased as a function of age, with the P21-23 and P24-26 groups learning faster than the P17-19 group. Age- and learning-related changes in both theta and single neuron activity were observed. CA1 pyramidal cells in the older age groups showed greater task-related activity than the P17-19 group during CS-US paired sessions. The proportion of trials with a significant theta (4–10 Hz) power change, the theta/delta ratio, and theta peak frequency also increased in an age-dependent manner. Finally, spike/theta phase-locking during the CS showed an age-related increase. The findings indicate substantial developmental changes in dorsal hippocampal function that may play a role in the ontogeny of learning and memory. PMID:27764172

  17. Immunohistochemical visualization of hippocampal neuron activity after spatial learning in a mouse model of neurodevelopmental disorders.

    Science.gov (United States)

    Provenzano, Giovanni; Pangrazzi, Luca; Poli, Andrea; Berardi, Nicoletta; Bozzi, Yuri

    2015-05-12

    Induction of phosphorylated extracellular-regulated kinase (pERK) is a reliable molecular readout of learning-dependent neuronal activation. Here, we describe a pERK immunohistochemistry protocol to study the profile of hippocampal neuron activation following exposure to a spatial learning task in a mouse model characterized by cognitive deficits of neurodevelopmental origin. Specifically, we used pERK immunostaining to study neuronal activation following Morris water maze (MWM, a classical hippocampal-dependent learning task) in Engrailed-2 knockout (En2(-/-)) mice, a model of autism spectrum disorders (ASD). As compared to wild-type (WT) controls, En2(-/-) mice showed significant spatial learning deficits in the MWM. After MWM, significant differences in the number of pERK-positive neurons were detected in specific hippocampal subfields of En2(-/-) mice, as compared to WT animals. Thus, our protocol can robustly detect differences in pERK-positive neurons associated to hippocampal-dependent learning impairment in a mouse model of ASD. More generally, our protocol can be applied to investigate the profile of hippocampal neuron activation in both genetic or pharmacological mouse models characterized by cognitive deficits.

  18. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    Energy Technology Data Exchange (ETDEWEB)

    De Vogelaere, Frederick; Vingerhoets, Guy [Ghent University, Laboratory for Neuropsychology, Department of Neurology, Ghent (Belgium); Santens, Patrick; Boon, Paul [Ghent University Hospital, Department of Neurology, Ghent (Belgium); Achten, Erik [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2010-01-15

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  19. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation.

    Science.gov (United States)

    Sperling, Reisa; Chua, Elizabeth; Cocchiarella, Andrew; Rand-Giovannetti, Erin; Poldrack, Russell; Schacter, Daniel L; Albert, Marilyn

    2003-10-01

    The ability to form associations between previously unrelated items of information, such as names and faces, is an essential aspect of episodic memory function. The neural substrate that determines success vs. failure in learning these associations remains to be elucidated. Using event-related functional MRI during the encoding of novel face-name associations, we found that successfully remembered face-name pairs showed significantly greater activation in the anterior hippocampal formation bilaterally and left inferior prefrontal cortex, compared to pairs that were forgotten. Functional connectivity analyses revealed significant correlated activity between the right and left hippocampus and neocortical regions during successful, but not attempted, encoding. These findings suggest that anterior regions of the hippocampal formation, in particular, are crucial for successful associative encoding and that the degree of coordination between hippocampal and neocortical activity may predict the likelihood of subsequent memory.

  20. Nanoparticle Targeting to Neurons in a Rat Hippocampal Slice Culture Model

    Directory of Open Access Journals (Sweden)

    Ryan Walters

    2012-09-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  1. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons

    Science.gov (United States)

    Nadeau, H.; Lester, H. A.

    2002-01-01

    The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.

  2. Nanoparticle targeting to neurons in a rat hippocampal slice culture model

    Directory of Open Access Journals (Sweden)

    Richard P Kraig

    2012-10-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  3. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks.

    Science.gov (United States)

    Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B; Wheeler, Bruce C; Brewer, Gregory J

    2017-01-01

    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the

  4. Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks

    Science.gov (United States)

    Poli, Daniele; Thiagarajan, Srikanth; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.

    2017-01-01

    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the

  5. Motivational states activate distinct hippocampal representations to guide goal-directed behaviors.

    Science.gov (United States)

    Kennedy, Pamela J; Shapiro, Matthew L

    2009-06-30

    Adaptive behaviors are guided by motivation and memory. Motivational states specify goals, and memory can inform motivated behavior by providing detailed records of past experiences when goals were obtained. These 2 fundamental processes interact to guide animals to biologically relevant targets, but the neuronal mechanisms that integrate them remain unknown. To investigate these mechanisms, we recorded unit activity from the same population of hippocampal neurons as rats performed identical tasks while either food or water deprived. We compared the influence of motivational state (hunger and thirst), memory demand, and spatial behavior in 2 tasks: hippocampus-dependent contextual memory retrieval and hippocampus-independent random foraging. We found that: (i) hippocampal coding was most strongly influenced by motivational state during contextual memory retrieval, when motivational cues were required to select among remembered, goal-directed actions in the same places; (ii) the same neuronal populations were relatively unaffected by motivational state during random foraging, when hunger and thirst were incidental to behavior, and signals derived from deprivation states thus informed, but did not determine, hippocampal coding; and (iii) "prospective coding" in the contextual retrieval task was not influenced by allocentric spatial trajectory, but rather by the animal's deprivation state and the associated, non-spatial target, suggesting that hippocampal coding includes a wide range of predictive associations. The results show that beyond coding spatiotemporal context, hippocampal representations encode the relationships between internal states, the external environment, and action to provide a mechanism by which motivation and memory are coordinated to guide behavior.

  6. The Communes and Cultural Activities

    Science.gov (United States)

    Koski, Heikki; Seikkula, Ari

    1973-01-01

    Discusses Finland's system of cultural services provided for communes that includes adult education, art activities, entertainment and physical culture. Article outlines the scope of the available and planned programs. (GB)

  7. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    Science.gov (United States)

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  8. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Science.gov (United States)

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-04-01

    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  9. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Directory of Open Access Journals (Sweden)

    Melanie Laßek

    2016-04-01

    Full Text Available The hallmarks of Alzheimer's disease (AD are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  10. Cortisol's effects on hippocampal activation in depressed patients are related to alterations in memory formation.

    Science.gov (United States)

    Abercrombie, Heather C; Jahn, Allison L; Davidson, Richard J; Kern, Simone; Kirschbaum, Clemens; Halverson, Jerry

    2011-01-01

    Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.

  11. Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    Science.gov (United States)

    Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto

    2012-01-01

    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056

  12. The Susd2 protein regulates neurite growth and excitatory synaptic density in hippocampal cultures.

    Science.gov (United States)

    Nadjar, Yann; Triller, Antoine; Bessereau, Jean-Louis; Dumoulin, Andrea

    2015-03-01

    Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related.

  13. Stimulation of glutamate receptors in cultured hippocampal neurons causes Ca2+-dependent mitochondrial contraction.

    Science.gov (United States)

    Brustovetsky, Tatiana; Li, Viacheslav; Brustovetsky, Nickolay

    2009-07-01

    Cultured hippocampal neurons expressing mitochondrially-targeted enhanced yellow fluorescent protein (mito-eYFP) were used to quantitatively examine mitochondrial remodelling in response to excitotoxic glutamate. Mitochondrial morphology was evaluated using laser spinning-disk confocal microscopy followed by calibrated image processing and 3D image rendering. Glutamate triggered an increase in cytosolic Ca(2+) and mitochondrial depolarization accompanied by Ca(2+)-dependent morphological transformation of neuronal mitochondria from "thread-like" to rounded structures. The quantitative analysis of the mitochondrial remodelling revealed that exposure to glutamate resulted in a decrease in mitochondrial volume and surface area concurrent with an increase in sphericity of the organelles. NIM811, an inhibitor of the mitochondrial permeability transition, attenuated the glutamate-induced sustained increase in cytosolic Ca(2+) and suppressed mitochondrial remodelling in the majority of affected neurons, but it did not rescue mitochondrial membrane potential. Shortening, fragmentation, and formation of circular mitochondria with decreased volume and surface area accompanied mitochondrial depolarization with FCCP. However, FCCP-induced morphological alterations appeared to be distinctly different from mitochondrial remodelling caused by glutamate. Moreover, FCCP prevented glutamate-induced mitochondrial remodelling suggesting an important role of Ca(2+) influx into mitochondria in the morphological alterations. Consistent with this, in saponin-permeabilized neurons, Ca(2+) caused mitochondrial remodelling which could be prevented by Ru(360).

  14. Hippocampal activity during transient respiratory events in the freely behaving cat

    DEFF Research Database (Denmark)

    Poe, G R; Kristensen, Morten Pilgaard; Rector, D M;

    1996-01-01

    We measured dorsal hippocampal activity accompanying sighs and apnea using reflectance imaging and electrophysiologic measures in freely behaving cats. Reflected 660-nm light from a 1-mm2 area of CA1 was captured during sighs and apnea at 25 Hz through a coherent image conduit coupled to a charge...

  15. Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone

    NARCIS (Netherlands)

    van der Borght, Karin; Meerlo, Peter; Luiten, Paul G.M.; Eggen, Bart J.L.; van der Zee, Eddy A.

    2005-01-01

    Hippocampal granule neurons that are newly formed during adulthood might be involved in learning and memory processes. Experimental data suggest that only hippocampus-dependent learning tasks stimulate neurogenesis. To further address this issue, the effects of active shock avoidance (ASA) learning

  16. Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation.

    Science.gov (United States)

    Renauld, A E; Spengler, R N

    2002-01-15

    Neuron expression of the cytokine tumor necrosis factor-alpha (TNF), and the regulation of the levels of TNF by alpha(2)-adrenergic receptor activation were investigated. Adult rat hippocampal neurons and phorbol ester (PMA)-differentiated SH-SY5Y cells were examined. Intracellular levels of TNF mRNA accumulation, as well as TNF protein and that released into the supernatant were quantified by in situ hybridization, immunocytochemistry and bioanalysis, respectively. Both neuron cultures demonstrated constitutive production of TNF. Activation of the alpha(2)-adrenergic receptor increased intracellular levels of TNF mRNA and protein in SH-SY5Y cells after addition of graded concentrations of the selective agonist, Brimonidine (UK-14304) to parallel cultures. Intracellular levels of mRNA were increased in a concentration-dependent fashion within 15 min of UK-14304 addition and were sustained during 24 hr of receptor activation. In addition, the levels of TNF in the supernatant were increased in both types of neuron cultures within 15 min of alpha(2)-adrenergic receptor activation. Furthermore, levels of TNF significantly increased in the supernatants of both neuron cultures after potassium-induced depolarization. A reduction in this depolarization-induced release occurred in hippocampal neuron cultures after exposure to the sympathomimetic tyramine with media replacement to deplete endogenous catecholamines. This finding reveals a role for endogenous catecholamines in the regulation of TNF production. Potassium-induced depolarization resulted in the release of TNF in hippocampal neuron cultures within 15 min but not until 24 hr in SH-SY5Y cultures demonstrating a temporally mediated event dependent upon cell type. Neuron expression of TNF, regulated by alpha(2)-adrenergic receptor activation demonstrates not only how a neuron controls its own production of this pleiotropic cytokine, but also displays a normal role for neurons in directing the many functions of TNF.

  17. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels.

    Science.gov (United States)

    Leuner, Kristina; Li, Wei; Amaral, Michelle D; Rudolph, Stephanie; Calfa, Gaston; Schuwald, Anita M; Harteneck, Christian; Inoue, Takafumi; Pozzo-Miller, Lucas

    2013-01-01

    The standardized extract of the St. John's wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na(+) concentration through the activation of nonselective cationic TRPC6 channels. TRPC6 channels are also Ca(2+) -permeable, resulting in intracellular Ca(2+) elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca(2+) transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of nerve growth factor. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca(2+) transients and depolarizing inward currents sensitive to the TRPC channel blocker La(3+) , thus resembling the actions of the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John's wort are mediated by a mechanism similar to that engaged by BDNF.

  18. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide.

    Science.gov (United States)

    Keynes, Robert G; Duport, Sophie; Garthwaite, John

    2004-03-01

    Nitric oxide (NO) has been proposed to mediate neurodegeneration arising from NMDA receptor activity, but the issue remains controversial. The hypothesis was re-examined using organotypic slice cultures of rat hippocampus, with steps being taken to avoid known artefacts. The NO-cGMP signalling pathway was well preserved in such cultures. Brief exposure to NMDA resulted in a concentration-dependent delayed neuronal death that could be nullified by administration of the NMDA antagonist MK801 (10 microm) given postexposure. Two inhibitors of NO synthesis failed to protect the slices, despite fully blocking NMDA-induced cGMP accumulation. By comparing NMDA-induced cGMP accumulation with that produced by an NO donor, toxic NMDA concentrations were estimated to produce only physiological NO concentrations (2 nm). In studies of the vulnerability of the slices to exogenous NO, it was found that continuous exposure to up to 4.5 microm NO failed to affect ATP levels (measured after 6 h) or cause damage during 24 h, whereas treatment with the respiratory inhibitors myxothiazol or cyanide caused ATP depletion and complete cell death within 24 h. An NO concentration of 10 microm was required for ATP depletion and cell death, presumably through respiratory inhibition. It is concluded that sustained activity of neuronal NO synthase in intact hippocampal tissue can generate only low nanomolar NO concentrations, which are unlikely to be toxic. At the same time, the tissue is remarkably resistant to exogenous NO at up to 1000-fold higher concentrations. Together, the results seriously question the proposed role of NO in NMDA receptor-mediated excitotoxicity.

  19. The effects of triethyl lead on the development of hippocampal neurons in culture.

    Science.gov (United States)

    Audesirk, T; Shugarts, D; Cabell-Kluch, L; Wardle, K

    1995-02-01

    Triethyl lead is the major metabolite of tetraethyl lead, which is used in industrial processes and as an antiknock additive to gasoline. We tested the hypothesis that low levels of triethyl lead (0.1 nmol/L to 5 mumol/L) interfere with the normal development of cultured E18 rat hippocampal neurons, possibly through increases in intracellular free calcium ion concentration, [Ca2+]in. The study assessed survival and differentiation using morphometric analysis of individual neurons. We also looked at short-term (up to 3.75-h) changes in intracellular calcium using the calcium-sensitive dye fura-2. Survival of neurons was significantly reduced at 5 mumol/L, and overall production of neurites was reduced at > or = 2 mumol/L. The length of axons and the number of axons and dendrites were reduced at > or = 1 mumol/L. Neurite branching was inhibited at 10 nmol/L for dendrites and 100 nmol/L for axons. Increases in intracellular calcium were observed during a 3.75-h exposure of newly plated neurons to 5 mumol/L triethyl lead. These increases were prevented by BAPTA-AM; which clamps [Ca2+]in at about 100 nmol/L. Culturing neurons with BAPTA-AM and 5 mumol/L triethyl lead did not reverse the effects of triethyl lead, suggesting that elevation of [Ca2+]in is not responsible for decreases in survival and neurite production. Triethyl lead has been shown to disrupt cytoskeletal elements, particularly neurofilaments, at very low levels, suggesting a possible mechanism for its inhibition of neurite branching at nanomolar concentrations.

  20. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    Science.gov (United States)

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the

  1. Influence of Slow Oscillation on Hippocampal Activity and Ripples Through Cortico-Hippocampal Synaptic Interactions, Analyzed by a Cortical-CA3-CA1 Network Model

    Directory of Open Access Journals (Sweden)

    Jiannis eTaxidis

    2013-02-01

    Full Text Available Hippocampal sharp wave-ripple complexes (SWRs involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway. The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  2. Basal hypothalamic pituitary adrenal axis activity and hippocampal volumes: the SMART-Medea study.

    Science.gov (United States)

    Knoops, Arnoud J G; Gerritsen, Lotte; van der Graaf, Yolanda; Mali, Willem P Th M; Geerlings, Mirjam I

    2010-06-15

    It has frequently been hypothesized that high levels of glucocorticoids have deleterious effects on the hippocampus and increase risk for cognitive decline and dementia, but no large-scale studies in humans have examined the direct relation between hippocampal volumes and hypothalamic-pituitary-adrenal axis activity. Cross-sectional analyses within the Second Manifestations of ARTerial disease-Magnetic Resonance (SMART)-Medea study, an ancillary study to the SMART-MR study on brain changes on magnetic resonance imaging (MRI) among patients with arterial disease. In 575 patients (mean age 62 +/- 9 years), diurnal cortisol rhythm was assessed with six saliva samples, collected at awakening; at 30, 45, and 60 min thereafter; and at 10 pm and 11 pm. A low dose of dexamethasone (.5 mg) was administered at 11 pm, and saliva was sampled the next morning at awakening. Volumetric measurements of the hippocampus were performed on a three-dimensional fast field echo T1-weighted scan with isotropic voxels. Mean total relative hippocampal volume was 6.0 +/- .7 mL. Linear regression analyses, adjusted for age, sex, vascular risk factors, and global brain atrophy showed that participants with higher evening levels and higher awakening levels after dexamethasone had smaller hippocampal volumes [B per SD (4.2) increase = -.09 mL; 95% confidence interval -.15 to -.03 mL and B per SD (2.5) increase = -.07 mL; 95% confidence interval -.13 to -.01 mL, respectively]. The awakening response was not significantly associated with hippocampal volumes. In this population, higher evening cortisol levels and reduced suppression after dexamethasone were associated with smaller hippocampal volumes, independent of total brain volume. The cortisol response after awakening was not associated with hippocampal volume.

  3. Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Ma, J Y; Scheuer, T; Catterall, W A

    1996-05-01

    Phosphorylation of brain Na+ channels by protein kinase C (PKC) decreases peak Na+ current and slows macroscopic inactivation, but receptor-activated modulation of Na+ currents via the PKC pathway has not been demonstrated. We have examined modulation of Na+ channels by activation of muscarinic receptors in acutely-isolated hippocampal neurons using whole-cell voltage-clamp recording. Application of the muscarinic agonist carbachol reduced peak Na+ current and slowed macroscopic inactivation at all potentials, without changing the voltage-dependent properties of the channel. These effects were mediated by PKC, since they were eliminated when the specific PKC inhibitor (PKCI19-36) was included in the pipette solution and mimicked by the extracellular application of the PKC activator, OAG. Thus, activation of endogenous muscarinic receptors on hippocampal neurons strongly modulates Na+ channel activity by activation of PKC. Cholinergic input from basal forebrain neurons may have this effect in the hippocampus in vivo.

  4. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.

    Science.gov (United States)

    Greenberg, Anastasia; Whitten, Tara A; Dickson, Clayton T

    2016-06-01

    Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.

  5. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  6. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Science.gov (United States)

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  7. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression.

    Science.gov (United States)

    Huijbers, Willem; Mormino, Elizabeth C; Schultz, Aaron P; Wigman, Sarah; Ward, Andrew M; Larvie, Mykol; Amariglio, Rebecca E; Marshall, Gad A; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A

    2015-04-01

    Cross-sectional functional magnetic resonance imaging studies using a memory task in patients with mild cognitive impairment have produced discordant results, with some studies reporting increased hippocampal activity--consistent with findings in genetic at-risk populations--and other studies reporting decreased hippocampal activity, relative to normal controls. However, previous studies in mild cognitive impairment have not included markers of amyloid-β, which may be particularly important in prediction of progression along the Alzheimer's disease continuum. Here, we examine the contribution of amyloid-β deposition to cross-sectional and longitudinal measures of hippocampal functional magnetic resonance imaging activity, hippocampal volume, global cognition and clinical progression over 36 months in 33 patients with mild cognitive impairment. Amyloid-β status was examined with positron emission tomography imaging using Pittsburg compound-B, hippocampal functional magnetic resonance imaging activity was assessed using an associative face-name memory encoding task, and hippocampal volume was quantified with structural magnetic resonance imaging. Finally global cognition was assessed using the Mini-Mental State Examination and clinical progression was assessed using the Clinical Dementia Rating (Sum of Boxes). At baseline, amyloid-β positive patients with mild cognitive impairment showed increased hippocampal activation, smaller hippocampal volumes, and a trend towards lower Mini-Mental State Examination scores and higher Clinical Dementia Ratings compared to amyloid-β negative patients with mild cognitive impairment. Longitudinally, amyloid-β positive patients with mild cognitive impairment continued to show high levels of hippocampal activity, despite increasing rates of hippocampal atrophy, decline on the Mini-Mental State Examination and faster progression on the Clinical Dementia Ratings. When entered simultaneously into the same linear mixed model

  8. Social and cultural activities

    CERN Multimedia

    2008-01-01

    Club news : Record Club, Ski Club, Dancing Club, Orienteering Club, CERN Women's Club, Concerts Club, Russian Cultural Circle, Yachting Club. Conference : Voyage au coeur d'une flûte de champagne. Exhibition.

  9. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression

    Science.gov (United States)

    Mormino, Elizabeth C.; Schultz, Aaron P.; Wigman, Sarah; Ward, Andrew M.; Larvie, Mykol; Amariglio, Rebecca E.; Marshall, Gad A.; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.

    2015-01-01

    Cross-sectional functional magnetic resonance imaging studies using a memory task in patients with mild cognitive impairment have produced discordant results, with some studies reporting increased hippocampal activity—consistent with findings in genetic at-risk populations—and other studies reporting decreased hippocampal activity, relative to normal controls. However, previous studies in mild cognitive impairment have not included markers of amyloid-β, which may be particularly important in prediction of progression along the Alzheimer’s disease continuum. Here, we examine the contribution of amyloid-β deposition to cross-sectional and longitudinal measures of hippocampal functional magnetic resonance imaging activity, hippocampal volume, global cognition and clinical progression over 36 months in 33 patients with mild cognitive impairment. Amyloid-β status was examined with positron emission tomography imaging using Pittsburg compound-B, hippocampal functional magnetic resonance imaging activity was assessed using an associative face-name memory encoding task, and hippocampal volume was quantified with structural magnetic resonance imaging. Finally global cognition was assessed using the Mini-Mental State Examination and clinical progression was assessed using the Clinical Dementia Rating (Sum of Boxes). At baseline, amyloid-β positive patients with mild cognitive impairment showed increased hippocampal activation, smaller hippocampal volumes, and a trend towards lower Mini-Mental State Examination scores and higher Clinical Dementia Ratings compared to amyloid-β negative patients with mild cognitive impairment. Longitudinally, amyloid-β positive patients with mild cognitive impairment continued to show high levels of hippocampal activity, despite increasing rates of hippocampal atrophy, decline on the Mini-Mental State Examination and faster progression on the Clinical Dementia Ratings. When entered simultaneously into the same linear mixed model

  10. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2015-04-01

    Full Text Available Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  11. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    OpenAIRE

    Kim, Sooyun; Guzman, Segundo J.; Hu, Hua; Jonas, Peter

    2012-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic dom...

