WorldWideScience

Sample records for active conductance states

  1. ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism

    OpenAIRE

    1994-01-01

    The cystic fibrosis gene product cystic fibrosis transmembrane conductance regulator (CFTR) is a low conductance, cAMP-regulated Cl- channel. Removal of cytosolic ATP causes a cessation of cAMP-dependent kinase-phosphorylated CFTR channel activity that resumes upon ATP addition. (Anderson, M. P., H. A. Berger, D. R. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. 1991. Cell. 67:775-784). The aim of this study was to quantify possible effects of ATP on CFTR gating. We analyzed multichannel ...

  2. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode

    Science.gov (United States)

    Huang, Yin-Hsien; Chen, Hsuan-An; Wu, Hsin-Han; Hsieh, Tsung-Eong

    2015-01-01

    Preparation and characteristics of conductive-bridge random access memory devices containing Ge2Sb2Te5 (GST) chalcogenide as the solid-state electrolyte, Ag as the active electrode, and W-Ti as the counter electrode are presented. As revealed by the electrical measurement, only the samples containing crystalline GST exhibited the resistive switching behaviors. With an insertion of ZnS-SiO2 dielectric layer at the Ag/GST interface and a postannealing at 100 °C for 1 min, the sample exhibited the best electrical performance with satisfactory cycleability and retention properties. Moreover, the forming-free and bi-directional polarity features were observed in such a sample type. Microstructure and composition analyses found the finely dispersed nano-scale Ag clusters in GST and, when electrical bias is applied, the migrating Ag ions may build up the connections in between neighboring Ag clusters. Moreover, grain boundaries in polycrystalline GST might be the main paths for Ag migration. The thread-like conduction channels in GST hence form, leading to the low resistance state of sample. On the contrary, the depletion of Ag in GST broke the connections in between Ag clusters when the electrical bias is reversed. This led to the rupture of conduction channels and, hence, the high resistance state of sample. The low operational voltage, forming-free, and bi-directional polarity features observed in (AZGW)T sample might also originated from the fine dispersion of Ag clusters in GST electrolyte.

  3. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    P Padma Kumar; S Yashonath

    2006-01-01

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simulations on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed.

  4. Engaging actively with issues in the responsible conduct of science: lessons from international efforts are relevant for undergraduate education in the United States.

    Science.gov (United States)

    Clements, John D; Connell, Nancy D; Dirks, Clarissa; El-Faham, Mohamed; Hay, Alastair; Heitman, Elizabeth; Stith, James H; Bond, Enriqueta C; Colwell, Rita R; Anestidou, Lida; Husbands, Jo L; Labov, Jay B

    2013-01-01

    Numerous studies are demonstrating that engaging undergraduate students in original research can improve their achievement in the science, technology, engineering, and mathematics (STEM) fields and increase the likelihood that some of them will decide to pursue careers in these disciplines. Associated with this increased prominence of research in the undergraduate curriculum are greater expectations from funders, colleges, and universities that faculty mentors will help those students, along with their graduate students and postdoctoral fellows, develop an understanding and sense of personal and collective obligation for responsible conduct of science (RCS). This Feature describes an ongoing National Research Council (NRC) project and a recent report about educating faculty members in culturally diverse settings (Middle East/North Africa and Asia) to employ active-learning strategies to engage their students and colleagues deeply in issues related to RCS. The NRC report describes the first phase of this project, which took place in Aqaba and Amman, Jordan, in September 2012 and April 2013, respectively. Here we highlight the findings from that report and our subsequent experience with a similar interactive institute in Kuala Lumpur, Malaysia. Our work provides insights and perspectives for faculty members in the United States as they engage undergraduate and graduate students, as well as postdoctoral fellows, to help them better understand the intricacies of and connections among various components of RCS. Further, our experiences can provide insights for those who may wish to establish "train-the-trainer" programs at their home institutions. PMID:24297287

  5. Thermally activated conductivity in gapped bilayer graphene

    Science.gov (United States)

    Trushin, Maxim

    2012-05-01

    This is a theoretical study of electron transport in gated bilayer graphene —a novel semiconducting material with a tunable band gap. It is shown that the which-layer pseudospin coherence enhances the subgap conductivity and facilitates the thermally activated transport. The mechanism proposed can also lead to the non-monotonic conductivity vs. temperature dependence at a band gap size of the order of 10 meV. The effect can be observed in gapped bilayer graphene sandwiched in boron nitride where the electron-hole puddles and flexural phonons are strongly suppressed.

  6. Thermal conductivity of concentrated colloids in different states

    OpenAIRE

    Shalkevich, Natallia; Shalkevich, Andrey; Brügi, Thomas

    2010-01-01

    The thermal conductivity of concentrated colloids in fluid, glass, and gel states was analyzed. SiO₂ colloids at 10−31 vol % and Al₂O₃ colloids at 4.8 vol % in the fluid, the gel, and the glassy states were studied by dynamic light scattering, rheology, and transmission electron microscopy. Thermal conductivity of the three states was measured as a function of volume fraction. For the fluid and gel states the thermal conductivity increases almost linearly with concentration, reaching roughly ...

  7. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  8. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  9. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  10. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  11. Electrical conduction by interface states in semiconductor heterojunctions

    Science.gov (United States)

    El Yacoubi, M.; Evrard, R.; Nguyen, N. D.; Schmeits, M.

    2000-04-01

    Electrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this defect band then allows the transit of electrons from the conduction band of one semiconductor to the valence band of the second component. The analysis is initiated by electrical measurements on n-CdS/p-CdTe heterojunctions obtained by chemical vapour deposition of CdS on (111) oriented CdTe single crystals, for which current-voltage and capacitance-frequency results are shown. The theoretical analysis is based on the numerical resolution of Poisson's equation and the continuity equations of electrons, holes and defect states, where a current component corresponding to the defect band conduction is explicitly included. Comparison with the experimental curves shows that this formalism yields an efficient tool to model the conduction process through the interface region. It also allows us to determine critical values of the physical parameters when a particular step in the conduction mechanism becomes dominant.

  12. Action Research: Conducting Activities for Third Graders.

    Science.gov (United States)

    James, Lorinda

    1998-01-01

    Discusses the action research conducted on whether the use of conducting patterns will not only help students understand meter, but also assist them in grasping certain expressive qualities of music. Finds that the posttest showed a 10 percent gain overall in the understanding of meter, tempo, dynamics, and style. (CMK)

  13. State of hydration and electrical conductance of ichthyotic skin

    Directory of Open Access Journals (Sweden)

    Gupta A

    1990-01-01

    Full Text Available Dry skin of twelve subjects suffering from ichthyosis vulgaris and the efficacy of a moisturiser-Cotaryl were quantitatively assessed by measuring the skin surface hydration and high frequency (3.5 MHz electrical conductance of skin. The state of hydration and conductance of ichthyotic skin were 86.9 + 24.6 and 11.0 + 5.7 micro-mho respectively, being much less-compared to 132. 0 + 5.3 and 72.5 + 54.0 micro-mho ofnormal subjects. The moisturiser increased the state of hydration and also the electrical conductance of the stratum corneuni to near-normal values and maintained them as long as the application continued. However, both the hydration and the conductance fell sharply within a week of withrawal of the moisturiser. A moisturiser was thus undoubtedly efficacious in ichthyotic skin, but the effect was only temporary. The state of hydration was found, at all stages, to bear a strong positive correlation (r = 0.69 to 0.80 with the skin conductance.

  14. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  15. Steady States and Universal Conductance in a Quenched Luttinger Model

    Science.gov (United States)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2016-05-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to &infty}; , after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'} . Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)} , has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  16. Conducting gramicidin channel activity in phospholipid monolayers.

    OpenAIRE

    A. Nelson

    2001-01-01

    Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresp...

  17. Optical Conductivity of Topological Surface States with Emergent Supersymmetry

    Science.gov (United States)

    Witczak-Krempa, William; Maciejko, Joseph

    2016-03-01

    Topological states of electrons present new avenues to explore the rich phenomenology of correlated quantum matter. Topological insulators (TIs) in particular offer an experimental setting to study novel quantum critical points (QCPs) of massless Dirac fermions, which exist on the sample's surface. Here, we obtain exact results for the zero- and finite-temperature optical conductivity at the semimetal-superconductor QCP for these topological surface states. This strongly interacting QCP is described by a scale invariant theory with emergent supersymmetry, which is a unique symmetry mixing bosons and fermions. We show that supersymmetry implies exact relations between the optical conductivity and two otherwise unrelated properties: the shear viscosity and the entanglement entropy. We discuss experimental considerations for the observation of these signatures in TIs.

  18. Hopping conduction via ionic liquid induced silicon surface states

    Science.gov (United States)

    Nelson, J.; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    2015-08-01

    In order to clarify the physics of the gating of solids by ionic liquids (ILs) we have gated lightly doped p -Si, which is so well studied that it can be called the "hydrogen atom of solid state physics" and can be used as a test bed for ionic liquids. We explore the case where the concentration of induced holes at the Si surface is below 1012cm-2 , hundreds of times smaller than record values. We find that in this case an excess negative ion binds a hole on the interface between the IL and Si becoming a surface acceptor. We study the surface conductance of holes hopping between such nearest neighbor acceptors. Analyzing the acceptor concentration dependence of this conductivity, we find that the localization length of a hole is in reasonable agreement with our direct variational calculation of its binding energy. The observed hopping conductivity resembles that of well studied Na+ implanted Si MOSFETs.

  19. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2016-01-01

    in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature...... not only during scratching but also during swimming. Our findings suggest that irregular firing and high-conductance states could be a general feature for motor behaviors....

  20. Conducting polymers as potential active materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1992-12-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  1. Conducting polymers as potential active materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1992-01-01

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  2. Steady-state magnetohydrodynamic flow around an unmagnetized conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, N.; Gómez, D.; Bertucci, C. [Group of Astrophysical Flows, Instituto de Astronomía y Física del Espacio, Buenos Aires (Argentina); Delva, M., E-mail: nromanelli@iafe.uba.ar, E-mail: Magda.Delva@oeaw.ac.at [Space Research Institute, Graz (Austria)

    2014-07-01

    The noncollisional interaction between conducting obstacles and magnetized plasma winds can be found in different scenarios, from the interaction occurring between regions inside galaxy clusters to the interaction between the solar wind and Mars, Venus, and active comets, or even the interaction between Titan and the Saturnian magnetospheric flow. These objects generate, through several current systems, perturbations in the streaming magnetic field leading to its draping around the obstacle's effective conducting surface. Recent observational results suggest that several properties associated with magnetic field draping, such as the location of the polarity reversal layer of the induced magnetotail, are affected by variations in the conditions of the streaming magnetic field. To improve our understanding of these phenomena, we perform a characterization of several magnetic field draping signatures by analytically solving an ideal problem in which a perfectly conducting magnetized plasma (with frozen-in magnetic field conditions) flows around a spherical body for various orientations of the streaming magnetic field. In particular, we compute the shift of the inverse polarity reversal layer as the orientation of the background magnetic field is changed.

  3. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors.

    Science.gov (United States)

    Yi, Wei; Savel'ev, Sergey E; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M-X; Yang, J Joshua; Bratkovsky, Alexander M; Williams, R Stanley

    2016-01-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f(2) (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e(2)/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics-Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications. PMID:27041485

  4. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors

    Science.gov (United States)

    Yi, Wei; Savel'ev, Sergey E.; Medeiros-Ribeiro, Gilberto; Miao, Feng; Zhang, M.-X.; Yang, J. Joshua; Bratkovsky, Alexander M.; Williams, R. Stanley

    2016-01-01

    Tantalum oxide memristors can switch continuously from a low-conductance semiconducting to a high-conductance metallic state. At the boundary between these two regimes are quantized conductance states, which indicate the formation of a point contact within the oxide characterized by multistable conductance fluctuations and enlarged electronic noise. Here, we observe diverse conductance-dependent noise spectra, including a transition from 1/f2 (activated transport) to 1/f (flicker noise) as a function of the frequency f, and a large peak in the noise amplitude at the conductance quantum GQ=2e2/h, in contrast to suppressed noise at the conductance quantum observed in other systems. We model the stochastic behaviour near the point contact regime using Molecular Dynamics–Langevin simulations and understand the observed frequency-dependent noise behaviour in terms of thermally activated atomic-scale fluctuations that make and break a quantum conductance channel. These results provide insights into switching mechanisms and guidance to device operating ranges for different applications. PMID:27041485

  5. Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl- and HCO3- Conductances

    Directory of Open Access Journals (Sweden)

    Reddy MM

    2001-07-01

    Full Text Available While cystic fibrosis transmembrane conductance regulator (CFTR is well known to function as a Cl(- channel, some mutations in the channel protein causing cystic fibrosis (CF disrupt another vital physiological function, HCO(3(- transport. Pathological implications of derailed HCO(3(- transport are clearly demonstrated by the pancreatic destruction that accompany certain mutations in CF. Despite the crucial role of HCO(3(- in buffering pH, little is known about the relationship between cause of CF pathology and the molecular defects arising from specific mutations. Using electrophysiological techniques on basolaterally permeabilized preparations of microperfused native sweat ducts, we investigated whether: a CFTR can act as a HCO(3(- conductive channel, b different conditions for stimulating CFTR can alter its selectivity to HCO(3(- and, c pancreatic insufficiency correlate with HCO(3(- conductance in different CFTR mutations. We show that under some conditions stimulating CFTR can conduct HCO(3(-. HCO(3(- conductance in the apical plasma membranes of sweat duct appears to be mediated by CFTR and not by any other Cl(- channel because HCO(3(- conductance is abolished when CFTR is: a deactivated by removing cAMP and ATP, b blocked by 1 mM DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid in the cytoplasmic bath and, c absent in the plasma membranes of DeltaF508 CF ducts. Further, the HCO(3(-/Cl(- selectivity of CFTR appears to be dependent on the conditions of stimulating CFTR. That is, CFTR activated by cAMP + ATP appears to conduct both HCO(3(- and Cl(- (with an estimated selectivity ratio of 0.2 to 0.5. However, we found that in the apparent complete absence of cAMP and ATP, cytoplasmic glutamate activates CFTR Cl(- conductance without any HCO(3(- conductance. Glutamate activated CFTR can be induced to conduct HCO(3(- by the addition of ATP without cAMP. The non-hydrolysable AMP-PNP (5'-adenylyl imidodiphosphate cannot substitute for ATP

  6. High-conductance states in a mean-field cortical network model

    CERN Document Server

    Lerchner, A; Hertz, J

    2004-01-01

    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.

  7. High-conductance states in a mean-field cortical network model

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ahmadi, Mandana; Hertz, John

    2004-01-01

    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states...

  8. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation. PMID:25896054

  9. Steady-State Density Functional Theory for Finite Bias Conductances.

    Science.gov (United States)

    Stefanucci, G; Kurth, S

    2015-12-01

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  10. Principles and Rules of Conduct in the Internal Audit Activity

    Directory of Open Access Journals (Sweden)

    Mihaela Iuliana Dumitru

    2016-02-01

    Full Text Available The objectives of the paper are to present the basic principles governing the internal audit mission as well as the code of conduct that must be observed in exercising such a mission, because the completion of a professional audit mission implies precisely the compliance with the two category of elements. Consequently, this paper is meant to be added to the practice specific to this field as support in exercising the internal audit according to the market requirements. For this purpose, we analysed the above-mentioned elements, presenting brief examples in support of the importance of the approached topics. Thus, from the practical point of view, we can notice the mechanisms used to apply these principles and how the compliance with the audit specific audit conduct lead to a more efficient activity. For these reasons, we can say that the paper is an element of interest both for the academic field (as a starting point for the support of practical approaches and also for the future researches in order to improve the specific audit activity.

  11. Monitoring Affect States during Effortful Problem Solving Activities

    Science.gov (United States)

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  12. Implementation of IAEA Code of Conduct and Guidance – Exporting State Perspective

    International Nuclear Information System (INIS)

    Canadian Nuclear Safety Commission (CNSC) is a federal agency reporting to Parliament through Natural Resources Minister It Regulates all nuclear facilities and activities to protect the health, safety and security of persons and the environment, assure that Canada meets its international commitments and obligations on the peaceful use of nuclear energy by Implementation of the IAEA Code and Guidance. There were 99 States committed to the IAEA Code of Conduct (as of July 2010) while 59 States committed to the IAEA Guidance on Import and Export (as of July 2010) Use of risk-informed regulatory processes to optimize resource allocation and decision-making. Canadian Nuclear Safety Commission Control of Radioactive Sources. As such, the Canadian Government is a strong proponent of the establishment and maintenance of an effective, efficient and harmonized international regime for ensuring the safety and security of such sources

  13. Theoretical prediction of ion conductivity in solid state HfO2

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Chen Wen-Zhou; Sun Jiu-Yu; Jiang Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation.Geometric and electronic structures of pure bulks exhibit similarity for the two materials.Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttriastabilized zirconia),suggesting the stability of both materials.Low activation energies (below 0.7 eV) of diffusion are found in both materials,and YSH's is a little higher than that of YSZ.In addition,for both HfO2 and ZrO2,the supercells with native oxygen vacancies are also studied.The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one.It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells.A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us,and we attribute this to the different ion vibrations at different temperatures.

  14. Surface state conductivity in epitaxially grown Bi1-x Sb x (111) films

    Science.gov (United States)

    Koch, Julian; Kröger, Philipp; Pfnür, Herbert; Tegenkamp, Christoph

    2016-09-01

    Topologically non-trivial surface states were reported first on {{Bi}}1-xSb x bulk crystals. In this study we present transport measurements performed on thin {{Bi}}1-xSb x -films (up to 24 nm thickness) grown epitaxially on Si(111) with various Sb-concentrations (up to x = 0.22). The analysis of the temperature dependency allowed us to distinguish between different transport channels originating from surface and bulk bands as well as impurity states. At temperatures below 30 K the transport is mediated by surface states while at higher temperatures activated transport via bulk channels sets in. The surface state conductivity and bulk band gaps can be tuned by the Sb-concentration and film thickness, respectively. For films as thin as 4 nm the surface state transport is strongly suppressed in contrast to Bi(111) films grown under identical conditions. The impurity channel is of intrinsic origin due to the growth and alloy formation process and turns out to be located at the buried interface.

  15. 2008 LHC Open Days: Super(-conducting) events and activities

    CERN Multimedia

    2008-01-01

    Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets.   Programme:   BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...

  16. Implications of Special Regions to Conducting Human Activities on Mars

    Science.gov (United States)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  17. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  18. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.

    Science.gov (United States)

    Bachman, John Christopher; Muy, Sokseiha; Grimaud, Alexis; Chang, Hao-Hsun; Pour, Nir; Lux, Simon F; Paschos, Odysseas; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Giordano, Livia; Shao-Horn, Yang

    2016-01-13

    This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host framework are analyzed and shown to have large impacts on the performance of solid-state electrolytes. A comprehensive identification of the candidate migrating species and structures is carried out. Not only the bulk properties of the conductors are explored, but the concept of tuning the conductivity through interfacial effects-specifically controlling grain boundaries and strain at the interfaces-is introduced. High-frequency dielectric constants and frequencies of low-energy optical phonons are shown as examples of properties that correlate with activation energy across many classes of ionic conductors. Experimental studies and theoretical results are discussed in parallel to give a pathway for further improvement of solid-state electrolytes. Through this discussion, the present Review aims to provide insight into the physical parameters affecting the diffusion process, to allow for more efficient and target-oriented research on improving solid-state ion conductors.

  19. 77 FR 38082 - Certain Activated Carbon from China; Notice of Commission Determination To Conduct a Full Five...

    Science.gov (United States)

    2012-06-26

    ... COMMISSION Certain Activated Carbon from China; Notice of Commission Determination To Conduct a Full Five... Activated Carbon From China AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY... whether revocation of the antidumping duty order on certain activated carbon from China would be likely...

  20. DEPTH CONTINUOUS HYDRAULIC CONDUCTIVITY PROFILING USING AN ACTIVE SOURCE PENETROMETER

    Science.gov (United States)

    Fitzgerald, M.; Elsworth, D.

    2009-12-01

    A method is developed to recover depth-continuous hydraulic conductivity profiles of an unconsolidated saturated aquifer using an active source penetrometer, the Hydraulic Profiling Tool (HPT). The tool yields estimates of K through continuous injection of fluid in the subsurface from a small port on the probe shaft while controlled measurements of net applied fluid pressure required to maintain a specified flow rate (typically 350 mL/min) are recorded. The tool gathers these data of flow rate and measured applied pressure during halted and constant-rate penetration (typically 2cm/sec) of the probe. The analysis is developed in two parts, first to explore the interplay between advective effects controlled by penetration rate and secondly flow volume effects controlled by the targeted flow rate. These two effects are analyzed through their respective influence on the measured applied pressure response in ΔP/σv’-Q/ΔP space, which shows a linear relationship for the flow rate to applied pressure response when Q/ΔP > 1 and when Q/ΔP 1. The analysis shows that penetration rate does not significantly influence the applied pressure response at the tested penetration rates (0 ≤ U(cm/s)≤ 4). The targeted applied flow rate does however influence the applied pressure response as flow rates less than ~300 mL/min show a scattering of the data in ΔP/σv’-Q/ΔP space, where above 300 mL/min the data begins to form a linear response. A targeted flow rate of QT = 400mL/min is suggested as a suitable flow rate based on this analysis. Measurements of hydraulic conductivity are then obtained for the HPT data through the derivation of an equation based on a recast form of Darcy’s law where considerations of the flow geometry as K = (QHPT/ΔP)(δw/πΦ). K profiles obtained for the HPT system are then compared against K profiles obtained from an independent method (PSU permeameter) and yield a good correlation between the two methods.

  1. 20 CFR 661.207 - How does the State Board meet its requirement to conduct business in an open manner under the...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How does the State Board meet its requirement... State Governance Provisions § 661.207 How does the State Board meet its requirement to conduct business..., on a regular basis through open meetings, information about the activities of the State Board....

  2. Mechanically driven activation of polyaniline into its conductive form.

    Science.gov (United States)

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. PMID:24824971

  3. A stimulus-activated conductance in isolated taste epithelial membranes.

    OpenAIRE

    Teeter, J H; Brand, J. G.; Kumazawa, T.

    1990-01-01

    Membrane vesicles isolated from the cutaneous taste epithelium of the catfish were incorporated into phospholipid bilayers on the tips of patch pipettes. Voltage-dependent conductances were observed in approximately 50% of the bilayers and single-channel currents having conductances from 8 to greater than 250 pS were recorded. In 40% of the bilayers displaying no voltage-dependent conductances, micromolar concentrations of L-arginine, a potent stimulus for one class of catfish amino acid tast...

  4. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  5. Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl- and HCO3- Conductances

    OpenAIRE

    Reddy MM; Quinton PM

    2001-01-01

    While cystic fibrosis transmembrane conductance regulator (CFTR) is well known to function as a Cl(-) channel, some mutations in the channel protein causing cystic fibrosis (CF) disrupt another vital physiological function, HCO(3)(-) transport. Pathological implications of derailed HCO(3)(-) transport are clearly demonstrated by the pancreatic destruction that accompany certain mutations in CF. Despite the crucial role of HCO(3)(-) in buffering pH, little is known about the relationship betwe...

  6. The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca2+-activated K+ channels

    OpenAIRE

    Bondarenko, Alexander I.; Malli, Roland; Graier, Wolfgang F

    2011-01-01

    Lysophosphatidylinositol (LPI) was recently shown to act both as an extracellular mediator binding to G protein-coupled receptor 55 (GPR55) and as an intracellular messenger directly affecting a number of ion channels including large-conductance Ca2+ and voltage-gated potassium (BKCa) channels. Here, we explored the effect of LPI on intermediate-conductance Ca2+-activated K+ (IKCa) channels using excised inside-out patches from endothelial cells. The functional expression of IKCa was confirme...

  7. A Study of Master's Degrees in Orchestral Conducting in the United States

    Science.gov (United States)

    St. John, Brian Allen

    2010-01-01

    In order to learn to be an orchestra conductor in the United States of America, students often begins their formal education by seeking to earn a master's degree in orchestral conducting. This project compiled a listing of American universities which offer a master's degree in orchestral conducting and categorized the component parts of their…

  8. Voltage-dependent conductance states of a single-molecule junction

    DEFF Research Database (Denmark)

    Wang, Y F; Néel, N; Kröger, J;

    2012-01-01

    Ag–Sn-phthalocyanine–Ag junctions are shown to exhibit three conductance states. While the junctions are conductive at low bias, their impedance drastically increases above a critical bias. Two-level fluctuations occur at intermediate bias. These characteristics may be used to protect a nanoscale...... circuit. Further experiments along with calculations reveal that the self-limiting conductance of the junctions is due to reversible changes of the junction geometry....

  9. Report on activities conducted at Arapaho National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the work done at Arapaho NWR to collect prairie dogs and prairie dog fleas, in order to conduct a laboratory study of flea control methods....

  10. STUDIES OF A.C. CONDUCTIVITY OF POLY(VINYL BORATE) AND ITS CALCIUM DERIVATIVE IN SOLID STATE

    Institute of Scientific and Technical Information of China (English)

    Prafulla Chetri; Neelotpal Sen Sarma; Narendra Nath Dass

    2008-01-01

    An attempt has been made in the present work to prepare poly(vinyl borate), PVBO and its calcium derivative by homogeneous esterification of PVA with boric acid in non-aqueous medium in the presence of a catalyst ethyl nitrate dimethyl sulfoxide. The compounds were characterized by IR and 1H-NMR spectra. Conductivities were determined from 30℃ to 90℃ in solid state within a frequency range of 42 Hz to 100 kHz. The compounds so formed showed ionic conductivity and their conductivities were dependent on frequencies used. It is found that the addition of Ca2+ ion increases the ionic conductivity of PVBO appreciably. The conductivity of PVBO-Ca increases rapidly after 50℃. The total ionic transport number and activation energy of the copolymers were also determined.

  11. Multi-state and non-volatile control of graphene conductivity with surface electric fields

    Science.gov (United States)

    Iurchuk, V.; Majjad, H.; Chevrier, F.; Kundys, D.; Leconte, B.; Doudin, B.; Kundys, B.

    2015-11-01

    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene conductivity illustrates the possibility of multimemory and multifunctional applications, as top and bottom inputs remain accessible.

  12. Numerical model of heat conduction in active volcanoes induced by magmatic activity

    Science.gov (United States)

    Atmojo, Antono Arif; Rosandi, Yudi

    2015-09-01

    We study the heat transfer mechanism of active volcanoes using the numerical thermal conduction model. A 2D model of volcano with its conduit filled by magma is considered, and acts as a constant thermal source. The temperature of the magma activity diffuses through the rock layers of the mountain to the surface. The conduction equation is solved using finite-difference method, with some adaptations to allow temperature to flow through different materials. Our model allows to simulate volcanoes having dikes, branch-pipes, and sills by constructing the domain appropriately, as well as layers with different thermal properties. Our research will show the possibility to monitor magma activity underneath a volcano by probing its surface temperature. The result of our work will be very useful for further study of volcanoes, eruption prediction, and volcanic disaster mitigation.

  13. Temperature dependence of dc electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms

    Science.gov (United States)

    Barroso-Bogeat, Adrián; Alexandre-Franco, María; Fernández-González, Carmen; Sánchez-González, José; Gómez-Serrano, Vicente

    2015-12-01

    From a commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites are prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in inert atmosphere. The temperature-dependent dc electrical conductivity of AC and the as-prepared nanocomposites is measured from room temperature up to ca. 200 °C in air atmosphere by the four-probe method. The decrease in conductivity for the hybrid materials as compared to AC is the result of a complex interplay between several factors, including not only the intrinsic conductivity, crystallite size, content and chemical nature of the supported nanoparticles, which ultimately depend on the precursor and heat treatment temperature, but also the adsorption of oxygen and water from the surrounding atmosphere. The conductivity data are discussed in terms of a thermally activated process. In this regard, both AC and the prepared nanocomposites behave as semiconductors, and the temperature-dependent conductivity data have been interpreted on the basis of the classical model proposed by Mott and Davis. Because of its high content of heteroatoms, AC may be considered as a heavily doped semiconductor, so that conduction of thermally excited carriers via acceptor or donor levels is expected to be the dominant mechanism. The activation energies for the hybrid materials suggest that the supported metal oxide nanoparticles strongly modify the electronic band structure of AC by introducing new trap levels in different positions along its band gap. Furthermore, the thermally activated conduction process satisfies the Meyer-Neldel rule, which is likely connected with the shift of the Fermi level due to the introduction of the different metal oxide nanoparticles in the AC matrix.

  14. Principles and Rules of Conduct in the Internal Audit Activity

    OpenAIRE

    Mihaela Iuliana Dumitru

    2016-01-01

    The objectives of the paper are to present the basic principles governing the internal audit mission as well as the code of conduct that must be observed in exercising such a mission, because the completion of a professional audit mission implies precisely the compliance with the two category of elements. Consequently, this paper is meant to be added to the practice specific to this field as support in exercising the internal audit according to the market requirements. For this pu...

  15. Social Media Activism and State Censorship

    OpenAIRE

    Poell, T.

    2015-01-01

    This chapter interrogates how activist social media communication in authoritarian contexts is shaped through the mutual articulation of social media user practices, business models, and technological architectures, as well as through the controlling efforts of states. It specifically focuses on social media protest activity and contention in China, Tunisia, and Iran, authoritarian states which have made a large effort to control online activity. The analysis shows that instead of blocking or...

  16. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    Science.gov (United States)

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  17. Effect of the edge states on the conductance and thermopower in Zigzag Phosphorene Nanoribbons

    OpenAIRE

    Ma, R.; Geng, H; Deng, W. Y.; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-01-01

    We numerically study the effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons (ZPNRs) based on the tight-binding model and the scattering-matrix method. It is interesting to find that the band dispersion, conductance, and thermopower can be modulated by applying a bias voltage and boundary potentials to the two layers of the ZPNRs. Under the certain bias voltage, the two-fold degenerate quasi-flat edge bands split perfectly. The conductance can be swi...

  18. Activated carbon is an electron-conducting amphoteric ion adsorbent

    OpenAIRE

    Biesheuvel, P. M.

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, c...

  19. State-of-the-art computer technologies used to train nuclear specialists and to conduct research

    International Nuclear Information System (INIS)

    The paper discusses innovative methods used in the process of training nuclear specialists and conducting research which are based on state-of-the-art computer technologies. The approach proposed makes wide use of mathematical modeling and state-of-the-art programming techniques. It is based on the development, improvement and application of problem-oriented computer codes to support the teaching process and to solve fundamental and applied problems of nuclear physics and nuclear engineering.

  20. Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes

    DEFF Research Database (Denmark)

    Poolton, H.R.J.; Ozanyan, K.B.; Wallinga, J.;

    2002-01-01

    electrons can travel, but with reduced mobility: transport through these states is expected to be thermally activated. The purpose of this article is twofold. Firstly, we consider what kind of lattice perturbations could give rise to both localized and extended conduction band-tail states. Secondly. we...... consider what influence the band tails have on the luminescence properties of feldspar, where electrons travel through the sample prior to recombination. The work highlights the dominant role that 0.04-0.05-eV phonons play in both the luminescence excitation and emission processes of these materials. It...

  1. Conducting Examinations in Nigerian Polytechnics: A Case Study of Kwara State Polytechnic

    Science.gov (United States)

    Olasehinde, Martha O.

    2015-01-01

    This paper posits that the conduct of examinations in any educational institution can make or mar the institution, Kwara State Polytechnic inclusive. This is because examinations constitute the hub of any institution. First, the place of polytechnic education in the growth and development of the country is examined. Next, is a consideration of…

  2. Multi-state and non-volatile control of graphene conductivity with surface electric fields

    OpenAIRE

    Iurchuk, V.; Majjad, H.; Chevrier, F.; Kundys, D.; Leconte, B.; Doudin, B.; Kundys, B.

    2015-01-01

    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene con...

  3. Conducting need-for-power review for nuclear power plants: guidelines to states. Draft report

    International Nuclear Information System (INIS)

    The report is intended to describe the state regulatory commissions and other state agencies the standards and criteria used by NRC in conducting need-for-power evaluations for the licensing of nuclear power plants. These are intended as guidelines to states which may wish to perform a need-for-power review that will suffice for adoption by the NRC in its licensing process. Three methodologies which have been used for need-for-power evaluations and which meet NRC standards are included

  4. SOCIAL VALUES REFLECTION EFFECT OF STUDENTS CONDUCT PRACTICE MOTOR ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Ionescu C.L.

    2013-07-01

    Full Text Available Physical education in the context of higher education is a key factor for the formation of future citizens in terms of personality training, by developing and promoting a list of values, behavior and social and personal attitudes manifested in everyday life. Characteristic notes of this stage, I defined here the student life, become evident through constant affirmation of consciousness, awareness of assuming the roles and responsibilities through challenges imposed by significant changes, objective and subjective, joined to maturation of social cognitive, mental, physical processes necessary to discovery and efficiency of social-relational and professional dimensions. The social integration of young people in social actual assembly is carried out and manifests through materialization of personal efforts in various media represented by family, group (membership, reference, and the working environment by positive modeling of personality, as well as by manifestation of personal autonomy. The concern of young people, especially the students, for the idea of physical movement designed in various forms, are reflected in their willingness to engage in physical education and sports activities as an alternative to a series of adverse events that have an impact on health and are evident in the society in which we live. Even if the physical education and sport is acknowledged to be particularly practical, it may be considered by the human resource involved in this process by promoting the practice of motor activity, the promoter for the formation and manifestation of behavior and positive attitudes for exercise for the promotion and development of value sets according to society's actual needs [1]. Corresponding to the highlighted above I have completed a scientific investigation included in the doctoral thesis [1], which presents an approach to physical education and sport field in terms of awareness of social values assimilation through the physical

  5. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on V-Fluctuations during Network Activity

    DEFF Research Database (Denmark)

    Kolind, Jens; Hounsgaard, Jørn Dybkjær; Berg, Rune W

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (V(m)) and spike timing. The conductance increase is commonly attributed to synaptic...... conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential....... If the spikes arrive at random times the changes in synaptic conductance are therefore stochastic and rapid during intense network activity. In comparison, sub-threshold intrinsic conductances vary smoothly in time. In the present study this discrepancy is investigated using two conductance-based models: a (1...

  6. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  7. Activated carbon is an electron-conducting amphoteric ion adsorbent

    CERN Document Server

    Biesheuvel, P M

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, chemical information of the surface structure of the carbon-water interface in ACs can be used to construct an alternative EDL model for ACs. This EDL model assumes that ACs contain both acidic groups, for instance due to carboxylic functionalities, and basic groups, due to the adsorption of protons to the carbon basal planes. As will be shown, this "amphoteric Donnan" model accurately describes various data sets for ion electrosorption in ACs, for solutions of NaCl, of CaCl2, and mixtures thereof, as function of the exter...

  8. 30 CFR 285.614 - When may I begin conducting activities under my approved SAP?

    Science.gov (United States)

    2010-07-01

    ... approved SAP? 285.614 Section 285.614 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Plans and Information Requirements Activities Under An Approved Sap § 285.614 When may I begin conducting activities under my approved SAP? (a) You may begin conducting the activities approved in your...

  9. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula;

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity of t...... of the polymer can be switched electrochemically in a reversible manner by redox triggered opening and closing of the diarylethene unit. In the closed state, the conductivity of the modified electrode is higher than in the open state....

  10. Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bands

    Science.gov (United States)

    Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu

    2013-04-01

    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.

  11. Determination of density of states, conduction mechanisms and dielectric properties of nickel disulfide nanoparticles

    Science.gov (United States)

    Jamil, Arifa; Batool, S. S.; Sher, F.; Rafiq, M. A.

    2016-05-01

    Temperature and frequency dependent ac electrical measurements were used to explore density of states, conduction mechanisms and dielectric properties of nickel disulfide (NiS2) nanoparticles. The NiS2 nanoparticles were prepared by conventional one step solid state reaction method at 250 °C. X-ray diffraction (XRD) confirmed cubic phase of prepared nanoparticles. Scanning electron microscope (SEM) images revealed presence of irregular shaped nanoparticles as small as 50 nm. The ac electrical measurements were carried out from 300 K to 413 K. Two depressed semicircular arcs from 20 Hz to 2 MHz showed presence of bulk and grain boundary phases in NiS2 nanoparticles at all temperatures. Small polaron hopping conduction from 300 K to 393 K and correlated barrier hopping conduction mechanism at temperatures higher than 393 K was observed. High value of density of states (of the order of 1024 eV-1cm-3) was calculated from ac conductivity. At low frequencies high values (of the order of 104-107) of real part of dielectric constant (ɛ') were observed at different temperatures. These observations suggest that NiS2 nanoparticles may find applications in electronic devices.

  12. Observation of Andreev bound states at spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)

    2013-07-01

    We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.

  13. Effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons

    Science.gov (United States)

    Ma, R.; Geng, H.; Deng, W. Y.; Chen, M. N.; Sheng, L.; Xing, D. Y.

    2016-09-01

    We study numerically the effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons (ZPNRs) based on the tight-binding model and the scattering-matrix method. It is interesting to find that the band dispersion, conductance, and thermopower can be modulated by applying a bias voltage and boundary potentials to the two layers of the ZPNRs. Under a certain bias voltage, the twofold-degenerate quasi-flat-edge bands split perfectly. The conductance can be switched off, and the thermopower around zero energy increases. In addition, when only the boundary potential of the top layer or bottom layer is adjusted, only one edge band bends and merges into the bulk band. The first conductance plateau is strongly decreased to e2/h around zero energy. In particular, when the two boundary potentials are adjusted, all the edge bands bend and fully merge into the bulk band, and the bulk energy gap is maximized. More interestingly, a pronounced conductance plateau with G =0 is found around zero energy, which is attributable to the opening of the bulk energy gap between the valence and conduction bands. Meanwhile, the thermopower can be enhanced more than twice compared to that of the perfect ZPNRs. The large magnitude of thermopower is ascribed to the appearance of the bulk energy gap around zero energy. Our results show that the modulated ZPNRs are more reliable in a thermoelectric application.

  14. Comparison on Thermal Conductivity and Permeability of Granular and Consolidated Activated Carbon for Refrigeration

    Institute of Scientific and Technical Information of China (English)

    JIN Zhequan; TIAN Bo; WANG Liwei; WANG Ruzhu

    2013-01-01

    This paper focuses on the development of three types of activated carbon (AC) adsorbents,i.e.granular AC,consolidated AC with chemical binder,and consolidated AC with expanded natural graphite (ENG).Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source.Results show that the thermal conductivity of granular AC with different sizes almost maintains a constant at 0.36 W·(m·K)-1,while the value modestly increases to 0.40 W·(m·K)-1 for the consolidated AC with chemical binder.The consolidated AC with ENG at the density of 600 kg·m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W·(m·K)-1 to 2.61 W·(m·K)-1 according to its fraction of AC.However,the granular AC and consolidated AC with chemical binder show the better permeability performance than consolidated AC with ENG binder whose permeability changes from 6.98×10-13 m2 to 5.16×10-11 m2 and the maximum occurs when the content of AC reaches 71.4% (by mass).According to the different thermal properties,the refrigeration application of three types of adsorbents is analyzed.

  15. Equation of State, Occupation Probabilities and Conductivities in the Average Atom Purgatorio Code

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, P

    2006-12-22

    We report on recent developments with the Purgatorio code, a new implementation of Liberman's Inferno model. This fully relativistic average atom code uses phase shift tracking and an efficient refinement scheme to provide an accurate description of continuum states. The resulting equations of state accurately represent the atomic shell-related features which are absent in Thomas-Fermi-based approaches. We discuss various representations of the exchange potential and some of the ambiguities in the choice of the effective charge Z* in average atom models, both of which affect predictions of electrical conductivities and radiative properties.

  16. Cross-correlations in high-conductance states of a model cortical network

    DEFF Research Database (Denmark)

    Hertz, John

    2010-01-01

    heterogeneity, population averages show systematic behavior. When the network is in a stationary state, the average correlations are generically small: correlation coefficients are of order 1/N, where N is the number of neurons in the network. However, when the input to the network varies strongly in time, much......(dansk abstrakt findes ikke) Neuronal firing correlations are studied using simulations of a simple network model for a cortical column in a high-conductance state with dynamically balanced excitation and inhibition.  Although correlations between individual pairs of neurons exhibit considerable...... larger values are found. In this situation, the network is out of balance, and the synaptic conductance is low, at times when the strongest firing occurs.  However, examination of the correlation functions of synaptic currents reveals that after these bursts, balance is restored within a few ms...

  17. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  18. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  19. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    International Nuclear Information System (INIS)

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown

  20. 78 FR 9108 - Proposed Information Collection (Conduct the Point-of-Care Research Questionnaire) Activity...

    Science.gov (United States)

    2013-02-07

    ... AFFAIRS Proposed Information Collection (Conduct the Point-of-Care Research Questionnaire) Activity... refer to ``OMB Control No. 2900-NEW (Conduct the Point-of-Care Research Questionnaire)'' in any... Questionnaire, VA Form 10-0557. OMB Control Number: 2900-NEW (Conduct the Point-of-Care Research...

  1. 78 FR 44624 - Proposed Information Collection (Conduct the Point-of-Care Research Questionnaire); Activities...

    Science.gov (United States)

    2013-07-24

    ... AFFAIRS [OMB Control No. 2900-NEW (Conduct the Point-of-Care Research Questionnaire)] Proposed Information Collection (Conduct the Point-of-Care Research Questionnaire); Activities Under OMB Review AGENCY: Veterans...) 395-7316. Please refer to ``OMB Control No. 2900-NEW (Conduct the Point of Care Research...

  2. Measurement of the in-plane thermal conductivity by steady-state infrared thermography

    CERN Document Server

    Greppmair, Anton; Saxena, Nitin; Gerstberger, Caroline; Müller-Buschbaum, Peter; Stutzmann, Martin; Brandt, Martin S

    2016-01-01

    We demonstrate a simple and quick method for the measurement of the in-plane thermal conductance of thin films via steady-state IR thermography. The films are suspended above a hole in an opaque substrate and heated by a homogeneous visible light source. The temperature distribution of the thin films is captured via infrared microscopy and fitted to the analytical expression obtained for the specific hole geometry in order to obtain the in-plane thermal conductivity. For thin films of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate post-treated with ethylene glycol and of polyimide we find conductivities of 1.0 W/mK and 0.4 W/mK at room temperature, respectively. These results are in very good agreement with literature values, validating the method developed.

  3. A steady-state high-temperature method for measuring thermal conductivity of refractory materials

    Science.gov (United States)

    Manzolaro, M.; Corradetti, S.; Andrighetto, A.; Ferrari, L.

    2013-05-01

    A new methodology and an instrumental setup for the thermal conductivity estimation of isotropic bulk graphite and different carbides at high temperatures are presented. The method proposed in this work is based on the direct measurement of temperature and emissivity on the top surface of a sample disc of known dimensions. Temperatures measured under steady-state thermal equilibrium are then used to estimate the thermal conductivity of the sample by making use of the inverse parameter estimation technique. Thermal conductivity values obtained in this way are then compared to the material data sheets and values found in literature. The reported work has been developed within the Research and Development framework of the SPES (Selective Production of Exotic Species) project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro).

  4. Conductance of a molecular junction mediated by unconventional metal-induced gap states

    OpenAIRE

    Gutierrez, R.; Fagas, G.; Richter, K.; Grossmann, F.; R. Schmidt

    2003-01-01

    The conductance of a molecular junction is commonly determined by either charge-transfer-doping, where alignment of the Fermi energy to the molecular levels is achieved, or tunnelling through the tails of molecular resonances within the highest-occupied and lowest-unoccupied molecular-orbital gap. Here, we present an alternative mechanism where electron transport is dominated by electrode surface states. They give rise to metallization of the molecular bridge and additional, pronounced conduc...

  5. 30 CFR 285.1010 - How long may I conduct activities under an Alternate Use RUE?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How long may I conduct activities under an Alternate Use RUE? 285.1010 Section 285.1010 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... Alternate Use Rue Administration § 285.1010 How long may I conduct activities under an Alternate Use RUE?...

  6. 42 CFR 51.31 - Conduct of protection and advocacy activities.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Conduct of protection and advocacy activities. 51... REQUIREMENTS APPLICABLE TO THE PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Protection and Advocacy Services § 51.31 Conduct of protection and advocacy activities. (a) Consistent with...

  7. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-01

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes.

  8. Interpretation of anomalous normal state optical conductivity of K3C60 fullerides

    Indian Academy of Sciences (India)

    K K Choudhary

    2013-02-01

    The observed frequency dependent optical response of alkali–metal-doped fulleride superconductors (c ≈ 19 K) has been theoretically analysed. The calculations of the optical conductivity, (), have been made within the two-component schemes: one is the coherent Drude carriers (electrons) responsible for superconductivity and the other is incoherent motion of carriers from one atom to other atom of C60 molecule to a pairing between Drude carriers. The approach accounts for the anomalies reported (frequency dependence of optical conductivity) in the optical measurements for the normal state. The model has only one free parameter, the relaxation rate. The frequency dependent relaxation rates are expressed in terms of memory functions. The coherent Drude carriers form a sharp peak at zero frequency and a long tail at higher frequencies, i.e. in the infrared region. However, the hopping of carriers from one atom to the other (incoherent motion of doped electrons) yields a peak value in the optical conductivity centred at mid-infrared region. It is found that both the Drude and hopping carriers will contribute to the optical process of conduction in the K3C60 and shows similar results on optical conductivity in the mid-infrared as well as infrared frequency regions as those revealed from experiments.

  9. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-01

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes. PMID:27060363

  10. Hole-ion Mixed Conduction of Orientation-Controlled BaPrO3-δ Thin Film with Mixed Valence States

    Science.gov (United States)

    Higuchi, Tohru; Oda, Asuka; Tsuchiya, Takashi; Suetsugu, Takaaki; Suzuki, Naoya; Yamaguchi, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi

    2015-11-01

    An in-plane-oriented BaPrO3-δ thin film with mixed valence states has been prepared on an Al2O3(0001) substrate by RF magnetron sputtering. With increasing crystallization temperature (Tsub), the lattice constant decreases and the orientation changes from the a-axis to the b-axis. The thin film prepared above Tsub = 800 °C exhibits a higher proton conductivity than bulk ceramics. The conductivity below 400 °C decreases with oxygen gas partial pressure, indicating the existence of hole-ion mixed conduction. The valence band consists of O 2p states hybridized with the Pr4+ (4f0) and Pr3+ (4f1L) states, which are closely related to the mixed conduction. The energy difference between the top of the valence band and the Fermi level corresponds to the activation energy of holes for the total conductivity below 400 °C.

  11. Equivalent conductivity and its activation energy of NaF-AlF3 melts

    Institute of Scientific and Technical Information of China (English)

    HU Xian-wei; WANG Zhao-wen; GAO Bing-liang; SHI Zhong-ning; KAN Hong-min; LUO Xu-dong; TAO Wen-ju

    2009-01-01

    Electrical conductivity of NaF-AlF3 melts was measured by continuously varying cell constant(CVCC) technique. Relationships between equivalent conductivity at 990-1 030 ℃ and temperature and composition, and relationship between equivalent conductivity activation energy and composition of the melts were then studied on the basis of two-step decomposition mechanism of AlF63-. According to the changes of molar fractions of different anions in NaF-AlF3 melts, courses of dependence of equivalent conductivity and its activation energy on composition were analyzed. The results show that the influence of temperature on equivalent conductivity of the melts is small in the researched temperature range, and equivalent conductivity increases with increasing the molar fraction of AlF3; there is a minimum point in the activation energy-composition curve when molar fraction of AlF3 is 0.29.

  12. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  13. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.

    Science.gov (United States)

    Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric

    2012-08-01

    Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.

  14. Bound states induced giant oscillations of the conductance in the quantum Hall regime

    Science.gov (United States)

    Kadigrobov, A. M.; Fistul, M. V.

    2016-06-01

    We theoretically studied the quasiparticle transport in a 2D electron gas biased in the quantum Hall regime and in the presence of a lateral potential barrier. The lateral junction hosts the specific magnetic field dependent quasiparticle states highly localized in the transverse direction. The quantum tunnelling across the barrier provides a complex bands structure of a one-dimensional energy spectrum of these bound states, {εn}≤ft( {{p}y}\\right) , where p y is the electron momentum in the longitudinal direction y. Such a spectrum manifests itself by a large number of peaks and drops in the dependence of the magnetic edge states transmission coefficient D(E ) on the electron energy E. E.g. the high value of D occurs as soon as the electron energy E reaches gaps in the spectrum. These peaks and drops of D(E) result in giant oscillations of the transverse conductance G x with the magnetic field and/or the transport voltage. Our theoretical analysis, based on the coherent macroscopic quantum superposition of the bound states and the magnetic edge states propagating along the system boundaries, is in a good accord with the experimental observations found in Kang et al (2000 Lett. Nat. 403 59)

  15. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don;

    2003-01-01

    Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...... and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii...... at -100 cm H2O soil-water potential (epsilon(100)). Similarly, k(a100) could be predicted from nearby values of k(a100) and epsilon(100). Including soil total porosity in the state-space modeling did not improve prediction accuracy. Thus, macro-porosity (epsilon(100)) was the key porosity parameter...

  16. A Framework for Conducting Deceased Donor Research in the United States.

    Science.gov (United States)

    Glazier, Alexandra K; Heffernan, Kate Gallin; Rodrigue, James R

    2015-11-01

    There are a number of regulatory barriers both perceived and real that have hampered widespread clinical research in the field of donation and transplantation. This article sets forth a framework clarifying the existing legal requirements and their application to the conduct of research on deceased donors and donor organs within the United States. Recommendations are focused on resolving some of the ambiguity surrounding deceased donor authorization for research, Health Insurance Portability and Accountability Act requirements and the role of institutional review board oversight. The successful conduct of clinical research in the field of donation and transplantation requires an understanding of these regulatory nuances as well as identification of important ethical principles to consider. Facilitation of these concepts will ultimately provide support for innovative research designed to increase the availability of organs for transplantation. Further work identifying the optimal infrastructure for overview of clinical research in the field should be given priority.

  17. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    Science.gov (United States)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Kline, Jeffrey S.; Pappas, David P.; Oh, Seongshik

    2010-04-01

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  18. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  19. New analytical solution for solving steady-state heat conduction problems with singularities

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2013-01-01

    Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.

  20. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    Science.gov (United States)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  1. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  2. Active conductivity of plane two-barrier resonance tunnel structure as operating element of quantum cascade laser or detector

    Directory of Open Access Journals (Sweden)

    Ju.O. Set

    2011-06-01

    Full Text Available Within the model of rectangular potentials and different effective masses of electrons in different elements of plane two-barrier resonance tunnel structure there is developed a theory of spectral parameters of quasi-stationary states and active conductivity for the case of mono-energetic electronic current interacting with electromagnetic field. It is shown that the two-barrier resonance tunnel structure can be utilized as a separate or active element of quantum cascade laser or detector. For the experimentally studied In0.53Ga0.47As/In0.52Al0.48As nano-system it is established that the two-barrier resonance tunnel structure, in detector and laser regimes, optimally operates (with the biggest conductivity at the smallest exciting current at the quantum transitions between the lowest quasi-stationary states.

  3. Sociological Understandings of Conduct for a Noncanonical Activity Theory: Exploring Intersections and Complementarities

    Science.gov (United States)

    Sawchuk, Peter H.; Stetsenko, Anna

    2008-01-01

    Following a discussion of activity theory as an approach to human development originally rooted in transformational change, we review the historical context and diverse conceptualizations of social conduct from the field of sociology. The discussion of social conduct is broken into theories of social action, theories of enactment, and contemporary…

  4. A complementary switching mechanism for organic memory devices to regulate the conductance of binary states

    Science.gov (United States)

    Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit

    2016-06-01

    We have fabricated an organic non-volatile memory device wherein the ON/OFF current ratio has been controlled by varying the concentration of a small organic molecule, 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ), in an insulating matrix of a polymer Poly(4-vinylphenol) (PVP). A maximum ON-OFF ratio of 106 is obtained when the concentration of DDQ is half or 10 wt. % of PVP. In this process, the switching direction for the devices has also been altered, indicating the disparity in conduction mechanism. Conduction due to metal filament formation through the active material and the voltage dependent conformational change of the organic molecule seem to be the motivation behind the gradual change in the switching direction.

  5. Can molecular projected density of states (PDOS be systematically used in electronic conductance analysis?

    Directory of Open Access Journals (Sweden)

    Tonatiuh Rangel

    2015-06-01

    Full Text Available Using benzenediamine and benzenedithiol molecular junctions as benchmarks, we investigate the widespread analysis of the quantum transport conductance in terms of the projected density of states (PDOS onto molecular orbitals (MOs. We first consider two different methods for identifying the relevant MOs: (1 diagonalization of the Hamiltonian of the isolated molecule and (2 diagonalization of a submatrix of the junction Hamiltonian constructed by considering only basis elements localized on the molecule. We find that these two methods can lead to substantially different MOs and hence PDOS. Furthermore, within Method 1, the PDOS can differ depending on the isolated molecule chosen to represent the molecular junction (e.g., with or without dangling bonds; within Method 2, the PDOS depends on the chosen basis set. We show that these differences can be critical when the PDOS is used to provide a physical interpretation of the conductance (especially when its value is small, as it happens typically at zero bias. In this work, we propose a new approach in an attempt to reconcile the two traditional methods. Although some improvements were achieved, the main problems remain unsolved. Our results raise more general questions and doubts on a PDOS-based analysis of the conductance.

  6. Effects of active conductance distribution over dendrites on the synaptic integration in an identified nonspiking interneuron.