  12. Membrane voltage modulates the GABA(A) receptor gating in cultured rat hippocampal neurons.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2006-02-01

    The kinetics of GABAergic currents in neurons is known to be modulated by the membrane voltage but the underlying mechanisms have not been fully explored. In particular, the impact of membrane potential on the GABA(A) receptor gating has not been elucidated. In the present study, the effect of membrane voltage on current responses elicited by ultrafast GABA applications was studied in cultured hippocampal neurons. The current to voltage relationship (I-V) for responses to saturating [GABA] (10 mM) showed an inward rectification (slope conductance at positive voltages was 0.62 +/- 0.05 of that at negative potentials). On the contrary, I-V for currents evoked by low [GABA] (1 microM) showed an outward rectification. The onset of currents elicited by saturating [GABA] was significantly accelerated at positive potentials. Analysis of currents evoked by prolonged applications of saturating [GABA] revealed that positive voltages significantly increased the rate and extent of desensitization. The onsets of current responses to non-saturating [GABA] were significantly accelerated at positive voltages indicating an enhancement of the binding rate. However, at low [GABA] at which the onset rate is expected to approach an asymptote set by opening/closing and unbinding rates, no significant modification of current onset by voltage was observed. Quantitative analysis based on model simulations indicated that the major effect of membrane depolarization was to increase the rates of binding, desensitization and of opening as well as to slightly reduce the rate of exit from desensitization. In conclusion, we provide evidence that membrane voltage affects the GABA(A) receptor microscopic gating.

  13. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning

    Directory of Open Access Journals (Sweden)

    Miriam Shirin Nokia

    2012-12-01

    Full Text Available Oscillations in hippocampal local-field potentials reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz oscillations and ripples (~200 Hz occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs, hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval, when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  14. Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice.

    Science.gov (United States)

    Lehrmann, Elin; Guidetti, Paolo; Löve, Arthur; Williamson, John; Bertram, Edward H; Schwarcz, Robert

    2008-01-01

    Intracerebral injection of hamster neurotropic (HNT) measles virus in weanling Balb/C mice leads to an encephalitis, which is characterized by glial activation, behavioral seizures, selective neurodegeneration, and, after approximately 7 days, death. To provide a better understanding of the underlying molecular pathology, we studied seizure evolution by continuously monitoring electroencephalographic (EEG) activity, examined neuroglia and neurons histologically, and measured the brain content of glia-derived neuroactive metabolites of the kynurenine pathway of tryptophan degradation. Microglia and astrocytes were activated as early as postinoculation day (PID) 1, with reactive microglia lining the extent of the alveus. This was followed by a more extensive microglial activation that specifically outlined hippocampal pyramidal neurons in areas CA1-CA3 and by increases in the hippocampal levels of the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN). These changes preceded the onset of EEG seizures, which had a mean onset of 108 h after inoculation. Prominent hippocampal cell loss, demonstrated by Nissl- and silver staining, was apparent by PID 5. Thus, we speculate that early glial reactions to HNT inoculation result in the excess formation of 3-HK and QUIN, which in turn causes subclinical seizure activity, behavioral seizures, and, eventually, neurodegeneration. In addition to its conceptual implications, our study indicates that timely interventions modulating glial activation or 3-HK/QUIN synthesis may be of benefit in preventing or arresting seizure-induced neuronal damage.

  15. The eyes have it: hippocampal activity predicts expression of memory in eye movements.

    Science.gov (United States)

    Hannula, Deborah E; Ranganath, Charan

    2009-09-10

    Although there is widespread agreement that the hippocampus is critical for explicit episodic memory retrieval, it is controversial whether this region can also support indirect expressions of relational memory when explicit retrieval fails. Here, using functional magnetic resonance imaging (fMRI) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when explicit, conscious retrieval failed. Additionally, activity in the lateral prefrontal cortex and functional connectivity between the hippocampus and prefrontal cortex were greater for correct than for incorrect trials. Together, these results suggest that hippocampal activity can support the expression of relational memory even when explicit retrieval fails and that recruitment of a broader cortical network may be required to support explicit associative recognition.

  16. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats.

    Science.gov (United States)

    Puebla, L; Rodríguez-Martín, E; Arilla, E

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine, respectively, were administered 1 h before histamine injection. The pretreatment with mepyramine or cimetidine induced an increase in the

  17. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  18. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  19. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    J. Carson eSmith

    2014-04-01

    Full Text Available We examined the impact of physical activity (PA on longitudinal change in hippocampal volume in cognitively intact older adults at varying genetic risk for the sporadic form of Alzheimer’s disease (AD. Hippocampal volume was measured from structural magnetic resonance imaging (MRI scans administered at baseline and at an 18-month follow-up in 97 healthy, cognitively intact older adults. Participants were classified as High or Low PA based on a self-report questionnaire of frequency and intensity of exercise. Risk status was defined by the presence or absence of the apolipoprotein E-epsilon 4 (APOE-ε4 allele. Four subgroups were studied: Low Risk/High PA (n = 24, Low Risk/Low PA (n = 34, High Risk/High PA (n = 22, and High Risk/Low PA (n = 17. Over the 18 month follow-up interval, hippocampal volume decreased by 3% in the High Risk/Low PA group, but remained stable in the three remaining groups. No main effects or interactions between genetic risk and PA were observed in control brain regions, including the caudate, amygdala, thalamus, precentral gyrus, caudal middle frontal gyrus, cortical white matter, and total grey matter. These findings suggest that PA may help to preserve hippocampal volume in individuals at increased genetic risk for AD. The protective effects of PA on hippocampal atrophy were not observed in individuals at low risk for AD. These data suggest that individuals at genetic risk for AD should be targeted for increased levels of PA as a means of reducing atrophy in a brain region critical for the formation of episodic memories.

  20. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia.

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  1. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  2. Role of neuronal Ras activity in adult hippocampal neurogenesis and cognition

    Directory of Open Access Journals (Sweden)

    Martina eManns

    2011-02-01

    Full Text Available Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do converge on the activation of the G protein p21Ras. We used a transgenic mouse model (synRas mice expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  3. Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons

    Science.gov (United States)

    Kirby, Elizabeth D.; Friedman, Aaron R.; Covarrubias, David; Ying, Carl; Sun, Wayne G.; Goosens, Ki A.; Sapolsky, Robert M.; Kaufer, Daniela

    2014-01-01

    Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support of emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information impacts newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. PMID:21670733

  4. Autobiographical Memory Retrieval and Hippocampal Activation as a Function of Repetition and the Passage of Time

    Directory of Open Access Journals (Sweden)

    Lynn Nadel

    2007-01-01

    Full Text Available Multiple trace theory (MTT predicts that hippocampal memory traces expand and strengthen as a function of repeated memory retrievals. We tested this hypothesis utilizing fMRI, comparing the effect of memory retrieval versus the mere passage of time on hippocampal activation. While undergoing fMRI scanning, participants retrieved remote autobiographical memories that had been previously retrieved either one month earlier, two days earlier, or multiple times during the preceding month. Behavioral analyses revealed that the number and consistency of memory details retrieved increased with multiple retrievals but not with the passage of time. While all three retrieval conditions activated a similar set of brain regions normally associated with autobiographical memory retrieval including medial temporal lobe structures, hippocampal activation did not change as a function of either multiple retrievals or the passage of time. However, activation in other brain regions, including the precuneus, lateral prefrontal cortex, parietal cortex, lateral temporal lobe, and perirhinal cortex increased after multiple retrievals, but was not influenced by the passage of time. These results have important implications for existing theories of long-term memory consolidation.

  5. Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells.

    Science.gov (United States)

    Querobino, Samyr Machado; Carrettiero, Daniel Carneiro; Costa, Maricilia Silva; Alberto-Silva, Carlos

    2017-04-01

    In central nervous system cells, low molecular weight fractions (LMWF) from snake venoms can inhibit changes in mitochondrial membrane permeability, preventing the diffusion of cytochrome c to the cytoplasm, inhibiting the activation of pro-apoptotic factors. Here, we evaluated the neuroprotective activity of LMWF from Bothrops jararaca (Bj) snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells. SDS-PAGE, FT-IR and MALDI-TOF analysis of LMWF (<14 kDa) confirmed the absence of high-molecular-weight proteins in the fraction. LMWF did not present cytotoxicity in all concentrations and time tested by MTT assay. Neuroprotection was evaluated in cells pretreated with LMWF for 4 h prior to the addition of 50 μM H2O2 for 20 h. We demonstrated that LMWF reduced the argininosuccinate synthase (AsS) and superoxide dismutase (SOD1) expressions, suggesting that this fraction as an effective neuroprotective compound that could increase the hippocampal cells viability by attenuation of oxidative stress. In addition, LMWF protects against apoptosis induced by H2O2, reducing the expression of caspase-3 and caspase-8. Overall, this study opens new perspectives for the identification of new molecules for the development of drugs applied to the treatment of neurodegenerative diseases.

  6. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat.

    Science.gov (United States)

    Ego-Stengel, Valérie; Wilson, Matthew A

    2010-01-01

    The hippocampus plays a key role in the acquisition of new memories for places and events. Evidence suggests that the consolidation of these memories is enhanced during sleep. At the neuronal level, reactivation of awake experience in the hippocampus during sharp-wave ripple events, characteristic of slow-wave sleep, has been proposed as a neural mechanism for sleep-dependent memory consolidation. However, a causal relation between sleep reactivation and memory consolidation has not been established. Here we show that disrupting neuronal activity during ripple events impairs spatial learning. We trained rats daily in two identical spatial navigation tasks followed each by a 1-hour rest period. After one of the tasks, stimulation of hippocampal afferents selectively disrupted neuronal activity associated with ripple events without changing the sleep-wake structure. Rats learned the control task significantly faster than the task followed by rest stimulation, indicating that interfering with hippocampal processing during sleep led to decreased learning.

  7. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Block, Benjamin; Davis, Lizeth J; Rodesch, Christopher; Casper, T Charles; Juul, Sandra E; Kesner, Raymond P; Lane, Robert H

    2014-02-15

    Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.

  8. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Hofmann Frank

    2009-09-01

    Full Text Available Abstract Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs are also increased in amplitude and/or frequency during long-term potentiation (LTP, it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic

  9. Experience dependent development of coordinated hippocampal spatial activity representing the similarity of related locations

    Science.gov (United States)

    Singer, Annabelle C.; Karlsson, Mattias P.; Nathe, Ana R.; Carr, Margaret F.; Frank, Loren M.

    2010-01-01

    To learn we must identify and remember experiences uniquely but also generalize across experiences to extract common features. Hippocampal place cells can show similar firing patterns across locations, but the functional significance of this repetitive activity and the role of experience and learning in generating it are not understood. We therefore examined rat hippocampal place cell activity in the context of spatial tasks with multiple similar spatial trajectories. We found that, in environments with repeating elements, about half of the recorded place cells showed path equivalent firing where individual neurons are active in multiple similar locations. In contrast, place cells from animals performing a similar task in an environment with fewer similar elements were less likely to fire in a path equivalent manner. Moreover, in the environment with multiple repeating elements, path equivalence developed with experience in the task and increased path equivalence was associated with increased moment-by-moment correlations between pairs of path equivalent neurons. As a result, correlated firing among path equivalent neurons increased with experience. These findings suggest that coordinated hippocampal ensembles can encode generalizations across locations. Thus, path equivalent ensembles are well suited to encode similarities among repeating elements, providing a framework for associating specific behaviors with multiple locations, while neurons without this repetitive structure maintain a distinct population code. PMID:20810880

  10. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves.

    Science.gov (United States)

    Hassinger, T D; Atkinson, P B; Strecker, G J; Whalen, L R; Dudek, F E; Kossel, A H; Kater, S B

    1995-10-01

    Communication from astrocytes to neurons has recently been reported by two laboratories, but different mechanisms were though to underlie glial calcium wave activation of associated neurons. Neuronal calcium elevation by glia observed in the present report is similar to that reported previously, where an increase in neuronal calcium was demonstrated in response to glial stimulation. In the present study hippocampal neurons plated on a confluent glial monolayer displayed a transient increase in intracellular calcium following a short delay after the passage of a wave of increased calcium in underlying glia. Activated cells displayed action potentials in response to glial waves and showed antineurofilament immunoreactivity. Finally, the N-methyl-D-aspartate glutamate receptor antagonist DL-2-amino-5-phosphonovaleric acid and the non-NMDA glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione significantly reduced the responsiveness of neurons to glial calcium waves. Our results indicate that hippocampal neurons growing on hippocampal or cortical astrocytes respond to glial calcium waves with elevations in calcium and increased electrical activity. Furthermore, we show that in most cases this communication appears to be mediated by ionotropic glutamate receptor channels.

  11. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze

    Science.gov (United States)

    Hernández-Pérez, J. Jesús; Gutiérrez-Guzmán, Blanca E.; López-Vázquez, Miguel Á.; Olvera-Cortés, María E.

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  12. Impairment of cognitive function and reduced hippocampal cholinergic activity in a rat model of chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    Chunling Zhao; Yan Chen; Chunlai Zhang; Linya Lü; Qian Xu

    2011-01-01

    The present study established a rat model of chronic intermittent hypoxia (CIH) to simulate obstructive sleep apnea syndrome. CIH rats were evaluated for cognitive function using the Morris water maze, and neuronal pathology in the hippocampus was observed using hematoxylin-eosin staining. In addition, hippocampal choline acetyl transferase (ChAT) and nicotinic acetylcholine receptor (nAChR) expression was determined by immunohistochemistry. Our results revealed necrotic hippocampal neurons, decreased ChAT and nAChR expression, as well as cognitive impairment in CIH rats. These results suggest that hippocampal neuronal necrosis and decreased cholinergic activity may be involved in CIH-induced cognitive impairment in rats.

  13. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B;

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD...... ischemia in gerbils in vivo and oxygen-glucose deprivation in mouse hippocampal slice cultures....

  14. Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection.

    Science.gov (United States)

    Jellinck, P H; Lee, S J; McEwen, B S

    2001-10-01

    The rate of metabolism of the multifunctional neurosteroid, dehydroepiandrosterone (DHEA), by embryonic rat hippocampal cells maintained in culture was compared to that of 4-androstenedione (AD), the immediate precursor of estrone (E1). The experiments were carried out to assess the relative contribution of DHEA, its 7-hydroxylated metabolites and estrogen on their reported effects on memory and neuroprotection. The 3H-labeled steroids of high specific radioactivity were incubated for 1, 8, 24 and 48 h and the putative metabolites extracted from the culture medium with acetone-ethyl acetate before separation by TLC for radioassay. [3H]DHEA (2.0 ng/5x10(5) cells) yielded primarily the 7alpha- and 7beta-hydroxylated steroids in an almost equal ratio under conditions that resembled those used by others to study the protection of neurons by hippocampal astrocytes against excitatory amino acid-induced toxicity. The rate of conversion of DHEA to AD, and particularly to E1, was much lower. With [3H]AD as substrate, significant aromatization to estrogen occurred only after 24 h when most of [3H]DHEA had already been converted to its 7-hydroxylated products and the hydroxylase and aromatase systems would no longer be competing for the same coenzyme (NADPH). The hippocampal cells were still viable after 48 h of incubation with the steroids and were able to oxidize estradiol (E2) to E1 and reduce E1 to E2 and AD to testosterone (T). It is suggested that 7alpha- and 7beta-OHDHEA, the main metabolites formed in the rat hippocampus, might be responsible for some of the functions previously ascribed to estrogens in the brain and the reasons for this proposal are discussed.

  15. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    Science.gov (United States)

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  16. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels

    Institute of Scientific and Technical Information of China (English)

    Ye-Nan Chi; Xu Zhang; Jie Cai; Feng-Yu Liu; Guo-Gang Xing; You Wan

    2012-01-01

    Objective Formaldehyde at high concentrations is a contributor to air pollution.It is also an endogenous metabolic product in cells,and when beyond physiological concentrations,has pathological effects on neurons.Formaldehyde induces mis-folding and aggregation of neuronal tau protein,hippocampal neuronal apoptosis,cognitive impairment and loss of memory functions,as well as excitation of peripheral nociceptive neurons in cancer pain models.Intracellular calcium ([Ca2+]i) is an important intracellular messenger,and plays a key role in many pathological processes.The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane.Methods Using primary cultured hippocampal neurons as a model,changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy.Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i.(2R)-amino-5-phosphonopentanoate (AP5,25 μtmol/L,an NMDAR antagonist) and mibefradil (MIB,1 μtmol/L,a T-type Ca2+ channel blocker),given 5 min after formaldehyde perfusion,each partly inhibited the formaldehyde-induced increase of [Ca2+]i,and this inhibitory effect was reinforced by combined application of AP5 and MIB.When applied 3 min before formaldehyde perfusion,AP5 (even at 50 μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i,but MIB (1 μmol/L) significantly inhibited this increase by 70%.Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.

  17. Membrane voltage differently affects mIPSCs and current responses recorded from somatic excised patches in rat hippocampal cultures.

    Science.gov (United States)

    Pytel, Maria; Mozrzymas, Jerzy W

    2006-01-30

    Recent analysis of current responses to exogenous GABA applications recorded from excised patches indicated that membrane voltage affected the GABAA receptor gating mainly by altering desensitization and binding [M. Pytel, K. Mercik, J.W. Mozrzymas, Membrane voltage modulates the GABAA receptor gating in cultured rat hippocampal neurons, Neuropharmacology, in press]. In order investigate the impact of such voltage effect on GABAA receptors in conditions of synaptic transmission, mIPSCs and current responses to rapid GABA applications were recorded from the same culture of rat hippocampal neurons. We found that I-V relationship for mIPSCs amplitudes showed a clear outward rectification while for current responses an inward rectification was seen, except for very low GABA concentrations. A clear shift in amplitude cumulative distributions indicated that outward rectification resulted from the voltage effect on the majority of mIPSCs. Moreover, the decaying phase of mIPSCs was clearly slowed down at positive voltages and this effect was represented by a shift in cumulative distributions of weighted decaying time constants. In contrast, deactivation of current responses was only slightly affected by membrane depolarization. These data indicate that the mechanisms whereby the membrane voltage modulates synaptic and extrasynaptic receptors are qualitatively different but the mechanism underlying this difference is not clear.

  18. Protection from neuronal damage induced by combined oxygen and glucose deprivation in organotypic hippocampal cultures by glutamate receptor antagonists.

    Science.gov (United States)

    Strasser, U; Fischer, G

    1995-07-31

    Organotypic hippocampal cultures were exposed to defined periods (30 and 60 min) of combined oxygen and glucose deprivation, mimicking transient ischemic conditions. The involvement of different glutamate receptors in individual hippocampal subfields (CA1, CA3 and dentate gyrus) was studied using antagonists of NMDA (dizocilpine) and AMPA/kainate receptors (CNQX and GYKI 52466). Staining with the fluorescent dye propidium iodide (PI) allowed detection of damaged cells. For quantitative determination of neuronal damage, fluorescence intensity was measured after a 22 h recovery period and was related to maximal fluorescence intensity measured after fixation and PI restaining of the cultures at the end of the experiment. Dizocilpine (10 microM), CNQX (100 microM) and GYKI 52466 (100 microM) provided complete protection in CA1, CA3 and dentate gyrus following the moderate ischemic insult, when the antagonists were present permanently. This indicates that none of the ionotropic glutamate receptor subtypes dominated toxicity in the most sensitive subpopulation of neurons. When applied only during the recovery period protection with dizocilpine (10 microM) or CNQX (100 microM) was drastically reduced by about 60% in the most sensitive area (CA1), but only slightly by 15% in CA3. Therefore the onset of irreversible damage seems to occur earlier in CA1 than in CA3. Blockade of AMPA/kainate receptors by GYKI 52466 (100 microM) offered no neuroprotection if the compound was applied only during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons.

    Science.gov (United States)

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-05-03

    The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca(2+) event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly

  20. Short communication: hippocampal neuronal activity and imprinting in the behaving domestic chick.

    Science.gov (United States)

    Nicol, A U; Brown, M W; Horn, G

    1998-08-01

    The hippocampus of the chick projects to the intermediate and medial part of the hyperstriatum ventrale (IMHV) which stores information acquired through the learning process of imprinting. We have investigated whether the response properties of hippocampal neurons are similar to those of IMHV neurons. Chicks were imprinted by exposure, one group (n = 7) to a rotating red box (RB), the other (n = 5) to a rotating blue cylinder (BC). Four chicks were untrained. The following day, when the chicks were approximately 48 h old, neuronal activity was recorded in the left hippocampus. The proportion of neurons responding to the RB and that to the BC in untrained chicks were compared with the proportions in trained birds. (i) In RB-trained chicks both the proportion responding to the RB and that to the BC were significantly increased. (ii) In BC-trained chicks no significant effect on these proportions was found. Of the responsive neurons some were colour (red or blue) sensitive and others were shape (box or cylinder) sensitive; the proportions so responsive were not influenced by training condition. Certain neurons responded significantly differently when a stimulus was 0.5 m or 2 m from the chick (35%; d-sensitive); very few neurons were equivalently responsive to a stimulus at both distances (3%; d-invariant). These proportions were not significantly affected by training condition. Hippocampal responses are compared with those in the left IMHV. It is concluded that IMHV responses do not passively reflect those of hippocampal neurons.

  1. Musical Expertise Increases Top–Down Modulation Over Hippocampal Activation during Familiarity Decisions

    Directory of Open Access Journals (Sweden)

    Pierre Gagnepain

    2017-09-01

    Full Text Available The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions.

  2. Hippocampal neural activity reflects the economy of choices during goal-directed navigation.

    Science.gov (United States)

    Tryon, Valerie L; Penner, Marsha R; Heide, Shawn W; King, Hunter O; Larkin, Joshua; Mizumori, Sheri J Y

    2017-02-27

    Distinguishing spatial contexts is likely essential for the well-known role of the hippocampus in episodic memory. We studied whether types of hippocampal neural organization thought to underlie context discrimination are impacted by learned economic considerations of choice behavior. Hippocampal place cells and theta activity were recorded as rats performed a maze-based probability discounting task that involved choosing between a small certain reward or a large probabilistic reward. Different spatial distributions of place fields were observed in response to changes in probability, the outcome of the rats' choice, and whether or not rats were free to make that choice. The degree to which the reward location was represented by place cells scaled with the expected probability of rewards. Theta power increased around the goal location also in proportion to the expected probability of signaled rewards. Furthermore, theta power dynamically varied as specific econometric information was obtained "on the fly" during task performance. Such an economic perspective of memory processing by hippocampal place cells expands our view of the nature of context memories retrieved by hippocampus during adaptive navigation.

  3. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Eva M Wenzel

    Full Text Available To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE. ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.

  4. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  5. The potential of apolipoprotein E4 to act as a substrate for primary cultures of hippocampal neurons.