    Directory of Open Access Journals (Sweden)

    Akira Takashima

    Full Text Available The synaptic integration in individual central neuron is critically affected by how active conductances are distributed over dendrites. It has been well known that the dendrites of central neurons are richly endowed with voltage- and ligand-regulated ion conductances. Nonspiking interneurons (NSIs, almost exclusively characteristic to arthropod central nervous systems, do not generate action potentials and hence lack voltage-regulated sodium channels, yet having a variety of voltage-regulated potassium conductances on their dendritic membrane including the one similar to the delayed-rectifier type potassium conductance. It remains unknown, however, how the active conductances are distributed over dendrites and how the synaptic integration is affected by those conductances in NSIs and other invertebrate neurons where the cell body is not included in the signal pathway from input synapses to output sites. In the present study, we quantitatively investigated the functional significance of active conductance distribution pattern in the spatio-temporal spread of synaptic potentials over dendrites of an identified NSI in the crayfish central nervous system by computer simulation. We systematically changed the distribution pattern of active conductances in the neuron's multicompartment model and examined how the synaptic potential waveform was affected by each distribution pattern. It was revealed that specific patterns of nonuniform distribution of potassium conductances were consistent, while other patterns were not, with the waveform of compound synaptic potentials recorded physiologically in the major input-output pathway of the cell, suggesting that the possibility of nonuniform distribution of potassium conductances over the dendrite cannot be excluded as well as the possibility of uniform distribution. Local synaptic circuits involving input and output synapses on the same branch or on the same side were found to be potentially affected under

  7. Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent

    Science.gov (United States)

    Zhi, Jian; Yang, Chongyin; Lin, Tianquan; Cui, Houlei; Wang, Zhou; Zhang, Hui; Huang, Fuqiang

    2016-02-01

    Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the negative electrode. In this unique design, NiO nanosheets are used as pseudocapacitive materials and TiO2-x:N nanoparticles serve as the conductive agent. Owing to the excellent electrical conductivity of TiO2-x:N and well defined ``particle on sheet'' planar structure of NiO/TiO2-x:N composites, the 2D morphology of the decorated NiO nanosheets is completely retained, which efficiently reinforces the pseudocapacitive activity and flexibility of the whole all solid state device. The maximum specific capacitance of fabricated the NiO/TiO2-x:N//mesoporous graphene supercapacitor can reach 133 F g-1, which is 2 and 4 times larger than the values of the NiO based ASSSC employing graphene and carbon black as the conductive agent, respectively. In addition, the optimized ASSSC displays intriguing performances with an energy density of 47 W h kg-1 in a voltage region of 0-1.6 V, which is, to the best of our knowledge, the highest value for flexible ASSSC devices. The impressive results presented here may pave the way for promising applications of black titania in high energy density flexible storage systems.Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the

  8. Design of Thermal Conductivity Apparatus Base on Transient-state Radial Cylinder Method

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Argo

    2013-01-01

    Full Text Available Thermal properties i.e. thermal conductivity (k of agricultural products provide critical information and data for the design and manufacture of equipment and machines for their processing. Literature generally abounds in information on wide and common agricultural products but lack on some locally grown products. The aim of the present study was to design and construct the thermal conductivity apparatus embedded with controlled temperature system and equipped with record system supported with personal computer as data processor. The apparatus designed based on transient-state radial cylinder method, consist of three main parts i.e. measurement chamber, controls panel and data acquisition processor. Measurement chamber was cylinder equipped by radially sixteen node of thermocouple with controlled temperature heater on center cylinder axis. It was placed in temperature controlled box generated by air flow system to eliminate the effect of surrounding temperature outside chamber. Controls panel functioned as link bridge and control unit that connect the measurement chamber to data acquisition processor. It consists of some electronic circuit e.g. analog to digital converter (ADC to control and acquire data from some thermocouple and sensors. Personal computer as data acquisition processor embedded with software developed with Borland Delphi. Developed software featured with calibrating, recording, calculating mode and displaying all obtained data graphically. Testing procedure was conducted with empty and filled chamber condition to adjust and calibrate data captured by thermocouples and sensors and displayed on personal computer, compared with actual condition. After some adjustment and calibration, all system was well functioned. The outcomes were in good agreements with thermal conductivity (k of agricultural products reported in the literatures.Keywords—

  9. New Activated Carbon with High Thermal Conductivity and Its Microwave Regeneration Performance

    Institute of Scientific and Technical Information of China (English)

    GU Xuexian; SU Zhanjun; XI Hongxia

    2016-01-01

    Using a walnut shell as a carbon source and ZnCl2 as an activating agent, we resolved the temperature gradient problems of activated carbon in the microwave desorption process. An appropriate amount of silicon carbide was added to prepare the composite activated carbon with high thermal conductivity while developing VOC adsorption-microwave regeneration technology. The experimental results show that the coefficient of thermal conductivity of SiC-AC is three times as much as those of AC and SY-6. When microwave power was 480 W in its microwave desorption , the temperature of the bed thermal desorption was 10℃ to 30℃below that of normal activated carbon prepared in our laboratory. The toluene desorption activation energy was 16.05 kJ∙mol-1, which was 15% less than the desorption activation energy of commercial activated carbon. This study testified that the process could maintain its high adsorption and regeneration desorption performances.

  10. A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper

    KAUST Repository

    Kurra, Narendra

    2014-08-19

    In this study, a thin nucleation layer is used to tune the morphology of conducting polymer electrodes and to optimize the performance of paper based solid-state supercapacitors. It is found that using an acid-treated poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) nucleation layer, prior to poly(3,4-ethylenedioxythiophene), PEDOT, electrochemical deposition, gives 5-6 times higher areal capacitance compared to a gold metal nucleation layer. Specifically, PEDOT supercapacitors with a high volumetric capacitance of 327 F cm-3, higher than any other PEDOT based supercapacitors reported in the literature, is achieved on the PEDOT:PSS nucleation layer; for the same devices, an areal capacitance of 242 mF cm-2 and an energy density of 14.5 mW h cm-3 at a power density of 350 mW cm-3 are obtained. Furthermore, these optimized PEDOT/PEDOT:PSS/paper electrodes are employed to fabricate solid-state supercapacitors using aqueous and ion gel electrolytes, with 32 and 11 mF cm-2 cell capacitance, respectively. The solid-state PEDOT device showed an energy density of 1.5 mW h cm-3 (normalised to the volume of the whole cell, including both the electrodes and the electrolyte), which is higher than the best reported ppy/paper (E = 1 mW h cm-3) and PAni/pencil/paper (E = 0.32 mW h cm-3) solid-state devices. The cycling performance showed that capacitance retention up to 80% is achieved after 10000 cycles. This journal is

  11. 26 CFR 1.355-3 - Active conduct of a trade or business.

    Science.gov (United States)

    2010-04-01

    ... ownership and operation (including leasing) of real or personal property used in a trade or business, unless... part of, or a step in, the process of earning income or profit. Such group of activities ordinarily... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Active conduct of a trade or business....

  12. Specific heat and thermal conductivity in the mixed state of MgB2.

    Science.gov (United States)

    Tewordt, L; Fay, D

    2002-09-23

    The specific heat C and the electronic and phononic thermal conductivities kappa(e) and kappa(ph) are calculated in the mixed state for magnetic fields H near H(c2), including the effects of supercurrent flow and Andreev scattering. The resulting function C(H) is nearly linear while kappa(e)(H) exhibits an upward curvature near H(c2). The slopes decrease with impurity scattering which improves the agreement with the data on MgB2. The ratio of phonon relaxation times tau(n)/tau(s)=g(omega(0),H) for phonon energy omega(0) is smeared out around omega(0)=2Delta and tends to one for increasing H. This leads to a rapid reduction of kappa(ph)(H) in MgB2 for relatively small fields due to the rapid suppression of the smaller energy gap.

  13. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Liliental-Weber, Z.; Gullikson, E.M. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  14. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    International Nuclear Information System (INIS)

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties

  15. Application of the thermoelectric phenomena to study the unsteady-state thermal conductivity

    Science.gov (United States)

    Poprawski, W.; Radojewska, E. B.

    2016-09-01

    We present an experimental set-up designed to investigate the unsteady-state thermal conductivity. A sine-shaped thermal wave is produced by a thermoelectric device and the change in temperature at two points in a metal rod is measured. The investigation is carried out for seven thermal wave frequencies. The thermal wave penetration depth and the thermal conductivity are determined by two methods: from the wave amplitude ratio and from the wave phase shift at two locations. The presented system also offers a determination of the thermal wave propagation velocity and the thermal diffusivity coefficient of the medium. The obtained measurement results are discussed. The specification of the measurement system is preceded by a theoretical and comprehensive description of the phenomena taking part in the experiment. With regard to the role of thermoelectric phenomena in contemporary science and technology the presented experiment is suitable for students in university laboratories studying metrology, electronics, space technology, energy harvesting, energo-mechanics, renewable energy science, chemical technology, bio-engineering and other similar courses.

  16. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  17. A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method

    Indian Academy of Sciences (India)

    M Ben Bechir; A Ben Rhaiem; K Guidara

    2014-05-01

    LiNiPO4 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, infrared, Raman analysis spectroscopy and electrical impedance spectroscopy. The compound crystallizes in the orthorhombic system, space group with = 10.0252(7) Å, = 5.8569(5) Å and = 4.6758(4) Å. Vibrational analysis was used to identify the presence of PO$^{3-}_{4}$ group in this compound. The complex impedance has been measured in the temperature and frequency ranges 654–716 K and 242 Hz–5 MHz, respectively. The ' and '' vs frequency plots are well-fitted to an equivalent circuit consisting of series of combination of grains and grain boundary elements. Dielectric data were analysed using complex electrical modulus * for the sample at various temperatures. The modulus plots are characterized by the presence of two peaks thermally activated. The frequency dependence of the conductivity is interpreted in terms of equation: _a.c.() = [g/(1 + 22) + (∞22/1 + 22) + An]. The near values of activation energies obtained from the analysis of ", conductivity data and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of Li+ in the structure of the investigated material.

  18. Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors.

    Science.gov (United States)

    Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D

    2015-12-15

    The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. PMID:26397234

  19. ATTRIBUTION OF CONDUCT TO A STATE-THE SUBJECTIVE ELEMENT OF THE INTERNATIONAL RESPONSIBILITY OT THE STATE FOR INTERNATIONALLY WRONGFUL ACTS

    Directory of Open Access Journals (Sweden)

    FELICIA MAXIM

    2012-05-01

    Full Text Available In order to establish responsibility of states for internationally wrongful act, two elements are identified. First, the conduct in question must be attributable to the State under international law. Secondly, for responsibility to attach to the act of the State, the conduct must constitute a breach of an international legal obligation in force for that State at that time. For particular conduct to be characterized as an internationally wrongful act, it must first be attributable to the State. The State is a real organized entity, a legal person with full authority to act under international law. But to recognize this is not to deny the elementary fact that the State cannot act of itself. States can act only by and through their agents and representatives. In determining what constitutes an organ of a State for the purposes of responsibility, the internal law and practice of each State are of prime importance. The structure of the State and the functions of its organs are not, in general, governed by international law. It is a matter for each State to decide how its administration is to be structured and which functions are to be assumed by government. But while the State remains free to determine its internal structure and functions through its own law and practice, international law has a distinct role. Conduct is thereby attributed to the State as a subject of international law and not as a subject of internal law. The State as a subject of international law is held responsible for the conduct of all the organs, instrumentalities and officials which form part of its organization and act in that capacity, whether or not they have separate legal personality under its internal law.

  20. Techniques for Reducing Thermal Contact Resistance in Steady-State Thermal Conductivity Measurements on Polymer Composites

    Science.gov (United States)

    Stacey, C.; Simpkin, A. J.; Jarrett, R. N.

    2016-11-01

    The National Physical Laboratory (NPL) has developed a new variation on the established guarded hot plate technique for steady-state measurements of thermal conductivity. This new guarded hot plate has been specifically designed for making measurements on specimens with a thickness that is practical for advanced industrial composite materials and applications. During the development of this new guarded hot plate, NPL carried out an experimental investigation into methods for minimising the thermal contact resistance between the test specimen and the plates of the apparatus. This experimental investigation included tests on different thermal interface materials for use in another NPL facility based on a commercial guarded heat flow meter apparatus conforming to standard ASTM E1530-11. The results show the effect of applying different quantities of the type of heat transfer compound suggested in ASTM E1530-11 (clause 10.7.3) and also the effect on thermal resistance of alternative types of thermal interface products. The optimum quantities of two silicone greases were determined, and a silicone grease filled with copper was found to offer the best combination of repeatability, small hysteresis effect and a low thermal contact resistance. However, two products based on a textured indium foil and pyrolytic graphite sheet were found to offer similar or better reductions in thermal contact resistance, but with quicker, easier application and the advantages of protecting the apparatus plates from damage and being useable with specimen materials that would otherwise absorb silicone grease.

  1. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  2. Molecular Monitoring of Wine Fermentations Conducted by Active Dry Yeast Strains

    OpenAIRE

    Querol, Amparo; Barrio, Eladio; Huerta, Tomás; Ramón, Daniel

    1992-01-01

    A simple and rapid method of yeast strain characterization based on mitochondrial DNA restriction analysis was applied to the control of wine fermentations conducted by active dry yeast strains. This molecular approach allows us to understand several important aspects of this process, such as the role of the active dry yeast strain and that of the natural Saccharomyces cerevisiae flora during vinification. In this paper, we demonstrate that the inoculated strain is really responsible for the ...

  3. 78 FR 5793 - Agency Information Collection Activities; Comment Request; Evaluation of State Expanded Learning...

    Science.gov (United States)

    2013-01-28

    ... Agency Information Collection Activities; Comment Request; Evaluation of State Expanded Learning Time... State Expanded Learning Time. OMB Control Number: 1850-New. Type of Review: New information collection... conduct semi-structured interviews with 21st Century Community Learning Centers (21st CCLC)...

  4. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    Science.gov (United States)

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  5. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten;

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA...

  6. Participation in Organized Activities and Conduct Problems in Elementary School: The Mediating Effect of Social Skills

    Science.gov (United States)

    Denault, Anne-Sophie; Déry, Michèle

    2015-01-01

    The goal of this study was to test a mediation model in which social skills mediate the relationship between participation in organized activities and conduct problems among elementary school children. Two moderators of these associations were also examined, namely, gender and reception of special education services. A total of 563 children (45%…

  7. A Context-Aware Ubiquitous Learning Approach to Conducting Scientific Inquiry Activities in a Science Park

    Science.gov (United States)

    Hwang, Gwo-Jen; Tsai, Chin-Chung; Chu, Hui-Chun; Kinshuk; Chen, Chieh-Yuan

    2012-01-01

    Fostering students' scientific inquiry competence has been recognised as being an important and challenging objective of science education. To strengthen the understanding of science theories or notations, researchers have suggested conducting some learning activities in the field via operating relevant devices. In a traditional infield scientific…

  8. Localization of Ca2+ -activated big-conductance K+ channels in rabbit distal colon

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Grunnet, Morten; Abrahamse, Salomon L;

    2003-01-01

    Big-conductance Ca(2+)-activated K(+) channels (BK channels) may play an important role in the regulation of epithelial salt and water transport, but little is known about the expression level and the precise localization of BK channels in epithelia. The aim of the present study was to quantify...

  9. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...

  10. 40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Use of specific microorganisms in activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... Bradyrhizobium japonicum. (2) Modification of traits. (i) The introduced genetic material must meet the...

  11. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Sørensen, Ulrik S; Nissen, Jakob Dahl;

    2010-01-01

    Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors...

  12. Conducting Field Research on Gender Relations in a Gender Repressive State: A Case Study of Gender Research in Iran

    Science.gov (United States)

    Rezai-Rashti, Goli M.

    2013-01-01

    This paper reflects on the experience of conducting fieldwork and the gendering of research within the context of a gender repressive state. The Islamic Republic of Iran has consistently enacted discriminatory policies regarding gender relations since 1979. These regressive measures have made the state apprehensive and sensitive towards any…

  13. All-Solid-State Textile Batteries Made from Nano-Emulsion Conducting Polymer Inks for Wearable Electronics

    OpenAIRE

    Tapani Ryhänen; Darryl Cotton; Di Wei

    2012-01-01

    A rollable and all-solid-state textile lithium battery based on fabric matrix and polymer electrolyte that allows flexibility and fast-charging capability is reported. When immerged into poly(3,4-ethylenedioxythiophene) (PEDOT) nano-emulsion inks, an insulating fabric is converted into a conductive battery electrode for a fully solid state lithium battery with the highest specific energy capacity of 68 mAh/g. This is superior to most of the solid-state conducting polymer primary and/or second...

  14. Three-State Single-Molecule Naphthalenediimide Switch: Integration of a Pendant Redox Unit for Conductance Tuning.

    Science.gov (United States)

    Li, Yonghai; Baghernejad, Masoud; Qusiy, Al-Galiby; Zsolt Manrique, David; Zhang, Guanxin; Hamill, Joseph; Fu, Yongchun; Broekmann, Peter; Hong, Wenjing; Wandlowski, Thomas; Zhang, Deqing; Lambert, Colin

    2015-11-01

    We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states. PMID:26403214

  15. Analysis Of Soil NPK Ph And Electrical Conductivity At Adham Area- Renk Upper Nile State

    Directory of Open Access Journals (Sweden)

    Abubaker Haroun Mohamed Adam

    2015-08-01

    Full Text Available ABSTRACT The objectives of this study were to investigate soil type potentiality and reaction in relation to the scattered remaining vegetation species and to quantify soil suitability for growing field crops. Adham area witnessed serious land degradation due to the rapid expansion of Rain-fed Mechanized Farming and overgrazing. Consequently the low crop yield enforced the local communities to shift to the alternative sources of income generating activities particularly those related to forest products like charcoal making firewood production logging and tree lobbing. By using Randomized Complete Block Design RCBD with emphasizes on Macro nutrients particularly the Nitrogen Phosphorous and potassium NPK in addition to soil pH and Electrical Conductivity EC. random soil samples each with three levels of depths 0 - 15 15 - 30 30 - 45 cm. were collected. All collected data were analyzed in the laboratory. The result of revealed several types of soils including the cracking and non -cracking clay sandy and red soils. The result of statistical analysis depicted variability in NPK pH and EC between the different locations and soil depths. Furthermore the result showed an association between some studied soil attributes and the spatial distribution of the vegetation species. Rational use through participatory approach is recommended for natural resources management conservation and sustainability. Moreover further study using space technology also recommended.

  16. Effect of formation characteristics on hydraulic conductivity in unconfined bed in Etchie, rivers state of Nigeria

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Formation characteristics determine the hydraulic conductivity of the soil, the major parameter that determine the rate of hydraulic conductivity of the soil in study location are void ratio and permeability of the soil, degree of void ratio and permeability where determine to evaluate the rate of hydraulic conductivity and storage coefficient,the results from these two parameters  shows the variation deposition of void ratio and permeability in the study location. Ground water hydrogeologica...

  17. Validity Evidence for the State Mindfulness Scale for Physical Activity

    Science.gov (United States)

    Cox, Anne E.; Ullrich-French, Sarah; French, Brian F.

    2016-01-01

    Being attentive to and aware of one's experiences in the present moment with qualities of acceptance and openness reflects the state of mindfulness. Positive associations exist between state mindfulness and state autonomous motivation for everyday activities. Though this suggests that state mindfulness links with adaptive motivational experiences,…

  18. Thermally activated conductivity of Si hybrid structure based on ZnPc thin film

    Science.gov (United States)

    Soylu, M.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.

    2016-10-01

    In this study, an analysis of temperature-dependent electrical characteristics of ZnPc/p-Si structure has been presented. Conduction mechanisms that are accounted for the organic/inorganic devices are evaluated. At low forward voltage, current-voltage ( I- V) characteristics show ohmic behavior, limiting extraction of holes from p-Si over the ZnPc/p-Si heterojunction. Thermally activated conduction mechanism appears to be space-charge-limited conduction mechanism, taking into account the presence of an exponential trap distribution with total concentration of traps, N t of 5.77 × 1025 m-3. The series resistance is found to be temperature dependent. There is a critical point on the regime of series resistance at 200 K. The capacitance varies with temperature at different rates below and above room temperature, indicating a variation in the dielectric constant.

  19. 49 CFR Appendix to Subtitle A - United States Railway Association-Employee Responsibilities and Conduct

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false United States Railway Association-Employee... Subtitle A, App. Appendix to Subtitle A—United States Railway Association—Employee Responsibilities and... United States Railway Association (the Association). The standards and requirements are appropriate...

  20. Cyclic AMP-and beta-agonist-activated chloride conductance of a toad skin epithelium.

    Science.gov (United States)

    Willumsen, N J; Vestergaard, L; Larsen, E H

    1992-04-01

    1. The control by intracellular cyclic AMP and beta-adrenergic stimulation of chloride conductance was studied in toad skin epithelium mounted in a chamber on the stage of an upright microscope. Impalement of identified principal cells from the serosal side with single-barrelled conventional or double-barrelled Cl(-)-sensitive microelectrodes was performed at x500 magnification. For blocking the active sodium current 50 microM-amiloride was present in the mucosal bath. 2. When clamped at transepithelial potential difference V = 0 mV, the preparations generated clamping currents of 0.9 +/- 1 microA/cm2 (mean +/- S.E.M.; number of observations n = 55). The intracellular potential of principal cells (Vb) was -96 +/- 2 mV with a fractional resistance of the basolateral membrane (fRb) of 0.016 +/- 0.003 (n = 54), and an intracellular Cl- activity of 40 +/- 2 mM (n = 24). 3. At V = 0 mV, serosal application of a cyclic AMP analogue, dibutyryl cyclic AMP (500 microM) or a beta-adrenergic agonist, isoprenaline (5 microM) resulted in a sixfold increase in transepithelial Cl- conductance identified by standard 36Cl- tracer technique. 4. The clamping current at V = 0 mV was unaffected by cyclic AMP (short-circuit current Isc = 0.1 +/- 0.3 microA/cm2, n = 16) indicating that subepidermal Cl(-)-secreting glands are not functioning in our preparations obtained by collagenase treatment. 5. Cyclic AMP- or isoprenaline-induced chloride conductance (Gcl) activation (V = 0 mV) was not reflected in membrane potential and intracellular Cl- activity in principal cells. Intracellular chloride activity was constant at approximately 40 mM at membrane potentials between -90 and -100 mV. Therefore, it can be concluded that the principal cells are not contributing to activated Cl- currents. 6. At V = -100 mV where the voltage-dependent chloride conductance of mitochondria-rich (MR) cells was already fully activated, GCl was unaffected by cyclic AMP or isoprenaline. The major effect of these

  1. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    resulted in faster repolarization and increased AP related calcium signals relative to the control (i. e. in the absence of the extra conductance at the same membrane potential. In conclusion, our results revealed that activation of potassium currents can profoundly enhance dendritic bAP-evoked calcium signals in GC dendrites, thus providing a previously unknown state-dependent modulatory mechanism in dendritic signalization.

  2. Active Affordance Learning in Continuous State and Action Spaces

    NARCIS (Netherlands)

    Wang, C.; Hindriks, K.V.; Babuska, R.

    2014-01-01

    Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action

  3. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein.

    OpenAIRE

    Shuba, L. M.; Asai, T.; Pelzer, S.; McDonald, T. F.

    1996-01-01

    1. Genistein (GST), an inhibitor of protein tyrosine kinase (PTK), Na3VO4 (VO4), an inhibitor of phosphotyrosine phosphatase (PTPase), and forskolin (FSK), an activator of the cyclic AMP-dependent, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, were applied to guinea-pig ventricular myocytes to probe for a possible role of tyrosine phosphorylation in the regulation of cardiac Cl- channels. 2. Myocytes in the standard whole-cell configuration were pulsed to various pot...

  4. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...... and the ion channel. To investigate the physiological relevance of this pathway, we characterized the mAHP present after action potentials in spinal motoneurons recorded in a slice preparation from the lumbar spinal cord of the adult turtle. By performing current and voltage clamp recordings, we showed that 8......-OH-DPAT specifically inhibited the fraction of the AHP mediated by SK channels. We conclude that the activity of SK channels is modulated by activation of serotonergic receptors....

  5. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons. PMID:27097551

  6. UP states protect ongoing cortical activity from thalamic inputs.

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    Full Text Available Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states -- mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.

  7. Derivation of nonlinear optical conductivity by using a reduction identity and a state-dependent projection method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Lyong [Faculty of Nanoscience and Nanotechnology, Pusan National University, Miryang 627-706 (Korea, Republic of); Choi, Sang Don [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)], E-mail: sdchoi@knu.ac.kr

    2010-04-23

    A new nonlinear optical conductivity formula for a system of electrons interacting with phonons was derived using a reduction identity and a state-dependent projection technique introduced by the authors. The results include a general formula for the nonlinear optical conductivity of the general rank and the linear, first-order nonlinear and second-order nonlinear conductivity are calculated in terms of the linewidth. The linewidth term includes the electron and phonon distribution functions properly. Therefore, it is possible to explain the phonon emission and absorption in all electron transition processes in an organized manner.

  8. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Nardi, Antonio; Calloe, Kirstine;

    2007-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca(2+)-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition...... analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 microM) influenced neither a number of cloned Kv channels nor endogenous Na(+) and Ca(2+) channels (L- and T-type) in guinea pig cardiac...... myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and pathophysiological roles of KCa1...

  9. Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique

    International Nuclear Information System (INIS)

    A method was developed to simultaneously measure the total hemispherical emissivity and the thermal conductivity of samples at high temperatures. The inverse problem to determine the emissivity and thermal conductivity from steady-state high-temperature calorimetric experiments was established based on models for these two quantities. The accuracy of the inverse solution was numerically analyzed for various noise levels for samples with various thermophysical properties. The simulation results illustrate that the calculation accuracies for the emissivity and thermal conductivity strongly depend on the proportions of the radiation and conduction heat fluxes in the strip sample arising from the temperature distributions in the sample. Steady-state high-temperature experiments with nickel samples were used to experimentally verify the method. The inverse solution results for the emissivity and thermal conductivity calculated from the measured data agree well with reported data in the literature. This research provides a useful reference for measuring the total hemispherical emissivity and thermal conductivity of conductive samples at high temperatures. (paper)

  10. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Perov, A. A., E-mail: 19perov73@gmail.com; Penyagin, I. V. [Nizhny Novgorod State University (Russian Federation)

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  11. Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bogeat, A., E-mail: adrianbogeat@unex.es [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Alexandre-Franco, M.; Fernández-González, C. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Sánchez-González, J. [Department of Mechanical, Energetic and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Gómez-Serrano, V. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain)

    2015-02-15

    From a granular commercial activated carbon (AC) and six metal (hydr)oxide precursors, including Al(NO{sub 3}){sub 3}, Fe(NO{sub 3}){sub 3}, SnCl{sub 2}, TiO{sub 2}, Na{sub 2}WO{sub 4} and Zn(NO{sub 3}){sub 2}, a broadly varied series of metal (hydr)oxide–AC composites were prepared by wet impregnation and subsequent oven-drying at 120 °C. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The dc electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays show that the mechanical properties of the composites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density under compression were very small and only significant at pressures lower than 100 kPa for AC and most composites. By contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the nature, content and intrinsic conductivity of the supported metal phases, which act as insulating thin layers thereby hindering the effective electron transport between AC cores of neighbouring sample particles in contact under compression. Conductivity values for the composites were lower than for the raw AC, all of them falling in the range of typical semiconductor materials. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones. - Highlights: • Pressure-dependent conductivity is studied for metal (hydr)oxide–AC composites. • Mechanical properties of the composites are essentially determined by AC. • Supported metal (hydr)oxides determine the bulk conductivity of the composites. • Metal (hydr)oxides act as insulating thin layers hindering the

  12. Social Media Activism and State Censorship

    NARCIS (Netherlands)

    T. Poell

    2015-01-01

    This chapter interrogates how activist social media communication in authoritarian contexts is shaped through the mutual articulation of social media user practices, business models, and technological architectures, as well as through the controlling efforts of states. It specifically focuses on soc

  13. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  14. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

    Science.gov (United States)

    Han, Fudong; Yue, Jie; Fan, Xiulin; Gao, Tao; Luo, Chao; Ma, Zhaohui; Suo, Liumin; Wang, Chunsheng

    2016-07-13

    All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries. PMID:27322663

  15. High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

    Science.gov (United States)

    Han, Fudong; Yue, Jie; Fan, Xiulin; Gao, Tao; Luo, Chao; Ma, Zhaohui; Suo, Liumin; Wang, Chunsheng

    2016-07-13

    All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of ∼4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (∼3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries.