    Science.gov (United States)

    Kim, Kwang-Min; Vicenty, Janice; Palmore, G Tayhas R

    2013-04-01

    The E4 isoform of apolipoprotein (apoE4) is known to be a major risk factor for Alzheimer's Disease (AD). Previous in vitro studies have shown apoE4 to have a negative effect on neuronal outgrowth when incubated with lipids. The effect of apoE4 itself on the development of neurons from the central nervous system (CNS), however, has not been well characterized. Consequently, apoE4 alone has not been pursued as a substrate for neuronal cultures. In this study, the effect of surface-bound apoE4 on developmental features of rat hippocampal neurons was examined. We show that apoE4 substrates elicit significantly enhanced values in all developmental features at day 2 of culture when compared to laminin (LN) substrates, which is the current substrate-of-choice for neuronal cultures. Interestingly, the adhesion of hippocampal neurons was found to be significantly lower on LN substrates than on glass substrates, but the axon lengths on both substrates were similar. In addition, this study demonstrates that the adhesion- and growth-enhancing effects of apoE4 substrates are not mediated by heparan sulfate proteoglycans (HSPGs), proteins that have been indicated to function as receptors or co-receptors for apoE4. In the absence of lipids, apoE4 appears to use an unknown pathway for up-regulating neuronal adhesion and neurite outgrowth. Our results indicate that apoE4 is better than LN as a substrate for primary cultures of CNS neurons and should be considered in the design of tissue engineered CNS.

  6. Neuronal Activity Regulates Hippocampal miRNA Expression

    Science.gov (United States)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  7. Neuronal activity regulates hippocampal miRNA expression.

    Directory of Open Access Journals (Sweden)

    Stephen M Eacker

    Full Text Available Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control.

  8. Neuronal Activity Regulates Hippocampal miRNA Expression

    NARCIS (Netherlands)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a re

  9. Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures.

    Directory of Open Access Journals (Sweden)

    Iain Hartley

    Full Text Available While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.

  10. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  11. Cell surface area regulation in neurons in hippocampal slice cultures is resistant to oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Natalya Shulyakova

    2010-09-01

    Full Text Available Natalya Shulyakova1,2, Jamie Fong2, Diana Diec2, Adrian Nahirny1,2, Linda R Mills1,21Department of Physiology, University of Toronto, Toronto, ON, Canada, M5T 2S8; 2Toronto Western Hospital Research Institute, University Health Network, 11-430, 399 Bathurst St, Toronto, ON, Canada, M5T 2S8Background: Neurons swell in response to a variety of insults. The capacity to recover, ie, to shrink, is critical for neuronal function and survival. Studies on dissociated neurons have shown that during swelling and shrinking, neurons reorganize their plasma membrane; as neurons swell, in response to hypo-osmotic media, the bilayer area increases. Upon restoration of normo-osmotic media, neurons shrink, forming transient invaginations of the plasma membrane known as vacuole-like dilations (VLDs, to accommodate the decrease in the bilayer.Methods: Here we used confocal microscopy to monitor neuronal swelling and shrinking in the three-dimensional (3D environment of post-natal rat hippocampal slice cultures. To label neurons, we used biolistic transfection, to introduce enhanced green fluorescent protein (eGFP targeted to the cytoplasm; and a membrane targeted GFP (lckGFP, targeted to the plasma membrane.Results: Neurons in slice cultures swelled and shrank in response to hypo-osmotic to normo-osmotic media changes. Oxygen-glucose deprivation (OGD caused sustained neuronal swelling; after reperfusion, some neurons recovered but in others, VLD recovery was stalled. OGD did not impair neuronal capacity to recover from a subsequent osmotic challenge.Conclusion: These results suggest cell surface area regulation (SAR is an intrinsic property of neurons, and that neuronal capacity for SAR may play an important role in the brain’s response to ischemic insults.Keywords: neurons, swelling, ischemia, cell surface area, hippocampal slice culture

  12. Lead Can Inhibit NMDA-, K+-, QA/KA-Induced Increases in Intracellular Free Ca2+ in Cultured Rat Hippocampal Neurons

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To examine the effects of Pb2+ on N-methyl-D-aspartate (NMDA)-, K+- and quisqualate(QA)/kainite(KA)-induced increases in intracellular free calcium concentration ([Ca2+]i) in cultured fetal rat hippocampal neurons in order to explain the cognitive and learning deficits produced by this heavy metal. Methods Laser scanning confocal microscopy was used. Results The results clearly demonstrated that adding Pb2+ before or after NMDA/glycine stimulation selectively inhibited the stimulated increases in [Ca2+]i in a concentration-dependent manner. In contrast, Pb2+ treatment did not markedly affect increases in [Ca2+]i induced by an admixture of QA and KA. The minimal inhibitory effect of Pb2+ occurred at 1 μ mol/L, and more than seventy percent abolition of the NMDA-stimulated increase in [Ca2+]iwas observed at 100 μmol/L Pb2+. Evaluation of pb2+-induced increase in [Ca2+]i response to elevating extracellular concentrations of NMDA, glycine or calcium revealed that Pb2+ was a noncompetitive antagonist of both NMDA and glycine, and a competitive antagonist of Ca2+ at NMDA receptor channels. In addition, Pb2+ inhibited depolarization-evoked increases in [Ca2+]i mediated by K+ stimulation (30 μmol/L), indicating that Pb2+ also depressed the voltage-dependent calcium channels. Also, the results showed that Pb2+ appeared to be able to elevate the resting levels of [Ca2+]i in cultured neurons, implying a reason for pb2+-enhanced spontaneous release of several neurotransmitters reported in several previous studies. Conclusion Lead can inhibit NMDA-, K+-, QA/KA-inducod increases in intracellular [Ca2+]i in cultured hippocampal neurons.

  13. Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity.

    Science.gov (United States)

    Wójtowicz, Tomasz; Mozrzymas, Jerzy W

    2015-09-01

    Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from 200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity. © 2015 Wiley Periodicals, Inc.

  14. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity

    Directory of Open Access Journals (Sweden)

    Yves eKellner

    2014-03-01

    Full Text Available The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF, are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron’s maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.

  15. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-beta plaque formation in organotypic hippocampal slice cultures

    NARCIS (Netherlands)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-beta (A beta) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to A beta plaque formation. We

  16. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available We have recently shown that p38MAP kinase (p38MAPK stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.

  17. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    Science.gov (United States)

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  18. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength.

    Science.gov (United States)

    Zhang, Peng; Fu, Wing-Yu; Fu, Amy K Y; Ip, Nancy Y

    2015-10-27

    Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength.

  19. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices.

    Science.gov (United States)

    Ameri, A

    1997-08-01

    Alkaloids of different Aconitum species are employed as analgesics in traditional Chinese folk medicine. The present study was designed in order to investigate the effects of the structurally related alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampus. Experiments were performed as extracellular recordings of stimulus evoked population spikes in rat hippocampal slices. 6-Benzoylheteratisine (0.01-10 microM) inhibited the ortho- and antidromic population spike as well as the field EPSP in a concentration- and frequency-dependent manner. Heteratisine (1-100 microM) was a less potent inhibitor. It exerted a depression of the orthodromic spike, but failed to affect the antidromic population spike. 6-Benzoylheteratisine (10 microM) diminished epileptiform activity induced by bicuculline. In hippocampal neurons, this compound reduced the peak amplitude of the sodium current. There was no effect of heteratisine on the sodium current in concentrations up to 100 microM. It is concluded that the frequency-dependent action of 6-benzoylheteratisine suggests an inhibition of neuronal activity which underlies epileptiform burst discharges. The predominant effect is a suppression of neuronal activity due to a blockade of sodium channels.

  20. Excitotoxic insult results in a long-lasting activation of CaMKIIα and mitochondrial damage in living hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Nikolai Otmakhov

    Full Text Available Over-activation of excitatory NMDA receptors and the resulting Ca2+ overload is the main cause of neuronal toxicity during stroke. CaMKII becomes misregulated during such events. Biochemical studies show either a dramatic loss of CaMKII activity or its persistent autonomous activation after stroke, with both of these processes being implicated in cell toxicity. To complement the biochemical data, we monitored CaMKII activation in living hippocampal neurons in slice cultures using high spatial/temporal resolution two-photon imaging of the CaMKIIα FRET sensor, Camui. CaMKII activation state was estimated by measuring Camui fluorescence lifetime. Short NMDA insult resulted in Camui activation followed by a redistribution of its protein localization: an increase in spines, a decrease in dendritic shafts, and concentration into numerous clusters in the cell soma. Camui activation was either persistent (> 1-3 hours or transient (~20 min and, in general, correlated with its protein redistribution. After longer NMDA insult, however, Camui redistribution persisted longer than its activation, suggesting distinct regulation/phases of these processes. Mutational and pharmacological analysis suggested that persistent Camui activation was due to prolonged Ca2+ elevation, with little impact of autonomous states produced by T286 autophosphorylation and/or by C280/M281 oxidation. Cell injury was monitored using expressible mitochondrial marker mito-dsRed. Shortly after Camui activation and clustering, NMDA treatment resulted in mitochondrial swelling, with persistence of the swelling temporarily linked to the persistence of Camui activation. The results suggest that in living neurons excitotoxic insult produces long-lasting Ca2+-dependent active state of CaMKII temporarily linked to cell injury. CaMKII function, however, is to be restricted due to strong clustering. The study provides the first characterization of CaMKII activation dynamics in living neurons

  1. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  2. Network dynamics of cultured hippocampal neurons in a multi-electrode array

    Science.gov (United States)

    Taguchi, Takahisa; Kudoh, Suguru N.

    2005-02-01

    The neurons in dissociation culture autonomously re-organized their functional neuronal networks, after the process for elongating neurites and establishing synaptic connections. The spatio-temporal patterns of activity in the networks might be a reflection of functional neuron assemblies. The functional connections were dynamically modified by synaptic potentiation and the process may be required for reorganization of the functional group of neurons. Such neuron assemblies are critical for information processing in brain. To visualize the functional connections between neurons, we have analyzed the autonomous activity of synaptically induced action potentials in the living neuronal networks on a multi-electrode array, using "connection map analysis" that we developed for this purpose. Moreover, we designed aan original wide area covering electrode array and succeeded in recording spontaneous action potentials from wider area than commercial multi electrode arrays.

  3. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges.

    Science.gov (United States)

    Ellender, Tommas J; Raimondo, Joseph V; Irkle, Agnese; Lamsa, Karri P; Akerman, Colin J

    2014-11-12

    Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl(-)) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV(+)) interneurons. Channelrhodopsin-2-mediated activation of PV(+) interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV(+) interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl(-) accumulation subverts the actions of PV(+) interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures.

  4. RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis.

    Science.gov (United States)

    Mir, Sajad; Cai, Weikang; Andres, Douglas A

    2017-02-10

    Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation.

  5. Influence of Electroacupuncture on COX Activity of Hippocampal Mitochondria in Senescence- accelerated Mouse Prone 8 Mice

    Institute of Scientific and Technical Information of China (English)

    Peng Jing; Zeng Fang; He Yu-heng; Tang Yong; Yin Hai-yan; Yu Shu-guang

    2014-01-01

    Objective: To observe the effect of electroacupuncture (EA) on cytochrome c oxidase (COX)activity of hippocampal mitochondria in senescence-accelerated mouse prone 8 (SAMP8) mice, and to explore the EA mechanism on Alzheimer disease (AD) in improving energy metabolic disorder. Methods: Twelve SAMP8 mice were randomly divided into a model group and an EA group, with six in each group. Six senescence-accelerated mouse resistance 1 (SAMR1) mice were prepared as blank group. Mice in the EA group received EA on Baihui (GV 20) and Yongquan (KI 1), once a day for 7 d as a course, altogether 3 courses with one day intervalbetween two courses. Mice in the model group and the blank group were manipulated and fixed as those in the EA group. After interventions, Morris water maze was employed to test spatial learning and memory ability to evaluate EA effect; spectrophotometry was used to detect the activity of hippocampal mitochondria COX. Results: Compared with the blank group, mean escape latenciesof the EA group and model group were prolonged significantly in Morris water maze tests (P Conclusion: It’s plausible that EA improves AD learning and memory ability by increasing mitochondria COX activity, protecting the structure and function, and improving energy metabolism.

  6. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  7. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation. PMID:26881110

  8. Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures.

    Science.gov (United States)

    Pringle, A K; Sundstrom, L E; Wilde, G J; Williams, L R; Iannotti, F

    1996-06-28

    We have investigated the neuroprotective actions of neurotrophins in a model of ischaemia using slice cultures. Ischaemia was induced in organotypic hippocampal cultures by simultaneous oxygen and glucose deprivation. Cell death was assessed 24 h later by propidium iodide fluorescence. Pre- but not post-ischaemic addition of brain-derived neurotrophic factor (BDNF) produced a concentration-dependent reduction in neuronal damage. Neurotrophin-3 was not neuroprotective. These data suggest that BDNF may form part of an endogenous neuroprotective mechanism.

  9. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons.

    Science.gov (United States)

    Bickler, P E; Fahlman, C S

    2004-01-01

    Although large increases in neuronal intracellular calcium concentrations ([Ca(2+)](i)) are lethal, moderate increases in [Ca(2+)](i) of 50-200 nM may induce immediate or long-term tolerance of ischemia or other stresses. In neurons in rat hippocampal slice cultures, we determined the relationship between [Ca(2+)](i), cell death, and Ca(2+)-dependent neuroprotective signals before and after a 45 min period of oxygen and glucose deprivation (OGD). Thirty minutes before OGD, [Ca(2+)](i) was increased in CA1 neurons by 40-200 nM with 1 nM-1 microM of a Ca(2+)-selective ionophore (calcimycin or ionomycin-"Ca(2+) preconditioning"). Ca(2+) preconditioning greatly reduced cell death in CA1, CA3 and dentate during the following 7 days, even though [Ca(2+)](i) was similar (approximately 2 microM) in preconditioned and control neurons 1 h after the OGD. When pre-OGD [Ca(2+)](i) was lowered to 25 nM (10 nM ionophore in Ca(2+)-free medium) or increased to 8 microM (10 microM ionophore), more than 90% of neurons died. Increased levels of the anti-apoptotic protein protein kinase B (Akt) and the MAP kinase ERK (p42/44) were present in preconditioned slices after OGD. Reducing Ca(2+) influx, inhibiting calmodulin, and preventing Akt or MAP kinase p42/44 upregulation prevented Ca(2+) preconditioning, supporting a specific role for Ca(2+) in the neuroprotective process. Further, in continuously oxygenated cultured hippocampal/cortical neurons, preconditioning for 30 min with 10 nM ionomycin reduced cell death following a 4 microM increase in [Ca(2+)](i) elicited by 1 microM ionomycin. Thus, a zone of moderately increased [Ca(2+)](i) before a potentially lethal insult promotes cell survival, uncoupling subsequent large increases in [Ca(2+)](i) from initiating cell death processes.

  10. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    Science.gov (United States)

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  11. Cultural Isolation and Cultural Integration: A Communicative Language Activity.

    Science.gov (United States)

    Courtney, John

    2002-01-01

    Provides a theoretical grounding to an activity that follows a communicative language teaching approach to teaching English as a Second or Foreign Language. The activity, cultural isolation and cultural integration, motivates learners to relate their experiences and feelings in regard to diverse cultures. (Author/VWL)

  12. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Science.gov (United States)

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M.; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders. PMID:24782720

  13. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Directory of Open Access Journals (Sweden)

    Elena eCid

    2014-04-01

    Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  14. The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons.

    Science.gov (United States)

    Capela, João Paulo; da Costa Araújo, Silvana; Costa, Vera Marisa; Ruscher, Karsten; Fernandes, Eduarda; Bastos, Maria de Lourdes; Dirnagl, Ulrich; Meisel, Andreas; Carvalho, Félix

    2013-01-01

    3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) are hallucinogenic amphetamines with addictive properties. The hippocampus is involved in learning and memory and seems particularly vulnerable to amphetamine's neurotoxicity. We evaluated the neurotoxicity of DOI and MDMA in primary neuronal cultures of hippocampus obtained from Wistar rat embryos (E-17 to E-19). Mature neurons after 10 days in culture were exposed for 24 or 48 h either to MDMA (100-800 μM) or DOI (10-100 μM). Both the lactate dehydrogenase (LDH) release and the tetrazolium-based (MTT) assays revealed a concentration- and time-dependent neuronal death and mitochondrial dysfunction after exposure to both drugs. Both drugs promoted a significant increase in caspase-8 and caspase-3 activities. At concentrations that produced similar levels of neuronal death, DOI promoted a higher increase in the activity of both caspases than MDMA. In the mitochondrial fraction of neurons exposed 24h to DOI or MDMA, we found a significant increase in the 67 kDa band of apoptosis inducing factor (AIF) by Western blot. Moreover, 24h exposure to DOI promoted an increase in cytochrome c in the cytoplasmatic fraction of neurons. Pre-treatment with an antibody raised against the 5-HT(2A)-receptor (an irreversible antagonist) greatly attenuated neuronal death promoted by 48 h exposure to DOI or MDMA. In conclusion, hallucinogenic amphetamines promoted programmed neuronal death involving both the mitochondria machinery and the extrinsic cell death key regulators. Death was dependent, at least in part, on the stimulation of the 5-HT(2A)-receptors.

  15. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole.

    Science.gov (United States)

    Erickson, Jeffrey D

    2017-07-01

    Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K(+) -stimulated MeAIB transport displays an affinity (Km ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca(2+) , and is blocked by inhibition of voltage-gated Ca(2+) channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca(2+) and voltage-gated calcium channels, but is also blocked by the Na(+) channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca(2+) , but on Na(+) ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K(+) -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805. © 2017

  16. Hippocampal expression of apoptotic protease activating factor-1 following diffuse axonal injury under mild hypothermia

    Institute of Scientific and Technical Information of China (English)

    Peng Yang; Limin Zhang; Yunhe Zhang; Xifeng Zou; Qunxi Li; Yun Li; Jun Zhu; Jianmin Li; Aijun Fu; Qingjun Liu; Tong Chen; Zelin Sun; Zhiyong Zhang

    2011-01-01

    The influence of mild hypothermia on neural cell apoptosis remains poorly understood. Therefore, the present study established rat models of diffuse axonal injury (DAI) at 33 °C. Morris water maze results demonstrated significantly better learning and memory functions in DAI rats with hypothermia compared with DAI rats with normothermia. Expression of apoptotic protease activating factor-1 in the hippocampal CA1 region was significantly lower in the DAI hypothermia group compared with the DAI normothermia group. Expression of apoptotic protease activating factor-1 positively correlated with latency, but negatively correlated with platform location times and time of swimming in the quadrant area. Results suggested that post-traumatic mild hypothermia in a rat model of DAI could provide cerebral protection by attenuating expression of apoptotic protease activating factor-1.

  17. 3-Nitropropionic acid neurotoxicity in hippocampal slice cultures: developmental and regional vulnerability and dependency on glucose

    DEFF Research Database (Denmark)

    Noer, Helle; Kristensen, Bjarne W; Noraberg, Jens

    2002-01-01

    : CA1 > CA3 > fascia dentata. In low glucose much lower concentrations of 3-NP (25 microM) triggered neurotoxicity. One-week-old cultures were less susceptible to 3-NP toxicity than 3-week-old cultures, but the dentate granule cells were relatively more affected in the immature cultures. We found...

  18. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  19. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  20. Cav 1.3 channels play a crucial role in the formation of paroxysmal depolarization shifts in cultured hippocampal neurons.

    Science.gov (United States)

    Stiglbauer, Victoria; Hotka, Matej; Ruiß, Manuel; Hilber, Karlheinz; Boehm, Stefan; Kubista, Helmut

    2017-05-01

    An increase of neuronal Cav 1.3 L-type calcium channels (LTCCs) has been observed in various animal models of epilepsy. However, LTCC inhibitors failed in clinical trials of epileptic treatment. There is compelling evidence that paroxysmal depolarization shifts (PDSs) involve Ca(2+) influx through LTCCs. PDSs represent a hallmark of epileptiform activity. In recent years, a probable epileptogenic role for PDSs has been proposed. However, the implication of the two neuronal LTCC isoforms, Cav 1.2 and Cav 1.3, in PDSs remained unknown. Moreover, Ca(2+) -dependent nonspecific cation (CAN) channels have also been suspected to contribute to PDSs. Nevertheless, direct experimental support of an important role of CAN channel activation in PDS formation is still lacking. Primary neuronal networks derived from dissociated hippocampal neurons were generated from mice expressing a dihydropyridine-insensitive Cav 1.2 mutant (Cav 1.2DHP(-/-) mice) or from Cav 1.3(-/-) knockout mice. To investigate the role of Cav 1.2 and Cav 1.3, perforated patch-clamp recordings were made of epileptiform activity, which was elicited using either bicuculline or caffeine. LTCC activity was modulated using the dihydropyridines Bay K 8644 (agonist) and isradipine (antagonist). Distinct PDS could be elicited upon LTCC potentiation in Cav 1.2DHP(-/-) neurons but not in Cav 1.3(-/-) neurons. In contrast, when bicuculline led to long-lasting, seizure-like discharge events rather than PDS, these were prolonged in Cav 1.3(-/-) neurons but not in Cav 1.2DHP(-/-) neurons. Because only the Cav 1.2 isoform is functionally coupled to CAN channels in primary hippocampal networks, PDS formation does not require CAN channel activity. Our data suggest that the LTCC requirement of PDS relates primarily to Cav 1.3 channels rather than to Cav 1.2 channels and CAN channels in hippocampal neurons. Hence, Cav 1.3 may represent a new therapeutic target for suppression of PDS development. The proposed epileptogenic role

  1. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  2. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Raul Enrique Guzman

    2014-05-01

    Full Text Available ClC-3 is a member of the CLC family of anion channels and transporters that localizes to early and late endosomes as well as to synaptic vesicles. Its genetic disruption in mouse models results in pronounced hippocampal and retinal neurodegeneration, suggesting that ClC-3 might be important for normal excitatory and/or inhibitory neurotransmission in central neurons. To characterize the role of ClC-3 in glutamate accumulation in synaptic vesicles we compared glutamatergic synaptic transmission in cultured hippocampal neurons from WT and Clcn3-/- mice. In Clcn3-/- neurons the amplitude and frequency of miniature as well as the amplitudes of action-potential evoked EPSCs were significantly increased as compared to WT neurons. The low-affinity competitive AMPA receptor antagonist -DGG reduced the quantal size of synaptic events more effectively in WT than in Clcn3-/- neurons, whereas no difference was observed for the high-affinity competitive non-NMDA antagonist NBQX. Paired pulse ratios of evoked EPSCs were significantly reduced, whereas the size of the readily releasable pool was not affected by the genetic ablation of ClC-3. Electron microscopy revealed increased volumes of synaptic vesicles in hippocampi of Clcn3-/- mice. Our findings demonstrate that ClC-3 controls fast excitatory synaptic transmission by regulating the amount of neurotransmitter as well as the release probability of synaptic vesicles. These results provide novel insights into the role of ClC-3 in synaptic transmission and identify excessive glutamate release as a likely basis of neurodegeneration in Clcn3-/-.