  16. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    Science.gov (United States)

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  17. Quantization and topological states in the spin Hall conductivity of low-dimensional systems: An ab initio study

    Science.gov (United States)

    Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.

    2016-03-01

    Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.

  18. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.

    Science.gov (United States)

    Willumsen, N J; Boucher, R C

    1989-02-01

    Cystic fibrosis (CF) airway epithelia express a defect in adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of apical membrane Cl- channels. Recent patch-clamp studies have raised the possibility that Ca2+ -dependent mechanisms for the activation of Cl- secretion may be preserved in CF airway epithelia. To determine 1) whether intact normal (N1) and CF airway epithelia exhibit a Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanisms initiate Cl- secretion via activation of an apical membrane Cl- conductance (GCl-), nasal epithelia from N1 and CF subjects were cultured on collagen membranes, and responses to isoproterenol or Ca2- ionophores [A23187 10(-6) M; ionomycin (10(-5)M)] were measured with transepithelial and intracellular techniques. Isoproterenol induced activation of an apical membrane GCl- in N1 cultures but was ineffective in CF. In contrast, in both N1 and CF amiloride-pretreated cultures, A23187 induced an increase in the equivalent short-circuit current that was associated with an activation of an apical membrane Gc1- and was bumetanide inhibitable. A23187 addition during superfusion of the lumen with a low Cl- (3 mM) solution reduced intracellular Cl- activity of CF cells. A Ca2+ ionophore of different selectivity properties, ionomycin, was also an effective Cl- secretagogue in both N1 and CF cultures. We conclude that 1) the A23187 induced Cl- secretion via activation of an apical GCl- in N1 human nasal epithelium, and 2) in contrast to an isoproterenol-dependent path, a Ca2+ -dependent path for GCl- activation is preserved in CF epithelia. PMID:2465689

  19. Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@ polyaniline composites

    Directory of Open Access Journals (Sweden)

    Md. Akherul Islam

    2016-08-01

    Full Text Available This paper reports the synthesis of CTAB mediated CSA doped PANI and GN/GNP@ PANI composite nanofibers. The as synthesized composite nanofibers were examined by TEM, SEM, XRD, Raman spectroscopy; UV–visible diffused reflectance spectroscopy and TGA. The CTAB mediated CSA doped composite nanofibers showed 59% higher DC electrical conductivity at ambient temperature than that of PANI, which might be due to the enhancement in the mobility of the charge carriers and reduction in hopping distance in the composite system. The CTAB mediated CSA doped composite nanofibers compared to PANI was observed to be showing enhanced DC electrical conductivity retention after various cycles of heating, suggesting an enhancement in thermal stability of the composite structure, which could be attributed to the synergistic effect of GN, GNP and PANI. Additionally, the composite nanofibers showed greater electrochemical activity and better capacitive performance and reduced optical bandgap than that of PANI.

  20. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Science.gov (United States)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  1. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  2. State-of-the-Art Hip Surgeries for Active Adults

    Science.gov (United States)

    STATE-OF-THE-ART HIP SURGERIES FOR ACTIVE ADULTS Thomas Jefferson University Hospital Philadelphia, PA September 24, 2008 00:00:09 ANNOUNCER: Welcome ... surgeons will demonstrate and discuss state- of-the-art surgical options for young and active older adults ...

  3. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available STATE-OF-THE-ART HIP SURGERIES FOR ACTIVE ADULTS Thomas Jefferson University Hospital Philadelphia, PA September 24, 2008 00:00:09 ANNOUNCER: Welcome ... surgeons will demonstrate and discuss state- of-the-art surgical options for young and active older adults ...

  4. Fabrication of solid state dye sensitized solar cells utilizing vapor phase polymerized poly(3,4-ethylenedioxythiophene) hole conducting layer

    Science.gov (United States)

    Skorenko, Kenneth H.

    There is a need for sustainable and renewable energy sources that can be used in both grid and off-grid structured systems. Photovoltaic devices have been used to generate electrical energy by capturing and converting photons from the sun. Dye sensitized solar cells (DSSC) have gained attention due to their consistent energy generation during indirect sunlight. Furthermore, DSSC can be applied as a flexible device and gain benefits from the low cost roll to roll manufacturing. With this in mind, we have taken steps toward optimizing a DSSC device for use as a solid state solar cell using conducting polymers. Typically DSSC use a liquid electrolyte as a hole conducting layer used to direct the separation of electron -- hole pairs. This liquid electrolyte comes with problems that can be subverted using conducting polymers. Poly(3,4 -- ethylenedioxythiophene) (PEDOT), is a conducting thiophene that is tailored to have enhanced conductivity. We show that a vapor phase polymerization (VPP) of PEDOT can be used as a hole conducting layer in a solid state DSSC device. To this end we have investigated the electrical properties of the VPP PEDOT films in order to understand how the morphology and conductive domains relate to a polymers conductivity. Using 4 point probe we have measure the sheet resistance of the film, as well as how the films resistance is altered during stress tests. Scanning electron microscopy has been utilized to compare morphologies of different PEDOT films and see how surface morphology impacts the conductance measured. Using conductive atomic force microscopy we can look at the conductive domains between VPP PEDOT and PEDOT:PSS films. We saw that conductive domains of the VPP PEDOT are not only more conductive but also much larger in size and widespread throughout the film. We show that there is formation of PEDOT through optical spectroscopy and structural characterization such as UV/Vis and Raman spectroscopy as well as X-ray diffraction. When

  5. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  6. Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Ebrahimiasl S

    2014-12-01

    Full Text Available Saeideh Ebrahimiasl,1,2 Azmi Zakaria,3 Anuar Kassim,4 Sri Norleha Basri4 1Department of Nanotechnology, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran; 3Department of Physics, Universiti Putra Malaysia, Serdang, Malaysia; 4Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia Abstract: An antibacterial and conductive bionanocomposite (BNC film consisting of polypyrrole (Ppy, zinc oxide (ZnO nanoparticles (NPs, and chitosan (CS was electrochemically synthesized on indium tin oxide (ITO glass substrate by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of ZnO NPs uniformly dispersed in CS. This method enables the room temperature electrosynthesis of BNC film consisting of ZnO NPs incorporated within the growing Ppy/CS composite. The morphology of Ppy/ZnO/CS BNC was characterized by scanning electron microscopy. ITO–Ppy/CS and ITO–Ppy/ZnO/CS bioelectrodes were characterized using the Fourier transform infrared technique, X-ray diffraction, and thermogravimetric analysis. The electrical conductivity of nanocomposites was investigated by a four-probe method. The prepared nanocomposites were analyzed for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay. The results demonstrated that the antioxidant activity of nanocomposites increased remarkably by addition of ZnO NPs. The electrical conductivity of films showed a sudden decrease for lower weight ratios of ZnO NPs (5 wt%, while it was increased gradually for higher ratios (10, 15, and 20 wt%. The nanocomposites were analyzed for antibacterial activity against Gram-positive and Gram-negative bacteria. The results indicated that the synthesized BNC is effective against all of the studied bacteria, and its effectiveness is higher for Pseudomonas aeruginosa. The thermal stability and physical properties of BNC films were

  7. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  8. Simulation of Conducting Early-warning to the Endangered State of Language

    Directory of Open Access Journals (Sweden)

    Jian Yun

    2013-10-01

    Full Text Available There are two important goals to do research on language-extinction problem with computer simulation. One is to describe the process of language getting extinct from the earth in auxiliary; the other is to in auxiliary describe the endangered state before language extinction and make early-warning. At present, there are many researchers focusing on the research on language-extinction problem with computer simulation with different purposes. But what researchers want to achieve tends not to be the same. The research work about the second purpose is less than others. When we take the second purpose in our consideration, it's natural to combine the linguists' definition of language endangered state with computer simulation. It's difficult for us to determine the language's endangered state relying only on a static standard. That is also the main reason why the existing language extinction simulation model can't be compatible with the simulation of the early-warning of endangered state before language extinction. Based on the views of academics in the field of linguistics, this paper gave dynamic assumptions of language endangered state in three different aspects--the proportion of losing mother-tongue population, the proportion of mother-tongue speakers' age range and the ability to use language. Then, we designed the dynamic characteristics of the early-warning simulation model of endangered state before the language-extinction with multi-agent. And we dispatched the mentioned computer simulation model in a discrete event simulation manner. The work on computer simulation did in this paper confirms the subjective viewpoint of endangered language definition in the field of linguistics and reveals the significance of language evolution simulation modeling in the efforts made in rescuing the endangered language.

  9. Thermal conductivity of biological cells at cellular level and correlation with disease state

    Science.gov (United States)

    Park, Byoung Kyoo; Woo, Yunho; Jeong, Dayeong; Park, Jaesung; Choi, Tae-Youl; Simmons, Denise Perry; Ha, Jeonghong; Kim, Dongsik

    2016-06-01

    This paper reports the thermal conductivity k of matched pair cell lines: two pairs of a normal and a cancer cell, one pair of a primary and metastatic cell. The 3ω method with a nanoscale thermal sensor was used to measure k at the single-cell level. To observe the difference in k between normal and cancer cells, the measurements were conducted for Hs 578Bst/Hs 578 T (human breast cells) and TE 353.Sk/TE 354.T (human skin cells). Then k of WM-115/WM-266-4, a primary and metastatic pair of human skin cell, was measured to find the effect of disease progression on k. The measured k data for normal and disease cell samples show statistically meaningful differences. In all cases, k decreased as the disease progressed. This work shows that thermal-analysis schemes, such as the 3ω method, have a potential to detect diseases at the cell level.

  10. Effect of formation characteristics on hydraulic conductivity in unconfined bed in Etchie, rivers state of Nigeria

    Directory of Open Access Journals (Sweden)

    Solomon Ndubuisi Eluozo

    2013-01-01

    Full Text Available Formation characteristics determine the hydraulic conductivity of the soil, the major parameter that determine the rate of hydraulic conductivity of the soil in study location are void ratio and permeability of the soil, degree of void ratio and permeability where determine to evaluate the rate of hydraulic conductivity and storage coefficient,the results from these two parameters  shows the variation deposition of void ratio and permeability in the study location. Ground water hydrogeological data where found to be unavailable in the study area this condition has resulted to a lots of abortive well, this has also cause a lot of abandoned ground water project done by government, this type of economic waste is a serious concern and need to be addressed., the study is imperative because it will improve the result of ground water exploration in the study area, the result from this study will definitely serve as baseline for professional to apply in   the development of ground water system in the study area .

  11. Sub-THz thermally activated-electrical conductivity of CdS thin films

    Science.gov (United States)

    Rahman, Rezwanur; Scales, John A.

    2016-08-01

    The electrical conductivity of a CdS thin film controlled by grain structures is essential to enhance its photoconductivity to be able to be fit as a window material in CdS/CdTe heterojunction solar cells. In order to characterize a thin film, electromagnetically, we employed an open cavity resonator with a sub-millimeter Vector Network Analyzer. Our technique is capable of measuring complex dielectric permittivity, ɛ ˜ , of a photovoltaic film as thin as 0.1 μm. We measured the real part of the complex dielectric permittivity, ɛre, and electrical conductivity, σre (derived from the imaginary part, ɛim), of unannealed and annealed CdS films with thicknesses ˜0.15 μm on ˜3 mm thick-borosilicate glass substrates, at room temperature. We obtain the (thermally activated) electrical conductivity between 100 and 312 GHz, which is less in annealed samples than in unannealed ones by ˜2 orders of magnitude. Contrary to our expectations, the carrier concentrations extracted from these data by fitting a Drude model are ˜1016 cm-3 (unannealed) and ˜1014 cm-3 (annealed). We investigate the connection between the grain size and carrier concentration.

  12. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  13. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    Science.gov (United States)

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  14. 15 CFR 923.133 - Procedure for conducting continuing reviews of approved State CZM programs.

    Science.gov (United States)

    2010-01-01

    ... approved CZM program; (B) The management agency is effectively playing a leadership role in coastal issues..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS... performance of coastal States with respect to coastal management. Each review shall include a...

  15. Manipulating the charge state and conductance of a single molecule on a semiconductor surface by electrostatic gating

    Science.gov (United States)

    Martinez-Blanco, Jesus; Nacci, Christophe; Erwin, Steven C.; Kanisawa, Kiyoshi; Locane, Elina; Thomas, Mark; von Oppen, Felix; Brouwer, Piet; Foelsch, Stefan

    2015-03-01

    We studied the charge state and tunneling conductance of single phthalocyanine molecules adsorbed on InAs(111)A using scanning tunneling microscopy (STM) at 5 K. On the InAs(111)A surface, native +1 charged indium adatoms can be repositioned by the STM tip using atom manipulation. This allows us to electrostatically gate an individual adsorbed molecule by placing charged adatoms nearby or, alternatively, by repositioning the molecule within the electrostatic potential landscape created by an STM-engineered adatom corral. By stepwise increasing the gating potential, the molecular charge state can be tuned from neutral to -1, as well as to bistable intermediate states. We find that the molecule changes its orientational conformation when the charge state is switched. Scanning tunneling spectroscopy measurements reveal that the conductance gap of the single-molecule tunneling junction can be precisely controlled by the electrostatic gating. We discuss the observed gating-dependent single-molecule tunneling conductance in terms of charge transport through a gated quantum dot. Granted by the German Research Foundation (FO 362/4-1; SFB 658).

  16. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    Science.gov (United States)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-10-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  17. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R;

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached to...

  18. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  19. Active Learning of Nondeterministic Finite State Machines

    Directory of Open Access Journals (Sweden)

    Warawoot Pacharoen

    2013-01-01

    Full Text Available We consider the problem of learning nondeterministic finite state machines (NFSMs from systems where their internal structures are implicit and nondeterministic. Recently, an algorithm for inferring observable NFSMs (ONFSMs, which are the potentially learnable subclass of NFSMs, has been proposed based on the hypothesis that the complete testing assumption is satisfied. According to this assumption, with an input sequence (query, the complete set of all possible output sequences is given by the so-called Teacher, so the number of times for asking the same query is not taken into account in the algorithm. In this paper, we propose LNM*, a refined ONFSM learning algorithm that considers the amount for repeating the same query as one parameter. Unlike the previous work, our approach does not require all possible output sequences in one answer. Instead, it tries to observe the possible output sequences by asking the same query many times to the Teacher. We have proved that LNM* can infer the corresponding ONFSMs of the unknown systems when the number of tries for the same query is adequate to guarantee the complete testing assumption. Moreover, the proof shows that our algorithm will eventually terminate no matter whether the assumption is fulfilled or not. We also present the theoretical time complexity analysis of LNM*. In addition, experimental results demonstrate the practical efficiency of our approach.

  20. CMS Grid Activities in the United States

    Institute of Scientific and Technical Information of China (English)

    I.Fisk; J.Amundson; 等

    2001-01-01

    The CMS groups in the USA are actively involved in several grid-elated projects,including the DoE-funded Particle Physics Data Grid(PPDG)and the NSFfunded Grid Physics Network(GriPhyN).We present developments of :the Grid data Management Pilot (GDMP) software;a Java Analysis Studio-based prototype remote analysis service for CMS data;tools for automating job submission schemes for large scale distributed simulation and reconstruction runs for CMS;modeling and development of job scheduling schemes using the MONARC toolkit;a robust execution service for distributed processors.The deployment and use of these tools at prototype Tier1 and Tier2 computing centers in the USA is described.

  1. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...

  2. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template

    Science.gov (United States)

    Vinod, T. P.; Zarzhitsky, Shlomo; Morag, Ahiud; Zeiri, Leila; Levi-Kalisman, Yael; Rapaport, Hanna; Jelinek, Raz

    2013-10-01

    The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications.The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications. Electronic supplementary information (ESI) available: AFM analysis of the

  3. State opportunities for action: Update of states' combined heat and power activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Elizabeth [American Council for an Energy-Efficient Economy, Washington, D.C. (United States); Elliott, R. Neal [American Council for an Energy-Efficient Economy, Washington, D.C. (United States)

    2003-10-01

    This report updates the review of state policies with regard to CHP that the American Council for and Energy Efficient Economy completed in 2002. It describes the current activities of states with programs during the initial survey and also reviews new programs offered by the states.

  4. Stimulating Investment Development through Transformation of State Banks Activity

    Directory of Open Access Journals (Sweden)

    Kulpinska Lidiya K.

    2013-12-01

    Full Text Available The article considers significance of state corporations and state financial institutions in stimulation of investments into the fixed capital of the country and considers problems of increase of efficiency of activity of these institutions in the world and Ukraine. It considers the state sector of the developing countries through the prism of activity of state financial and non-financial corporations. It analyses theories of positive and negative features of carrying out state investing through state-owned banks. It analyses the role of state financial corporations in Ukraine, in particular, in crediting and expansion of the portfolio of acquired governmental bonds and offers ways of its increase in the context of necessity of directing funds into investment development.

  5. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Science.gov (United States)

    2010-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  6. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  7. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    OpenAIRE

    Hoang-Linh Nguyen; Yun Kee Jo; Minkyu Cha; Yun Jeong Cha; Dong Ki Yoon; Naresh D. Sanandiya; Ekavianty Prajatelistia; Dongyeop X. Oh; Dong Soo Hwang

    2016-01-01

    Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catech...

  8. Survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    Uranium marketing activity was much lower in 1977 than during 1976, which was the largest procurement year to date. Results from the survey suggest that there is an adequate supply of uranium--at least through 1985--in light of apparent buyer concepts of demand. Unfilled requirements were reduced by additional procurement and slippages in requirements. U.S. buyers continue to concentrate almost exclusively on U.S. sources for procurement. Buyer and producer inventories changed only slightly during the year. The average price reported for 1977 deliveries was $19.75 per pound of U3O8, compared to the $17.20 estimate reported as of July 1, 1977. An average of $17.40 was reported for 1978. Settlements of market prices in 1977 averaged $41.50 and for 1978 averaged $43.95. Most market price contracts have a base price. These prices are much higher than average contract prics and are closer to market price settlements. Producers estimate they will be able to offer for sale substantial additional quantities of uranium, indicating that they expect to expand production considerably

  9. Doping CuSCN films for enhancement of conductivity: application in dye-sensitized solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perera, V.P.S. [Institute of Fundamental Studies, Kandy (Sri Lanka); Open Univ., Nawala (Sri Lanka). Dept. of Physics; Senevirathna, M.K.I.; Pitigala, P.K.D.D.P.; Tennakone, K. [Open Univ., Nawala (Sri Lanka). Dept. of Physics

    2005-03-31

    Construction of dye-sensitized solid-state solar cells requires high band-gap (therefore, transparent) hole collectors which can be deposited on a dye-coated nanocrystalline semiconductor surface without denaturing the dye. Copper (I) thiocyanate (CuSCN) is an important p-type semiconductor satisfying the above requirements. However, the conductivity of this material, which depends on excess SCN, is not sufficiently high and polymerization of SCN prevents incorporation of sufficient amount of excess SCN during the process of synthesis of CuSCN. We have found that the conductivity of solid CuSCN can be increased by exposure to halogen gases which generate SCN or to a solution of (SCN){sub 2} in CCl{sub 4}. The latter method is suitable for doping of CuSCN films in dye-sensitized solid-state solar cells. (Author)

  10. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Measurements are reported for the electrical conductivity of liquid nitrogen (N2), oxygen (O2) and benzene (C6H6), and Hugoniot equation of state of liquid 1-butene (C4H8) under shock compressed conditions. The conductivity data span 7 x 10-4 to 7 x 101 Ω-1cm-1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  11. Savings from new oil furnaces: A study conducted as part of Washington State`s Oil Help Program

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.

    1989-12-01

    The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

  12. Meshless Least-Squares Method for Solving the Steady-State Heat Conduction Equation

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHANG Xiong; LU Mingwan

    2005-01-01

    The meshless weighted least-squares (MWLS) method is a pure meshless method that combines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method possesses several advantages, such as high accuracy, high convergence rate, good stability, and high computational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat transfer problems.

  13. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  14. Research on the Relationship between Density of States and Conducting Properties of Single-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The distinctive properties of the DOS, the normalized differential conductivity and the current vs bias for SWNTs are deduced and analyzed theoretically.The singularities in the DOS (or in the normalized differential conductivity) predict that the jump structure of current (or conductance)-bias of SWNTs exists. All conclusions from the theoretical analysis are in well agreement with the experimental results of SWNT's electronic structure and electronic transport. In other words, the simple theoretical model in this paper can be applied to understand a range of spectroscopic and other measurement data related to the DOS of SWNTs.

  15. Picosecond switching of high voltage reverse-biased p+-n-n+-structures into conductive state by pulsed lighting

    OpenAIRE

    Kyuregyan, A. S.

    2014-01-01

    An analytical theory of high voltage reverse-biased p+-n-n+-structures picosecond switching into conducting state by pulsed lighting has been developed and a numerical simulation of this process has been performed. Combining the results of theory and simulation allowed us to obtain a simple relation between the parameters of structure, light pulse, external circuit and main characteristics of the process - the load current pulse amplitude and duration of switching process.

  16. Atrial conduction times and left atrium mechanical functions in patients with active acromegaly.

    Science.gov (United States)

    Ilter, A; Kırış, A; Kaplan, Ş; Kutlu, M; Şahin, M; Erem, C; Civan, N; Kangül, F

    2015-03-01

    The aim of this study was to evaluate atrial electromechanical delay (EMD), P wave dispersion (Pwd), and left atrial (LA) mechanical functions in patients with active acromegaly. Twenty-three patients with active acromegaly and 27 age- and sex-matched controls were included in this study. All atrial electromechanical interval parameters (PA lateral, PA septum, PA tricuspid, interatrial EMD, intra-LA EMD, and intra-right atrial EMD) were measured from mitral lateral annulus, mitral septal annulus, and right ventricular tricuspid annulus by tissue Doppler imaging. LA volumes were measured by the disk method in the apical four-chamber view and were indexed to the body surface area. Mechanical function parameters of LA were calculated. Pwd was performed by 12-lead electrocardiograms. Atrial electromechanical intervals (PA lateral, PA septum, PA tricuspid, interatrial EMD, intra-LA EMD, and intra-right atrial EMD) and Pwd were similar between patients with acromegaly and control subjects (all p > 0.05). LA volumes (maximum, minimum, and presystolic) and LA mechanical functions were not significantly different between the groups (all p > 0.05). Additionally, serum levels of growth hormone and insulin-like growth factor-1 were not correlated with atrial electromechanical parameters and LA mechanical functions. Atrial electrical conduction times were not prolonged and LA mechanical functions were not impaired in patients with active acromegaly compared with controls. And the prevalence of supraventricular arrhythmia risk may not increase in this population.

  17. PLRP-3: Operational Perspectives of Conducting Science-Driven Extravehicular Activity with Communications Latency

    Science.gov (United States)

    Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.

    2016-01-01

    The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.

  18. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.

    Science.gov (United States)

    Curthoys, Ian S; Kim, Juno; McPhedran, Samara K; Camp, Aaron J

    2006-11-01

    The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular neurons were recorded extracellularly in anesthetized guinea pigs and were identified by their location in the vestibular nerve and classed as regular or irregular on the basis of the variability of their spontaneous discharge. If a neuron responded to angular acceleration it was classed as a semicircular canal neuron, if it responded to maintained roll or pitch tilts it was classified as an otolith neuron. Each neuron was then tested by BCV stimuli-either clicks, continuous pure tones (200-1,500 Hz) or short tone bursts (500 Hz lasting 7 ms)-delivered by a B-71 clinical bone-conduction oscillator cemented to the guinea pig's skull. All stimulus intensities were referred to that animal's own auditory brainstem response (ABR) threshold to BCV clicks, and the maximum intensity used was within the animal's physiological range and was usually around 70 dB above BCV threshold. In addition two sensitive single axis linear accelerometers cemented to the skull gave absolute values of the stimulus acceleration in the rostro-caudal direction. The criterion for a neuron being classed as activated was an audible, stimulus-locked increase in firing rate (a 10% change was easily detectable) in response to the BCV stimulus. At the stimulus levels used in this study, semicircular canal neurons, both regular and irregular, were insensitive to BCV stimuli and very few responded: only nine of 189 semicircular canal neurons tested (4.7%) showed a detectable increase in firing in response to BCV stimuli up to the maximum 2 V peak-to-peak level we delivered to the B-71 oscillator (which produced a peak-to-peak skull acceleration of around

  19. Provision of recreational activities in hospices in the United States.

    Science.gov (United States)

    DeMong, S A

    1997-01-01

    Quality of life issues encompass the philosophies of both hospice and recreation participation. This study examines the status of recreational activities provision in hospices in the United States. The offering, frequency of offering, and location of offering of 39 recreational activities in a random sample of hospices in the United States were surveyed. The functional levels of participating patients were also recorded. Reading to patients at bedside daily was determined to be the most frequently provided recreational activity. Recreational activities are being offered in 40% of the larger U.S. hospices on a varying schedule in different locations. PMID:9305025

  20. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  1. Preparation of reusable conductive activated charcoal plate as a new electrode for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ayoubi-Feiz, Baharak; Aber, Soheil [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-10-15

    A conductive activated charcoal plate (ACP) was prepared from a low-cost, abundant, and non-conductive charcoal. The prepared ACP was characterized using N{sub 2} adsorption/desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Brunauer-Emmett-Teller (BET) surface area of the charcoal and the ACP was 0.58m{sup 2} g{sup -1} and 461.67m{sup 2} g{sup -1}, respectively. The ACP was employed in textile wastewater treatment using electrosorption process. Response surface methodology (RSM) was applied to design the experiments. The decolorization efficiency of 76% at optimum conditions of voltage=450mV, pH=4, and contact time=120 min indicated that the ACP has promising potential to decolorize textile wastewater. Moreover, the results of the kinetic analyses demonstrated that wastewater treatment followed pseudo-first order kinetic model. The ACP electrode could be regenerated and reused effectively at five successive cycles of electrosorption/electrodesorption.

  2. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N;

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed......+-entry blocker), relaxed contractions induced by K+ (20 mM) and K+ (80 mM) equally and nimodipine-induced relaxations were neither antagonized by tetraethylammonium nor by iberiotoxin. In isolated perfused rat hearts, hydralazine (1 microM) increased coronary flow by 28.8 +/- 2.7%. Iberiotoxin (0.1 micro......M) suppressed this response by 82% (P opening of BK(Ca) takes part in the mechanism whereby...

  3. Progress in conducting/semiconducting and redox-active oligomers and polymers of arylamines

    Directory of Open Access Journals (Sweden)

    Janošević Aleksandra

    2013-01-01

    Full Text Available Recent advances in synthesis, characterization and application of the selected conducting/semiconducting and redox-active oligomers and polymers of arylamines are reviewed. A brief historical background of the selected topics is given. The overview of the preparation, structure and properties of polyaniline, substituted polyanilines, especially those obtained by the oxidative polymerization of p-substituted anilines, poly(1-aminonaphthalene and its derivatives, carbocyclic and heterocyclic polyaryldiamines such as poly(p-phenylenediamine and polydiaminoacridines, is presented. The mechanism of formation of polyaniline nanostructures is discussed. Recent approaches to the preparation of one-dimensional polyaniline nanostructures are concisely reviewed, with special attention paid to the template-free falling-pH method. Current and potential future applications of oligo/polyarylamines are briefly discussed. [Projekat Ministarstva nauke Republike Srbije, br. OI 172043

  4. Debt and Economic Activity in the United States

    OpenAIRE

    Benjamin M. Friedman

    1981-01-01

    This paper documents a long-standing stability in the relationship between outstanding debt and economic activity in the United States, and explores the implications for capital formation of several hypotheses that could explain this observed phenomenon. The aggregate of outstanding credit liabilities of all nonfinancial borrowers in the United States bears as close a relationship to U.S. non- financial economic activity as do the more familiar asset aggregates like the money stock (however m...