  3. Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Josef H. L. P. Sadowski

    2011-01-01

    Full Text Available Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.

  4. Profiles of hippocampal neuron activity during auditory discrimination cognition in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    GAO Jie; LUO Jun; XIONG Ying; YANG Ce; WANG Yong-tang; SUI Jian-feng

    2007-01-01

    Objective: To clarify the firing characteristics of the hippocampal pyramidal cells and interneurons in the auditory discrimination cognition. Methods: Thirteen guinea pigs were studied by the paired (active cognition group, n=10) or unpaired (passive cognition group, n=3) training with 1 kHz (CS+)and 500 Hz tones (CS-) and the air puff (US) applied 250 ms after the CS+ onset. Results: In active group, 32 pyramidal cells showed exciting response to the CS+ tone, 16 cells inhibited response and 4 cells revealed no response to the high frequency tone and18 interneurons almost unchanged. In passive group, the pyramidal cells responded to the tone casually and 10 out of the 13 interneurons remained invariably. Conclusion: The result suggests that the pyramidal cells play a major role in coding auditory information by the networks, and the interneuons may modulate it via forward and feedback.

  5. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism.

    Science.gov (United States)

    Ferguson, C; Kern, M; Audesirk, G

    2000-06-01

    Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux

  6. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons.

    Science.gov (United States)

    Lima, Pedro A; Marrion, Neil V

    2007-05-30

    The firing of a train of action potentials in hippocampal pyramidal neurons is terminated by an afterhyperpolarization (AHP) that displays two main components; the medium AHP (I(mAHP)), lasting a few hundred milliseconds and the slow AHP (I(sAHP)), that has a duration of several seconds. It is unclear how much of I(mAHP) is dependent on the entry of calcium ions (Ca(2+)), whereas it is accepted that I(sAHP) is caused by activation of Ca(2+)-activated potassium channels. There has been controversy regarding the subcellular localization and mechanism of activation of these channels. Whole-cell recordings from CA1 neurons in the hippocampal slice preparation showed that inhibition of L-type, but not N-, P/Q-, T- and R-type Ca(2+) channels, reduced both I(mAHP) and I(sAHP). Inhibition of both AHP components by L-type Ca(2+) channel antagonists was not complete, with I(sAHP) being significantly more sensitive than I(mAHP). Somatic extracellular ionophoresis of BAPTA during I(sAHP) caused a transient inhibition, but had no effect on I(mAHP). Cell-attached patch recordings from the soma of CA1 neurons within a slice displayed channels that produced an ensemble waveform reminiscent of I(sAHP) when the patch was subjected to a train of action potential waveforms. The channels were Ca(2+)-activated, exhibited a limiting slope conductance of 19 pS and were not observed in dendritic membrane patches. These data demonstrate that the I(sAHP) is somatic in origin and arises from continued Ca(2+) entry through functionally co-localized L-type channels.

  7. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  8. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  9. Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α.

    Science.gov (United States)

    Pereira, Luciana M; Bastos, Cristiane P; de Souza, Jéssica M; Ribeiro, Fabíola M; Pereira, Grace S

    2014-10-01

    In rodents, 17β-estradiol (E2) enhances hippocampal function and improves performance in several memory tasks. Regarding the object recognition paradigm, E2 commonly act as a cognitive enhancer. However, the types of estrogen receptor (ER) involved, as well as the underlying molecular mechanisms are still under investigation. In the present study, we asked whether E2 enhances object recognition memory by activating ERα and/or ERβ in the hippocampus of Swiss female mice. First, we showed that immediately post-training intraperitoneal (i.p.) injection of E2 (0.2 mg/kg) allowed object recognition memory to persist 48 h in ovariectomized (OVX) Swiss female mice. This result indicates that Swiss female mice are sensitive to the promnesic effects of E2 and is in accordance with other studies, which used C57/BL6 female mice. To verify if the activation of hippocampal ERα or ERβ would be sufficient to improve object memory, we used PPT and DPN, which are selective ERα and ERβ agonists, respectively. We found that PPT, but not DPN, improved object memory in Swiss female mice. However, DPN was able to improve memory in C57/BL6 female mice, which is in accordance with other studies. Next, we tested if the E2 effect on improving object memory depends on ER activation in the hippocampus. Thus, we tested if the infusion of intra-hippocampal TPBM and PHTPP, selective antagonists of ERα and ERβ, respectively, would block the memory enhancement effect of E2. Our results showed that TPBM, but not PHTPP, blunted the promnesic effect of E2, strongly suggesting that in Swiss female mice, the ERα and not the ERβ is the receptor involved in the promnesic effect of E2. It was already demonstrated that E2, as well as PPT and DPN, increase the phospho-ERK2 level in the dorsal hippocampus of C57/BL6 mice. Here we observed that PPT increased phospho-ERK1, while DPN decreased phospho-ERK2 in the dorsal hippocampus of Swiss female mice subjected to the object recognition sample phase

  10. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.

    Science.gov (United States)

    Moradi-Chameh, H; Peng, J; Wu, C; Zhang, L

    2014-09-26

    Pyramidal neurons in the hippocampal CA3 area interconnect intensively via recurrent axonal collaterals, and such CA3-to-CA3 recurrent circuitry plays important roles in the generation of hippocampal network activities. In particular, the CA3 circuitry is able to generate spontaneous sharp waves (SPWs) when examined in vitro. These in vitro SPWs are thought to result from the network activity of GABAergic inhibitory interneurons as SPW-correlating intracellular activities are featured with strong IPSPs in pyramidal neurons and EPSPs or spikes in GABAergic interneurons. In view of accumulating evidence indicating a decrease in subgroups of hippocampal GABAergic interneurons in aged animals, we test the hypothesis that the intracellular activities related to in vitro SPWs are altered in CA3 pyramidal neurons of aged mice. Hippocampal slices were prepared from adult and aged C57 black mice (ages 3-6 and 24-28months respectively). Population and single-cell activities were examined via extracellular and whole-cell patch-clamp recordings. CA3 SPW frequencies were not significantly different between the slices of adult and aged mice but SPW-correlating intracellular activities featured weaker IPSC components in aged CA3 pyramidal neurons compared to adult neurons. It was unlikely that this latter phenomenon was due to general impairments of GABAergic synapses in the aged CA3 circuitry as evoked IPSC responses and pharmacologically isolated IPSCs were observed in aged CA3 pyramidal neurons. In addition, aged CA3 pyramidal neurons displayed more positive resting potentials and had a higher propensity of burst firing than adult neurons. We postulate that alterations of GABAergic network activity may explain the reduced IPCS contributions to in vitro SPWs in aged CA3 pyramidal neurons. Overall, our present observations are supportive of the notion that excitability of hippocampal CA3 circuitry is increased in aged mice.

  11. Layer selective presynaptic modulation of excitatory inputs to hippocampal CA1 by μ-opioid receptor activation

    OpenAIRE

    McQuiston, A. Rory

    2007-01-01

    Chronic and acute activation of μ-opioid receptors (MOR) in hippocampal CA1 disrupts rhythmic activity, alters activity-dependent synaptic plasticity and impairs spatial memory formation. In CA1, MORs act by hyperpolarizing inhibitory interneurons and suppressing inhibitory synaptic transmission. MOR modulation of inhibitory synaptic function translates into an increase in excitatory activity in all layers of CA1. However, the exact anatomical sites for MOR actions are not completely known. T...

  12. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  13. Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation.

    Science.gov (United States)

    Cheng, Qing; Yakel, Jerrel L

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission.

  14. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.

    Science.gov (United States)

    Dubreucq, Sarah; Koehl, Muriel; Abrous, Djoher N; Marsicano, Giovanni; Chaouloff, Francis

    2010-07-01

    Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus.

  15. Hippocampal and Cerebellar Single-Unit Activity During Delay and Trace Eyeblink Conditioning in the Rat

    Science.gov (United States)

    Green, John T.; Arenos, Jeremy D.

    2007-01-01

    In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the

  16. Social observation enhances cross-environment activation of hippocampal place cell patterns.

    Science.gov (United States)

    Mou, Xiang; Ji, Daoyun

    2016-10-03

    Humans and animals frequently learn through observing or interacting with others. The local enhancement theory proposes that presence of social subjects in an environment facilitates other subjects' understanding of the environment. To explore the neural basis of this theory, we examined hippocampal place cells, which represent spatial information, in rats as they stayed in a small box while a demonstrator rat running on a separate, nearby linear track, and as they ran on the same track themselves. We found that place cell firing sequences during self-running on the track also appeared in the box. This cross-environment activation occurred even prior to any self-running experience on the track and was absent without a demonstrator. Our data thus suggest that social observation can facilitate the observer's spatial representation of an environment without actual self-exploration. This finding may contribute to neural mechanisms of local enhancement.

  17. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone.

    Science.gov (United States)

    Holderith, Noemi; Lorincz, Andrea; Katona, Gergely; Rózsa, Balázs; Kulik, Akos; Watanabe, Masahiko; Nusser, Zoltan

    2012-06-10

    Cortical synapses have structural, molecular and functional heterogeneity; our knowledge regarding the relationship between their ultrastructural and functional parameters is still fragmented. Here we asked how the neurotransmitter release probability and presynaptic [Ca(2+)] transients relate to the ultrastructure of rat hippocampal glutamatergic axon terminals. Two-photon Ca(2+) imaging-derived optical quantal analysis and correlated electron microscopic reconstructions revealed a tight correlation between the release probability and the active-zone area. Peak amplitude of [Ca(2+)] transients in single boutons also positively correlated with the active-zone area. Freeze-fracture immunogold labeling revealed that the voltage-gated calcium channel subunit Cav2.1 and the presynaptic protein Rim1/2 are confined to the active zone and their numbers scale linearly with the active-zone area. Gold particles labeling Cav2.1 were nonrandomly distributed in the active zones. Our results demonstrate that the numbers of several active-zone proteins, including presynaptic calcium channels, as well as the number of docked vesicles and the release probability, scale linearly with the active-zone area.

  18. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Keifer P Walsh

    Full Text Available Neurites of neurons under acute or chronic stress form bundles of filaments (rods containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors. In contrast, slow rod formation (50% of maximum response in ∼6 h occurs in a subpopulation (∼20% of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6 also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.

  19. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  20. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead.

    Science.gov (United States)

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-07-01

    We examined the effects of exposure to inorganic lead (Pb2+) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 microM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb2+ exposure (100 nM to 100 microM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb2+ exposure (100 nM to 10 microM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb2+ at concentrations up to 100 microM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb2+ and many other stresses, including heat, nitric oxide, H2O2, and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb2+ induces HO-1 synthesis in astrocytes.

  1. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P

    2001-01-01

    ) rats were grown for 4-8 weeks on the perforated silicon chips with silicon nitride surfaces and 40 microm sized holes and compared with corresponding tissue slices grown on conventional semiporous membranes. In terms of preservation of the basic cellular and connective organization, as visualized...... around the upper recording part of the 47-microm-high platinum-tip electrodes. Slice cultures grown on a separate set of chips with platinum instead of silicon nitride surfaces also displayed normal MAP2 and GFAP immunostaining. The width of the GFAP-rich zone (glia limitans) at the bottom surface...... of the slice cultures was the same ( approximately 20 microm) in cultures grown on chips with silicon nitride and platinum surfaces and on conventional insert membranes. The slice cultures grown on chips maintained a normal, subfield differentiated susceptibility to the glutamate receptor agonist N...

  2. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  3. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    Science.gov (United States)

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration

    NARCIS (Netherlands)

    Kamp, A.; Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Boeijinga, P.; Aitink, W.

    1984-01-01

    In cat the relation between various behaviours and the spectral properties of the hippocampal EEG was investigated. Both EEG and behaviour were quantified and results were evaluated statistically. Significant relationships were found between the properties of the hippocampal EEG and motor acts (walk

  5. Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-acetylcholine receptor-mediated mechanisms.

    Science.gov (United States)

    Audesirk, T; Cabell, L

    1999-08-01

    We investigated the effects of nicotine and its metabolic byproduct cotinine on survival, differentiation and intracellular Ca2+ levels of cultured E18 rat hippocampal neurons. We used a range of concentrations from 1 nM to 10 microM, most of which are within the likely range of human fetal exposure from maternal smoking. Nicotine did not influence neuron survival or neurite production. However, at all concentrations tested, nicotine significantly increased branching of both axons and dendrites, an effect which was not reversed by co-culturing with alpha-bungarotoxin, which blocks the nicotinic acetylcholine receptors that predominate in hippocampal cultures (Alkondon and Albuquerque, 1993; Barrantes et al., 1995b). Cotinine at 100 nM and 1 microM significantly reduced neuron survival and neurite production of surviving neurons, but did not significantly alter axon or dendrite branching. These membrane-permeable compounds may work synergistically in the developing embryo to impair the survival and differentiation of hippocampal neurons via intracellular mechanisms.

  6. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.

    Science.gov (United States)

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-03-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pH(i), [Ca(2+)](i) or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices--instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.

  7. Popular Culture, Cultural Resistance, and Anticonsumption Activism: An Exploration of Culture Jamming as Critical Adult Education

    Science.gov (United States)

    Sandlin, Jennifer A.

    2007-01-01

    This chapter examines popular culture as a site of cultural resistance. Specifically, it explores how "culture jamming," a cultural-resistance activity, can be a form of adult education. It examines adult education and learning as it intersects with both consumerism and popular culture. Focus is placed on a growing social movement of individuals…

  8. Popular Culture, Cultural Resistance, and Anticonsumption Activism: An Exploration of Culture Jamming as Critical Adult Education

    Science.gov (United States)

    Sandlin, Jennifer A.

    2007-01-01

    This chapter examines popular culture as a site of cultural resistance. Specifically, it explores how "culture jamming," a cultural-resistance activity, can be a form of adult education. It examines adult education and learning as it intersects with both consumerism and popular culture. Focus is placed on a growing social movement of individuals…

  9. Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Bae Hwan Lee

    2013-09-01

    Full Text Available Vitamin E, such as alpha-tocopherol (ATPH and alpha-tocotrienol (ATTN, is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM or ATTN (100 µM significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF fluorescence and levels of thiobarbiturate reactive substances (TBARS were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  10. Protective Effects of Testosterone on Presynaptic Terminals against Oligomeric β-Amyloid Peptide in Primary Culture of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Chi-Fai Lau

    2014-01-01

    Full Text Available Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer’s disease (AD, there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ, but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.

  11. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons.

    Science.gov (United States)

    Bartelt-Kirbach, Britta; Golenhofen, Nikola

    2014-01-01

    Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.

  12. Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons.

    Science.gov (United States)

    Wei, S; Ong, W Y; Thwin, M M; Fong, C W; Farooqui, A A; Gopalakrishnakone, P; Hong, W

    2003-01-01

    Recent evidence shows that secretory phospholipase A2 (sPLA2) may play a role in membrane fusion and fission, and may thus affect neurotransmission. The present study therefore aimed to elucidate the effects of sPLA2 on vesicle exocytosis. External application of group IIA sPLA2 (purified crotoxin subunit B or purified human synovial sPLA2) caused an immediate increase in exocytosis and neurotransmitter release in pheochromocytoma-12 (PC12) cells, detected by carbon fiber electrodes placed near the cells, or by changes in membrane capacitance of the cells. EGTA and a specific inhibitor of sPLA2 activity, 12-epi-scalaradial, abolished the increase in neurotransmitter release, indicating that the effect of sPLA2 was dependent on calcium and sPLA2 enzymatic activity. A similar increase in neurotransmitter release was also observed in hippocampal neurons after external application of sPLA2, as detected by changes in membrane capacitance of the neurons. In contrast to external application, internal application of sPLA2 to PC12 cells and neurons produced blockade of neurotransmitter release. Our recent studies showed high levels of sPLA2 activity in the normal rat hippocampus, medulla oblongata and cerebral neocortex. The sPLA2 activity in the hippocampus was significantly increased, after kainate-induced neuronal injury. The observed effects of sPLA2 on neurotransmitter release in this study may therefore have a physiological, as well as a pathological role.

  13. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation.

    Science.gov (United States)

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J

    2003-01-01

    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  14. Aged garlic extract and its components protect cultured rat hippocampal neurons from amyloid β—protein—in—duced neuronal death

    Institute of Scientific and Technical Information of China (English)

    ItoY; KosuY

    2002-01-01

    Aged garlic extract and its components such as S-allyl-L-cysteine (SAC) and sllixin have been shown to possess various biological effects including neurotrophic activity.We characterized the neuronal death induced by amyloid β-protein (Aβ),4-hydroxynoenal (HNE),tunicamycin(TM),and trophic factor-deprivation (TFD),and ivestigated whether these garlic compounds could prevent this in cultured PC12 cells and rat hippocampal neurons.Treatment with SAC protected these cells against Aβ- and TM-induced neuronal death.SAC also attenuated the processing of procaspase-12 induced by Aβ25-35 or TM.In contrast,allixin and its analogue,DHP,afforded no protection against Aβ-induced cell death.SAC afforded no protection against HNE- and TFD-induced cell death,which has been shown to be mediated by caspase-3 dependent pathway.These results suggest that SAC protect against the neuronal cell death that is triggered by ER dysfunction.

  15. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture.

    Science.gov (United States)

    Evans, M S; Collings, M A; Brewer, G J

    1998-01-31

    Methods were recently developed for culturing neurons from adult rat hippocampus using the serum-free medium Neurobasal with B27 supplement. To determine whether adult cultured neurons have normal electrical properties, we studied cultures from rats of three age groups: (1) embryonic; (2) 10-11 months old and (3) 35-36 months old. Neurons had a polarized morphology with a large branching apical dendrite and small basal dendrites. Mean resting potentials were similar in the three age groups. All neurons had nonlinear current-voltage relationships, indicating the presence of voltage-sensitive ion channels. Most neurons had a voltage-sensitive inward current followed by a sustained voltage-sensitive outward current. Tetrodotoxin blocked the inward current, which is likely to be a sodium current. The sustained outward current, which is likely to be a potassium current, reversed at -71 mV. Most neurons exhibited anomalous rectification. Calcium currents were present in both embryonic and adult neurons. Embryonic neurons would sometimes fire multiple action potentials but adult neurons fired only single action potentials. Our results indicate that both embryonic and adult cultured neurons retain a clearly neuronal electrophysiological phenotype in Neurobasal/B27 serum-free medium.

  16. Long-term heavy ketamine use is associated with spatial memory impairment and altered hippocampal activation

    Directory of Open Access Journals (Sweden)

    Celia J A Morgan

    2014-12-01

    Full Text Available Ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 polydrug controls, matched for IQ, age and years in education. We used fMRI utilising an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users.

  17. Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro.

    Science.gov (United States)

    Ho, Ernest C Y; Zhang, Liang; Skinner, Frances K

    2009-02-01

    We have assessed the balance of excitation and inhibition in in vitro rodent hippocampal slices exhibiting spontaneous, basal sharp waves (bSPWs). A defining signature of a network exhibiting bSPWs is the rise and fall in local field activities with frequencies ranging from 0.5 to 4.5 Hz. This variation of extracellular local field activities manifests at the intracellular level as postsynaptic potentials (PSPs). In correspondence with the local field bSPWs, we consider "sparse" and "synchronous" parts of bSPWs at the intracellular level. We have used intracellular data of bSPW-associated PSPs together with mathematical extraction techniques to quantify the mean and variance of synaptic conductances that a neuron experiences during bSPW episodes. We find that inhibitory conductances dominate in pyramidal cells and in a putative interneuron, and that inhibitory variances are much greater than excitatory ones during synchronous parts of bSPWs. Specifically, we find that there is at least a twofold increase in inhibitory conductance dominance from "sparse" to "synchronous" bSPW states and that this transition is associated with inhibitory fluctuations of greater than 10% of the change in mean inhibitory conductance. On the basis of our findings, we suggest that such inhibitory fluctuations during transition may be a physiological feature of systems expressing such population activities. In summary, our results provide a quantified basis for understanding the interaction of excitatory and inhibitory neuronal subpopulations in bSPW activities.

  18. NF-κB Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2014-01-01

    Full Text Available Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.

  19. Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation.

    Science.gov (United States)

    Gorfine, Tali; Yeshurun, Yaara; Zisapel, Nava

    2007-11-01

    Overnight sleep contributes to memory consolidation; even a short nap improves memory performance. Such improvement has been linked to hippocampal activity during sleep. Melatonin has been shown to affect the human hippocampus and to induce 'sleep like' changes in brain activation. We therefore conducted and compared two functional magnetic resonance imaging studies: the first study assessed the effect of a 2-hr mid-day nap versus an equal amount of wakefulness on a verbal memory task (unrelated word pair association); the second assessed the effect of melatonin versus placebo (both conditions without nap) on a similar task. We report that following a nap relative to wakefulness, successful retrieval-related activation in the parahippocampus is decreased. A smaller decrease is seen in wakefulness with melatonin but not placebo. In parallel, an improvement in verbal memory recall was found after a nap compared with wakefulness but not with melatonin during wakefulness compared with placebo. Our findings demonstrate effects of melatonin that resemble those of sleep on verbal memory processing in the hippocampus thus suggesting that melatonin, like sleep, can initiate offline plastic changes underlying memory consolidation; they also suggest that concomitant rest without interferences is necessary for enhanced performance.

  20. The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons.

    Science.gov (United States)

    Murataeva, N; Mackie, K; Straiker, A

    2012-11-01

    The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

  1. Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses.

    Science.gov (United States)

    Reid, Christopher A; Dixon, Don B; Takahashi, Michiko; Bliss, Tim V P; Fine, Alan

    2004-04-01

    It is generally believed that long-term potentiation (LTP) at hippocampal mossy fiber synapses between dentate granule and CA3 pyramidal cells is expressed through presynaptic mechanisms leading to an increase in quantal content. The source of this increase has remained undefined but could include enhanced probability of transmitter release at existing functional release sites or increases in the number of active release sites. We performed optical quantal analyses of transmission at individual mossy fiber synapses in cultured hippocampal slices, using confocal microscopy and intracellular fluorescent Ca(2+) indicators. Our results indicate that LTP is expressed at functional synapses by both increased probability of transmitter release and recruitment of new release sites, including the activation of previously silent synapses here visualized for the first time.

  2. The Kv2.1 K+ channel targets to the axon initial segment of hippocampal and cortical neurons in culture and in situ

    Directory of Open Access Journals (Sweden)

    Tamkun Michael M

    2008-11-01

    Full Text Available Abstract Background The Kv2.1 delayed-rectifier K+ channel regulates membrane excitability in hippocampal neurons where it targets to dynamic cell surface clusters on the soma and proximal dendrites. In the past, Kv2.1 has been assumed to be absent from the axon initial segment. Results Transfected and endogenous Kv2.1 is now demonstrated to preferentially accumulate within the axon initial segment (AIS over other neurite processes; 87% of 14 DIV hippocampal neurons show endogenous channel concentrated at the AIS relative to the soma and proximal dendrites. In contrast to the localization observed in pyramidal cells, GAD positive inhibitory neurons within the hippocampal cultures did not show AIS targeting. Photoactivable-GFP-Kv2.1-containing clusters at the AIS were stable, moving μm/hr with no channel turnover. Photobleach studies indicated individual channels within the cluster perimeter were highly mobile (FRAP τ = 10.4 ± 4.8 sec, supporting our model that Kv2.1 clusters are formed by the retention of mobile channels behind a diffusion-limiting perimeter. Demonstrating that the AIS targeting is not a tissue culture artifact, Kv2.1 was found in axon initial segments within both the adult rat hippocampal CA1, CA2, and CA3 layers and cortex. Conclusion In summary, Kv2.1 is associated with the axon initial segment both in vitro and in vivo where it may modulate action potential frequency and back propagation. Since transfected Kv2.1 initially localizes to the AIS before appearing on the soma, it is likely multiple mechanisms regulate Kv2.1 trafficking to the cell surface.

  3. Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy.

    Science.gov (United States)

    Toyoda, Izumi; Fujita, Satoshi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2015-04-22

    Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset.

  4. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    Science.gov (United States)

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  5. Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture.

    Science.gov (United States)

    Bai, Ji-Zhong; Lipski, Janusz

    2010-03-01

    TRPM2 and TPPV4 channels, two members of TRP channel family, are known to be widely expressed in the brain but their exact expression pattern and function are not well understood. Due to their high Ca(2+) permeability and gating by reactive oxygen species (TRPM2), or cell swelling, low pH and high temperature (TRPV4), they are likely to be involved in cell damage associated with various brain pathologies. The aim of this study was to investigate the expression of these channels and their potential role in oxidative stress-induced cell damage in organotypic hippocampal slice cultures, a model that retains the complex interaction between neurons and astrocytes. Channel expression was confirmed with RT-PCR and western blotting, while immunocytochemistry demonstrated TRPM2 in CA1-CA3 pyramidal neurons and TRPV4 in astrocytes. Oxidative stress induced by exogenous application of H(2)O(2) (600 microM) caused preferential damage of pyramidal neurons, while oxidative stress evoked with mercaptosuccinate (MCS; 400 microM) or buthionine sulfoximine (BSO; 4 microM) mainly damaged astrocytes, as identified by propidium iodide fluorescence. Antioxidants (Trolox 500 microM; MitoE 2 microM) reduced both neuronal and astrocytic cell death. Blockers of TRPV4 channels (Gd(3+) 500 microM; Ruthenium red 1 microM) increased the viability of astrocytes following MCS or BSO treatments, consistent with the expression pattern of these channels. Blockers of TRPM2 channels clotrimazole (20 microM), N-(p-amylcinnomoyl)anthranilic acid (ACA, 25 microM) or flufenamic acid (FFA, 200 microM) failed to protect pyramidal neurons from damage caused by exogenous H(2)O(2), and increased damage of these neurons caused by MCS and BSO. The differential expression of stress-sensitive TRPM2 and TRPV4 channels in hippocampal neurons and astrocytes that show distinct differences in vulnerability to different forms of oxidative stress suggests the specific involvement of these channels in oxidative stress

  6. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels.

    Science.gov (United States)

    Teisseyre, A; Mercik, K; Mozrzymas, J W

    2007-12-01

    We applied the whole-cell patch-clamp technique to study the influence of zinc ions (Zn(2+)) and extracellular protons at acidic pH (pH(o)) on voltage-gated potassium currents in cultured rat hippocampal neurons. The first goal of the study was to estimate whether Kv1.3 currents significantly contributed to voltage-gated potassium currents in examined cells. Then, the influence of both ions on the activity of other voltage-gated potassium currents in the neurons was examined. We examined both the total current and the delayed - rectifier component. Results obtained in both cases were not significantly different from each other. Available data argued against any significant contribution of Kv1.3 currents to the recorded currents. Nevertheless, application of Zn(2+) in the concentration range from 100 microM to 5 mM reversibly modulated the recorded currents. The activation midpoint was shifted by about 40 mV (total current) and 30 mV (delayed-rectifier current) towards positive membrane potentials and the activation kinetics were slowed significantly (2 - 3 fold) upon application of Zn(2+). The inactivation midpoint was also shifted towards positive membrane potentials, but less significantly (about 14 mV). The current amplitudes were reduced in a concentration-dependent manner to about 0.5 of the control value. The effects of Zn(2+) were saturated at the concentration of 1 mM. Raising extracellular proton concentration by lowering the pH(o) from 7.35 to 6.4 did not affect significantly the currents. Possible mechanisms underlying the observed phenomena and their possible physiological significance are discussed.

  7. Cortisol’s effects on hippocampal activation in depressed patients are related to alterations in memory formation

    OpenAIRE

    Abercrombie, Heather C.; Jahn, Allison L.; Davidson, Richard J.; Kern, Simone; Kirschbaum, Clemens; Halverson, Jerry

    2011-01-01

    Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered...

  8. Modulation of Hyperpolarization-Activated Cation Currents (Ih) by Ethanol in Rat Hippocampal CA3 Pyramidal Neurons

    OpenAIRE

    Licheri, Valentina

    2015-01-01

    It is well established that ethanol (EtOH), through the interaction with several membrane proteins, as well as intracellular pathways, is capable to modulate many neuronal function. Recent reports show that EtOH increases the firing rate of hippocampal GABAergic interneurons through the positive modulation of the hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels. This effect might be consistent with the increase of GABA release from presynaptic terminals...

  9. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  10. The electrical activity of hippocampal pyramidal neuron is subjected to descending control by the brain orexin/hypocretin system.

    Science.gov (United States)

    Riahi, Esmail; Arezoomandan, Reza; Fatahi, Zahra; Haghparast, Abbas

    2015-03-01

    The hippocampus receives sparse orexinergic innervation from the lateral hypothalamus and expresses a high level of orexin receptor. The function of orexin receptor in the regulation of hippocampal neural activity has never been investigated. In this study, in vivo single unit recording was performed in urethane-anesthetized rats. After 15 min of baseline recording from pyramidal neuron within the CA1 region of the dorsal hippocampus, i.c.v. injection of orexin-A 0.5 nmol, SB334867 400 nmol, a selective orexin receptor 1 antagonist, saline, or DMSO, or microinjection of carbachol 250 nmol or saline into the ipsilateral lateral hypothalamus were performed using a Hamilton microsyringe, and the spontaneous firing activity continued to be recorded for 25 min. Results showed that orexin administration into the lateral cerebral ventricle excited 6 out of 8 neurons and inhibited 1 neuron. Chemical stimulation of the lateral hypothalamus by carbachol excited 9 out of 13 hippocampal neurons and inhibited 3 neurons. On the other hand, i.c.v. injection of the SB334867, caused reductions in the firing activity of 6 out of 10 neurons and increases in 4 additional neurons. It seems that orexin neurotransmission in the hippocampus mostly elicits an excitatory response, whereas blockade of orexin receptor has an inhibitory effect. Further studies need to be done to elucidate the underlying mechanism of orexin action on hippocampal neurons.

  11. 磷酸吡哆醛对培养的海马神经细胞形态学的影响%The effects of pyridoxal phosphate on morphological changes in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    耿美玉; 李静; 辛现良; 邓岗; 徐家敏; 管华诗

    2000-01-01

    The effects of pyridoxal phosphate (PLP) on the morphological changes of cultured hippocampal neurons celle were investigated. Hippocampal neurons from an 18 day old embryonic Wistar rat were prepared by enzymatic digestion and exposed to PLP in the low cell density condition. The results indicate that PLP at concentrations of 1, 10μm significantly promoted the elongation of the longest axon-like process in low cell density cultures. On the other hand, PLP showed no effects on other parameters such as the total length of dendrites, the numbe rs of branch points per axon, and the numbers of processes per soma. Ifenprodil and picrotoxin, although at the concentrations both counteracted the survival-promo ting activities of hippocampal neurons caused by PLP, failed to take any actions on the neurite elongation induced by PLP. In conclusion, PLP did have the elong ation-promoting activity for hippocampal neurons, the mechanisms underlying its positive effects on neurogenesis needs to be further elucidated.%实验观察磷酸吡哆醛对培养的海马神经细胞形态学的影响,选用妊娠18d Wistar大鼠胎鼠,采用酶消化法获得单个海马神经细胞,通过原代低密度细胞培养法观察磷酸吡哆醛 (PLP)对其形态学的影响.结果表明:在浓度为1,10μ m时,能明显地促进海马神经细胞轴突的伸展,但对树突总长度、每个轴突上的分叉数及胞体的突起数均无明显影响;Ifen prodil和Picrotoxin尽管能明显拮抗PLP介导的神经细胞营养作用,但对PLP的促神经细胞伸展作用却无明显影响.总之,认为PLP致所以具有促海马神经细胞轴突伸展作用,不是由于P LP介导的神经细胞的营养增加,其详细机理有待于进一步探讨.

  12. Social observation enhances cross-environment activation of hippocampal place cell patterns

    Science.gov (United States)

    Mou, Xiang; Ji, Daoyun

    2016-01-01

    Humans and animals frequently learn through observing or interacting with others. The local enhancement theory proposes that presence of social subjects in an environment facilitates other subjects' understanding of the environment. To explore the neural basis of this theory, we examined hippocampal place cells, which represent spatial information, in rats as they stayed in a small box while a demonstrator rat running on a separate, nearby linear track, and as they ran on the same track themselves. We found that place cell firing sequences during self-running on the track also appeared in the box. This cross-environment activation occurred even prior to any self-running experience on the track and was absent without a demonstrator. Our data thus suggest that social observation can facilitate the observer’s spatial representation of an environment without actual self-exploration. This finding may contribute to neural mechanisms of local enhancement. DOI: http://dx.doi.org/10.7554/eLife.18022.001

  13. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  14. Muscarinic activation of inwardly rectifying K+ conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells

    Science.gov (United States)

    Seeger, Thomas; Alzheimer, Christian

    2001-01-01

    To determine how acetylcholine (ACh) modulates the somatodendritic processing of EPSPs, we performed whole-cell recordings from CA1 pyramidal cells of hippocampal slices and examined the effect of the cholinergic agonist, carbachol (CCh), on α-amino-3-hydroxy-5-methyl isoxazole-4-propionate (AMPA) EPSPs, miniature EPSPs, and EPSP-like waveforms evoked by brief dendritic glutamate pulses (glutamate-evoked postsynaptic potentials, GPSPs). Although CCh is known to enhance the intrinsic excitability of the neuron in several ways, activation of atropine-sensitive (muscarinic) receptors on the apical dendrite or the soma of CA1 pyramidal cells consistently reduced the amplitude of EPSPs and GPSPs. Cholinergic inhibition of evoked and simulated EPSP waveforms displayed considerable voltage dependence, with the amplitude of the postsynaptic potentials progressively declining with membrane hyperpolarization indicating the involvement of an inwardly rectifying current. Extracellular Ba2+ (200 μm) and tertiapin (30 nm), a novel and selective blocker of G protein-activated, inwardly rectifying K+ (GIRK) channels, completely blocked the effect of CCh on GPSP amplitude. Muscarinic reduction of GPSPs was not sensitive to the M1 receptor-preferring antagonist, pirenzepine, but was suppressed by the M2 receptor-preferring antagonist, methoctramine, and by the allosteric M2 receptor antagonist, gallamine. In voltage-clamp recordings, CCh induced an ion current displaying inward rectification in the hyperpolarizing direction, which was identified as a GIRK current based on its sensitivity to low Ba2+ and tertiapin. Its pharmacological profile paralleled that of the cholinergic GPSP reduction. We link the observed reduction of postsynaptic potentials to the cholinergic activation of a GIRK conductance, which serves to partially shunt excitatory synaptic input. PMID:11533131

  15. Theta-burst stimulation of hippocampal slices induces network-level calcium oscillations and activates analogous gene transcription to spatial learning.

    Directory of Open Access Journals (Sweden)

    Graham K Sheridan

    Full Text Available Over four decades ago, it was discovered that high-frequency stimulation of the dentate gyrus induces long-term potentiation (LTP of synaptic transmission. LTP is believed to underlie how we process and code external stimuli before converting it to salient information that we store as 'memories'. It has been shown that rats performing spatial learning tasks display theta-frequency (3-12 Hz hippocampal neural activity. Moreover, administering theta-burst stimulation (TBS to hippocampal slices can induce LTP. TBS triggers a sustained rise in intracellular calcium [Ca2+]i in neurons leading to new protein synthesis important for LTP maintenance. In this study, we measured TBS-induced [Ca2+]i oscillations in thousands of cells at increasing distances from the source of stimulation. Following TBS, a calcium wave propagates radially with an average speed of 5.2 µm/s and triggers multiple and regular [Ca2+]i oscillations in the hippocampus. Interestingly, the number and frequency of [Ca2+]i fluctuations post-TBS increased with respect to distance from the electrode. During the post-tetanic phase, 18% of cells exhibited 3 peaks in [Ca2+]i with a frequency of 17 mHz, whereas 2.3% of cells distributed further from the electrode displayed 8 [Ca2+]i oscillations at 33 mHz. We suggest that these observed [Ca2+]i oscillations could lead to activation of transcription factors involved in synaptic plasticity. In particular, the transcription factor, NF-κB, has been implicated in memory formation and is up-regulated after LTP induction. We measured increased activation of NF-κB 30 min post-TBS in CA1 pyramidal cells and also observed similar temporal up-regulation of NF-κB levels in CA1 neurons following water maze training in rats. Therefore, TBS of hippocampal slice cultures in vitro can mimic the cell type-specific up-regulations in activated NF-κB following spatial learning in vivo. This indicates that TBS may induce similar transcriptional changes to

  16. Interleukin-1beta exacerbates hypoxia-induced neuronal damage, but attenuates toxicity produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures.

    Science.gov (United States)

    Pringle, A K; Niyadurupola, N; Johns, P; Anthony, D C; Iannotti, F

    2001-06-01

    Using organotypic hippocampal slice cultures we have investigated the actions of Interleukin-1 (IL-1) in a number of injury paradigms. Low concentrations of IL-1 potentiated hypoxia-induced neurodegeneration whilst high concentrations had no effect. In contrast, higher concentrations of IL-1 were strongly neuroprotective in models of combined oxygen/glucose deprivation and N-methyl-D-aspartate toxicity, but no potentiation was observed at low IL-1 concentrations. Both protective and toxic effects of IL-1 were fully antagonized by IL-1 receptor antagonist. These data demonstrate that the effects of IL-1 on neuronal injury are complex, and may be directly related to the injury paradigm studied.

  17. [The effects of SO2 on electric activity learning and memory of rat hippocampal neurons].

    Science.gov (United States)

    Liu, Xiaoli; Yang, Dongsheng; Meng, Ziqiang

    2008-11-01

    To study the toxicological mechanism of SO2 on central neural system by electrophysiological method. Male SD rats were housed in exposure chambers and treated at the concentration of 28 mg/m3 SO2 for 7 days (6h/d), while control rats were treated with filtered air in the same condition. Using glass micro-electrodes recording in vivo, the frequencies and numbers of spontaneous discharge in hippocampal CAI neurons were measured. Influences of the learning and memory functions were measured by setting up passive avoidance behavior reflex. SO2 decreased significantly the neurons spontaneous discharge frequency and prolonged the neurons spontaneous period in hippocampal CAl. SO2 significantly decreased the learning and memory function of rats. The results indicated that SO2 could be a neurotoxin. It could inhibit the hippocampal neurons excitability and affect the learning and memory function of rats.

  18. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration

    DEFF Research Database (Denmark)

    Noraberg, Jens; Jensen, Carsten V; Bonde, Christian

    2007-01-01

    Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death...... in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological...... subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four...

  19. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats

    OpenAIRE

    Puebla Jiménez, Lilian; Rodríguez Martín, Eulalia; Arilla Ferreiro, Eduardo

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 ¿g) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal ...

  20. Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia.

    Science.gov (United States)

    Chou, Shinnyi; Jones, Sean; Li, Ming

    2015-08-27

    Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidylic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed a similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5'-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation. The implications of the relationship between behavioral and neurobiological results are discussed.

  1. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Yoshinori Okada

    2013-01-01

    Full Text Available Aim: Alzheimer′s disease (AD is characterized by large deposits of amyloid β (Aβ peptide. Aβ is known to increase reactive oxygen species (ROS production in neurons, leading to cell death. In this study, we screened 15 plant seeds′ aqueous extracts (PSAE for inhibitory effects on Aβ (25-35-induced cell death using hippocampus neurons (HIPN. Materials and Methods: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce. PSAE were measured for total phenolic content (TPC with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2′, 7′-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. Results: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. Conclusion: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  2. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    Science.gov (United States)

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  3. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  4. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    Science.gov (United States)

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  5. Dissociation of dorsal hippocampal regional activation under the influence of stress in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Johannes ePassecker

    2011-10-01

    Full Text Available Stress has deleterious effects on brain, body and behaviour in humans and animals alike. The present work investigated how 30-minute acute photic stress exposure impacts on spatial information processing in the main subregions of the dorsal hippocampal formation (CA1, CA3 and Dentate Gyrus, a brain structure prominently implicated in memory and spatial representation. Recordings were performed from spatially tuned hippocampal and dentate gyrus cells in rats while animals foraged in a square arena for food. The stress procedure induced a decrease in firing frequencies in CA1 and CA3 place cells while sparing locational characteristics. In contrast to the CA1-CA3 network, acute stress failed to induce major changes in the DG neuronal population. These data demonstrate a clear dissociation of the effects of stress on the main hippocampal sub-regions. Our findings further support the notion of decreased hippocampal excitability arising from stress in areas CA1 and CA3, but not in dentate gyrus.

  6. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    Science.gov (United States)

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single

  7. The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2015-10-01

    Full Text Available The mouse subventricular zone (SVZ generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS, and replace specific interneurons in the olfactory bulb (OB. Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons.

  8. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  9. Critical involvement of postsynaptic protein kinase activation in LTP at hippocampal mossy fiber synapses on CA3 interneurons

    OpenAIRE

    Galván, Emilio J; Cosgrove, Kathleen E.; Mauna, Jocelyn C.; Card, J. Patrick; Thiels, Edda; Meriney, Stephen D.; Barrionuevo, Germán

    2010-01-01

    Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDAR-independent LTP induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium impermeable (CI)-AMPARs. Here, we demonstrate that HFS-induced LTP at these MF-interneuron synapses requires postsynaptic activation of protei...

  10. Improvements in Memory after Medial Septum Stimulation Are Associated with Changes in Hippocampal Cholinergic Activity and Neurogenesis

    Directory of Open Access Journals (Sweden)

    Da Un Jeong

    2014-01-01

    Full Text Available Deep brain stimulation (DBS has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS electrode implantation (sham stimulation; group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.

  11. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping.

    Science.gov (United States)

    Ito, Rutsuko; Everitt, Barry J; Robbins, Trevor W

    2005-01-01

    The hippocampus (HPC) is known to be critically involved in the formation of associations between contextual/spatial stimuli and behaviorally significant events, playing a pivotal role in learning and memory. However, increasing evidence indicates that the HPC is also essential for more basic motivational processes. The amygdala, by contrast, is important for learning about the motivational significance of discrete cues. This study investigated the effects of excitotoxic lesions of the rat HPC and the basolateral amygdala (BLA) on the acquisition of a number of appetitive behaviors known to be dependent on the formation of Pavlovian associations between a reward (food) and discrete stimuli or contexts: (1) conditioned/anticipatory locomotor activity to food delivered in a specific context and (2) autoshaping, where rats learn to show conditioned discriminated approach to a discrete visual CS+. While BLA lesions had minimal effects on conditioned locomotor activity, hippocampal lesions facilitated the development of both conditioned activity to food and autoshaping behavior, suggesting that hippocampal lesions may have increased the incentive motivational properties of food and associated conditioned stimuli, consistent with the hypothesis that the HPC is involved in inhibitory processes in appetitive conditioning.

  12. Neuropeptides and hippocampal neurogenesis.

    Science.gov (United States)

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  13. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Blaabjerg, M; Kristensen, Bjarne Winther; Bonde, C;

    2001-01-01

    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular....... The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist...... of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time...

  14. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers.

    Science.gov (United States)

    Li, Shaomin; Jin, Ming; Zhang, Dainan; Yang, Ting; Koeglsperger, Thomas; Fu, Hongjun; Selkoe, Dennis J

    2013-03-06

    A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here, we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD cortex. Protection by EE occurred in both young and middle-aged wild-type mice. Exposure to novelty afforded greater protection than did aerobic exercise. Mice chronically fed a β-adrenergic agonist without EE were protected from hippocampal impairment by Aβ oligomers. Thus, EE enhances hippocampal synaptic plasticity by activating β-adrenoceptor signaling and mitigating synaptotoxicity of human Aβ oligomers. These mechanistic insights support using prolonged exposure to cognitive novelty and/or oral β-adrenergic agonists to lessen the effects of Aβ accumulation during aging.

  15. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens

    2007-01-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3...

  16. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    NARCIS (Netherlands)

    Malkki, H.A.I.; Mertens, P.E.C.; Lankelma, J.V.; Vinck, M.; van Schalkwijk, F.J.; van Mourik-Donga, L.B.; Battaglia, F.P.; Mahlke, C.; Kuhl, D.; Pennartz, C.M.A.

    2016-01-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1

  17. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    NARCIS (Netherlands)

    Malkki, H.A.I.; Mertens, P.E.C.; Lankelma, J.V.; Vinck, M.; van Schalkwijk, F.J.; van Mourik-Donga, L.B.; Battaglia, F.P.; Mahlke, C.; Kuhl, D.; Pennartz, C.M.A.

    2016-01-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1

  18. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy.

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; Sombati, Sompong; Elphick, Maurice R; Martin, Billy R; DeLorenzo, Robert J

    2009-09-01

    Cannabinoids have been shown to cause CB1-receptor-dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor-dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg(2+) induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg(2+) induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 h. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent downregulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg(2+) treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1-receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype.

  19. Prolonged exposure to WIN55,212-2 causes down-regulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy

    Science.gov (United States)

    Blair, Robert E.; Deshpande, Laxmikant S.; Sombati, Sompong; Elphick, Maurice R.; Martin, Billy R.; DeLorenzo, Robert J.

    2009-01-01

    Summary Cannabinoids have been shown to cause CB1-receptor dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg2+ induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg2+ induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 hours. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent down-regulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg2+ treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1 receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype. PMID:19540252

  20. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  1. Space activities and global popular music culture

    Science.gov (United States)

    Wessels, Allison Rae; Collins, Patrick

    During the "space age" era, space activities appear increasingly as a theme in Western popular music, as they do in popular culture generally. In combination with the electronics and tele-communications revolution, "pop/rock" music has grown explosively during the space age to become an effectively global culture. From this base a number of trends are emerging in the pattern of influences that space activities have on pop music. The paper looks at the use of themes and imagery in pop music; the role of space technology in the modern "globalization" of pop music; and current and future links between space activities and pop music culture, including how public space programmes are affected by its influence on popular attitudes.