  5. Does the lipid environment impact the open-state conductance of an engineered β-barrel protein nanopore?

    Science.gov (United States)

    Tomita, Noriko; Mohammad, Mohammad M.; Niedzwiecki, David J.; Ohta, Makoto; Movileanu, Liviu

    2012-01-01

    Using rational membrane protein design, we were recently able to obtain a β-barrel protein nanopore that was robust under an unusually broad range of experimental circumstances. This protein nanopore was based upon the native scaffold of the bacterial ferric hydroxamate uptake component A (FhuA) of E. coli. In this work, we expanded the examinations of the open-state current of this engineered protein nanopore, also called FhuA ΔC/Δ4L, employing an array of lipid bilayer systems that contained charged and uncharged as well as conical and cylindrical lipids. Remarkably, systematical single-channel analysis of FhuA ΔC/Δ4L indicated that most of its biophysical features, such as the unitary conductance and the stability of the open-state current, were not altered under the conditions tested in this work. However, electrical recordings at high transmembrane potentials revealed that the presence of conical phospholipids within the bilayer catalyzes the first, stepwise current transition of the FhuA ΔC/Δ4L protein nanopore to a lower-conductance open state. This study reinforces the stability of the open-state current of the engineered FhuA ΔC/Δ4L protein nanopore under various experimental conditions, paving the way for further critical developments in biosensing and molecular biomedical diagnosis. PMID:23246446

  6. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    Science.gov (United States)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  7. 34 CFR 300.812 - Reservation for State activities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  8. Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review

    Science.gov (United States)

    Mohamad, Ahmad Azmin

    2016-10-01

    The application of quasi-solid state electrolytes for dye-sensitized solar cells opens up an interesting research field to explore, which is evident from the increasing amount of publications on this topic. Since 2010, significant progress has been made with new and more complicated quasi-solid-states materials being produced. The optimization of new materials requires specific characterizations. This review presents a comprehensive overview and recent progress of characterization methods for studying quasi-solid-state electrolytes. Emphasis is then placed on the absorbency and conductivity characterizations. Each characterization will be reviewed according to the objective, experimental set-up, summary of important outcomes, and a few case studies worth discussing. Finally, strategies for future characterizations and developments are described.

  9. Innovation Activity in the Republic of Kazakhstan: State Controlling and Ways to Increase Management Efficiency

    Directory of Open Access Journals (Sweden)

    DANA SAYLAUOVNA BEKNIYAZOVA

    2016-04-01

    Full Text Available The main goal of the research is to reveal the dominant role of the state in the innovational development of the country and to define promising areas of the cooperation between the state, universities (research institutes and industry in conducting the research activity. At the present time the innovation activity is a locomotive of progressive phenomena in the economy of the country. Herewith, it is noted that in the Republic of Kazakhstan innovation activity, according to its indicators, falls behind the desired efficient result. This article defines the level of the development of innovation entrepreneurship activity in Kazakhstan. It states the problems related to the innovation development due to the current tendencies of the development of economy in the world. It offers measures for stable and dynamic development of the country that includes the notion of the competitiveness and development of innovational schemes of development that are based on efficient interrelation and optimal combination of interests of the state, universities (research institutes and private sector of Kazakhstan. On the basis of the conducted analysis of variables – factors of innovational development - it was revealed that the efficiency of managing innovation activity by governmental authorities was a “primal cause” that had an impact on such indicators as the level of development of innovational infrastructure and wealth of the country. The authors also proposed the measures of state regulation of the innovation development of enterprises and stimulation of partnership of the science with the production.

  10. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2+-activated K+ channel impairment

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-xing; ZHENG Jie; GUO Su-xia; LI Xiao-rong; LU Tong; SHI Hai-feng; CHAI Qiang; WU Ying; SUN Wei; JI Yuan; YAO Yong; LI Ku-lin; ZHANG Chang-ying

    2012-01-01

    Background Diabetes mellitus is associated with coronary dysfunction,contributing to a 2- to 4-fold increase in the risk of coronary heart diseases.The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus.The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats.Methods Using videomicroscopy,immunoblotting,fluorescent assay and patch clamp techniques,we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats.Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65±4)% of the total K+ currents in freshly isolated coronary smooth muscle cells and >50% of the contraction of the inner diameter of coronary arteries from normal rats.However,BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats,leading to an increase in coronary artery tension.BK channel activity in response to free Ca2+ is impaired in diabetic rats.Moreover,cytoplasmic application of DHS-1 (a specific BK channel β1 subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats.In diabetic rats,the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration,i.e.,1 μmol/L Ca2+.Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels,without altering the BK channel α-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23)nmol/L (n=5) of control rats to (193±22) nmol/L (n=6,P<0.05) of STZ-induced diabetic rats,reduced BK

  11. Low skin conductance activity in infancy predicts aggression in toddlers 2 years later.

    Science.gov (United States)

    Baker, Erika; Shelton, Katherine H; Baibazarova, Eugenia; Hay, Dale F; van Goozen, Stephanie H M

    2013-06-01

    Low autonomic nervous system activity is claimed to be a biomarker for aggressive and antisocial behavior. Although there is evidence that low skin conductance activity (SCA) accounts for variation in the severity of antisocial behavior and predicts the onset of aggression in children and adults, it is unknown whether SCA measured in infancy can predict the development of aggression. We measured SCA in 70 typically developing 1-year-old infants at baseline, during an orienting habituation paradigm, and during a fear challenge. We also observed the infants' fear behavior, and each mother rated her infant's temperament and her attachment to her child. At follow-up, mothers rated the children at 3 years old for aggressive and nonaggressive behavior problems. Low infant SCA predicted aggressive behavior, but there was no association between SCA and nonaggressive behavior problems. Mothers' ratings of the infants' temperament and their maternal attachment and the infants' observed fearlessness did not predict later aggression. These results suggest that SCA is a specific biomarker for aggression in low-risk samples of infants.

  12. Enhanced conduction band density of states in intermetallic EuTSi3 (T = Rh, Ir).

    Science.gov (United States)

    Maurya, Arvind; Bonville, P; Thamizhavel, A; Dhar, S K

    2015-09-16

    We report on the physical properties of single crystalline EuRhSi3 and polycrystalline EuIrSi3, inferred from magnetization, electrical transport, heat capacity and (151)Eu Mössbauer spectroscopy. These previously known compounds crystallise in the tetragonal BaNiSn3-type structure. The single crystal magnetization in EuRhSi3 has a strongly anisotropic behaviour at 2 K with a spin-flop field of 13 T, and we present a model of these magnetic properties which allows the exchange constants to be determined. In both compounds, specific heat shows the presence of a cascade of two close transitions near 50 K, and the (151)Eu Mössbauer spectra demonstrate that the intermediate phase has an incommensurate amplitude modulated structure. We find anomalously large values, with respect to other members of the series, for the RKKY Néel temperature, for the spin-flop field (13 T), for the spin-wave gap (≃20-25 K) inferred from both resistivity and specific heat data, for the spin-disorder resistivity in EuIrSi3 (≃240 μΩ cm) and for the saturated hyperfine field (52 T). The enhanced values of the quantities that depend on the electronic density of states at the Fermi level, imply that the latter must be strongly enhanced in these two materials. EuIrSi3 exhibits a giant magnetoresistance ratio, with values exceeding 600% at 2 K in a field of 14 T. PMID:26289169

  13. Charge transport in C60-based dumbbell-type molecules: mechanically induced switching between two distinct conductance states.

    Science.gov (United States)

    Moreno-García, Pavel; La Rosa, Andrea; Kolivoška, Viliam; Bermejo, Daniel; Hong, Wenjing; Yoshida, Koji; Baghernejad, Masoud; Filippone, Salvatore; Broekmann, Peter; Wandlowski, Thomas; Martín, Nazario

    2015-02-18

    Single molecule charge transport characteristics of buckminsterfullerene-capped symmetric fluorene-based dumbbell-type compound 1 were investigated by scanning tunneling microscopy break junction (STM-BJ), current sensing atomic force microscopy break junction (CS-AFM-BJ), and mechanically controlled break junction (MCBJ) techniques, under ambient conditions. We also show that compound 1 is able to form highly organized defect-free surface adlayers, allowing the molecules on the surface to be addressed specifically. Two distinct single molecule conductance states (called high G(H)(1) and low G(L)(1)) were observed, depending on the pressure exerted by the probe on the junction, thus allowing molecule 1 to function as a mechanically driven molecular switch. These two distinct conductance states were attributed to the electron tunneling through the buckminsterfullerene anchoring group and fully extended molecule 1, respectively. The assignment of conductance features to these configurations was further confirmed by control experiments with asymmetrically designed buckminsterfullerene derivative 2 as well as pristine buckminsterfullerene 3, both lacking the G(L) feature. PMID:25651069

  14. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    Science.gov (United States)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  15. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    Science.gov (United States)

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries. PMID:27307440

  16. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    Science.gov (United States)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10‑4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries.

  17. On the way of classifying new states of active matter

    Science.gov (United States)

    Menzel, Andreas M.

    2016-07-01

    With ongoing research into the collective behavior of self-propelled particles, new states of active matter are revealed. Some of them are entirely based on the non-equilibrium character and do not have an immediate equilibrium counterpart. In their recent work, Romanczuk et al (2016 New J. Phys. 18 063015) concentrate on the characterization of smectic-like states of active matter. A new type, referred to by the authors as smectic P, is described. In this state, the active particles form stacked layers and self-propel along them. Identifying and classifying states and phases of non-equilibrium matter, including the transitions between them, is an up-to-date effort that will certainly extend for a longer period into the future.

  18. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study

    Science.gov (United States)

    2016-01-01

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites. PMID:27364125

  19. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental-Theoretical Study.

    Science.gov (United States)

    Endres, James; Egger, David A; Kulbak, Michael; Kerner, Ross A; Zhao, Lianfeng; Silver, Scott H; Hodes, Gary; Rand, Barry P; Cahen, David; Kronik, Leeor; Kahn, Antoine

    2016-07-21

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites. PMID:27364125

  20. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  1. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    International Nuclear Information System (INIS)

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface

  2. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    OpenAIRE

    Taku Tsuneishi; Hisatoshi Sakamoto; Kazushi Hayashi; Go Kawamura; Hiroyuki Muto; Atsunori Matsuda

    2014-01-01

    Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH) were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as...

  3. Solvent-free synthesis, coating and morphogenesis of conductive polymer materials through spontaneous generation of activated monomers.

    Science.gov (United States)

    Muramatsu, Ryo; Oaki, Yuya; Kuwabara, Kento; Hayashi, Kosei; Imai, Hiroaki

    2014-10-14

    Synthesis, coating, and morphogenesis of conductive polymers were achieved on a variety of substrates through spontaneous generation of activated monomer vapors under ambient pressure and low temperature conditions. The present approach facilitates the generation of complex hierarchical morphologies and the conductive coating for improvement of electrochemical properties. PMID:25145680

  4. Mechanisms of electrical activation and conduction in the gastrointestinal system: lessons from cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Gary eTse

    2016-05-01

    Full Text Available The gastrointestinal (GI tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.

  5. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    Science.gov (United States)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  6. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent γ-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences (μg/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn

  7. CSR activities within service corporations : A case study about how four legal jurists and their service corporation conduct CSR activities with primary focus on SME law firms.

    OpenAIRE

    Kornmann, Jan; Adolfsson, Marcus

    2010-01-01

    Purpose: The purpose of this thesis is to interview four legal jurists in order to explore how they conduct CSR activities within their service corpora-tion, with primary focus on SME law firms. Background: A current issue to address concerning the conduct of business these days is CSR activities. Although, the previous research concerning CSR activities and the service sector is limited. Theoretical Framework: The theoretical framework is divided into four parts; a general part concerning th...

  8. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    Science.gov (United States)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  9. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  10. Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.

    Directory of Open Access Journals (Sweden)

    Basavaraju G Sanganahalli

    Full Text Available Mitochondrial Ca(2+ uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+ uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+ ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+ uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+ uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+ uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+ uniporter (mCU activity. Neuronal electrical activity and cerebral blood flow (CBF fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC, whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+ uptake capacities lead to diminished resting state modes of brain functional connectivity.

  11. Bone conducted vibration activates the vestibulo-ocular reflex in the guinea pig.

    Science.gov (United States)

    Vulovic, Vedran; Curthoys, Ian S

    2011-08-10

    The aim of the study was: (a) to test whether short duration (6 ms) 500 Hz bone-conducted vibration (BCV) of the skull in alert head free guinea pigs would elicit eye movements; (b) to test whether these eye movements were vestibular in origin; and (c) to determine whether they corresponded to human eye movements to such stimuli. In this way we sought to establish the guinea pig as an acceptable model for testing the mechanism of the effect BCV on the vestibulo-ocular reflex. Consistent short-latency stimulus-locked responses to BCV were observed. The magnitude of eye displacement was directly related to stimulus intensity as recorded by accelerometers cemented onto the animal's skull. The strongest and most consistent response component was intorsion of both eyes. In lateral-eyed animals intorsion is produced by the combined contraction of the inferior rectus and superior oblique muscles. In humans the same pair of muscles acts to cause depression of the eye. To test whether the movements were vestibular we selectively ablated the vestibular endorgans: 3 of the 8 animals underwent a bilateral intratympanic injection of gentamicin, an ototoxic aminoglycoside antibiotic, to ablate their vestibular receptors. After ablation there was an overall reduction in the magnitude of eye displacement, as well as a reduction in the effectiveness of the BCV stimulus to elicit eye movements. The animals' hearing, as measured by the threshold for auditory brainstem responses, remained unchanged after gentamicin, confirming that the cochlea was not affected. The reduced magnitude of responses after vestibular receptor ablation demonstrates that the eye-movement responses to BCV are probably caused by the stimulation of vestibular receptors, which in turn activate the vestibulo-ocular reflex.

  12. The influence of the solid thermal conductivity on active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt

    2012-01-01

    for a range of thermal conductivities, operating frequencies, a long and short regenerator, and finally a regenerator with a low and a high number of transfer units (NTU) regenerator. In this way the performance is mapped out and the impact of the thermal conductivity of the solid is probed. Modeling shows...

  13. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A.; Muders, Vera; Schlesinger, Ramona; Heberle, Joachim

    2014-12-01

    Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2380 intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H218O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm-1) and with the other O-H group medium (3440 cm-1) to moderately strongly (3300 cm-1) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.

  14. Activation of silicon quantum dots and coupling between the active centre and the defect state of the photonic crystal in a nanolaser

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Chen Hang-Qiong; Shu Qin; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    A new nanolaser concept using silicon quantum dots (QDs) is proposed.The conduction band opened by the quantum confinement effect gives the pumping levels.Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission.An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser.Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.

  15. Oscillations and multiple steady states in active membrane transport models.

    Science.gov (United States)

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  16. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.

    1998-01-01

    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  17. Updated summary of state electric industry restructuring activities

    International Nuclear Information System (INIS)

    For over a year, The National Regulatory Research Institute has monitored the electric industry restructuring activity at state level. Included here is a quarterly summary of a more extensive report updated and posted monthly on NRRI's website. The brief article continues by reviewing legislation and litigation in restructuring

  18. INVESTMENT ACTIVITY OF NON-STATE FOUNDS OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Kobylinsky S. V.

    2016-04-01

    Full Text Available Currently, pension by virtue of their social significance in favor of one of the main socially important guarantee of stable development of society, to ensure the financial and budgetary sphere of the state. Private pension founds are viewed as an instrument to raise the material well-being of pensioners. The social significance of non-state pension funds is to involve the population in the sphere of voluntary pension insurance. The author analyzed the role of non-state pension funds in acting to pension system. The article subjected to a detailed analysis of the norms of a number of Federal laws, fixing the investment activity of non-state pension found. The author concludes that there is a need to improve existing legislation on investment activity of non-state pension found. As well, the authors indicated some legal problems that occur in practice arising from owners of the investment portfolio. The authors have analyzed the performance of pension funds and formed an opinion about the state of the whole system. Following consideration of the practical problems has been offered for both theoretical and practical ways to address them in order to prevent violation

  19. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  20. Fluctuation conductivity and the chiral glass state in disordered YBa2Cu3O6+d thin films

    Science.gov (United States)

    Sobocinski, P. A.; Grande, P. L.; Pureur, P.

    2015-10-01

    In this communication we report on fluctuation conductivity experiments in several superconducting YBa2Cu3O6+d thin films grown by chemical solution deposition. These films are c-axis oriented and show granularity at a submicron scale. Two of the samples were submitted to ion implantation in order to study effects of local disorder. When the temperature approaches the superconducting transition from above we first observe the expected three-dimensional Gaussian fluctuation region. Then, a crossover occurs closely above the transition to a regime dominated by genuine critical fluctuations characterized by a large exponent. Based on previous theoretical predictions, we interpret these critical regimes as precursors of the superconducting chiral glass state.

  1. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  2. Steady-state entanglement activation in optomechanical cavities

    Science.gov (United States)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  3. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH. In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.

  4. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    Science.gov (United States)

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties. PMID:27157544

  5. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer

    Science.gov (United States)

    Owerre, S. A.

    2016-06-01

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, {{t}\\bot} , and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for {{t}\\text{S}},{{t}\\text{D}}>0 , the tunneling parameter {{t}\\bot} changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  6. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    DEFF Research Database (Denmark)

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng;

    2015-01-01

    -tuned passive filter and an active filter in series connection, both dc voltage and kVA rating of the active filter are dramatically decreased compared with the pure shunt active filter. In real application, this feature is very attractive since the active power filter with fully power electronics is very...... expensive. A reasonable trade-off between filtering performances and cost is to use the hybrid active filter. Design consideration are presented and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance...

  7. 78 FR 78788 - Nondiscrimination in Programs or Activities Conducted by the United States Department of Agriculture

    Science.gov (United States)

    2013-12-27

    ... of race, color, and national origin. (See 29 Federal Register (FR) 16966, creating 7 CFR part 15... in 1999 (64 FR 66709, Nov 30, 1999). The changes are proposed to clarify the roles and... discrimination based on gender identity (see FR Vol. 77, No. 23 at 5662 et seq.). The public comment period...

  8. Activated conduction by small incision and moderate stimulation for treatment of cerebral palsy in 182 cases

    Institute of Scientific and Technical Information of China (English)

    Wenying Wang; Jianhua Shi; Mingjiang Yu; Dazhi Zhang

    2006-01-01

    BACKGROUND: Internationally, methods to treat cerebral palsy (CP) are basically the same, including correction of deformity with orthopaedic operation, selective posterior rhizotomy(SPR), rehabilitation therapy and so on. Domestic methods to treat CP are basically close to the international methods. Traditional Chinese medical therapies, such as, acupuncture and moxibustion, acupoint injection, massage and so on, also have good curative effects.OBJECTIVE: To observe the effect of activated conduction by small incision and moderate stimulation (ACSIMS) on limb function and living ability in patients with spastic CP at different degrees. DESIGN: Retrospective case analysis.SETTING: Department of Medical Education, Shanxi Medical College for Continuing Education. PARTICIPANTS: A total of 182 patients with CP, including 97 males and 85 females, aged 3 to 23 years, who received treatment in Beijing Haidian District Diaoyutai Hospital during October 1996 to September 2005, were involved in this trial. The involved patients met the diagnostic criteria proposed in 2004 National Special Seminar of Cerebral Palsy. According to typing criteria of CP purposed in 1990 Brioni International Conference, the involved patients were typed: 117 with spastic CP, 14 with involuntary movement CP, 19 with defective coordination CP, 5 with hypotonia CP and 27 with mixed type CP. The guardians of underage patients and adult patients themselves were all informed of the therapeutic regimens. METHODS: ①According to CP typing assessment quantitative criteria of Li, the involved patients were assigned from limb position, daily living and movement 3 aspects: mild 23, moderate 75, severe 62 and extremely severe 22. ② Operation methods: The lower limb of moderate spastic CP patient was taken as an example. A median incision or paramedian incision was made between L2 and S1, and it was also the first incision in lower limb. The secorid incision was made at the center of buttock or at the

  9. Avalanche mode of high-voltage overloaded p+–i–n+ diode switching to the conductive state by pulsed illumination

    International Nuclear Information System (INIS)

    A simple analytical theory of the picosecond switching of high-voltage overloaded p+–i–n+ photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs

  10. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russia Electrical Engineering Institute (Russian Federation)

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  11. Active states and structure transformations in accreting white dwarfs

    Science.gov (United States)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  12. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Science.gov (United States)

    2010-04-01

    ... clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... and evaluation of clinical trials. For drugs covered under this section, the Commissioner and other agency officials will monitor the progress of the conduct and evaluation of clinical trials and...

  13. Schemes for the use of conducting polymers as active materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, A.; Davey, J.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1993-05-01

    The development of a novel conducting polymer based system for use in electrochemical capacitors is described. This system utilizes a new conducting polymer, poly-3-(4-fluorophenyl)-thiophene (PFPT), that can be reversibly n- and p-doped to high charge density. The electrochemical n-dopability of this material can be further improved by cycling in acetonitrile solution that contains a new electrolyte, tetramethylammonium trifluoromethanesulfonate (Me{sub 4}NCF{sub 3}SO{sub 3}). We discuss these improvements in n-dopability in terms of potential electronic and steric influences. We believe that the substituent fluorophenyl group does not communicate with the polythiophene backbone through resonance, and conclude that the ability to n-dope PFPT to high charge density may occur as a result of electron transfer reactions from the conducting polymer backbone into the substituent. This new system for electrochemical capacitors provides the best achievable performance from conducting polymers and generates high energy and power densities that are comparable with noble metal oxide systems, potentially at a fraction of the cost.

  14. Schemes for the use of conducting polymers as active materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Rudge, A.; Davey, J.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1993-01-01

    The development of a novel conducting polymer based system for use in electrochemical capacitors is described. This system utilizes a new conducting polymer, poly-3-(4-fluorophenyl)-thiophene (PFPT), that can be reversibly n- and p-doped to high charge density. The electrochemical n-dopability of this material can be further improved by cycling in acetonitrile solution that contains a new electrolyte, tetramethylammonium trifluoromethanesulfonate (Me[sub 4]NCF[sub 3]SO[sub 3]). We discuss these improvements in n-dopability in terms of potential electronic and steric influences. We believe that the substituent fluorophenyl group does not communicate with the polythiophene backbone through resonance, and conclude that the ability to n-dope PFPT to high charge density may occur as a result of electron transfer reactions from the conducting polymer backbone into the substituent. This new system for electrochemical capacitors provides the best achievable performance from conducting polymers and generates high energy and power densities that are comparable with noble metal oxide systems, potentially at a fraction of the cost.

  15. Momentary affective states are associated with momentary volume, prospective trends and fluctuation of daily physical activity

    Directory of Open Access Journals (Sweden)

    Martina K. Kanning

    2016-05-01

    Full Text Available Several interventions aiming to enhance physical activity in everyday life showed mixed effects. Affective constructs are thought to potentially support health behavior change. However, little is known about within-subject associations between momentary affect and subsequent physical activity in everyday life. This study analyzed the extent to which three dimensions of affective states (valence, calmness, and energetic arousal were associated with different components of daily activity trajectories. Sixty-five undergraduates’ students (Age: M = 24.6; SD = 3.2; females: 57% participated in this study. Physical activity was assessed objectively through accelerometers during 24 hours. Affective states assessments were conducted randomly every 45min using an e-diary with a six-item mood scale that was especially designed for ambulatory assessment. We conducted three-level multi-level analyses to investigate the extent to which momentary affect accounted for momentary volume, prospective trends and stability vs. fluctuation of physical activity in everyday life. All three affect dimensions were significantly associated with momentary activity volumes and prospective trends over 45 minute periods. Physical activity didn’t fluctuate freely, but featured significant autocorrelation across repeated measurements, suggesting some stability of physical activity across 5-minute assessments. After adjusting for the autoregressive structure in physical activity assessments, only energetic arousal remained a significant predictor. Feeling energized and awake was associated with an increased momentary volume of activity and initially smaller but gradually growing decreases in subsequent activity within the subsequent 45 minutes. Although not related to trends in physical activity, higher valence predicted lower stability in physical activity across subsequent 45 minutes, suggesting more short-term fluctuations in daily activity the more participants reported

  16. Mining Claim Activity on Federal Land in the United States

    Science.gov (United States)

    Causey, J. Douglas

    2007-01-01

    Several statistical compilations of mining claim activity on Federal land derived from the Bureau of Land Management's LR2000 database have previously been published by the U.S Geological Survey (USGS). The work in the 1990s did not include Arkansas or Florida. None of the previous reports included Alaska because it is stored in a separate database (Alaska Land Information System) and is in a different format. This report includes data for all states for which there are Federal mining claim records, beginning in 1976 and continuing to the present. The intent is to update the spatial and statistical data associated with this report on an annual basis, beginning with 2005 data. The statistics compiled from the databases are counts of the number of active mining claims in a section of land each year from 1976 to the present for all states within the United States. Claim statistics are subset by lode and placer types, as well as a dataset summarizing all claims including mill site and tunnel site claims. One table presents data by case type, case status, and number of claims in a section. This report includes a spatial database for each state in which mining claims were recorded, except North Dakota, which only has had two claims. A field is present that allows the statistical data to be joined to the spatial databases so that spatial displays and analysis can be done by using appropriate geographic information system (GIS) software. The data show how mining claim activity has changed in intensity, space, and time. Variations can be examined on a state, as well as a national level. The data are tied to a section of land, approximately 640 acres, which allows it to be used at regional, as well as local scale. The data only pertain to Federal land and mineral estate that was open to mining claim location at the time the claims were staked.

  17. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan

    OpenAIRE

    Sergio Velázquez; JOSÉ M. MONZÓ; María V. Borrachero; Jordi Payá

    2014-01-01

    The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized...

  18. Gaussian state interferometry with passive and active elements

    OpenAIRE

    Sparaciari, Carlo; Olivares, Stefano; Paris, Matteo G. A.

    2015-01-01

    We address precision of optical interferometers fed by Gaussian states and involving passive and/or active elements, such as beam splitters, photodetectors and optical parametric amplifiers. We first address the ultimate bounds to precision by discussing the behaviour of the quantum Fisher information. We then consider photodetection at the output and calculate the sensitivity of the interferometers taking into account the non unit quantum efficiency of the detectors. Our results show that in...

  19. Gaussian-state interferometry with passive and active elements

    OpenAIRE

    C. Sparaciari; Olivares, S.; Paris, M. G. A.

    2016-01-01

    We address precision of optical interferometers fed by Gaussian states and involving passive and/or active elements, such as beam splitters, photodetectors and optical parametric amplifiers. We first address the ultimate bounds to precision by discussing the behaviour of the quantum Fisher information. We then consider photodetection at the output and calculate the sensitivity of the interferometers taking into account the non unit quantum efficiency of the detectors. Our results show that in...

  20. Resting-state beta and gamma activity in Internet addiction.

    Science.gov (United States)

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction.

  1. Long pulse and steady state operation activities at KSTAR

    Science.gov (United States)

    Bae, Young-Soon; KSTAR Team; KAERI Collaboration; JAEA Collaboration; PPPL Collaboration; SNU Collaboration

    2014-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) is to develop a steady state capable advanced tokamak (AT) operation. The original AT operation mode at KSTAR is a reversed shear scenario with the plasma current of 2 MA, the toroidal magnetic field of 3.5 T, βN of 5, safety factor q95 of 3.7. Recently, the stationary long pulse H-mode discharge is sustained for maximum pulse duration of 20 s using heating of 2.5-MW NBI and 0.7-MW, X3 170 GHz ECH with low density level ~ 0.3 × 1020/m3. The main activities of long pulse and steady state operation in KSTAR are the density feedback control, optimization of plasma shape and vertical control, real-time β control, and steady state capable heating upgrade. For the longer pulse H-mode discharge at the increased plasma current upcoming KSTAR campaign, there have been improvements in plasma control system and upgraded heating systems. Meanwhile, steady state operation scenario in KSTAR next 4-year is being investigated using time-dependent integrated transport simulation code with possible heating upgrade-schemes. The promising steady state scenario near future is a reversed shear using a new 4 MW off-axis neutral beam injector for broad pressure profile peaked at off-axis, and using ECH for local current profile control aiming at βN > 3 with Ip ~ 1 MA. This paper present activities and plan for steady state operation in KSTAR as well as the long pulse H-mode discharge results in the recent KSTAR campaign.

  2. An experimental objective method to determine maximum output and dynamic range of an active bone conduction implant: the Bonebridge

    NARCIS (Netherlands)

    Mertens, G.; Desmet, J.; Snik, A.F.M.; Heyning, P. van de

    2014-01-01

    INTRODUCTION: Recently, a new active bone conduction implant, the Bonebridge, was introduced. This transcutaneous device is proposed as an alternative to previous percutaneous systems. The current study aims to determine the maximum output (MO) of the Bonebridge by making use of Bonebridge-generated

  3. Urinary Bladder-Relaxant Effect of Kurarinone Depending on Potentiation of Large-Conductance Ca2+-Activated K+ Channels.

    Science.gov (United States)

    Lee, Sojung; Chae, Mee Ree; Lee, Byoung-Cheol; Kim, Yong-Chul; Choi, Jae Sue; Lee, Sung Won; Cheong, Jae Hoon; Park, Chul-Seung

    2016-08-01

    The large-conductance calcium-activated potassium channel (BKCa channel) plays critical roles in smooth muscle relaxation. In urinary bladder smooth muscle, BKCa channel activity underlies the maintenance of the resting membrane potential and repolarization of the spontaneous action potential triggering the phasic contraction. To identify novel BKCa channel activators, we screened a library of natural compounds using a cell-based fluorescence assay and a hyperactive mutant BKCa channel (Lee et al., 2013). From 794 natural compounds, kurarinone, a flavanone from Sophora flavescens, strongly potentiated BKCa channels. When treated from the extracellular side, this compound progressively shifted the conductance-voltage relationship of BKCa channels to more negative voltages and increased the maximum conductance in a dose-dependent manner. Whereas kurarinone strongly potentiated the homomeric BKCa channel composed of only the α subunit, its effects were much smaller on heteromeric channels coassembled with auxiliary β subunits. Although the activation kinetics was not altered significantly, the deactivation of BKCa channels was dramatically slowed by kurarinone treatment. At the single-channel level, kurarinone increased the open probability of the BKCa channel without affecting its single-channel conductance. Kurarinone potently relaxed acetylcholine-induced contraction of rat bladder smooth muscle and thus decreased the micturition frequency of rats with overactive bladder symptoms. These results indicate that kurarinone can directly potentiate BKCa channels and demonstrate the therapeutic potentials of kurarinone and its derivatives for developing antioveractive bladder medications and supplements. PMID:27251362

  4. Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating

    DEFF Research Database (Denmark)

    Bildl, Wolfgang; Strassmaier, Tim; Thurm, Henrike;

    2004-01-01

    Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and...

  5. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  6. Activation of visible up-conversion luminescence in transparent and conducting ZnO:Er:Yb films by laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lluscà, M., E-mail: marta.llusca@ub.edu [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain); López-Vidrier, J. [Department of Electronics, Universitat de Barcelona, Barcelona 08028 (Spain); Lauzurica, S.; Sánchez-Aniorte, M.I. [Centro Laser, Universidad Politécnica de Madrid, Madrid 28031 (Spain); Antony, A. [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain); Indian Institute of Technology Bombay, Mumbai 400076 (India); Molpeceres, C. [Centro Laser, Universidad Politécnica de Madrid, Madrid 28031 (Spain); Hernández, S.; Garrido, B. [Department of Electronics, Universitat de Barcelona, Barcelona 08028 (Spain); Bertomeu, J. [Department of Applied Physics and Optics, Universitat de Barcelona, Barcelona 08028 (Spain)

    2015-11-15

    Transparent and conducting ZnO:Er:Yb thin films with visible up-conversion (660-nm emission under 980-nm excitation) were fabricated by RF magnetron sputtering. The as-deposited films were found to be transparent and conducting and the activation of the Er ions in these films to produce up-conversion luminescence was achieved by different post-deposition annealing treatments in air, vacuum or by laser annealing using a Nd:YVO{sub 4} laser. The structural, electrical and optical properties and the up-conversion efficiency of these films were found to be strongly influenced by the annealing method, and a detailed study is reported in this paper. It has been demonstrated that, although the air annealing was the most efficient in terms of up-conversion, laser annealing was the only method capable of activating Er ions while preserving the electrical conductivity of the doped films. It has been shown that a minimum energy was needed in laser annealing to optically activate the rare earth ions in the ZnO host material to produce up-conversion. Up-converting and transparent conducting ZnO:Er:Yb films with an electrical resistivity of 5×10{sup −2} Ω cm and transparency ~80% in the visible wavelength range has been achieved by laser annealing. - Highlights: • Transparent and conducting ZnO:Er:Yb films were grown via magnetron sputtering. • Post-annealing ZnO:Er:Yb is needed to optically activate Er ions. • Visible up-conversion emission at 660 nm is observed under 980 nm excitation. • A transparent and conducting up-converter is achieved by laser annealing.

  7. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    Science.gov (United States)

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  8. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    OpenAIRE

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K.; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differ...

  9. A summary of lessons learned activities conducted at the OECD Halden Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, B.P. [OECD Halden Reactor Project (Norway)

    1997-02-01

    A series of lessons learned studies have been conducted at the OECD Halden Reactor Project. The purpose of these lessons learned reports are to summarize knowledge and experience gained across a number of research project. This paper presents a summary of main issues addressed in four of these lessons learned projects. These are concerned with software development and quality assurance, software reliability, methods for test and evaluation of developed systems, and the evaluation of system design features.

  10. A summary of lessons learned activities conducted at the OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    A series of lessons learned studies have been conducted at the OECD Halden Reactor Project. The purpose of these lessons learned reports are to summarize knowledge and experience gained across a number of research project. This paper presents a summary of main issues addressed in four of these lessons learned projects. These are concerned with software development and quality assurance, software reliability, methods for test and evaluation of developed systems, and the evaluation of system design features

  11. High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide

    Science.gov (United States)

    Godillot, G.; Taberna, P.-L.; Daffos, B.; Simon, P.; Delmas, C.; Guerlou-Demourgues, L.

    2016-11-01

    The remarkable electrochemical behavior of complete activated carbon/cobalt oxide cells is reported in the present work. Among the various weight ratios between the positive and negative electrodes evaluated, the best features are obtained with an overcapacitive cobalt oxide electrode. The energy densities obtained by this system (20 Wh kg-1 for a power density of 209 W kg-1) are twice higher than those measured for a activated carbon/activated carbon symmetric cell, in the same operating conditions. With discharge capacities around 62 F g-1, this system is among the best ones reported in the literature for this category.

  12. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility. PMID:27159015

  13. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. B.; Peeler, D. K.

    2012-11-26

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  14. United States Department of Energy commercial reactor spent fuel programs being conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    In 1982, the Congress of the United States enacted the Nuclear Waste Policy Act (NWPA). This act stated that in exchange for one mil per kilowatt of electricity generated by nuclear power, the U.S. Department of Energy (DOE) would take possession of the Utilities' nuclear spent fuel and provide for permanent disposal. The act also provided for establishment of the Office of Civilian Radioactive Waste Management (OCRWM) within the DOE to manage the NWPA programs. The Idaho National Engineering Laboratory participation in OCRWM programs includes the Spent Fuel Storage Cask Testing Program, Dry Rod Consolidation Technology Program, Prototypical Consolidation Demonstration Program, the Nuclear Fuel Services Project, and the Cask Systems Acquisition Program. The Dry Rod Consolidation Technology Program demonstrates dry consolidation of PWR fuel assemblies and develops and documents technology associated with the dry consolidation process. The Prototypical Consolidation Demonstration Program develops and demonstrates production-scale equipment for the dry consolidation and packaging of spent fuel rods contained in BWR and PWR spent fuel assemblies and reports the results of these activities. The Nuclear Fuel Services Project will demonstrate the feasibility of packaging, transporting, and storing commercial spent fuel in the same dry storage cask. The Cask System Acquistion Program will develop a complement of NRC certified prototype casks for shipment of spent PWR and BWR fuels and hardware from existing and proposed reactor facilities and solidified high-level waste to a repository or an MRS

  15. The effect of dimerization strength and comb-like bond’s hopping energy on electronic conductance and density of states of typical polyacetylene polymers

    Directory of Open Access Journals (Sweden)

    A Esmaeili

    2012-03-01

    Full Text Available  In this paper, we study the electronic conductance and density of states for a comb-like polymer with periodic hopping energies in the tight-binding approach. Electron transmission coefficient and density of states are analytically calculated by using Green’s function of the system. The results show that the electronic conductance spectrum has one energy gap in the absence of carbon-hydrogen bond’s hopping energy, which is proportional to the dimerization strength. Carbon-Hydrogen bond’s hopping energy makes the appearance three energy gaps in the conductance spectrum and the dimerization strength influences only the outer gaps.

  16. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  17. Spontaneous ordering and vortex states of active fluids in circular confinement

    Science.gov (United States)

    Theillard, Maxime; Ezhilan, Barath; Saintillan, David

    2015-11-01

    Recent experimental, theoretical and simulation studies have shown that confinement can profoundly affect self-organization in active suspensions leading to striking features such as directed fluid pumping in planar confinement, formation of steady and spontaneous vortices in radial confinement. Motivated by this, we study the dynamics in a suspension of biologically active particles confined in spherical geometries using a mean-field kinetic theory for which we developed a novel numerical solver. In the case of circular confinement, we conduct a systematic exploration of the entire parameter space and distinguish 3 broad states: no-flow, stable vortex and chaotic and several interesting sub-states. Our efficient numerical framework is also employed to study 3D effects and dynamics in more complex geometries.

  18. About the way of choice of conduct of boxer in competition activity

    Directory of Open Access Journals (Sweden)

    Arkhangorodskiy Z.S.

    2010-10-01

    Full Text Available The features of emotional perception of colour tones are considered for boxers. In researches took part 122 examinee. In an experiment was used eightcolour test. Information is generalized about the choice of colour tones in 14 researches. It is rotined that the emotional choice of colour tones depends on the situation factors of sporting activity and individual features of boxers. It is set that between the emotional preference of colour tones and style of battle activity of boxer there is close intercommunication.

  19. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    Science.gov (United States)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  20. Highly spin-polarized conducting state at the interface between nonmagnetic band insulators: LaAlO3/FeS2 (001).

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-10-14

    First-principles density functional calculations demonstrate that a spin-polarized two-dimensional conducting state can be realized at the interface between two nonmagnetic band insulators. The (001) surface of the diamagnetic insulator FeS(2) (pyrite) supports a localized surface state deriving from Fe d orbitals near the conduction band minimum. The deposition of a few unit cells of the polar perovskite oxide LaAlO(3) leads to electron transfer into these surface bands, thereby creating a conducting interface. The occupation of these narrow bands leads to an exchange splitting between the spin subbands, yielding a highly spin-polarized conducting state distinct from the rest of the nonmagnetic, insulating bulk. Such an interface presents intriguing possibilities for spintronics applications. PMID:22107410

  1. Decoding subjective mental states from fMRI activity patterns

    International Nuclear Information System (INIS)

    In recent years, functional magnetic resonance imaging (fMRI) decoding has emerged as a powerful tool to read out detailed stimulus features from multi-voxel brain activity patterns. Moreover, the method has been extended to perform a primitive form of 'mind-reading,' by applying a decoder 'objectively' trained using stimulus features to more 'subjective' conditions. In this paper, we first introduce basic procedures for fMRI decoding based on machine learning techniques. Second, we discuss the source of information used for decoding, in particular, the possibility of extracting information from subvoxel neural structures. We next introduce two experimental designs for decoding subjective mental states: the 'objective-to-subjective design' and the 'subjective-to-subjective design.' Then, we illustrate recent studies on the decoding of a variety of mental states, such as, attention, awareness, decision making, memory, and mental imagery. Finally, we discuss the challenges and new directions of fMRI decoding. (author)

  2. 75 FR 64507 - Taking and Importing Marine Mammals; Military Training Activities Conducted Within the Gulf of...

    Science.gov (United States)

    2010-10-19

    ... variety of surface ships participate in training events, including the Fast Frigate (FFG), the Guided... during ASW training activities. No on-shore construction would take place. Seven electronics packages... seafloor by a range boat. The anchors used to keep the electronics packages on the seafloor consist...

  3. Atrial activation during atrioventricular nodal reentrant tachycardia: Studies on retrograde fast pathway conduction

    NARCIS (Netherlands)

    D.G. Katritsis; K.A. Ellenbogen; A.E. Becker

    2006-01-01

    BACKGROUND Detailed right and left septal mapping of retrograde atrial activation during typical atrioventricutar nodal reentrant tachycardia (AVNRT) has not been undertaken and may provide insight into the complex physiology of AVNRT, especially the anatomic localization of the fast and stow pathwa

  4. Effect of the variation of the electronic density of states of zirconium and tungsten on their respective thermal conductivity evolution with temperature

    International Nuclear Information System (INIS)

    The thermal conductivity of zirconium and tungsten above 500 K is calculated with atomistic simulations using a combination of empirical potentials molecular dynamics and density functional theory calculations. The thermal conductivity is calculated in the framework of Kubo–Greenwood theory. The obtained values are in quantitative agreement with experiments. The fact that the conductivity of Zr increases with temperature while that of tungsten is essentially constant is reproduced by the calculations. The evolution with temperature of the electronic density of states of these two pseudo-gap metals proves to explain the observed variations of the conductivity. (paper)

  5. Interfacial Structure and Photocatalytic Activity of Magnetron Sputtered TiO2 on Conducting Metal Substrates

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Petit, Jean-Pierre; Mermoux, Michel;

    2014-01-01

    The photocatalytic behavior of magnetron sputtered anatase TiO2 coatings on copper, nickel, and gold was investigated with the aim of understanding the effect of the metallic substrate and coating-substrate interface structure. Stoichiometry and nanoscale structure of the coating were investigated...... measurements. The nature of the metal substrate and coating-substrate interface had profound influence on the photocatalytic behavior. Less photon energy was required for TiO2 excitation on a nickel substrate, whereas TiO2 coating on copper showed a higher band gap attributed to quantum confinement. However......, the TiO2 coating on gold exhibited behavior typical of facile transfer of electrons to and from the CB, therefore requiring only a small amount of photon energy to make the TiO2 coating conductive....

  6. Activities of binary baths with 1% solute as standard states

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relationships of activities with 1% solute as standard state and mass fraction of solute, and hot-dip temperature, were given on the base of Miedema's model, Tanaka expression, some basic thermodynamic relationships; and discussion was carried out on Zn-Mn and Zn-Ti binary alloys by calculation, in which varied colors can be achieved on the hot-dip steel sheets. The results indicate that the activity of solute shows positive deviation relative to Henry's law for both Zn-Mn and Zn-Ti binary dilute solution. The degree of deviation increases with increasing solute and decreases with increasing bath temperature. As the solution is very dilute solution (w(Mn)≤40% for Zn-Mn alloy,w(Ti)≤8% for Zn-Ti alloy), the two binary baths can all be treated as ideal dilute solutions.

  7. Electrocatalysis induced by surface redox activities on conductive metal oxide electrodes

    OpenAIRE

    Fierro, Stéphane

    2010-01-01

    Iridium dioxide electrodes form part of the dimensionally stable anodes (DSA®) and this electrode material is widely used in many industrial processes namely water electrolysis, metal electro-winning, cathodic protection and electro-organic synthesis due to the high electrochemical activity and stability of this electrode material. IrO2-based electrodes can be prepared using different techniques but the most common is the thermal decomposition of H2IrCl6 precursor solution on an inert substra...

  8. Evaluation of behavioral states among morning and evening active healthy individuals

    Directory of Open Access Journals (Sweden)

    M.P. Hidalgo

    2002-07-01

    Full Text Available The Horne-Östberg questionnaire partly covers some factors that may be important determinants of peak time and characterize patterns of behavior. We conducted a study for the evaluation of self-reported behavioral states (hunger sensation, availability for study, physical exercise, solving daily problems, and time preferences as expressions of underlying cyclic activity. Three hundred and eighteen community subjects without history of medical, psychiatric, or sleep disorders were evaluated in a cross-sectional design. A self-report about daily highest level of activity was used to categorize individuals into morning, evening, and indifferently active. Time-related behavioral states were evaluated with 23 visual analog questions. The responses to most analogic questions were significantly different between morning and evening active subjects. Logistic regression analysis identified a group of behaviors more strongly associated with the self-reported activity pattern (common wake up time, highest subjective fatigue, as well as wake up, bedtime, exercise and study preferences. These findings suggested that the patterns of activity presented by normal adults were related to specific common behavioral characteristics that may contribute to peak time.

  9. The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

    Directory of Open Access Journals (Sweden)

    Pengfei Huang

    2014-08-01

    Full Text Available Intermediate-conductance Ca2+-activated K+ (IK channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.

  10. Dog Walking and Physical Activity in the United States

    Directory of Open Access Journals (Sweden)

    Sandra A. Ham, MS

    2006-03-01

    Full Text Available Introduction Dog walking is a purposeful physical activity that may have health benefits for humans and canines. A descriptive epidemiology of the contribution of dog walking to physically active lifestyles among dog walkers in the United States has not been previously reported. Methods Data on youth and adults who reported walking for pet care trips (N = 1282 on the National Household Travel Survey 2001 were analyzed for number of trips, proportion walking a dog for at least 10 minutes on one trip, and accumulation of 30 minutes or more in 1 day of walks lasting at least 10 minutes. Results In 1 day, 58.9% of dog walkers took two or more walks, 80.2% took at least one walk of 10 minutes or more, and 42.3% accumulated 30 minutes or more from walks lasting at least 10 minutes each. There were no significant differences by sex, family income, or categories of urbanization. Conclusion Walking a dog may contribute to a physically active lifestyle and should be promoted as a strategy that fits within the framework set forth by the Task Force on Community Preventive Services for Physical Activity.

  11. [Investigation of Aerosol Mixed State and CCN Activity in Nanjing].

    Science.gov (United States)

    Zhu, Lin; Ma, Yan; Zheng, Jun; Li, Shi-zheng; Wang, Li-peng

    2016-04-15

    During 11-18 September 2014, the size-resolved aerosol Cloud Condensation Nuclei (CCN) activity and mixing state were measured using Cloud Condensation Nuclei Counter (CCNC), Aerosol Particle Mass (APM) and Scanning Mobility Particle Sizer (SMPS). The results showed that aerosols mainly existed as an internal mixture. For 76, 111, 138 and 181 nm particles, black carbon (BC) accounted for 5.4%, 10%, l0.7% and 6.7% of the particle mass, but as high as 51%, 57%, 70% and 59% of the particle number concentrations, respectively, suggesting that BC was a type of important condensation nuclei in the atmosphere and made significant contributions to particle numbers. The occasionally observed external mixtures were mainly present in 111 and 138 nm particles. The critical supersaturation was 0.25%, 0.13%, 0.06% and 0.015% for 76, 111, 138 and 181 nm particles, respectively. Precipitation and haze had significant effects on the particle CCN activity. The hygroscopicity parameter K was 0.37, 0.29 and 0.39 in rainy, clear and hazy days, respectively. Particle density and CCN activity were impacted by chemical compositions. Compared with clear days, higher contents of inorganic salts and lower contents of organics were found on hazy days, accompanied by lower particle density and higher CCN activity. PMID:27548938

  12. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation

    OpenAIRE

    Bruscia, Emanuela M.; Price, Joanna E.; Cheng, Ee-chun; Weiner, Scott; Caputo, Christina; Ferreira, Elisa C.; Egan, Marie E.; Krause, Diane S.

    2006-01-01

    Several studies have demonstrated that bone marrow (BM)-derived cells give rise to rare epithelial cells in the gastrointestinal (GI) and respiratory tracts after BM transplantation into myeloablated recipients. We investigate whether, after transplantation of cystic fibrosis transmembrane conductance regulator (CFTR)-positive BM-derived cells, BM-derived GI and airway epithelial cells can provide CFTR activity in the GI tract and nasal epithelium of recipient cystic fibrosis mice. CFTR−/− mi...

  13. Prostaglandin E2 Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Activity and Airway Surface Liquid Volume Requires Gap Junctional Communication

    OpenAIRE

    Scheckenbach, K E Ludwig; Losa, Davide; Dudez, Tecla; Bacchetta, Marc; O'Grady, Scott; Crespin, Sophie; Chanson, Marc

    2010-01-01

    Stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by protease-activated receptors (PARs) at the basolateral membranes and by adenosine receptors (ADO-Rs) at the apical membrane maintain airway surface liquid (ASL) volume, which is required to ensure hydrated and clearable mucus. Both pathways involve the release of prostaglandin E2 (PGE2) and the stimulation of their basolateral receptors (EP-Rs). We sought to determine whether gap junctions contribute to the coord...

  14. Prostaglandin E₂regulation of cystic fibrosis transmembrane conductance regulator activity and airway surface liquid volume requires gap junctional communication

    OpenAIRE

    Scheckenbach, K E Ludwig; Losa, Davide; Dudez, Tecla; Bacchetta, Marc; O'Grady, Scott; Crespin, Sophie; Chanson, Marc

    2011-01-01

    Stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by protease-activated receptors (PARs) at the basolateral membranes and by adenosine receptors (ADO-Rs) at the apical membrane maintain airway surface liquid (ASL) volume, which is required to ensure hydrated and clearable mucus. Both pathways involve the release of prostaglandin E₂ (PGE₂) and the stimulation of their basolateral receptors (EP-Rs). We sought to determine whether gap junctions contribute to the coord...

  15. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction

    OpenAIRE

    Padula, Audrey E.; Griffin, William C.; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S.; Elissa J Chesler; Miles, Michael F.; Robert W Williams; Randall, Patrick K.; Woodward, John J.; Howard C Becker; Patrick J Mulholland

    2015-01-01

    Small-conductance Ca2+-activated K+ (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kc...

  16. Post-industrial Intervention : An Activity-Theoretical Expedition Tracing the Proximal Development of Forms of Conducting Interventions

    OpenAIRE

    BodroÅŸić, Zlatko

    2008-01-01

    Ei saatavilla The purpose of this study is to investigate which forms of conducting interventions could effectively address a qualitatively new type of problems ('post-industrial problems') which are located between activities and which cannot be resolved by adapting standard solutions. This is achieved by combining a historical-analytical investigation with an empirical-experimental investigation. The historical-analytical part commences by investigating the origin of forms of conduc...

  17. Gis-approach for variability assessment of soil electric conductivity under pedoturbation activity of mole rat (Spalax microphthalmus

    Directory of Open Access Journals (Sweden)

    T. М. Konovalova

    2010-06-01

    Full Text Available The results of the investigation of the impact of the mole rat’s activity on soil electric conductivity have been presented. GIS-technology have been shown to be effective for assessment of the pedoturbation activity effect on the soil surface heterogeneity formation. Method of the one-dimension spatial coordinated array transformation into matrix form has been proposed for following multidimension statistic analysis application. The quantity estimation of the mole rats role in formation of the habitat nanorelief-level diversity has been obtained by means of indexes of the landscape complexity and diversity.

  18. Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan

    Directory of Open Access Journals (Sweden)

    Sergio Velázquez

    2014-11-01

    Full Text Available The use of methods based on measuring electrical conductivity to assess pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: calcium hydroxide. However, the use of similar methods in suspensions of cement with pozzolans has not been widely studied. This paper proposes a new method for rapid assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. In this study, the conditions for the application of the method were optimized, such as time, temperature, w/c ratio and dosage procedure. Finally, results are presented from the application of this method for characterizing the pozzolanic activity of the spent catalytic cracking catalyst. These results corroborate as previously reported, namely the high reactivity of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with other pozzolans such as metakaolin and silica fume.

  19. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F;

    2005-01-01

    , the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium......Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore...

  20. Are Physical Activity and Academic Performance Compatible? Academic Achievement, Conduct, Physical Activity and Self-Esteem of Hong Kong Chinese Primary School Children

    Science.gov (United States)

    Yu, C. C. W.; Chan, Scarlet; Cheng, Frances; Sung, R. Y. T.; Hau, Kit-Tai

    2006-01-01

    Education is so strongly emphasized in the Chinese culture that academic success is widely regarded as the only indicator of success, while too much physical activity is often discouraged because it drains energy and affects academic concentration. This study investigated the relations among academic achievement, self-esteem, school conduct and…

  1. NONLINEAR J-E CHARACTERISTICS IN THE ELECTRIC-THERMAL EQUILIBRIUM STATE FOR HIGH DENSITY POLYETHYLENE CONDUCTIVE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Yi-hu Song; Xiao-su Yi

    2001-01-01

    The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.

  2. GPi Oscillatory Activity Differentiates Tics from the Resting State, Voluntary Movements, and the Unmedicated Parkinsonian State

    Science.gov (United States)

    Jimenez-Shahed, Joohi; Telkes, Ilknur; Viswanathan, Ashwin; Ince, Nuri F.

    2016-01-01

    Background: Deep brain stimulation (DBS) is an emerging treatment strategy for severe, medication-refractory Tourette syndrome (TS). Thalamic (Cm-Pf) and pallidal (including globus pallidus interna, GPi) targets have been the most investigated. While the neurophysiological correlates of Parkinson's disease (PD) in the GPi and subthalamic nucleus (STN) are increasingly recognized, these patterns are not well characterized in other disease states. Recent findings indicate that the cross-frequency coupling (CFC) between beta band and high frequency oscillations (HFOs) within the STN in PD patients is pathologic. Methods: We recorded intraoperative local field potentials (LFPs) from the postero-ventrolateral GPi in three adult patients with TS at rest, during voluntary movements, and during tic activity and compared them to the intraoperative GPi-LFP activity recorded from four unmedicated PD patients at rest. Results: In all PD patients, we noted excessive beta band activity (13–30 Hz) at rest which consistently modulated the amplitude of the co-existent HFOs observed between 200 and 400 Hz, indicating the presence of beta-HFO CFC. In all 3TS patients at rest, we observed theta band activity (4–7 Hz) and HFOs. Two patients had beta band activity, though at lower power than theta oscillations. Tic activity was associated with increased high frequency (200–400 Hz) and gamma band (35–200 Hz) activity. There was no beta-HFO CFC in TS patients at rest. However, CFC between the phase of 5–10 Hz band activity and the amplitude of HFOs was found in two TS patients. During tics, this shifted to CFC between the phase of beta band activity and the amplitude of HFOs in all subjects. Conclusions: To our knowledge this is the first study that shows that beta-HFO CFC exists in the GPi of TS patients during tics and at rest in PD patients, and suggests that this pattern might be specific to pathologic/involuntary movements. Furthermore, our findings suggest that during tics

  3. Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.