  2. TIRDA Originating From Lateral Temporal Cortex in a Patient With mTLE Is Not Related to Hippocampal Activity.

    Science.gov (United States)

    Serafini, Anna; Issa, Naoum P; Rose, Sandra; Wu, Shasha; Warnke, Peter; Tao, James X

    2016-12-01

    Electrophysiological studies have suggested that temporal intermittent rhythmic delta activity (TIRDA) has a localizing value similar to interictal spikes in patients with temporal lobe epilepsy and is associated with a favorable outcome after temporal lobectomy. However, it remains controversial whether TIRDA is an EEG marker for mesial or lateral temporal epileptogenesis. We simultaneously recorded scalp EEG and stereoencephalography in a patient with mesial temporal lobe epilepsy during epilepsy presurgical evaluation. Seizure onset was localized to the hippocampus. However, TIRDA originated from the lateral temporal cortex, and rhythmic delta activity was not observed concomitantly in the hippocampus. In addition, TIRDA was not associated with repetitive interictal spikes or subclinical seizures in the hippocampus as previously speculated. This case suggests that TIRDA can be an EEG marker that is independent of hippocampal activity and can represent temporal neocortical epileptogenesis.

  3. Hippocampal mitochondrial cytochrome C oxidase activity and gene expression in a rat model of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Yingli Zhang; Mingming Zhao; Yu Wang; Ming Ma; Xinquan Gu; Xia Cao

    2011-01-01

    The present study established a rat model of chronic cerebral ischemia using bilateral common carotid artery permanent ligation to analyze cytochrome C oxidase activity and mRNA expression in hippocampal mitochondria.Results showed significantly decreased cytochrome C oxidase activity and cytochrome C oxidase II mRNA expression with prolonged ischemia time.Further analysis revealed five mitochondrial cytochrome C oxidase II gene mutations, two newly generated mutations, and four absent mutational sites at 1 month after cerebral ischemia, as well as three mitochondrial cytochrome C oxidase III gene mutations, including two newly generating mutations, and one disappeared mutational site at 1 month after cerebral ischemia.Results demonstrated that decreased cytochrome C oxidase gene expression and mutations, as well as decreased cytochrome C oxidase activity, resulting in energy dysmetabolism, which has been shown to be involved in the pathological process of ischemic brain injury.

  4. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment

    Directory of Open Access Journals (Sweden)

    Sonntag William E

    2011-10-01

    Full Text Available Abstract Background Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Methods Three independent cohorts of adult (12-13 months and aged (26-28 months F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG. Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6 and Iba1. Results We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. Conclusions These data demonstrate a

  5. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  6. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3

    Directory of Open Access Journals (Sweden)

    Gregory J. Brewer

    2013-10-01

    Full Text Available The mammalian hippocampus functions to encode and retrieve memories by transiently changing synaptic strengths, yet encoding in individual subregions for transmission between regions remains poorly understood. Toward the goal of better understanding the coding in the trisynaptic pathway from the dentate gyrus (DG to the CA3 and CA1, we report a novel microfabricated device that divides a micro-electrode array into two compartments of separate hippocampal network subregions connected by axons that grow through 3x10x400 μm tunnels. Gene expression by qPCR demonstrated selective enrichment of separate DG, CA3 and CA1 subregions. Reconnection of DG to CA3 altered burst dynamics associated with marked enrichment of GAD67 in DG and GFAP in CA3. Surprisingly, DG axon spike propagation was preferentially unidirectional to the CA3 region at 0.5 m/s with little reverse transmission. Therefore, select hippocampal subregions intrinsically self-wire in anatomically appropriate patterns and maintain their distinct subregion phenotype without external inputs

  7. Matrix Metalloprotease 3 Activity Supports Hippocampal EPSP-to-Spike Plasticity Following Patterned Neuronal Activity via the Regulation of NMDAR Function and Calcium Flux.

    Science.gov (United States)

    Brzdąk, Patrycja; Włodarczyk, Jakub; Mozrzymas, Jerzy W; Wójtowicz, Tomasz

    2017-01-01

    Matrix metalloproteases (MMPs) comprise a family of endopeptidases that are involved in remodeling the extracellular matrix and play a critical role in learning and memory. At least 24 different MMP subtypes have been identified in the human brain, but less is known about the subtype-specific actions of MMP on neuronal plasticity. The long-term potentiation (LTP) of excitatory synaptic transmission and scaling of dendritic and somatic neuronal excitability are considered substrates of memory storage. We previously found that MMP-3 and MMP-2/9 may be differentially involved in shaping the induction and expression of excitatory postsynaptic potential (EPSP)-to-spike (E-S) potentiation in hippocampal brain slices. MMP-3 and MMP-2/9 proteolysis was previously shown to affect the integrity or mobility of synaptic N-methyl-D-aspartate receptors (NMDARs) in vitro. However, the functional outcome of such MMP-NMDAR interactions remains largely unknown. The present study investigated the role of these MMP subtypes in E-S plasticity and NMDAR function in mouse hippocampal acute brain slices. The temporal requirement for MMP-3/NMDAR activity in E-S potentiation within the CA1 field largely overlapped, and MMP-3 but not MMP-2/9 activity was crucial for the gain-of-function of NMDARs following LTP induction. Functional changes in E-S plasticity following MMP-3 inhibition largely correlated with the expression of cFos protein, a marker of activity-related gene transcription. Recombinant MMP-3 promoted a gain in NMDAR-mediated field potentials and somatodendritic Ca(2+) waves. These results suggest that long-term hippocampal E-S potentiation requires transient MMP-3 activity that promotes NMDAR-mediated postsynaptic Ca(2+) entry that is vital for the activation of downstream signaling cascades and gene transcription.

  8. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface.

    Science.gov (United States)

    Jinadasa, Tushare; Szabó, Elöd Z; Numat, Masayuki; Orlowski, John

    2014-07-25

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.

  9. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  10. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Science.gov (United States)

    Berdyyeva, Tamara; Otte, Stephani; Aluisio, Leah; Ziv, Yaniv; Burns, Laurie D; Dugovic, Christine; Yun, Sujin; Ghosh, Kunal K; Schnitzer, Mark J; Lovenberg, Timothy; Bonaventure, Pascal

    2014-01-01

    Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  11. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Directory of Open Access Journals (Sweden)

    Tamara Berdyyeva

    Full Text Available Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65% significantly decreasing the rate of calcium transients, and a small subset (3% showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  12. Hippocampal formation

    NARCIS (Netherlands)

    Cappaert, N.L.M.; van Strien, N.M.; Witter, M.P.; Paxinos, G.

    2015-01-01

    The hippocampal formation and parahippocampal region are prominent components of the rat nervous system and play a crucial role in learning, memory, and spatial navigation. Many new details regarding the entorhinal cortex have been discovered since the previous edition, and the growing interest in t

  13. Electrophysiological Evidence That the Retrosplenial Cortex Displays a Strong and Specific Activation Phased with Hippocampal Theta during Paradoxical (REM) Sleep.

    Science.gov (United States)

    Koike, Bruna Del Vechio; Farias, Kelly Soares; Billwiller, Francesca; Almeida-Filho, Daniel; Libourel, Paul-Antoine; Tiran-Cappello, Alix; Parmentier, Régis; Blanco, Wilfredo; Ribeiro, Sidarta; Luppi, Pierre-Herve; Queiroz, Claudio Marcos

    2017-08-16

    It is widely accepted that cortical neurons are similarly more activated during waking and paradoxical sleep (PS; aka REM) than during slow-wave sleep (SWS). However, we recently reported using Fos labeling that only a few limbic cortical structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) contain a large number of neurons activated during PS hypersomnia. Our aim in the present study was to record local field potentials and unit activity from these two structures across all vigilance states in freely moving male rats to determine whether the RSC and the ACA are electrophysiologically specifically active during basal PS episodes. We found that theta power was significantly higher during PS than during active waking (aWK) similarly in the RSC and hippocampus (HPC) but not in ACA. Phase-amplitude coupling between HPC theta and gamma oscillations strongly and specifically increased in RSC during PS compared with aWK. It did not occur in ACA. Further, 68% and 43% of the units recorded in the RSC and ACA were significantly more active during PS than during aWK and SWS, respectively. In addition, neuronal discharge of RSC but not of ACA neurons increased just after the peak of hippocampal theta wave. Our results show for the first time that RSC neurons display enhanced spiking in synchrony with theta specifically during PS. We propose that activation of RSC neurons specifically during PS may play a role in the offline consolidation of spatial memories, and in the generation of vivid perceptual scenery during dreaming.SIGNIFICANCE STATEMENT Fifty years ago, Michel Jouvet used the term paradoxical to define REM sleep because of the simultaneous occurrence of a cortical activation similar to waking accompanied by muscle atonia. However, we recently demonstrated using functional neuroanatomy that only a few limbic structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) are activated during PS. In the present

  14. Low doses of alcohol potentiate GABA sub B inhibition of spontaneous activity of hippocampal CA1 neurons in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Criado, J.R.; Thies, R. (Univ. of Oklahoma, Oklahoma City (United States))

    1991-03-11

    Low doses of alcohol facilitate firing of hippocampal neurons. Such doses also enhance the inhibitory actions of GABA. Alcohol is known to potentiate inhibition via GABA{sub A} receptors. However, the effects of alcohol on GABA{sub B} receptor function are not understood. Spontaneous activity of single units was recorded from CA1 neurons of male rats anesthetized with 1.0% halothane. Electrical recordings and local application of drugs were done with multi-barrel pipettes. CA1 pyramidal neurons fired spontaneous bursts of action potentials. Acute alcohol decreased the interval between bursts, a mild excitatory action. Alcohol also more than doubled the period of complete inhibition produced by local application of both GABA and baclofen. These data suggest that GABA{sub B}-mediated inhibition is also potentiated by low doses of alcohol.

  15. Culture phenomenon analysis on the forest tour activity of China

    Institute of Scientific and Technical Information of China (English)

    Jiang Minjin

    2006-01-01

    This paper analyzes culture and forest culture, the intension of culture and forest culture, combines the understanding of the main cultural factor with the forest tour activity of China, analyzes the compatible phenomenon of Chinese forest culture and traditional culture, and explores culture of forest tourist site containing the meaning in forest tour. The author thinks the tour of forest culture which will be the important component of forest tour in forest culture,This paper puts forward simple questions existing in exploitation and advantage of forest tour culture, and proposes some countermeasures.

  16. The interplay of early-life stress, nutrition and immune activation programs adult hippocampal structure and function

    Directory of Open Access Journals (Sweden)

    Lianne eHoeijmakers

    2015-01-01

    Full Text Available Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.

  17. The use of sequential hippocampal-dependent and -non-dependent tasks to study the activation profile of the anterior cingulate cortex during recent and remote memory tests.

    Science.gov (United States)

    Wartman, Brianne C; Holahan, Matthew R

    2013-11-01

    Recent findings suggest that as time passes, cortical networks become recruited for memory storage. In animal models, this has been studied by exposing rodents to one task, allowing them to form a memory representation for the task then waiting different periods of time to determine, either through brain imaging or region-specific inactivation, the location of the memory representation. A number of reports show that 30 days after a memory has been encoded, it comes to be stored in cortical areas such as the anterior cingulate cortex. The present study sought to determine what factors, in addition to the passage of time, would influence whether memory retrieval was associated with cortical activation. To this end, rats were assigned to one of three behavioural groups: (1) Training on one hippocampal-dependent memory task, the water maze (WM); (2) Training on two, different hippocampal-dependent memory tasks, the WM followed by the radial arm maze; (3) Training on one hippocampal-dependent memory task (WM) followed by training on one, non-hippocampal-dependent task, operant conditioning. After training, each group received a recent (2d) or remote (31d) water maze probe test. The group trained on two different hippocampal-dependent tasks and tested 2d later, showed the strongest preference for the platform location during the probe test. This group also displayed a pattern of c-Fos staining in the anterior cingulate cortex similar to the pattern of staining observed in the remotely-tested groups and different from that seen in the other recently-tested groups. These results suggest the formation of multiple hippocampal-dependent memories accelerate the speed at which cortical network recruitment is seen and leads to enhanced behavioural performance in the recent term.

  18. Neurotoxicity induced by amyloid beta-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound.

    Science.gov (United States)

    Ito, Yoshihisa; Ito, Moriyuki; Takagi, Noritaka; Saito, Hiroshi; Ishige, Kumiko

    2003-09-19

    We have assessed amyloid-beta (Abeta)-induced neurotoxicity, with and without added ibotenic acid (IBO), a potent N-methyl-D-aspartate (NMDA) agonist, in an organotypic hippocampal slice culture (OHC). In the OHC, there was little neurotoxicity after treatment with Abeta(25-35) (25 or 50 microM) alone for 48 h. However, with IBO alone neuronal death was observed in the pyramidal cell layer at low concentrations, and there was dramatic neuronal death at concentrations of 65 microM or more. When Abeta was combined with IBO (Abeta+IBO) there was more intense cell death than with IBO alone. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having a thioallyl group in aged garlic extract, was shown to protect the hippocampal neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by Abeta+IBO with no change in the CA1 area. Although L-glutamate (500 microM) potentiated the degree of IBO-induced neuronal death, it attenuated the Abeta+IBO-induced neuronal death in both the CA3 area and the DG with no obvious effect on the CA1 area. These results suggest that Abeta+IBO induces extensive neuronal death, and that SAC and L-glutamate protect cells from death in specific areas of the hippocampus. In addition, inhibition using a pan-caspase inhibitor, z-VAD-fmk, only provided partial protection from Abeta+IBO-induced toxicity for the neurons in the CA3 area. These results suggest that multiple mechanisms may be involved in Abeta+IBO-induced neuronal death in the OHC.

  19. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Midori Kato-Negishi

    2008-03-01

    Full Text Available Midori Kato-Negishi1, Masahiro Kawahara21Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183- 8526, Japan; 2Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, JapanAbstract: The neurotoxicity of β-amyloid protein (AβP is implicated in the etiology of Alzheimer’s disease. We previously have demonstrated that AβP forms Ca2+-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AβP-induced changes in intracellular Ca2+ level in primary cultured rat hippocampal neurons using a multisite Ca2+- imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro exhibited changes in intracellular Ca2+ level after AβP exposure. However, AβP caused an acute increase in intracellular Ca2+ level in long-term cultured neurons (ca 1 month in vitro. The responses to AβP were highly heterogeneous, and immunohistochemical analysis using an antibody to AβP revealed that AβP is deposited on some but not all neurons. Considering that the disruption of Ca2+ homeostasis is the primary event in AβP neurotoxicity, substances that protect neurons from an AβP-induced intracellular Ca2+ level increase may be candidates as therapeutic drugs for Alzheimer’s disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AβP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AβP neurotoxicity

  20. Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Rebola, Nelson

    2010-01-01

    interacting protein 1 (GRIP1). Pretreatment of cultured hippocampal neurons with FSC231 inhibited coimmunopreciptation of the AMPA receptor GluR2 subunit with PICK1. In agreement with inhibiting the role of PICK1 in GluR2 trafficking, FSC231 accelerated recycling of pHluorin-tagged GluR2 in hippocampal...... neurons after internalization in response to NMDA receptor activation. FSC231 blocked the expression of both long-term depression and long-term potentiation in hippocampal CA1 neurons from acute slices, consistent with inhibition of the bidirectional function of PICK1 in synaptic plasticity. Given...

  1. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.

  2. Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons.

    Science.gov (United States)

    Abe, K; Saito, H

    1999-12-01

    It has recently been reported that methyl-beta-cyclodextrin-solubilized cholesterol protects PC12 cells from amyloid beta protein (Abeta) toxicity. To ask if this is the case in brain neurons, we investigated its effect in primary cultured rat hippocampal neurons. In basal culture conditions with no addition of Abeta, methyl-beta-cyclodextrin-solubilized cholesterol at concentrations of 30-100 microM was toxic to neurons, but at concentrations of 1-10 microM promoted neuronal survival. Methyl-beta-cyclodextrin-solubilized cholesterol at 1-10 microM was also effective in protecting neurons from toxicity of 20 microM Abeta. However, these effects were all mimicked by methyl-beta-cyclodextrin alone, but not by cholesterol solubilized by dimethylsulfoxide or ethanol. The effects of methyl-beta-cyclodextrin-solubilized cholesterol on neuronal survival and Abeta toxicity are probably attributed to the action of methyl-beta-cyclodextrin, but not cholesterol. Alternatively, we found that methyl-beta-cyclodextrin-solubilized cholesterol at lower concentrations ( > 10 nM) inhibited cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) by promoting the exocytosis of MTT formazan. This effect was shared by dimethylsulfoxide- or ethanol-solubilized cholesterol, but not by methyl-beta-cyclodextrin, supporting that it is attributed to the action of cholesterol. These results suggest that cholesterol does not protect neurons from Abeta toxicity, or rather inhibits cellular MTT reduction in a similar manner to Abeta.

  3. Hippocampal activation of immediate early genes Zenk and c-Fos in zebra finches (Taeniopygia guttata) during learning and recall of a spatial memory task.

    Science.gov (United States)

    Mayer, Uwe; Watanabe, Shigeru; Bischof, Hans-Joachim

    2010-03-01

    Zebra finches (Taeniopygia guttata) are able to learn the position of food by orienting on spatial cues in a 'dry water maze'. In the course of spatial learning, the hippocampus shows high expression of the immediate early genes (IEGs) Zenk and c-Fos, indicating high activation of this area during learning. In contrast, the IEG activity is nearly absent if the birds do not have to rely on spatial cues. In the present experiment it was investigated whether hippocampal activation can also be observed if the learned spatial task is recalled. For this purpose, the hippocampal Zenk and c-Fos activation of birds in an early learning stage was compared with that of others having well reached their maximal performance. The results show that the avian hippocampus is also active during recall of a learned spatial task, but the activation is significantly lower than in animals learning actually. As in previous experiments, hippocampal IEG expression showed strong variation not only in the position of the active patches of neurons, but also in size and cell density. The observed difference contributes to the view that immediate early genes may not be indicators of activation alone, but may be due to a combination of activation and plastic changes.

  4. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  5. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  6. Brain-derived neurotrophic factor Val66Met polymorphism and hippocampal activation during episodic encoding and retrieval tasks

    Science.gov (United States)

    Dennis, Nancy A.; Cabeza, Roberto; Need, Anna C.; Waters-Metenier, Sheena; Goldstein, David B.; LaBar, Kevin S.

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype and functional activity in the hippocampus during episodic and working memory tasks in healthy young adults. Specifically, studies have found that met carriers exhibit both poorer performance and reduced neural activity within the medial temporal lobe (MTL) when performing episodic memory tasks. However, these studies have not been well replicated and have not considered the role of behavioral differences in the interpretation of neural differences. The current study sought to control for cognitive performance in investigating the role of the BDNF val66met genotype on neural activity associated with episodic memory. Across item and relational memory tests, met carriers exhibited increased MTL activation during both encoding and retrieval stages, compared to non-carriers. The results suggest that met carriers are able to recruit MTL activity to support successful memory processes, and reductions in cognitive performance observed in prior studies are not a ubiquitous effect associated with variants of the BDNF val66met genotype. PMID:20865733

  7. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    Science.gov (United States)

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-07

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Using activity theory to study cultural complexity in medical education

    NARCIS (Netherlands)

    Frambach, J.M.; Driessen, E.W.; Vleuten, C.P.M. van der

    2014-01-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on

  9. Using activity theory to study cultural complexity in medical education

    NARCIS (Netherlands)

    Frambach, Janneke M; Driessen, Erik W; van der Vleuten, Cees P M

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on

  10. Using activity theory to study cultural complexity in medical education

    NARCIS (Netherlands)

    Frambach, J.M.; Driessen, E.W.; Vleuten, C.P.M. van der

    2014-01-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on

  11. Effects of Ganoderma lucidum spore powder on astrocyte expression and glutamine synthetase activity in the hippocampal region of epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Shiling Zhang; Shuqiu Wang

    2008-01-01

    BACKGROUND: Recent studies have demonstrated that astrocyte dysfunction plays a central role in inhibiting epileptic seizures and that regulation of astrocyte function may be a new target for treatment of epilepsy.OBJECTIVE: To observe the effects of Ganoderma lucidum spore powder (GLSP) on astrocyte morphology and ghitamine synthetase (GS) activity in the hippocampal region of epileptic rats.DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Function Laboratory, College of Basic Medicine, Jiamusi University between October and December 2006.MATERIALS: A total of 30 Sprague Dawley (SD) rats were randomized to three groups (n = 10): control,model, and GLSP. GLSP was sourced from Jiamusi Wild Ganoderma Lucidum Planting Base and prepared to 30 g/L with physiological saline before use. Pentylenetetrazol (PTZ) (10 g/L) was provided by Sigma Company, USA.METHODS: The control group received intraperitoneal (i.p.) and intragastric (i.g.) physiological saline.Following epilepsy induction by i.p. administration of PTZ (35 mg/kg), rats from the model and GLSP groups were ig injected with physiological saline and GLSP (300 mg/kg), respectively. Each compound was administered once per day, for a total of 28 successive days. Epileptic seizure convulsions were graded 0-5. A higher grade indicated more severe epilepsy. Only those rats showing stage 2 or higher convulsions at least 5 times successively were included in further experiments.MAIN OUTCOME MEASURES: Immediately after injection, seizure activity was monitored for 30 minutes to determine the latent period and seizure duration; simultaneously, astrocyte numbers and GS activity in the hippocampal region of rats with epilepsy were detected by immunohistochemistry.RESULTS: All 30 rats were included in the final analysis. On day 28, following PTZ administration epileptic seizures were not found in the control group. In the GLSP group, rats exhibited rhythmic head nodding or facial spasms

  12. High firing rate of neonatal hippocampal interneurons is caused by attenuation of afterhyperpolarizing potassium currents by tonically active kainate receptors.

    Science.gov (United States)

    Segerstråle, Mikael; Juuri, Juuso; Lanore, Frédéric; Piepponen, Petteri; Lauri, Sari E; Mulle, Christophe; Taira, Tomi

    2010-05-12

    In the neonatal hippocampus, the activity of interneurons shapes early network bursts that are important for the establishment of neuronal connectivity. However, mechanisms controlling the firing of immature interneurons remain elusive. We now show that the spontaneous firing rate of CA3 stratum lucidum interneurons markedly decreases during early postnatal development because of changes in the properties of GluK1 (formerly known as GluR5) subunit-containing kainate receptors (KARs). In the neonate, activation of KARs by ambient glutamate exerts a tonic inhibition of the medium-duration afterhyperpolarization (mAHP) by a G-protein-dependent mechanism, permitting a high interneuronal firing rate. During development, the amplitude of the apamine-sensitive K+ currents responsible for the mAHP increases dramatically because of decoupling between KAR activation and mAHP modulation, leading to decreased interneuronal firing. The developmental shift in the KAR function and its consequences on interneuronal activity are likely to have a fundamental role in the maturation of the synchronous neuronal oscillations typical for adult hippocampal circuitry.