    Science.gov (United States)

    Duan, S; Cooke, I M

    2000-01-01

    Responses to rapid application of glutamic acid (Glu) and gamma-aminobutyric acid (GABA), 0.01-3 mM, were recorded by whole-cell patch clamp of cultured crab (Cardisoma carnifex) X-organ neurons. Responses peaked within 200 ms. Both Glu and GABA currents had reversal potentials that followed the Nernst Cl(-) potential when [Cl(-)](i) was varied. A Boltzmann fit to the normalized, averaged dose-response curve for Glu indicated an EC(50) of 0.15 mM and a Hill coefficient of 1.05. Rapid (t(1/2) approximately 1 s) desensitization occurred during Glu but not GABA application that required >2 min for recovery. Desensitization was unaffected by concanavalin A or cyclothiazide. N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, quisqualate, and kainate (to 1 mM) were ineffective, nor were Glu responses influenced by glycine (1 microM) or Mg(2+) (0-26 mM). Glu effects were imitated by ibotenic acid (0.1 mM). The following support the conclusion that Glu and GABA act on different receptors: 1) responses sum; 2) desensitization to Glu or ibotenic acid did not diminish GABA responses; 3) the Cl(-)-channel blockers picrotoxin and niflumic acid (0.5 mM) inhibited Glu responses by approximately 90 and 80% but GABA responses by approximately 50 and 20%; and 4) polyvinylpyrrolydone-25 (2 mM in normal crab saline) eliminated Glu responses but left GABA responses unaltered. Thus crab secretory neurons have separate receptors responsive to Glu and to GABA, both probably ionotropic, and mediating Cl(-) conductance increases. In its responses and pharmacology, this crustacean Glu receptor resembles Cl(-)-permeable Glu receptors previously described in invertebrates and differs from cation-permeable Glu receptors of vertebrates and invertebrates.

  4. What should be the roles of conscious states and brain states in theories of mental activity?

    Directory of Open Access Journals (Sweden)

    Donelson E Dulany

    2011-03-01

    Full Text Available Answers to the title's question have been influenced by a history in which an early science of consciousness was rejected by behaviourists on the argument that this entails commitment to ontological dualism and "free will" in the sense of indeterminism. This is, however, a confusion of theoretical assertions with metaphysical assertions. Nevertheless, a legacy within computational and information-processing views of mind rejects or de-emphasises a role for consciousness. This paper sketches a mentalistic metatheory in which conscious states are the sole carriers of symbolic representations, and thus have a central role in the explanation of mental activity and action-while specifying determinism and materialism as useful working assumptions. A mentalistic theory of causal learning, experimentally examined with phenomenal reports, is followed by examination of these questions: Are there common roles for phenomenal reports and brain imaging? Is there defensible evidence for unconscious brain states carrying symbolic representations? Are there interesting dissociations within consciousness?

  5. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  6. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. PMID:26076630

  7. The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells

    Directory of Open Access Journals (Sweden)

    Mei-Han Huang

    2015-10-01

    Full Text Available Oxaliplatin (OXAL is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM suppressed the amplitude of whole-cell K+ currents (IK; and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.

  8. Attachment of noble metal nanoparticles to conducting polymers containing sulphur - preparation conditions for enhanced electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, V.C. [CQB, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); CIQ-UP, Linha 4, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Melato, A.I. [CQB, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Silva, A.F. [CIQ-UP, Linha 4, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Abrantes, L.M., E-mail: luisa.abrantes@fc.ul.p [CQB, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal)

    2011-04-01

    Taking advantage of the spontaneous deposition of noble metals on polymers containing sulphur, the inclusion of gold and platinum in poly(3-methylthiophene) and poly(3,4-ehylenedioxythiophene) (PEDOTh) layers, achieved by immersion of the polymer into the metal nanoparticles suspension, is reported in the present work. Platinum and gold nanoparticles (NPs), with diameters between 3 and 17 nm, have been prepared from colloidal methods (citrate or borohydride reduction in the presence of citrate capping agent) and characterized by transmission electron microscopy, ultraviolet-visible spectrophotometry and X-ray diffraction (XRD). The electropolymerization was carried out under potentiostatic and potentiodynamic conditions, imparting distinct morphologies, as revealed by atomic force microscopy. After polymer films immersion in the colloidal solutions, evidence of the NPs confinement and distribution was provided by XRD analysis and scanning electron microscopy. For thin layers, the quantity of attached metal NPs could be estimated from quartz crystal microbalance data collected throughout the films immersion.The influence of the polymer type and morphology, NPs nature, size and incorporated amount on the electrocatalytic activity of the so-prepared modified electrodes towards the hydrazine oxidation, in phosphate buffer solution, has been investigated by cyclic voltammetry. The results clearly show the superior properties of potentiodynamically prepared PEDOTh films attaching very small (3 nm) freshly prepared Pt-NPs.

  9. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E;

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... and morphometric analysis on the intact tissue. BK(Ca) channels appeared to be localized along all the plasma membrane of the enterocytes; the apical part of the villi showed the most intense immunostaining. These channels were silent in basal condition, but were activated on both membranes (apical and basolateral......) by increasing intracellular Ca(2+) concentration with the Ca(2+) ionophore ionomycin (1 microM). BK(Ca) channels were also activated on both membranes by hypotonic swelling of the epithelium and their inhibition by 100 nM iberiotoxin (specific BK(Ca) inhibitor) abolished the Regulatory Volume Decrease (RVD...

  10. Assessment of the Pozzolanic Activity of a Spent Catalyst by Conductivity Measurement of Aqueous Suspensions with Calcium Hydroxide

    Directory of Open Access Journals (Sweden)

    Sergio Velázquez

    2014-03-01

    Full Text Available The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and inert materials of similar chemical compositions. Further, the influence of temperature on the suspension was studied, and also, a new method was proposed in which the pozzolan/calcium hydroxide ratio was varied (with the initial presence of solid Ca(OH2 in the system. It was concluded that the method is effective, fast and simple for evaluating the high reactivity of the catalyst. Therefore, this method is an alternative for the evaluation of the reactivity of pozzolanic materials.

  11. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO₂@polyaniline nanocomposite film.

    Science.gov (United States)

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Raju, Kati; Lee, Jintae; Cho, Moo Hwan

    2014-06-11

    The development of organic-inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO2@Pani nanocomposite film via a simple biogenic-chemical route. Electrically conducting Ag/TiO2@Pani nanocomposites were prepared by incorporating Ag/TiO2 in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO2@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO2@Pani nanocomposite was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO2@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO2@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future. PMID:24836114

  12. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  13. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States.

    Science.gov (United States)

    Nandakumar, S R; Minvielle, Marie; Nagar, Saurabh; Dubourdieu, Catherine; Rajendran, Bipin

    2016-03-01

    Memristive devices, whose conductance depends on previous programming history, are of significant interest for building nonvolatile memory and brain-inspired computing systems. Here, we report half-integer quantized conductance transitions G = (n/2) (2e(2)/h) for n = 1, 2, 3, etc., in Cu/SiO2/W memristive devices observed below 300 mV at room temperature. This is attributed to the nanoscale filamentary nature of Cu conductance pathways formed inside SiO2. Retention measurements also show spontaneous filament decay with quantized conductance levels. Numerical simulations shed light into the dynamics underlying the data retention loss mechanisms and provide new insights into the nanoscale physics of memristive devices and trade-offs involved in engineering them for computational applications. PMID:26849776

  14. Numerical study of electronic density of states and conductance of a molecular wire coupled with an external molecule

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2006-12-01

    Full Text Available   There is a great interest in the electronic properties of conjugated polymers. Numerous works on the electronic and conduction properties of single-chain conjugated polymers have been published. From an electronic conduction point of view, these systems are quasi-one dimensional. The aim of this paper is to try to investigate corresponding properties in conducting polymers in higher of one-dimension. We study the electronic properties of a polyacetylene chain connected to other molecules. The effect of the size of the molecule and the strength of the coupling to the molecular wire is investigated. The results show that with the increase of the strength of the molecular wire/molecule coupling, the band gap of the system decreases and causes high electronic conduction.

  15. Analysis of the Baseline Assessments Conducted in 35 U.S. State/Territory Emergency Management Programs: Emergency Management Accreditation Program (EMAP) 2003-2004

    OpenAIRE

    Lucus, Valerie CEM, CBCP

    2006-01-01

    The Emergency Management Accreditation Program (EMAP) is a non profit organization developed to accredit government emergency management programs in the 56 U.S. states and territories. This accreditation model is based on the NFPA 1600 Standard on Disaster/Emergency Management and Business Continuity Programs. In 2003, the Federal Emergency Management Agency funded EMAP to conduct baseline assessments of each U.S. state and territory to assess their emergency management capabilities. Between ...

  16. Apparent receptor-mediated activation of Ca2+-dependent conductive Cl- transport by shark-derived polyaminosterols.

    Science.gov (United States)

    Chernova, Marina N; Vandorpe, David H; Clark, Jeffrey S; Williams, Jon I; Zasloff, Michael A; Jiang, Lianwei; Alper, Seth L

    2005-12-01

    The shark liver antimicrobial polyaminosterol squalamine is an angiogenesis inhibitor under clinical investigation as an anti-cancer agent and as a treatment for the choroidal neovascularization associated with macular degeneration of the retina. The related polyaminosterol MSI-1436 is an appetite suppressant that decreases systemic insulin resistance. However, the mechanisms of action of these polyaminosterols are unknown. We report effects of MSI-1436 on Xenopus oocytes consistent with the existence of a receptor for polyaminosterols. MSI-1436 activates bidirectional, trans-chloride-independent Cl- flux in Xenopus oocytes. At least part of this DIDS-sensitive Cl- flux is conductive, as measured using two-electrode voltage-clamp and on-cell patch-clamp techniques. MSI-1436 also elevates cytosolic Ca2+ concentration ([Ca2+]) and increases bidirectional 45Ca2+ flux. Activation of Cl- flux and elevation of cytosolic [Ca2+] by MSI-1436 both are accelerated by lowering bath Ca2+ and are not acutely inhibited by extracellular EGTA. Elevation of cytosolic [Ca2+] by MSI-1436 requires heparin-sensitive intracellular Ca2+ stores. Although injected EGTA abolishes the increased conductive Cl- flux, that Cl- flux is not dependent on heparin-sensitive stores. In low-bath Ca2+ conditions, several structurally related polyaminosterols act as strong agonists or weak agonists of conductive Cl- flux in oocytes. Weak agonist polyaminosterols antagonize the strong agonist, MSI-1436, but upon addition of the conductive Cl- transport inhibitor DIDS, they are converted into strong agonists. Together, these properties operationally define a polyaminosterol receptor at or near the surface of the Xenopus oocyte, provide an initial description of receptor signaling, and suggest routes toward further understanding of a novel class of appetite suppressants and angiogenesis inhibitors. PMID:16109810

  17. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  18. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Deraman, M.; Talib, I. A.; Awitdrus, Farma, R.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-01

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g-1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g-1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  19. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    International Nuclear Information System (INIS)

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H2SO4 electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g−1 respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g−1, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide

  20. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10.

    Science.gov (United States)

    Strauss, Florian; Rousse, Gwenaëlle; Alves Dalla Corte, Daniel; Ben Hassine, Mohamed; Saubanère, Matthieu; Tang, Mingxue; Vezin, Hervé; Courty, Matthieu; Dominko, Robert; Tarascon, Jean-Marie

    2016-06-01

    In the search for new cathode materials for Li-ion batteries, borate (BO3(3-)) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O5(4-) based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (∼0.3 Li(+)) in a potential window ranging from 2.5 to 4.5 V vs. Li(+)/Li(0). We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li(+)/Li(0) is associated with the Cu(3+)/Cu(2+) redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li(+)/Li(0) which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ∼1.4 mS cm(-1) at 500 °C. PMID:27189653

  1. Functional imaging reveals movement preparatory activity in the vegetative state

    Directory of Open Access Journals (Sweden)

    Tristan A Bekinschtein

    2011-01-01

    Full Text Available The Vegetative State (VS is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect residual conscious awareness in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Given that movement preparation in response to a motor command is a sign of purposeful behavior, our results are consistent with residual conscious awareness in these patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.

  2. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis

    DEFF Research Database (Denmark)

    Köhler, Ralf; Wulff, Heike; Eichler, Ines;

    2003-01-01

    BACKGROUND: Angioplasty stimulates proliferation and migration of vascular smooth muscle cells (VSMC), leading to neointimal thickening and vascular restenosis. In a rat model of balloon catheter injury (BCI), we investigated whether alterations in expression of Ca2+-activated K+ channels (KCa......) channels. Two weeks after BCI, expression of BKCa was significantly reduced in neointimal VSMC, whereas expression of intermediate-conductance KCa (IKCa1) channels was upregulated. In the aortic VSMC cell line, A7r5 epidermal growth factor (EGF) induced IKCa1 upregulation and EGF-stimulated proliferation...

  3. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors. PMID:27148733

  4. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors.

  5. Hydraulic Conductivity Functions in Relation to Some Chemical Properties in a Cultivated Oxisols of a Humid Region, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Egbuchua, C. N.

    2014-04-01

    Full Text Available The study was conducted to evaluate hydraulic conductivity functions in relation to some soil chemical properties in an oxisols of the tropics. Field and laboratory studies were carried out and data collected, subjected to statistical analytical procedure for computing coefficient of variability and correlation among soil properties. Results of the study showed that hydraulic conductivity functions varied spatially and temporarily across the experimental points with a moderate mean value of 0.0026 cm/h and a coefficient o variation of 31.45% soil chemical properties showed that the soils were acidic with a mean pH value of 5.12. Organic carbon, total nitrogen and available phosphorus were low with mean values of 1.29%, 0.68% and 4.43 mgkg-1. Coefficient of variability among soil properties indicated less to moderately variable. Soil pH had negative correlation with all the soil properties evaluated.

  6. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  7. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel.

    Science.gov (United States)

    Kis, Adrian; Krick, Stefanie; Baumlin, Nathalie; Salathe, Matthias

    2016-04-01

    Large-conductance, calcium-activated, and voltage-gated K(+) (BK) channels are expressed in many tissues of the human body, where they play important roles in signaling not only in excitable but also in nonexcitable cells. Because BK channel properties are rendered in part by their association with four β and four γ subunits, their channel function can differ drastically, depending on in which cellular system they are expressed. Recent studies verify the importance of apically expressed BK channels for airway surface liquid homeostasis and therefore of their significant role in mucociliary clearance. Here, we review evidence that inflammatory cytokines, which contribute to airway diseases, can lead to reduced BK activity via a functional down-regulation of the γ regulatory subunit LRRC26. Therefore, manipulation of LRRC26 and pharmacological opening of BK channels represent two novel concepts of targeting epithelial dysfunction in inflammatory airway diseases. PMID:27115952

  8. Analysis of CO2 Fluxes: Inclusion of Wall Conductance (Gw on the Estimation of Rubisco Activity, Vcmax of Soybean Leaves

    Directory of Open Access Journals (Sweden)

    TANIA JUNE

    2011-03-01

    Full Text Available In global change research, where modelling of CO2 fluxes from plants is an important component in determining vegetation capacity to protect the climate, mechanistic-based modelling is needed when projection of future CO2 absorption dynamics need to be estimated more accurately. Rubisco is the world’s most abundant protein in plants and has the job of uniquely preparing CO2 for chemical reduction. Rubisco activity in the leaf, described by Vcmax, can be estimated from gas exchange measurements of the initial slope of the response of CO2 assimilation rate, A, to intercellular [CO2]. This technique of estimation is favourable because it can avoid the uncertainties and difficulties when Vcmax is obtained directly by extraction and biochemical assay in artificial media. Rate of assimilation of soybean plants grown at different temperature (20/15, 25/20, and 32/27 oC day/night temperature and [CO2] (350 and 700 mol mol-1, were measured using gas exchange. The effect of wall conductance (gw on the parameterization of assimilations rate was observed. The temperature dependence of Vcmax depends strongly on wall conductance, where the shape of the curve would change significantly if finite wall conductance were included in the analysis. The implication is that it changes the values and interpretation of the temperature response of assimilation rate.

  9. Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition

    Science.gov (United States)

    Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.

    2002-12-01

    Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.

  10. Transparent Conducting Nb-Doped TiO2 Electrodes Activated by Laser Annealing for Inexpensive Flexible Organic Solar Cells

    Science.gov (United States)

    Lee, Jung-Hsiang; Lin, Chia-Chi; Lin, Yi-Chang

    2012-01-01

    A KrF excimer laser (λ= 248 nm) has been adopted for annealing cost-effective Nb-doped TiO2 (NTO) films. Sputtered NTO layers were annealed on SiO2-coated flexible poly(ethylene terephthalate) (PET) substrates. This local laser annealing technique is very useful for the formation of anatase NTO electrodes used in flexible organic solar cells (OSCs). An amorphous NTO film with a high resistivity and a low transparency was transformed significantly into a conductive and transparent anatase NTO electrode by laser irradiation. The 210 nm anatase NTO film shows a sheet resistance of 50 Ω and an average optical transmittance of 83.5% in the wavelength range from 450 to 600 nm after annealing at 0.25 J/cm2. The activation of Nb dopants and the formation of the anatase phase contribute to the high conductivity of the laser-annealed NTO electrode. Nb activation causes an increase in the optical band gap due to the Burstein-Moss effect. The electrical properties are in agreement with the material characteristics determined by X-ray diffraction (XRD) analysis and secondary ion mass spectrometry (SIMS). The irradiation energy for the NTO electrode also affects the performance of the organic solar cell. The laser annealing technique provides good properties of the anatase NTO film used as a transparent electrode for flexible organic solar cells (OSCs) without damage to the PET substrate or layer delamination from the substrate.

  11. Studies on Electrolyte Conductivity and Activity of Dehydrogenase of Chinese Fir and Masson Pine Bare-Root Seedling under Water and Cold Stress

    Institute of Scientific and Technical Information of China (English)

    Yu Fangyuan; Xu Xizeng; Guo Xinbao

    2003-01-01

    The electrolyte conductivity and activity of dehydrogenase of bare-root seedlings of both Chinese fir (Cunningha-mia lanceolata (Lamb.) Hook.) and Masson pine (Pinus massoniana Lamb.) under freezing and desiccation treatments were studied.The results showed that needle electrolyte conductivity of both species increase significantly after freezing treatment and there are nosignificant differences in needle electrolyte conductivity between the two species. The dehydrogenase activity (ARD) of fine roots ofboth Chinese fir and Masson pine was negatively correlated with increasing freezing and desiccation. The results suggest that bothelectrolyte conductivity and dehydrogenase activity could be used as quick indicators of Chinese fir and Masson pine bare-root seed-ling quality.

  12. Steel passive state stability in activated fly ash mortars

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2010-12-01

    Full Text Available The present study explores the behaviour of structural steel embedded in Portland cement (OPC mortars and NaOH- and NaOH-waterglass-activated fly ash, in the presence and absence of 2 % Cl- (CaCl2. Variations were determined in the corrosion potential (Ecorr, linear polarization resistance (Rp and corrosion current density (icorr under different environmental conditions (90 days at 95 % relative humidity (RH, 30 days at ≈ 30 % RH, 760 days at ≈ 95 % RH. In the absence of Cl-, fly ash mortars were able to passivate steel reinforcement, although the stability of the passive state in changing environmental conditions was found to depend heavily on the activating solution used. Steel corrosion in the presence of 2 % Cl- was observed to be similar to the corrosion reported for the material in OPC mortars.

    En el presente trabajo se estudia el comportamiento del acero estructural embebido en morteros de cemento Pórtland (OPC y de cenizas volantes activadas con NaOH y una mezcla de NaOH y waterglass, en ausencia y en presencia de un 2% de Cl- (CaCl2. Se determino la evolución del potencial de corrosión (Ecorr, la resistencia de polarización lineal (Rp y la intensidad de corrosión (icorr, variando las condiciones ambientales (90 días al 95% de humedad relativa (HR-30 días a ≈ 30% HR- 760 días a ≈ 95% HR. En ausencia de Cl- los morteros de cenizas volantes activadas pueden pasivar los refuerzos de acero, si bien la estabilidad del estado pasivo ante cambios en las condiciones ambientales parece mostrar una fuerte dependencia de la solución activadora empleada. En presencia de un 2% de Cl- los aceros se corroen mostrando en comportamiento similar al observado en morteros en base OPC.

  13. Destination state screening of active spaces in spin dynamics simulations

    Science.gov (United States)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  14. Aeroelastic code development activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D. [National Renewable Energy Lab., Golden, Colorado (United States)

    1996-09-01

    Designing wind turbines to be fatigue resistant and to have long lifetimes at minimal cost is a major goal of the federal wind program and the wind industry in the United States. To achieve this goal, we must be able to predict critical loads for a wide variety of different wind turbines operating under extreme conditions. The codes used for wind turbine dynamic analysis must be able to analyze a wide range of different wind turbine configurations as well as rapidly predict the loads due to turbulent wind inflow with a minimal set of degrees of freedom. Code development activities in the US have taken a two-pronged approach in order to satisfy both of these criteria: (1) development of a multi-purpose code which can be used to analyze a wide variety of wind turbine configurations without having to develop new equations of motion with each configuration change, and (2) development of specialized codes with minimal sets of specific degrees of freedom for analysis of two- and three-bladed horizontal axis wind turbines and calculation of machine loads due to turbulent inflow. In the first method we have adapted a commercial multi-body dynamics simulation package for wind turbine analysis. In the second approach we are developing specialized codes with limited degrees of freedom, usually specified in the modal domain. This paper will summarize progress to date in the development, validation, and application of these codes. (au) 13 refs.

  15. School Turnaround as National Policy in the United States: Considerations from Three Studies Conducted in the Midwest

    Directory of Open Access Journals (Sweden)

    Coby V. Meyers

    2013-10-01

    Full Text Available School turnaround policy has become prominent in American education discourse. Some federal initiatives specifically target the lowest achieving five percent of schools in the nation, with the goal of bringing schools out of improvement status rapidly. This paper considers and extends the work of three recent studies of school turnaround. Collectively, the studies demonstrate how a strong federal initiative can impact public education on multiple levels, including the state, district, school, and individual levels. School turnaround demonstrates the power of federal initiatives in the United States to impact the public school system at all levels. State departments of education have responded in ways to obtain federal funding. Districts and schools generally with the least capacity to enact change have been challenged with an opportunity to win substantial dollars, but many elected not to compete. Increases in student achievement through such reform appear to be possible, but the human and social costs have yet to be adequately considered.

  16. The Operating Principle of a Fully Solid State Active Magnetic Regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL

    2016-01-01

    As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fully solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.

  17. 20 CFR 631.41 - Allowable State activities.

    Science.gov (United States)

    2010-04-01

    ...) States may use funds reserved under § 631.32(c) of this part, subject to the provisions of the State... than basic and remedial education, literacy and English for non-English speakers training,...

  18. The political economy of women’s professional basketball in the United States: A structure-conduct-performance approach

    Directory of Open Access Journals (Sweden)

    Ariel ANTHONY

    2012-11-01

    Full Text Available This study examines the political economy of women’s professional basketball in the United States, including both the American Basketball League (ABL and the Women’s National Basketball Association (WNBA. To do so, we employ the structure-conductperformance paradigm (hereafter SCP from industrial organization. In addition to the importance of television revenues and corporate sponsorships to the success of the leagues, we find evidence of economies of scope, bilateral monopoly issues, and reverse causality in the SCP paradigm as applied to women’s professional basketball in the United States.

  19. Applications of alternating direction methods to the solution of the heat conduction equation, with source, and in transient state

    International Nuclear Information System (INIS)

    Various types and variants of alternating direction methods. (ADM), were applied to the solution of the time-dependent heat conduction equation, with source, in regions with axial simmetry. Among the basic ADM's, the alternating direction explicit was the one which performed better. An exponential transformation coupled to the ADE seems to be the variant with greater potential, especially if used with a variable time step scheme. (Author)

  20. Anisotropies in the Optical ac and dc Conductivities in Lightly Doped La2−xSrxCuO4: The Role of Deep and Shallow Acceptor States

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A.; Silva Neto, M.B.; Blumberg, G.; Komiya, S.; Ando, Y.

    2011-06-01

    We investigate the origin of the optical ac and dc conductivity anisotropies observed in the low temperature orthorhombic phase of lightly doped, untwinned La{sub 2-x}Sr{sub x}NiO{sub 4} single crystals. We show that these anisotropies can be naturally ascribed to the emergence of two odd parity, rotational-symmetry-broken, localized impurity acceptor states, one deeper and one shallower, resulting from the trapping of doped holes by the Coulomb potential provided by the Sr ions. These two lowest-energy, p-wave-like states are split by orthorhombicity and are partially filled with holes. This leaves a unique imprint in the optical ac conductivity, which shows two distinct far-infrared continuum absorption energies corresponding to the photoionization of the deep and shallow acceptor states. Furthermore, we argue that the existence of two independent and orthogonal channels for hopping conductivity, directly associated with the two orthorhombic directions, also quantitatively explains the observed low temperature anisotropies in the dc conductivity.

  1. A serosurvey for ruminant pestivirus exposure conducted using cattle sera collected for brucellosis surveillance in the United States

    Science.gov (United States)

    Four species of ruminant pestivirus are currently circulating in the United States (U.S.): Bovine viral diarrhea virus (BVDV) types 1 and 2 (predominant host cattle), Border disease virus (BDV) (predominant host sheep) and the Pronghorn virus (sporadically detected in wild ruminants). A third bovin...

  2. The assessment of activities conducted by companies in social media in light of research concerning their users

    Directory of Open Access Journals (Sweden)

    Bogdan Gregor

    2014-12-01

    Full Text Available Social media are not losing their popularity. Despite their long (sometimes a few years long presence on the Internet, portals from this category are gradually strengthening their position with regard to the number of registered users. In July 2014 the biggest social media portal – Facebook – had 1,320,000,000 active accounts around the whole world. In Poland in July 2014 the number of active users of the portal reached 12,000,000. In the period from April 12 to May 25, 2014, the Department of Marketing of the Faculty of Management of University of Lodz conducted a research aimed at the assessment of activities conducted by companies in social media. The goal of the research was to reach people using social media and investigate how particular measures taken by companies in social media are assessed by them, as well as to identify which of these actions boost engagement and influence making a purchasing decision. In course of the research the method of Internet questionnaire was applied. 302 respondents took part in the survey and almost 90% of them declared that they use social media portals. The most popular social network among the respondents is Facebook. YouTube also plays a major role. This may be seen as evidence that the marketing potential of video contents published on the Internet is huge. The conducted research shows that among the biggest benefits associated with having an account on a social media portal is the possibility of fast communication, chance to find and follow friends, as well as accumulation of the most important information in one place. Over 70% of the surveyed follows well-known companies and brands in social media. Fashion brands and brands associated with the food and electronics branches are followed most often. What the respondents most often named as one of the advantages of following brands in social media is the possibility of continuously following novelties, opportunity to receive discount coupons, as

  3. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke;

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK......(Ca)) conductance are involved in regulation of endothelium-dependent vasodilation in retinal arterioles was investigated. METHODS: Porcine retinal arterioles (diameter approximately 112 microm, N = 119) were mounted in microvascular myographs for isometric tension recordings. The arterioles were contracted with...... the thromboxane analogue, U46619, and concentration-response curves were constructed for bradykinin and a novel opener of SK(Ca) and IK(Ca) channels, NS309. RESULTS: In U46619-contracted arterioles, bradykinin and NS309 induced concentration-dependent relaxations. In vessels without endothelium...