  13. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  14. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    Science.gov (United States)

    Foster, Alan C; Farnsworth, Jill; Lind, Genevieve E; Li, Yong-Xin; Yang, Jia-Ying; Dang, Van; Penjwini, Mahmud; Viswanath, Veena; Staubli, Ursula; Kavanaugh, Michael P

    2016-01-01

    N-methyl-D-aspartate (NMDA) receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1) and SLC1A5 (ASCT2) mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1) may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  15. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    Directory of Open Access Journals (Sweden)

    Alan C Foster

    Full Text Available N-methyl-D-aspartate (NMDA receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1 and SLC1A5 (ASCT2 mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1 may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  16. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model

    OpenAIRE

    Zhang, Huaqiu; Xie, Minjie; Gary P. Schools; Feustel, Paul F.; Wang, Wei; Lei, Ting; Kimelberg, Harold K.; Zhou, Min

    2008-01-01

    Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely, we simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membr...

  17. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    Science.gov (United States)

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  18. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    Science.gov (United States)

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  19. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Zhihong Chen; Yaqiang He; Chengjun Song; Zhijun Dong; Zhejun Su; Jingfeng Xue

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.

  20. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    Science.gov (United States)

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  1. Working With Cultural-Historical Activity Theory

    Directory of Open Access Journals (Sweden)

    Wolff-Michael Roth

    2012-05-01

    Full Text Available This article focuses on the experiences of two researchers, Wolff-Michael ROTH and Luis RADFORD, using cultural-historical activity theory in mathematics education. The aim is to provide insights into the ways these researchers see and engage with activity theory, how they have come to adopt and expand it, and some of the challenges and concerns that they have had using it. These questions are not usually addressed within typical scientific papers. Yet, they are important for understanding both the dynamics of research and the practical use of cultural-historical activity theory. Since the format of research report papers is not necessarily well suited to convey personal experiences and thinking, the present article takes the form of a conversation, which provides an effective vehicle for exploring and articulating these matters. This provides a basis for understanding more deeply the underlying assumptions of this theory; its dynamics and how it is applied in research of mathematics practice, thinking, and learning; and insights into the manner in which experienced researchers grapple with the theoretical dimensions of their research. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1202232

  2. Shape memory polymers for active cell culture.

    Science.gov (United States)

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  3. Conantokins inhibit NMDAR-dependent calcium influx in developing rat hippocampal neurons in primary culture with resulting effects on CREB phosphorylation.

    Science.gov (United States)

    Huang, Luoxiu; Balsara, Rashna D; Sheng, Zhenyu; Castellino, Francis J

    2010-10-01

    The effects of conantokin (con)-G, con-R[1-17], and con-T on ion flow through N-methyl-D-aspartate receptor (NMDAR) ion channels were determined in cultured primary rat hippocampal neurons. The potency of con-G diminished, whereas inhibition by con-R[1-17] and con-T did not change, as the neurons matured. Con-G, con-R[1-17], and con-T effectively diminished NMDA-induced Ca(2+) influx into the cells. A similar age-dependent decrease in con-G-mediated inhibition of the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was observed, compared to con-R[1-17] and con-T. The effects of the conantokins on NMDA-induced cAMP response element-binding protein (CREB) phosphorylation in immature (DIV 9) and mature (DIV 16) neurons showed that, at DIV 9, con-G, con-R[1-17], and con-T inhibited NMDA-mediated P-CREB levels, whereas in DIV 16 neurons the conantokins did not inhibit overall levels of NMDA-induced P-CREB. In contrast, P-CREB levels were enhanced through inhibition of the protein phosphatases, PP1 and PP2B (calcineurin). This ability of conantokins to sustain CREB phosphorylation can thus enhance neuronal survival and plasticity.

  4. Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification.

    Science.gov (United States)

    Mukhtarov, Marat; Ivanov, Anton; Zilberter, Yuri; Bregestovski, Piotr

    2011-01-01

    Several energy substrates complementary to glucose, including lactate, pyruvate and β-hydroxybutyrate, serve as a fuel for neurons. It was reported recently that these substrates can substantially modulate cortical excitability in neonatal slices. However, complementary energy substrates (CES) can also induce an intracellular acidification when added exogenously. Therefore, action of CES on the neuronal properties governing excitability in neonatal brain slices may be underlain by a change in the cell energy status or by intracellular acidification, or both. Here, we attempt to elucidate these possibilities in neonatal hippocampus by recording neuronal population activity and monitoring intracellular pH. We show that a spontaneous network activity pattern, giant depolarizing potentials (GDPs), characteristic for the neonatal hippocampal slices exposed to artificial cerebrospinal fluid, is strongly inhibited by CES and this effect is unlikely to be caused by a subtle intracellular acidification induced by these compounds. Indeed, a much stronger intracellular acidification in the HCO(3) -free solution inhibited neither the GDP frequency nor the GDP amplitude. Therefore, modulation of neuronal energy homeostasis is the most likely factor underlying the effect of lactate, pyruvate and β-hydroxybutyrate on network excitability in neonatal brain slices.

  5. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    Science.gov (United States)

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  6. NEURONAL ACTIVITY AND STRESS DIFFERENTIALLY REGULATE HIPPOCAMPAL AND HYPOTHALAMIC CORTICOTROPIN-RELEASING HORMONE EXPRESSION IN THE IMMATURE RAT

    OpenAIRE

    Hatalski, C G; Brunson, K. L.; TANTAYANUBUTR, B.; Chen, Y.(California Institute of Technology, Pasadena, USA); Baram, T. Z.

    2000-01-01

    Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone’s abund...

  7. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area.

    Science.gov (United States)

    Zhang, X; Ge, X Y; Wang, J G; Wang, Y L; Wang, Y; Yu, Y; Li, P P; Lu, C B

    2015-08-20

    The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.

  8. Role of Cultural Inspiration with Different Types in Cultural Product Design Activities

    Science.gov (United States)

    Luo, Shi-Jian; Dong, Ye-Nan

    2017-01-01

    Inspiration plays an important role in the design activities and design education. This paper describes "ancient cultural artefacts" as "cultural inspiration," consisting of two types called "cultural-pictorial inspiration" (CPI) and "cultural-textual inspiration" (CTI). This study aims to test the important…

  9. Boundaries of Cultural Influence: Construct Activation as a Mechanism for Cultural Differences in Social Perception.

    Science.gov (United States)

    Hong, Ying-Yi; Benet-Martinez, Veronica; Chiu, Chi-Yue; Morris, Michael W.

    2003-01-01

    Examined how applicability of activated cultural knowledge would moderate cultural priming effects. Research with Chinese undergraduate students who had extensive knowledge of Chinese and western culture, and with Chinese-born students at an American university, indicated that seeing American versus Chinese cultural primes affected perception of…

  10. Non-GABA(A)-mediated effects of lindane on neurite development and intracellular free calcium ion concentration in cultured rat hippocampal neurons.

    Science.gov (United States)

    Ferguson, C A; Audesirk, G

    1995-04-01

    Changes in transmembrane Ca(2+) fluxes and intracellular free Ca(2+) ion concentrations ([Ca(2+)](in)) regulate many aspects of neurite development in cultured neurons. Lindane has been shown to increase [Ca(2+)](in) in several cell types. It was therefore hypothesized that lindane exposure would increase [Ca(2+)](in) and thereby alter neurite development in cultured rat hippocampal neurons. The study reported here showed that lindane (50-100 muM) increased [Ca(2+)](in) during short-term exposure (up to 4 hr); in contrast, with long-term exposure (24-48 hr) lindane (1-50 mum) decreased [Ca(2+)](in) significantly below control levels. Lindane decreased neurite initiation at high concentrations (25 mum or above). Lindane increased dendrite number at low concentrations (0.5-1 muM), but decreased dendrite number at high concentrations (50 mum or above). Lindane decreased axon and dendrite elongation and branching at 50 mum. Loading neurons with 1 mum 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a calcium chelator that partially 'clamps' [Ca(2+)](in), eliminated the effects of 50 mum lindane on [Ca(2+)](in) in short-term exposures. BAPTA did not significantly reverse the inhibition of neurite initiation or axonal elongation caused by 50 mum lindane. However, BAPTA partially reversed the inhibition of dendrite elongation and completely reversed the inhibition of axon and dendrite branching caused by 50 mum lindane. Therefore, some, but not all, of lindane's effects on neurite development may be due to changes in [Ca(2+)](in). Picrotoxin, a gamma-aminobutyric acid A (GABA(A))-associated chloride channel antagonist, had no effect on [Ca(2+)](in) or any parameters of neurite growth, suggesting that the effects of lindane on neurite development and [Ca(2+)](in) were not mediated through actions on GABA(A)-associated chloride channels.

  11. The Cultural Impact on the Traditional Spring Festival Activities

    Institute of Scientific and Technical Information of China (English)

    刘琳琳

    2015-01-01

    Spring Festival will surely be considered as the most important festival among Chinese colorful occasions.This study attempts to analyze several typical rituals of Spring Festival from the cultural aspects,digging out the cultural factors and cultur-al connotation from the activity like the Family Reunion Dinner,Spring Couplets,the Spring Festival Gala,etc.

  12. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2.

    Science.gov (United States)

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-04-16

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI:http://dx.doi.org/10.7554/eLife.00362.001.

  13. Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1.

    Science.gov (United States)

    Chowdhury, Tara G; Barbarich-Marsteller, Nicole C; Chan, Thomas E; Aoki, Chiye

    2014-11-01

    Anorexia nervosa (AN) is an eating disorder to which adolescent females are particularly vulnerable. Like AN, activity-based anorexia (ABA), a rodent model of AN, results in elevation of stress hormones and has genetic links to anxiety disorders. The hippocampus plays a key role in the regulation of anxiety and responds with structural changes to hormones and stress, suggesting that it may play a role in AN. The hippocampus of ABA animals exhibits increased brain-derived neurotrophic factor and increased GABA receptor expression, but the structural effects of ABA have not been studied. We used Golgi staining of neurons to determine whether ABA in female rats during adolescence results in structural changes to the apical dendrites in hippocampal CA1 and contrasted to the effects of food restriction (FR) and exercise (EX), the environmental factors used to induce ABA. In the dorsal hippocampus, which preferentially mediates spatial learning and cognition, cells of ABA animals had less total dendritic length and fewer dendritic branches in stratum radiatum (SR) than in control (CON). In the ventral hippocampus, which preferentially mediates anxiety, ABA evoked more branching in SR than CON. In both dorsal and ventral regions, the main effect of exercise was localized to the SR while the main effect of food restriction occurred in the stratum lacunosum-moleculare. Taken together with data on spine density, these results indicate that ABA elicits pathway-specific changes in the hippocampus that may underlie the increased anxiety and reduced behavioral flexibility observed in ABA.

  14. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats.

    Science.gov (United States)

    Rozisky, J R; Laste, G; de Macedo, I C; Santos, V S; Krolow, R; Noschang, C; Vanzella, C; Bertoldi, K; Lovatel, G A; de Souza, I C C; Siqueira, I R; Dalmaz, C; Caumo, W; Torres, I L S

    2013-03-01

    It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.

  15. Clioquinol inhibits zinc-triggered caspase activation in the hippocampal CA1 region of a global ischemic gerbil model.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available BACKGROUND: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ, in the CA1 region of the gerbil hippocampus after transient global ischemia. METHODOLOGY/PRINCIPAL FINDINGS: The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p. was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3, -9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils. CONCLUSIONS/SIGNIFICANCE: The present study indicates that the neuroprotective effect of CQ is related to downregulation of zinc-triggered caspase activation in the hippocampal CA1 region of gerbils with global ischemia.

  16. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  17. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.

    Science.gov (United States)

    Chamma, Ingrid; Heubl, Martin; Chevy, Quentin; Renner, Marianne; Moutkine, Imane; Eugène, Emmanuel; Poncer, Jean Christophe; Lévi, Sabine

    2013-09-25

    The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.

  18. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3.

    Science.gov (United States)

    Scala, Federico; Fusco, Salvatore; Ripoli, Cristian; Piacentini, Roberto; Li Puma, Domenica Donatella; Spinelli, Matteo; Laezza, Fernanda; Grassi, Claudio; D'Ascenzo, Marcello

    2015-02-01

    Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.

  19. Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Podda

    Full Text Available Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.

  20. Viewpoints: Cultures, Text Models, and the Activity of Writing.

    Science.gov (United States)

    Purves, Alan C.; Purves, William C.

    1986-01-01

    Raises three issues concerning the activity of writing and its relation to texts and cultures: (1) knowledge as the basis for the activity of writing, (2) the varying nature of the activity itself and how that activity is shaped by context, and (3) the perceived nature of the written work in a given culture. (HOD)

  1. Using activity theory to study cultural complexity in medical education.

    Science.gov (United States)

    Frambach, Janneke M; Driessen, Erik W; van der Vleuten, Cees P M

    2014-06-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on culture as a dynamic process situated in a social context, and has been valued in diverse fields for yielding rich understandings of complex issues and key factors involved. This paper explains how activity theory can be used in (cross-)cultural medical education research. We discuss activity theory's theoretical background and principles, and we show how these can be applied to the cultural research practice by discussing the steps involved in a cross-cultural study that we conducted, from formulating research questions to drawing conclusions. We describe how the activity system, the unit of analysis in activity theory, can serve as an organizing principle to grasp cultural complexity. We end with reflections on the theoretical and practical use of activity theory for cultural research and note that it is not a shortcut to capture cultural complexity: it is a challenge for researchers to determine the boundaries of their study and to analyze and interpret the dynamics of the activity system.

  2. [Hippocampal stroke].

    Science.gov (United States)

    Rollnik, J D; Traitel, B; Dietrich, B; Lenz, O

    2015-02-01

    Unilateral cerebral ischemia of the hippocampus is very rare. This paper reviews the literature and presents the case of a 59-year-old woman with an amnestic syndrome due to a left hippocampal stroke. The patient suffered from retrograde amnesia which was most severe over the 2 days prior to presenting and a slight anterograde amnesia. In addition, a verbal memory disorder was confirmed 1 week after admission by neurological tests. As risk factors, arterial hypertension and a relative hyper-beta lipoproteinemia were found. This case shows that unilateral amnestic stroke, e.g. in the hippocampus region, may be the cause of an amnestic syndrome and should be included in the differential diagnostics.

  3. Changes in the proliferative activity of hippocampal neural stem cells from manganismus mice

    Institute of Scientific and Technical Information of China (English)

    Guohe Tan; Boning Yang; Guofu Tan; Bo Liang; Jiangu Gong; Xiaodong Ge; Songchao Guo

    2007-01-01

    's region was recorded as the performance of spatial memory. At the final two days of the water maze tests, all the animals were daily intraperitoneally injected with 50 mg/kg BrdU three times successively, once every 4 hours. At 24 hours after the final BrdU injection, all the animals were sacrificed and perfused, and their brains were harvested, fixed and successively sliced at coronary plane on a freezing microtome. Distribution and number of BrdU-positive cells in the subgranular zone ofhippocampus of brains of experimental animas were detected respectively by immunohistochemistry for reflecting the proliferation of NSCs. Single-factor analysis of variance was used for comparing the difference of measurement data. Linear correlation analysis was used among the performance record in Morris water maze test, the number of BrdU-immunopositive cells and the dose of manganism.MAIN OUTCOME MEASURES: Learning and memory ability and the number of hippocampal NSCs of mice in each group.RESULTS: ①Performance of mice in Morris water maze: In the place navigation test, there was a significant retarded learning in mice of high-dose manganism group from the 3rd day as compared with control group (P < 0.01). Till the 5th day, escape latency of mice in each manganism group was prolonged,and learning performance was significantly decreased (P < 0.05), while swimming speed did not affect above results. In the spatial probe test, the average frequency of middle- and high-dose manganism groups was 1.17±1.60 and 0.80±1.10, respectively, and decreased remarkably than that of control group which was 4.86 ±1.35 (P < 0.01), indicating memory ability was decreased; while the average frequency of low-dose manganism group did not differ obviously from that of control group (P =0.066) although it was 2.67 ± 3.27.The difference of swimming speed in each group was still of no statistic significance (P > 0.05). ②Effect of manganism on the number of NSCs: After counting, the average

  4. Capsazepine抑制培养海马神经元网络线粒体转运%Capsazepine inhibits mitochondrial transport in cultured hippocampal neuronal networks of rat

    Institute of Scientific and Technical Information of China (English)

    付敏; 潘丽洁; 孙朝晖; 左焕琮; 谢佐平

    2009-01-01

    capsazepine(CZP)是辣椒素的合成类似物,也是野香草型瞬时感受器电位通道1(TRPV1)的选择性抑制剂.TRPV1在体内有广泛的表达谱,使CZP有广泛的作用位点.除此之外,以往的研究结果表明CZP除了作用于TRPVI外还有更复杂的信号通路.本课题研究了CZP对体外培养的大鼠海马神经元网络内线粒体转运的作用并分析其可能机制.结果显示:20 μmol/L的CZP可有效抑制原代培养海马神经元网络中的线粒体转运.CZP急性作用不引起胞内钙离子浓度的升高,也不引起细胞的凋亡.胞外更换为无外钙记录液,或者将GSK3g抑制剂SB415286与CZP共孵育,均不影响CZP对线粒体转运的抑制作用.然而,将BAPTA-AM与CZP共孵育,抑制了CZP对线粒体转运的抑制作用.本研究结果表明,CZP直接通过胞内钙信号通路影响神经元的线粒体转运,与胞外钙流或转运蛋白的磷酸化无关.%Capsazepine is a ByntlIetic analogue of capsaicin and a selective inhibitor of transient receptor potential vanilloid 1 channel (TRPV1).TRPV1 has wide expression profile,providing extensive targets for capsazepine.Evidence from previous studies showed that capsazepine acted more complex effects through other than TRPV1 signal pathway.In this study.we examined its effect and underlying mechanisms on mitochondrial transport of cultured hippecampal neurons in rats.The data showed that the number of the moving mitochondria in primarily cultured hippocampal neurons was remarkably decreased by 20 μmol/L capsazepine.Contradicted to previous study,the intracellular calcium concentration was not elevated.Capsazepine did not induce cell death in acute incubation.The inhibitory effect of capsasepine was not prevented by co-application of SB415286,the inhibitor of GSK313 or by replacing extracellular recording solution to calcium-free saline,but prevented by co-application of BAPTA-AM.These results indicated that capsazepine inhibited mitochondrial trans

  5. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  6. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  7. Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo.

    Science.gov (United States)

    Chen, Tao; Yang, Yuan-Jian; Li, Yan-Kun; Liu, Jing; Wu, Peng-Fei; Wang, Fang; Chen, Jian-Guo; Long, Li-Hong

    2016-08-22

    Polygonum multiflorum Thunb is a traditional Chinese medicine with anti-aging effect. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is generally considered as the main active component in Polygonum multiflorum Thunb. However, the effect of TSG on memory in adult is unclear till now. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a polyphenols compound from Polygonum multiflorum Thunb. The present study aimed to evaluate the effect of chronic administration of TSG on hippocampal memory in normal mice. Behavioral test, electrophysiology and golgi staining were used to evaluate the effect of TSG on hippocampus-dependent memory and synaptic plasticity. Western blotting was used to determine the expression of ERK1/2, CaMKII, and SIRT1. Real-time quantitative PCR was explored to measure miR-134. It was found that TSG enhanced hippocampus-dependent contextual fear memory and novel object recognition, facilitated hippocampal LTP and increased dendrite spine density in the CA1 region of hippocampus. TSG obviously promoted the phosphorylations of ERK1/2, CaMKII, CREB and the expression of BDNF in the hippocampus, with upregulation of silent information regulator 1 (SIRT1) and downregulation of miR-134. Chronic administration of TSG promotes hippocampal memory in normal mice, suggesting that supplementary of TSG might serve as an enhancement of memory. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Treatment Strategies Targeting Excess Hippocampal Activity Benefit Aged Rats with Cognitive Impairment

    OpenAIRE

    Koh, Ming Teng; Rebecca P Haberman; Foti, Stacey; McCown, Thomas J.; Gallagher, Michela

    2009-01-01

    Excess neural activity in the CA3 region of the hippocampus has been linked to memory impairment in aged rats. We tested whether interventions aimed at reducing this excess activity would improve memory performance. Aged (24 to 28 months old) male Long–Evans rats were characterized in a spatial memory task known to depend on the functional integrity of the hippocampus, such that aged rats with identified memory impairment were used in a series of experiments. Overexpression of the inhibitory ...

  9. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.

    Science.gov (United States)

    Cabell, L; Audesirk, G

    1993-06-01

    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  10. Self-sustaining non-repetitive activity in a large scale neuronal-level model of the hippocampal circuit.

    Science.gov (United States)

    Scorcioni, Ruggero; Hamilton, David J; Ascoli, Giorgio A

    2008-10-01

    The mammalian hippocampus is involved in spatial representation and memory storage and retrieval, and much research is ongoing to elucidate the cellular and system-level mechanisms underlying these cognitive functions. Modeling may be useful to link network-level activity patterns to the relevant features of hippocampal anatomy and electrophysiology. Investigating the effects of circuit connectivity requires simulations of a number of neurons close to real scale. To this end, we construct a model of the hippocampus with 16 distinct neuronal classes (including both local and projection cells) and 200,000 individual neurons. The number of neurons in each class and their interconnectivity are drawn from rat anatomy. Here we analyze the emergent network activity and how it is affected by reducing either the size or the connectivity diversity of the model. When the model is run with a simple variation of the McCulloch-Pitts formalism, self-sustaining non-repetitive activity patterns consistently emerge. Specific firing threshold values are narrowly constrained for each cell class upon multiple runs with different stochastic wiring and initial conditions, yet these values do not directly affect network stability. Analysis of the model at different network sizes demonstrates that a scale reduction of one order of magnitude drastically alters network dynamics, including the variability of the output range, the distribution of firing frequencies, and the duration of self-sustained activity. Moreover, comparing the model to a control condition with an equivalent number of (excitatory/inhibitory balanced) synapses, but removing all class-specific information (i.e. collapsing the network to homogeneous random connectivity) has surprisingly similar effects to downsizing the total number of neurons. The reduced-scale model is also compared directly with integrate-and-fire simulations, which capture considerably more physiological detail at the single-cell level, but still fail

  11. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    Science.gov (United States)

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  12. Chronic hypoxia induces the in vivo activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1deltaE9 transgenic mice

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2014-02-01

    Full Text Available Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin a key component of the canonical Wnt signaling pathway. Here we studied in vivo the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice. As a molecular control of the physiological hypoxic response the hypoxia-inducible transcription factor-1α (HIF-1α was analyzed. Exposure to chronic hypoxia (10% oxygen for 6-72 h stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, BrdU incorporation and double labeling with doublecortin. Chronic hypoxia also induced neurogenesis in double transgenic APPswe-PS1deltaE9 mouse model of Alzheimer’s disease (AD, which shows decreased levels of neurogenesis at the SGZ. Our results show for the first time that in vivo exposure to hypoxia can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorder associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired.

  13. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    Science.gov (United States)

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  14. Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects

    DEFF Research Database (Denmark)

    Gagnon, Léa; Schneider, Fabien C; Siebner, Hartwig R

    2012-01-01

    Despite their lack of vision, congenitally blind subjects are able to build and manipulate cognitive maps for spatial navigation. It is assumed that they thereby rely more heavily on echolocation, proprioceptive signals and environmental cues such as ambient temperature and audition to compensate...... and parahippocampus, occipital cortex and fusiform gyrus. Blindfolded sighted controls did not show increased BOLD responses in these areas; instead they activated the caudate nucleus and thalamus. Both groups activated the precuneus during tactile maze navigation. We conclude that cross-modal plastic processes allow...

  15. Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation.

    Science.gov (United States)

    Giovanoli, Sandra; Weber, Liz; Meyer, Urs

    2014-08-01

    Exposure to prenatal infection and traumatizing experiences in peripubertal life are two environmental risk factors for developmental neuropsychiatric disorders. Modeling the cumulative neuronal impact of these factors in a translational animal model has led to the recent identification of pathological interactions between these environmental adversities in the development of adult brain dysfunctions. The present study explored the consequences of combined prenatal immune challenge and peripubertal stress on discrete cellular abnormalities in the γ-aminobutyric acid (GABA) system of the hippocampus. Pregnant mice were treated with the viral mimetic poly(I:C) (=polyriboinosinic-polyribocytidilic acid) or control solution, and offspring born to poly(I:C)-exposed or control mothers were then left undisturbed or subjected to unpredictable sub-chronic stress during peripubertal development. Stereological estimations of parvalbumin-expressing cells revealed a significant reduction of these GABAergic interneurons in the ventral dentate gyrus of adult offspring exposed to combined immune activation and stress. Single exposure to either environmental factor was insufficient to cause similar neuropathology. We further found that peripubertal stress exerted opposite effects on reelin-immunoreactive cells in the dorsal cornu ammonis (CA) region of the hippocampus, with stress increasing and decreasing reelin expression in control offspring and prenatally immune challenged animals, respectively. The present data suggest that the combination of two environmental risk factors, which have each been implicated in the etiology of major neuropsychiatric disease, induces significant but restricted neuropathological effects on hippocampal GABAergic cell populations known to be affected in brain disorders with neurodevelopmental components. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Why looking at the whole hippocampus is not enough – a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Aleksandra eMaruszak

    2014-03-01

    Full Text Available The hippocampus is one of the earliest affected brain regions in Alzheimer´s disease (AD and its dysfunction is believed to underlie the core feature of the disease- memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpointing regions that might enhance the predictive value of current diagnostic methods. Our review presents how changes in hippocampal volume, shape, symmetry and activation are reflected by cognitive impairment and how they are linked with neurogenesis alterations. Moreover, we revisit the functional differentiation along the anteroposterior longitudinal axis of the hippocampus and discuss its relevance for AD diagnosis. Finally, we indicate that apart from hippocampal subfield volumetry, the characteristic pattern of hippocampal hyperactivation associated with seizures and neurogenesis changes is another promising candidate for an early AD biomarker that could become also a target for early interventions.

  17. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity.

    Science.gov (United States)

    Almonte, Antoine G; Qadri, Laura H; Sultan, Faraz A; Watson, Jennifer A; Mount, Daniel J; Rumbaugh, Gavin; Sweatt, J David

    2013-01-01

    Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity. © 2012 International Society for Neurochemistry.

  18. Effects of novelty stress on hippocampal gene expression, corticosterone and motor activity in mice.

    Science.gov (United States)

    Kurumaji, Akeo; Umino, Masakazu; Nishikawa, Toru

    2011-10-01

    Exposure to novelty, a mild psychological stressor, induces neuronal activations in the hippocampus of rodents, which may play an important role in the adaptation to stress. We examined the changes in three parameters, i.e., gene expression in the hippocampus using a RT-PCR method, corticosterone and motor activity, in mice exposed to a new environment for 120min. A sharp and short-lasting increase in the gene expression of a set of stress-related genes previously reported, e.g., Fos and Nr4a1, was observed during the stress, with a similar pattern of changes in corticosterone. The motor activity gradually decreased during the novelty stress, indicating a process of adaptation to the new environment. In addition, in order to minimize the effects of elevated adrenal hormones by the stress, we carried out experiments on adrenalectomized (ADX) mice. However, the adrenalectomy produced minimal changes in the pattern and the magnitude of the gene response after the stress, while the motor activity showed a relatively slower pattern of adaptation in the ADX mice. Hence, the present study suggests that there was a coordinated adaptation process to the new environment in mice, and that the transcriptional response was mediated by neuronal networks rather than by adrenal hormones.

  19. Reduced Specificity of Hippocampal and Posterior Ventrolateral Prefrontal Activity during Relational Retrieval in Normal Aging

    Science.gov (United States)

    Giovanello, Kelly S.; Schacter, Daniel L.

    2012-01-01

    Neuroimaging studies of episodic memory in young adults demonstrate greater functional neural activity in ventrolateral pFC and hippocampus during retrieval of relational information as compared with item information. We tested the hypothesis that healthy older adults--individuals who exhibit behavioral declines in relational memory--would show…

  20. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Directory of Open Access Journals (Sweden)

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  1. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  2. [The microglial activation and the expression of heat shock protein 27 through the propagation pathway of kainic acid-induced hippocampal seizure in the rat].

    Science.gov (United States)

    Taniwaki, Y

    2001-02-01

    We studied activation of microglia and expression of the 27 kDa heat shock protein (HSP27) in the brain during kainic acid-induced acute hippocampal seizures in rats. The microglial activation was observed at 6 hrs after seizure induction, but the expression of HSP27 was delayed until 3 days after seizure induction. The gross anatomical distributions of the two phenomena in the brain structures were almost identical, being localized not only in the primary focus at the dorsal hippocampus ipsilateral to the kainic acid injection, but also in selected remote brain structures that was highly consistent with the propagation pathways of the hippocampal seizure as detected previously by metabolic mapping. These structures included the hippocampus, amygdala, entorhinal cortex, piriform cortex, sensorimotor cortex, hypothalamus and thalamus. A close observation, however, revealed a difference in distribution of the two phenomena in the layers of the contralateral hippocampus: The HSP27 expression showed a layer-specific distribution, being localized selectively in the molecular layer and hilus of the dentate gyrus, and the radiatum and molecular layers of the CA-3 subfield suggesting the expression in the neuropil. On the other hand, the distribution of the microglial activation was non-specific to the layers, being scattered in the whole regions of the dorsal hippocampus. There were no apparent morphological changes in the neurons in these structures except for the ipsilateral dorsal hippocampus, by light microscopic examinations with hematoxylin-eosin staining. These findings thus indicate that activation of microglial cells and expression of HSP27 occur transsynaptically by epileptic activities through the propagation pathways of hippocampal seizure and suggest that these phenomena may reflect a part of early microenvironmental alterations in epileptic brain.

  3. Active Learning in the Introductory Cultural Anthropology Course.

    Science.gov (United States)

    Nanda, Serena

    1985-01-01

    Presents three exercises that encourage active participation in cultural anthropology classes: (1) use of a puzzle to demonstrate focal issues about culture; (2) discussion of a specific piece of fieldwork to demonstrate the relationship among fieldwork, ethics, and cultural relativity; and (3) use of study questions in ethnographic films to allow…

  4. Active Learning in the Introductory Cultural Anthropology Course.

    Science.gov (United States)

    Nanda, Serena

    1985-01-01

    Presents three exercises that encourage active participation in cultural anthropology classes: (1) use of a puzzle to demonstrate focal issues about culture; (2) discussion of a specific piece of fieldwork to demonstrate the relationship among fieldwork, ethics, and cultural relativity; and (3) use of study questions in ethnographic films to allow…

  5. Role of Cl(-) -HCO3(-) exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes.

    Science.gov (United States)

    Salameh, Ahlam I; Hübner, Christian A; Boron, Walter F

    2017-01-01

    A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3(-/-) mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO3(-) efflux) enhances intracellular pH (pHi ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pHi decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pHi recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl(-) loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pHi ) regulation by facilitating the exchange of extracellular Cl(-) for intracellular HCO3(-) . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3(-/-) ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pHi in AE3(-/-) and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3(-/-) mice to investigate the role of AE3 in pHi homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pHi recovery from intracellular alkaline loads imposed by reducing [CO2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of

  6. Hippocampal cell proliferation across the day : Increase by running wheel activity, but no effect of sleep and wakefulness

    NARCIS (Netherlands)

    van der Borght, K; Ferrari, F; Klauke, K; Roman, Viktor; Havekes, R; Sgoifo, A; van der Zee, EA; Meerlo, P

    2006-01-01

    The present study investigated whether proliferation of hippocampal progenitors is subject to circadian modulation. Mice were perfused using 3 h intervals throughout the light-dark cycle and brains were stained for Ki-67. Since Ki-67 is not expressed during the G0 phase of the cell cycle, we expecte

  7. Hippocampal corticosterone receptors and novelty-induced behavioral activity : effect of kainic acid lesion in the hippocampus

    NARCIS (Netherlands)

    Nyakas, C; De Kloet, E R; Veldhuis, H D; Bohus, B

    1983-01-01

    Rats were injected bilaterally in the dorsal and ventral hippocampus with kainic acid (KA) or with artificial CSF and their behavior and brain corticosterone (B) receptor systems were studied. The hippocampal KA injection destroyed part of the pyramidal neurons and of the dentate gyrus neurons. Thes

  8. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    Science.gov (United States)

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  9. Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.

    Science.gov (United States)

    de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2006-03-14

    Experimental work in animals has shown that memory formation depends on a cascade of molecular events. Here we show that variability of human memory performance is related to variability in genes encoding proteins of this signaling cascade, including the NMDA and metabotrobic glutamate receptors, adenylyl cyclase, CAMKII, PKA, and PKC. The individual profile of genetic variability in these signaling molecules correlated significantly with episodic memory performance (P < 0.00001). Moreover, functional MRI during memory formation revealed that this genetic profile correlated with activations in memory-related brain regions, including the hippocampus and parahippocampal gyrus. The present study indicates that genetic variability in the human homologues of memory-related signaling molecules contributes to interindividual differences in human memory performance and memory-related brain activations.

  10. Dynamic changes in interneuron morphophysiological properties mark the maturation of hippocampal network activity.

    Science.gov (United States)

    Allene, Camille; Picardo, Michel A; Becq, Hélène; Miyoshi, Goichi; Fishell, Gord; Cossart, Rosa

    2012-05-09

    During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.

  11. Cultural competence knowledge and confidence after classroom activities.

    Science.gov (United States)

    Muzumdar, Jagannath Mohan; Holiday-Goodman, Monica; Black, Curtis; Powers, Mary

    2010-10-11

    To determine change in cultural competency knowledge and perceived confidence of second-year pharmacy students to deliver culturally competent care after completing a required cultural competency curriculum. Cultural competence material was covered in the second-year PharmD curriculum through lectures, laboratories, and an experiential/out-of-class assignment. Eighty-five second-year (P2) pharmacy students completed a survey which assessed influence of classroom activities related to cultural competence. Mean values for knowledge and perceived confidence were significantly higher for posttest compared to pretest (p activities. Focus groups were used to solicit students' opinions on instructional effectiveness, relevance of activities, and areas for enhancement. The cultural competency curriculum increased pharmacy students' awareness of and confidence in addressing cultural diversity issues that affect pharmaceutical care delivery.

  12. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yujing Tian

    2017-06-01

    Full Text Available Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i. Transient receptor potential vanilloid 4 (TRPV4 is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG. The present study aimed to examine the effect of TRPV4 activation on the dendrite morphology of newborn neurons in the adult hippocampal DG. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days (GSK1016790A-injected mice reduced the number of doublecortin immunopositive (DCX+ cells and DCX+ fibers in the hippocampal DG, showing the impaired dendritic arborization of newborn neurons. The phosphorylated AMP-activated protein kinase (p-AMPK protein level increased from 30 min to 2 h, and then decreased from 1 to 5 days after GSK1016790A injection. The phosphorylated protein kinase B (p-Akt protein level decreased from 30 min to 5 days after GSK1016790A injection; this decrease was markedly attenuated by the AMPK antagonist compound C (CC, but not by the AMPK agonist AICAR. Moreover, the phosphorylated mammalian target of rapamycin (mTOR and p70 ribosomal S6 kinase (p70S6k protein levels were decreased by GSK1016790A; these changes were sensitive to 740 Y-P and CC. The phosphorylation of glycogen synthase kinase 3β (GSK3β at Y216 was increased by GSK1016790A, and this change was accompanied by increased phosphorylation of microtubule-associated protein 2 (MAP2 and collapsin response mediator protein-2 (CRMP-2. These changes were markedly blocked by 740 Y-P and CC. Finally, GSK1016790A-induced decrease of DCX+ cells and DCX+ fibers was markedly attenuated by 740 Y-P and CC, but was unaffected by AICAR. We conclude that TRPV4 activation impairs the dendritic arborization of newborn

  13. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.

    Science.gov (United States)

    Marty, S; Wehrlé, R; Sotelo, C

    2000-11-01

    Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

  14. The Contradictory Effects of Neuronal Hyperexcitationon Adult Hippocampal Neurogenesis.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Encinas

    2016-03-01

    Full Text Available Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An excitation-neurogenesis rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity. In vivo, this property has remained elusive although recently the direct response of neural stem cells to GABA in the hippocampus via GABAA receptors has evidenced a mechanism for a direct talk between neurons and neural stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been generally considered beneficial. But what happens in situations of neuronal hyperactivity in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models, seizures induce the generation of misplaced neurons with abnormal morphological and electrophysiological properties, namely aberrant neurogenesis. We will herein discuss what is known about the mechanisms of influence of neurons on neural stem cells, as well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis.

  15. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin.

    Directory of Open Access Journals (Sweden)

    Shu-Qiu Wang

    Full Text Available Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS, a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg(2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE. Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i control, ii model (incubated with Mg(2+ free medium for 3 hours, iii GLS group I (incubated with Mg(2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours and iv GLS group II (neurons incubated with Mg(2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours. Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression.

  16. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    Full Text Available BACKGROUND: The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. METHODOLOGY/PRINCIPAL FINDINGS: An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the

  17. Community Service-Learning and Cultural-Historical Activity Theory

    Science.gov (United States)

    Taylor, Alison

    2014-01-01

    This paper explores the potential of cultural-historical activity theory (CHAT), to provide new insights into community service-learning (CSL) in higher education. While CSL literature acknowledges the influences of John Dewey and Paolo Freire, discussion of the potential contribution of cultural-historical activity theory, rooted in the work of…

  18. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  19. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  20. Role of BK(Ca) Potassium Channels in the Mechanisms of Modulatory Effects of IL-10 on Hypoxia-Induced Changes in Activity of Hippocampal Neurons.

    Science.gov (United States)

    Levin, S G; Konakov, M V; Godukhin, O V

    2016-03-01

    We studied the contribution of large conductance Ca(2+)-activated potassium channels (BKCa) in the mechanisms of neuromodulatory effects of anti-inflammatory cytokine IL-10 on hypoxiainduced changes in activity of CA1 pyramidal neurons in rat hippocampus. We used the method of registration of population spikes from CA1 pyramidal neurons in hippocampal slices before, during, and after exposure to short-term episodes of hypoxia. Selective blocker (iberiotoxin) and selective activator of BKCa (BMS-191011) were used to evaluate the contribution of these channels in the mechanisms of suppressive effects of IL-10 on changes in neuronal activity during hypoxia and development of post-hypoxic hyperexcitability. It was shown that BKCa are involved in the modulatory effects of IL-10 on hypoxia-induced suppression of activity of CA1 pyramidal neurons in the hippocampus and development of post-hypoxic hyperexcitability in these neurons.

  1. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors

    OpenAIRE

    Ivy, Autumn S.; Rex, Christopher S.; Chen, Yuncai; Dubé, Céline; Maras, Pamela M.; Grigoriadis, Dimitri E.; Christine M Gall; Lynch, Gary; Baram, Tallie Z.

    2010-01-01

    Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly ...

  2. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of FMRP in neurotransmission

    OpenAIRE

    2014-01-01

    Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and the mechanisms of these FMRP actions remain incompletely understood, and the rol...

  3. SIRT1 regulates dendritic development in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Juan F Codocedo

    Full Text Available Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.

  4. SIRT1 Regulates Dendritic Development in Hippocampal Neurons

    Science.gov (United States)

    Godoy, Juan A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2012-01-01

    Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway. PMID:23056585

  5. APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones.

    Science.gov (United States)

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Neupärtl, Moritz; Array, Tabiwang N; Harde, Eva; Beckert, Benedikt; Golghalyani, Vahid; Ackermann, Jörg; Koch, Ina; Müller, Ulrike C; Karas, Michael; Acker-Palmer, Amparo; Volknandt, Walter

    2017-01-01

    Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice.

  6. APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones

    Science.gov (United States)

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Neupärtl, Moritz; Array, Tabiwang N.; Harde, Eva; Beckert, Benedikt; Golghalyani, Vahid; Ackermann, Jörg; Koch, Ina; Müller, Ulrike C.; Karas, Michael; Acker-Palmer, Amparo; Volknandt, Walter

    2017-01-01

    Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice. PMID:28163681

  7. Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro.

    OpenAIRE

    Gee, C E; Benquet, Pascal; Demont-Guignard, Sophie; Wendling, Fabrice; Gerber, U.

    2010-01-01

    CE. GEE and P. Benquet : These authors contributed equally to this study.; International audience; Oxygen glucose deprivation (OGD) leads to rapid suppression of synaptic transmission. Here we describe an emergence of rhythmic activity at 8 to 20 Hz in the CA3 subfield of hippocampal slice cultures occurring for a few minutes prior to the OGD-induced cessation of evoked responses. These oscillations, dominated by inhibitory events, represent network activity, as they were abolished by tetrodo...

  8. Energy deprivation transiently enhances rhythmic inhibitory events in the CA3 hippocampal network in vitro

    OpenAIRE

    Gee, C.(Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom); Benquet, P.; Demont-Guignard, S; Wendling, F; Gerber, U.

    2010-01-01

    Oxygen glucose deprivation (OGD) leads to rapid suppression of synaptic transmission. Here we describe an emergence of rhythmic activity at 8 to 20 Hz in the CA3 subfield of hippocampal slice cultures occurring for a few minutes prior to the OGD-induced cessation of evoked responses. These oscillations, dominated by inhibitory events, represent network activity, as they were abolished by tetrodotoxin. They were also completely blocked by the GABAergic antagonist picrotoxin, and strongly reduc...

  9. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Directory of Open Access Journals (Sweden)

    Avik Roy

    Full Text Available Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP flow under elevated oxygen pressure. RNS60, but not NS (normal saline, PNS60 (saline containing a comparable level of oxygen without the TCP modification, or RNS10.3 (TCP-modified normal saline without excess oxygen, stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3 kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1 and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD, RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  10. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Science.gov (United States)

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  11. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  12. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  13. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  14. Effect of corporate culture on public relations activities interaction between public relations and corporate culture

    OpenAIRE

    DEMİRCİ, FETTAHOĞLU Sevgin

    2010-01-01

    Public relations units which were giving support to efforts to develop and expand a common corporate culture have evolved into units playing an effective role in decision-making mechanisms. Public relations experts should be familiar with and be capable of applying the components of corporate culture. The purpose of this paper is to emphasize the importance of public relations activities which is undeniably crucial for developing the concept of corporate culture and to expose its strengths. I...

  15. High-Speed imaging reveals opposing effects of chronic stress and antidepressants on neuronal activity propagation through the hippocampal trisynaptic circuit.

    Science.gov (United States)

    Stepan, Jens; Hladky, Florian; Uribe, Andrés; Holsboer, Florian; Schmidt, Mathias V; Eder, Matthias

    2015-01-01

    Antidepressants (ADs) are used as first-line treatment for most stress-related psychiatric disorders. The alterations in brain circuit dynamics that can arise from stress exposure and underlie therapeutic actions of ADs remain, however, poorly understood. Here, enabled by a recently developed voltage-sensitive dye imaging (VSDI) assay in mouse brain slices, we examined the impact of chronic stress and concentration-dependent effects of eight clinically used ADs (belonging to different chemical/functional classes) on evoked neuronal activity propagations through the hippocampal trisynaptic circuitry (HTC: perforant path → dentate gyrus (DG) → area CA3 → area CA1). Exposure of mice to chronic social defeat stress led to markedly weakened activity propagations ("HTC-Waves"). In contrast, at concentrations in the low micromolar range, all ADs, which were bath applied to slices, caused an amplification of HTC-Waves in CA regions (invariably in area CA1). The fast-acting "antidepressant" ketamine, the mood stabilizer lithium, and brain-derived neurotrophic factor (BDNF) exerted comparable enhancing effects, whereas the antipsychotic haloperidol and the anxiolytic diazepam attenuated HTC-Waves. Collectively, we provide direct experimental evidence that chronic stress can depress neuronal signal flow through the HTC and demonstrate shared opposing effects of ADs. Thus, our study points to a circuit-level mechanism of ADs to counteract stress-induced impairment of hippocampal network function. However, the observed effects of ADs are impossible to depend on enhanced neurogenesis.

  16. High-Speed Imaging Reveals Opposing Effects of Chronic Stress and Antidepressants on Neuronal Activity Propagation through the Hippocampal Trisynaptic Circuit

    Directory of Open Access Journals (Sweden)

    Jens eStepan

    2015-11-01

    Full Text Available Antidepressants (ADs are used as first-line treatment for most stress-related psychiatric disorders. The alterations in brain circuit dynamics that can arise from stress exposure and underlie therapeutic actions of ADs remain, however, poorly understood. Here, enabled by a recently developed voltage-sensitive dye imaging assay in mouse brain slices, we examined the impact of chronic stress and concentration-dependent effects of eight clinically used ADs (belonging to different chemical/functional classes on evoked neuronal activity propagations through the hippocampal trisynaptic circuitry (HTC: perforant path - dentate gyrus - area CA3 - area CA1. Exposure of mice to chronic social defeat stress led to markedly weakened activity propagations (HTC-Waves. In contrast, at concentrations in the low micromolar range, all ADs, which were bath applied to slices, caused an amplification of HTC-Waves in CA regions (invariably in area CA1. The fast-acting antidepressant ketamine, the mood stabilizer lithium, and brain-derived neurotrophic factor (BDNF exerted comparable enhancing effects, whereas the antipsychotic haloperidol and the anxiolytic diazepam attenuated HTC-Waves. Collectively, we provide direct experimental evidence that chronic stress can depress neuronal signal flow throu