  4. Summary of activities of the life cycle costing workshop conducted by the Environmental Restoration Program of Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    A five-day life cycle workshop was conducted by the Environmental Restoration (FR) Program of Oak Ridge National Laboratory (ORNL) to develop appropriate remediation scenarios for each Waste Area Grouping (WAG) at ORNL and to identify associated data needs (e.g., remedial investigations, special studies, and technology demonstrations) and required interfaces. Workshop participants represented the Department of Energy, Martin Marietta Energy Systems, Inc., Bechtel National, Radian Corporation, EBASCO Corporation, and M-K Ferguson. The workshop was used to establish a technical basis for remediation activities at each WAG. The workshop results are documented in this report and provide the baseline for estimating the technical scope for each WAG. The scope and associated budgets and schedules will be summarized in baseline reports for each WAG, which, in turn, will be compiled into an overall strategy document for ORNL ER

  5. INFLUENCE OF BIOLOGICALLY ACTIVE AGENTS ON A STRUCTURAL STATE AND THE ENZYMATIC ACTIVITY OF BLACK ORDINARY CARBONATED SOIL

    Directory of Open Access Journals (Sweden)

    Lychman V. A.

    2014-04-01

    Full Text Available The results of a long-term research of the influence of various biologically active agents (a humic preparation Lignogumat and microbiological Baikal EM fertilizer on a structural state and the enzymatic activity of ordinary carbonated black soil are presented. It has been established that biologically active substances contribute to increased enzymatic activity, humus and improve the soil structure

  6. Increased skin conductance responses and neural activity during fear conditioning are associated with a repressive coping style

    Directory of Open Access Journals (Sweden)

    Tim eKlucken

    2015-06-01

    Full Text Available The investigation of individual differences in coping styles in response to fear conditioning is an important issue for a better understanding of the etiology and treatment of psychiatric disorders. It has been assumed that an avoidant (repressive coping style is characterized by increased emotion regulation efforts in context of fearful stimuli as compared to a more vigilant coping style. However, no study so far has investigated the neural correlates of fear conditioning of repressors and sensitizers.In the present fMRI study, 76 participants were classified as repressors or as sensitizers and were exposed to a fear conditioning paradigm, in which the CS+ predicted electrical stimulation, while another neutral stimulus (CS- did not. In addition, skin conductance responses (SCRs were measured continuously.As the main findings, we found increased neural activations in repressors as compared to sensitizers in the ventromedial prefrontal cortex and the anterior cingulate cortex during fear conditioning. In addition, elevated activity to the CS+ in amygdala, insula, occipital, and orbitofrontal cortex as well as conditioned SCRs were found in repressors.The present results demonstrate increased neural activations in structures linked to emotion down-regulation mechanisms like the ventromedial prefrontal cortex, which may reflect the increased coping effort in repressors. At the same time, repressors showed increased activations in arousal and evaluation-associated structures like the amygdala, the occipital cortex, and the orbitofrontal cortex, which is also mirrored in increased SCRs. The present results support recent assumptions about a two-process model of repression postulating a fast vigilant response to fearful stimuli, but also a second emotion down-regulating process.

  7. Key Informant Interviews with Coordinators of Special Events Conducted to Increase Cancer Screening in the United States

    Science.gov (United States)

    Escoffery, Cam; Rodgers, Kirsten; Kegler, Michelle C.; Haardörfer, Regine; Howard, David; Roland, Katherine B.; Wilson, Katherine M.; Castro, Georgina; Rodriguez, Juan

    2014-01-01

    Special events such as health fairs, cultural festivals and charity runs are commonly employed in the community to increase cancer screening; however, little is known about their effectiveness. The purpose of this study is to assess the activities, screening outcomes, barriers and recommendations of special events to increase breast, cervical and…

  8. Conductance testing compared to traditional methods of evaluating the capacity of valve-regulated lead/acid batteries and predicting state-of-health

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.O. (Electrochemical Energy Storage Systems, Inc., Madison, NJ (United States)); Croda, T.G. (Sprint, Long Distance Div., Burlingame, CA (United States)); McShane, S.J.; Hlavac, M.J. (Midtronics, Inc., Willowbrook, IL (United States)); Champlin, K.S.

    1992-09-15

    Recently, timed discharge capacity tests were performed on 336 individual valve-regulated lead/acid cells in a telecommunications power system. The results were compared with traditional methods of determining cell health (i.e., float voltage, open-circuit voltage, and calculated specific gravity). At the same time, conductance measurements were taken, and these results were also compared to the results of the timed discharge capacity tests. Data will be presented which show that traditional methods indicate almost no correlation to timed discharge capacity testing. Conductance test data will be presented which show a very nearly linear correlation. Based on this correlation, these results indicate that conductance testing can provide users of valve-regulated lead/acid batteries with a valuable predictive tool for determining the state-of-health of individual cells. (orig.).

  9. Leukocyte activation in sepsis; correlations with disease state and mortality

    NARCIS (Netherlands)

    Kobold, ACM; Tulleken, JE; Zijlstra, JG; Sluiter, W; Hermans, J; Kallenberg, CGM; Tervaert, JWC

    2000-01-01

    Objective: The immune response in sepsis shows a bimodal pattern consisting of an early, frequently exaggerated inflammatory response followed by a state of hyporesponsiveness often referred to as the compensatory anti-inflammatory response syndrome (CARS). Insight into the disease state may be help

  10. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... 52:10 MATTHEW AUSTIN, MD: In terms of higher-end activities like that, I would say it ... but the patient needs to understand that the higher the impact -- the higher their activity level -- the ...

  11. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... and a quicker return to activity and to work. Just to review: a small-incision hip replacement ... in the more active, older population, uncemented techniques work extremely well. This is the femoral head; this ...

  12. Muscle fiber conduction velocity and fractal dimension of EMG during fatiguing contraction of young and elderly active men.

    Science.gov (United States)

    Boccia, Gennaro; Dardanello, Davide; Beretta-Piccoli, Matteo; Cescon, Corrado; Coratella, Giuseppe; Rinaldo, Nicoletta; Barbero, Marco; Lanza, Massimo; Schena, Federico; Rainoldi, Alberto

    2016-01-01

    Over the past decade, linear and nonlinear surface electromyography (EMG) variables highlighting different components of fatigue have been developed. In this study, we tested fractal dimension (FD) and conduction velocity (CV) rate of changes as descriptors, respectively, of motor unit synchronization and peripheral manifestations of fatigue. Sixteen elderly (69  ±  4 years) and seventeen young (23  ±  2 years) physically active men (almost 3-5 h of physical activity per week) executed one knee extensor contraction at 70% of a maximal voluntary contraction for 30 s. Muscle fiber CV and FD were calculated from the multichannel surface EMG signal recorded from the vastus lateralis and medialis muscles. The main findings were that the two groups showed a similar rate of change of CV, whereas FD rate of change was higher in the young than in the elderly group. The trends were the same for both muscles. CV findings highlighted a non-different extent of peripheral manifestations of fatigue between groups. Nevertheless, FD rate of change was found to be steeper in the elderly than in the young, suggesting a greater increase in motor unit synchronization with ageing. These findings suggest that FD analysis could be used as a complementary variable providing further information on central mechanisms with respect to CV in fatiguing contractions.

  13. The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites.

    Science.gov (United States)

    Hendrickson, Eric B; Edgerton, Jeremy R; Jaeger, Dieter

    2011-04-01

    Conductance-based neuron models are frequently employed to study the dynamics of biological neural networks. For speed and ease of use, these models are often reduced in morphological complexity. Simplified dendritic branching structures may process inputs differently than full branching structures, however, and could thereby fail to reproduce important aspects of biological neural processing. It is not yet well understood which processing capabilities require detailed branching structures. Therefore, we analyzed the processing capabilities of full or partially branched reduced models. These models were created by collapsing the dendritic tree of a full morphological model of a globus pallidus (GP) neuron while preserving its total surface area and electrotonic length, as well as its passive and active parameters. Dendritic trees were either collapsed into single cables (unbranched models) or the full complement of branch points was preserved (branched models). Both reduction strategies allowed us to compare dynamics between all models using the same channel density settings. Full model responses to somatic inputs were generally preserved by both types of reduced model while dendritic input responses could be more closely preserved by branched than unbranched reduced models. However, features strongly influenced by local dendritic input resistance, such as active dendritic sodium spike generation and propagation, could not be accurately reproduced by any reduced model. Based on our analyses, we suggest that there are intrinsic differences in processing capabilities between unbranched and branched models. We also indicate suitable applications for different levels of reduction, including fast searches of full model parameter space. PMID:20623167

  14. Market research in the United States Navy: a study of the skills and tools required to conduct market research

    OpenAIRE

    Polowczyk, John Phillip.

    1996-01-01

    The purpose of this thesis is to evaluate the current practice for budget estimation and resource allocation in Marine Corps Formal Schools for potential improvement. The methodology used devises a budgeting system that reflects variation in activity level, or output requirements, and how costs change when student throughput changes. While the evaluation is relevant to Marine Corps Formal Schools in general, the research focused on an approach taken by the Marine Corps Engineer School for the...

  15. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature

    Science.gov (United States)

    Yang, Chih-Ping; Chen, Hsiao-Chien; Wang, Ching-Chiung; Tsai, Po-Wei; Ho, Chia-Wen; Liu, Yu-Chuan

    2015-12-01

    Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer.

  16. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  17. The influence of low-grade glioma on resting state oscillatory brain activity : a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I; Stam, C J; Douw, L; Bartolomei, F; Heimans, J J; van Dijk, B W; Postma, T J; Klein, M; Reijneveld, J C

    2008-01-01

    PURPOSE: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  18. State support as factor of increase of innovative activity of industrial enterprises

    Directory of Open Access Journals (Sweden)

    N.N. Bondarenko

    2011-10-01

    Full Text Available The article is devoted research of factors of increase of innovative activity of enterprise, the indexes of innovative activity of industrial enterprises are analysed in Ukraine, the necessity of creation of attractive terms is grounded for development of innovative activity and increase of innovative activity of management subjects at state level, the forms of state support as factor of increase of innovative activity of industrial enterprises are considered.

  19. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemzadeh, L. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Marrony, M. [European Institute for Energy Research, Emmy-Noether-Strasse 11, D-76131 Karlsruhe (Germany); Barrera, R. [Edison, Via Giorgio La Pira, 2, I-10028 Trofarello (Italy); Kreuer, K.D.; Maier, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Mueller, K. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2009-01-15

    The degradation of two different types of perfluorinated polymer membranes, Nafion and Hyflon Ion, has been examined by solid-state {sup 19}F and {sup 13}C NMR spectroscopy. This spectroscopic technique is demonstrated to be a valuable tool for the study of the membrane structure and its alterations after in situ degradation in a fuel cell. The structural changes in different parts of the polymers are clearly distinguished, which provides unique insight into details of the degradation processes. The experimental NMR spectra prove that degradation mostly takes place within the polymer side chains, as reflected by the intensity losses of NMR signals associated with SO{sub 3}H, CF{sub 3}, OCF{sub 2} and CF groups. The integral degree of degradation is found to decrease with increasing membrane thickness while for a given thickness, Hyflon Ion appears to degrade less than Nafion. (author)

  20. ACHIEVING PAKIS’S THERMAL CONDUCTIVITY AS ARCHITECTURAL BUILDING THERMAL RESISTANT BY GUARDED STEADY-STATE HOTBOX METHOD:PART 1

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2011-01-01

    Full Text Available Thermal conductivity of various materials which are mostly listed available as building or industrial materials in reference books and websites; but one will hardly find out for every new material, and has to be observed and try out itself if we want to know the new thermal conductivity value (k. Nonetheless with new substanct likes pakis-stem blocks that come from natural tree that could be found in the tropical woodland of Indonesia. Steady-state homogeneous temperature applied with hotbox method in an uninfluent environment likes guarded laboratory environment is the right method to obtain the thermal conductivity and resistance of porousness and semi-solidness of the pakis-stem blocks. After investigating almost 24 hours with controller TRSYS01 applying with ASTM C1155, physical semi-solid pakis blocks tend to be more easy to obtain the R-value, k-value, and surface temperatures than the porous pakis. The porous pakis blocks were tend to unstable during the test due to its physical permeable condition. The resistant values (R-value and thermal conductivity (k values will be further published on the following discussion of pakis thermal conductivity part 2.

  1. Characterization and Evaluation of 600 V Range Devices for Active Power Factor Correction in Boundary and Continuous Conduction Modes

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    Traditional characterization of semiconductors switching dynamics is performed based on clamped inductive load measurements using the double pulse tester (DPT) configuration. This approach is valid for converters operating in continuous conduction mode (CCM), however in boundary conduction mode...

  2. Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.

    1989-12-01

    The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

  3. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  4. ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2014-10-28

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

  5. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on state level and variability

    Science.gov (United States)

    Belmonte, A.; Degraeve, R.; Fantini, A.; Kim, W.; Houssa, M.; Jurczak, M.; Goux, L.

    2014-06-01

    In this paper, we develop a Quantum-Point-Contact (QPC) model describing the state conduction in a W/Al2O3/TiW/Cu Conductive-Bridging Memory cell (CBRAM). The model allows describing both the voltage- and the temperature-dependence of the conduction. For deep current levels, a resistance component is added in series to the point-contact constriction to account for electron scattering in the residual filament. The fitting of single-particle perturbation also allowed to estimate the number and effective size of the conduction-controlling particles in the QPC constriction. The results clearly point to smaller particles for CBRAM (Cu particles) as compared to oxide-based resistive RAM involving oxygen-vacancy defects, which is discussed as a possible origin of deeper reset level obtained in CBRAM. We also evidence a beneficial impact of this smaller particle size on lower Random-Telegraph-Noise amplitude measured on CBRAM devices.

  6. Thermal degradation kinetics and solid state, temperature dependent, electrical conductivity of charge–transfer complex of phenothiazine with chloranil and picric acid

    Indian Academy of Sciences (India)

    M A Ashok; B N Achar

    2008-02-01

    Temperature dependent electrical conductivity and thermal degradation kinetics of charge–transfer (C–T) complexes of phenothiazine (PTZ) with -chloranil (CHL) and picric acid (PA), are reported. These C–T complexes exhibited semiconducting behaviour. The activation energies for PTZ–CHL and PTZ–PA complexes are calculated based on their electrical conductivities measured over the temperature ranges 30–110°C and 30–90°C, respectively. And these energies for PTZ–CHL and PTZ–PA are 0.54 eV and 0.75 eV, respectively. The complexes are analysed for the kinetic parameters like the activation energy for decomposition and the Arrhenius pre-exponential factors in their pyrolysis region using Broido’s, Coats–Redfern as well as Horowitz–Metzger methods. Using standard equations, thermodynamic parameters such as enthalpy, entropy and free energies, are calculated.

  7. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  8. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm−1, with fill factor of 0.59, short-circuit density of 11.11 mA cm−2, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm−2) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  9. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Koichi [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Department of Electrical Engineering, Gifu University (Japan); Wagner, Tomas; Frumar, Miloslav [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Kadlec, Filip; Kadlec, Christelle [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kasap, Safa [Department of Electrical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2013-12-21

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., “The origin of non-Drude terahertz conductivity in nanomaterials,” Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials.

  10. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    International Nuclear Information System (INIS)

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., “The origin of non-Drude terahertz conductivity in nanomaterials,” Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials

  11. Electronic structure origin of conductivity and oxygen reduction activity changes in low-level Cr-substituted (La,Sr)MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tsekouras, George, E-mail: georget@uow.edu.au; Boudoire, Florent; Braun, Artur [Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Pal, Banabir; Sarma, D. D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India); Vondráček, Martin [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Prince, Kevin C. [Materials Science Beamline, Elettra Synchrotron, Trieste (Italy)

    2015-09-21

    The electronic structure of the (La{sub 0.8}Sr{sub 0.2}){sub 0.98}Mn{sub 1−x}Cr{sub x}O{sub 3} model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La,Sr)MnO{sub 3} resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L{sub 3}-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d–O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t{sub 2g}↑ state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t{sub 2g}↑ state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p–Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La,Sr)MnO{sub 3} is presented.

  12. Electronic structure origin of conductivity and oxygen reduction activity changes in low-level Cr-substituted (La,Sr)MnO3

    International Nuclear Information System (INIS)

    The electronic structure of the (La0.8Sr0.2)0.98Mn1−xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La,Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d–O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t2g↑ state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t2g↑ state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p–Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La,Sr)MnO3 is presented

  13. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.

    Science.gov (United States)

    Padula, Audrey E; Griffin, William C; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S; Chesler, Elissa J; Miles, Michael F; Williams, Robert W; Randall, Patrick K; Woodward, John J; Becker, Howard C; Mulholland, Patrick J

    2015-07-01

    Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction. PMID:25662840

  14. State and development of techniques of radioecological studies conducted at Institute of Nuclear Physics of National Nuclear Centre

    International Nuclear Information System (INIS)

    Radioecological studies of Inst. Of Nuclear Physics were promoting by growing interest in radiation situation of Kazakstan. The major direction of studies is to developed methodical base of nuclear-spectrometric equipment, radiochemical laboratories and experimental work available in the Inst. At the beginning stage of research, concentration of γ-emitting nuclides (natural and artificial) and a few concentration of Sr-90 were determined according standard methods. Institute of Nuclear Physics joining the National Nuclear Center of the Republic of Kazakstan generated a demand to increase the scope of tasks. That is why there are being developed instrumental and radiochemical methods for detection of the all most significant radionuclides in specific environmental objects of Semipalatinsk test site (STS) and other radio ecologically hazardous regions of Kazakstan. Development of radiochemical methods for determination of transuranium elements in STS soil was begun. It was noted, that form of radionuclide presence in STS soils differs significantly from that in global deposits. That is why it was necessary to develop a special technique more universal than known from research article. Testing the different methods and their combinations had shown, that the most acceptable technique to separate plutonium is a method of extracting chromatography. One of most important problems of Kazakstan is problem of radon. Currently specialists of the Institute of Nuclear Physics carry out the research on release of radon from soils and its influence on volume concentration of radon in air of buildings. The most suitable method for this research appeared to be the methods of passive sorption on activated coal and following gamma-spectrometry. As result of this studies criteria for determination of safety building system type depending on radon content of soil were elaborated

  15. 31 CFR 538.531 - Official activities of the United States Government and international organizations.

    Science.gov (United States)

    2010-07-01

    ... the official business of the United States Government or the United Nations by contractors or grantees... conduct of the official business of the United Nations specialized agencies, programmes, and funds by... States Government or the United Nations, or its specialized agencies, programmes, and funds, to any...

  16. Updated summary of state electric industry restructuring activities

    International Nuclear Information System (INIS)

    The pace of electric industry restructuring has become more deliberate in 1997. This brief article and accompanying table describe the advance of restructuring across the US as of early September 1997, and continue the series of topical summaries by exploring retail competition pilot programs and lessons learned. Eight states have now enacted substantive restructuring legislation, Maine and Nevada were recently added to the list

  17. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    Science.gov (United States)

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  18. Solid-state fermentation: modelling fungal growth and activity.

    NARCIS (Netherlands)

    Smits, J.P.

    1998-01-01

    In solid-state fermentation (SSF) research, it is not possible to separate biomass quantitatively from the substrate. The evolution of biomass dry weight in time can therefore not be measured. Of the aiternatives to dry weight available, glucosamine content is most promising.Glucosamine is the monom

  19. Objectively Assessed Physical Activity among Tongans in the United States

    Science.gov (United States)

    Behrens, Timothy K.; Moy, Karen; Dinger, Mary K.; Williams, Daniel P.; Harbour, Vanessa J.

    2011-01-01

    Until recently, health statistics data for Native Hawaiians and Pacific Islanders (NHPI) in the United States were almost nonexistent, due to their being historically aggregated into one homogenous group with Asian Americans. However, recent studies on U.S. NHPI highlight a multitude of obesity-related health disparities indicating the necessity…

  20. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... less pain after the surgery leading to faster rehabilitation and a quicker return to activity and to ... overall trauma to the patient, so that the rehabilitation and recovery will be less painful and more ...

  1. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... recover from the surgery in terms of physical therapy and getting back to their activities of daily ... for the first week or so. Our postoperative therapy program emphasizes a lot of the prehabilitation principles. ...

  2. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... patients and even in the more active, older population, uncemented techniques work extremely well. This is the ... publication. We looked at this type of patient population -- same type of anesthesia, same pain management techniques, ...

  3. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... patient. What people are more interested in these days is a more unrestricted quality of life: the ... and a quicker return to activity and to work. Just to review: a small-incision hip replacement ...

  4. Training Activity Summary Page (TASP) State and Tribe

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Training Activity Summary Page (formerly the Training Exit Survey Cover Page) dataset contains data about each training event. This dataset includes information...

  5. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... 50 WILLIAM J. HOZACK, MD: Yes. 00:06:51 MATTHEW AUSTIN, MD: And the foot is to ... return to their activities of daily life. 00:51:12 JAVAD PARAVIZI, MD, FRCS: An extra day ...

  6. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... before the surgery so they can learn the exercises and make it much easier on themselves and ... after the surgery. This focuses on upper-extremity exercises; crutch training; stair climbing; and activities of daily ...

  7. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... of this condition, and refer these patients for treatment when the time comes. So let me show ... recover from the surgery in terms of physical therapy and getting back to their activities of daily ...

  8. State-of-the-Art Hip Surgeries for Active Adults

    Medline Plus

    Full Text Available ... AUSTIN, MD: Certainly the patients that are more elderly will not -- most likely; not every patient’s the same, there are certainly very elderly patients who are more active than some of ...

  9. The investment funds in carbon actives: state of the art

    International Nuclear Information System (INIS)

    Since the beginning in 1999 of the first funds by the World Bank, the purchase mechanisms of carbon actives, developed and reached today more than 1,5 milliards of euros. The landscape is relatively concentrated, in spite of the numerous initiatives. The author presents the situation since 1999, the importance of the european governmental investors, the purchase mechanisms management and an inventory of the carbon actives purchases. (A.L.B.)

  10. First-principles studies on the equation of state, thermal conductivity, and opacity of deuterium-tritium (DT) and polystyrene (CH) for inertial confinement fusion applications

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; Boehly, T. R.; Epstein, R.; McCrory, R. L.; Skupsky, S.

    2016-05-01

    Using first-principles (FP) methods, we have performed ab initio compute for the equation of state (EOS), thermal conductivity, and opacity of deuterium-tritium (DT) in a wide range of densities and temperatures for inertial confinement fusion (ICF) applications. These systematic investigations have recently been expanded to accurately compute the plasma properties of CH ablators under extreme conditions. In particular, the first-principles EOS and thermal-conductivity tables of CH are self-consistently built from such FP calculations, which are benchmarked by experimental measurements. When compared with the traditional models used for these plasma properties in hydrocodes, significant differences have been identified in the warm dense plasma regime. When these FP-calculated properties of DT and CH were used in our hydrodynamic simulations of ICF implosions, we found that the target performance in terms of neutron yield and energy gain can vary by a factor of 2 to 3, relative to traditional model simulations.

  11. Analysis of interface states of Al/TiO2/Si0.3Ge0.7 MIS structures using the conductance technique

    Science.gov (United States)

    Chakraborty, S.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2006-03-01

    TiO2 films have been deposited at a low temperature (~150 °C) using titanium tetrakis isopropoxide (TTIP) as an organometallic precursor on Si0.3Ge0.7 heterolayers by a microwave plasma-enhanced chemical vapour deposition system. Interfacial properties of the as-deposited films have been characterized using capacitance-voltage and conductance-voltage techniques measured at different frequencies. The energy distribution of interface states and the relaxation time have been determined from Gp/ω versus ω analysis. A Dit level of Al/TiO2/SiGe MIS capacitors in the range of 2.87 × 1011 eV-1 cm-2 (in EC-0.446) eV to 5.04 × 1011 eV-1 cm-2 (in EC-0.696) eV has been observed from conductance measurements.

  12. Specific activity 137Cs at fishes of Ukraine current state

    International Nuclear Information System (INIS)

    Specific activity of 137Cs at fishes of reservoirs of 30 kilometers ChNPP zone (Pripyat river and its bays, lakes, cool-ing-pond of ChNPP, etc.), water basins of Dneprovsky cascade, Shatsky lakes and Black sea near town Sudak is investigated during 2010 - 2012. Levels of specific activity of 137Cs at fishes in many respects are defined by flowage of the reservoir. Normally, the flowage of the reservoir is more, the levels of specific activity of 137Cs at fishes are less. The greatest specific activity of 137Cs at fishes was registered in the north of Ukraine in closed and half-closed reservoirs of 30 kilometers ChNPP zone - to 32000 Bqk/kg. In the southern direction activity of 137Cs at fishes decreases from 4,8 to 78,5 Bq/kg in Kyiv water basin to 1 - 6 Bq/kg, in the Kahovsky water basin and to 0,6 - 1,9 Bq/kg in the Black sea. In large reservoirs the greatest specific activity of 137Cs, as a rule, is registered in fishes of the higher trophic levels

  13. Dissociation between mental fatigue and motivational state during prolonged mental activity.

    Science.gov (United States)

    Gergelyfi, Mónika; Jacob, Benvenuto; Olivier, Etienne; Zénon, Alexandre

    2015-01-01

    Mental fatigue (MF) is commonly observed following prolonged cognitive activity and can have major repercussions on the daily life of patients as well as healthy individuals. Despite its important impact, the cognitive processes involved in MF remain largely unknown. An influential hypothesis states that MF does not arise from a disruption of overused neural processes but, rather, is caused by a progressive decrease in motivation-related task engagement. Here, to test this hypothesis, we measured various neural, autonomic, psychometric and behavioral signatures of MF and motivation (EEG, ECG, pupil size, eye blinks, Skin conductance responses (SCRs), questionnaires and performance in a working memory (WM) task) in healthy volunteers, while MF was induced by Sudoku tasks performed for 120 min. Moreover extrinsic motivation was manipulated by using different levels of monetary reward. We found that, during the course of the experiment, the participants' subjective feeling of fatigue increased and their performance worsened while their blink rate and heart rate variability (HRV) increased. Conversely, reward-induced EEG, pupillometric and skin conductance signal changes, regarded as indicators of task engagement, remained constant during the experiment, and failed to correlate with the indices of MF. In addition, MF did not affect a simple reaction time task, despite the strong influence of extrinsic motivation on this task. Finally, alterations of the motivational state through monetary incentives failed to compensate the effects of MF. These findings indicate that MF in healthy subjects is not caused by an alteration of task engagement but is likely to be the consequence of a decrease in the efficiency, or availability, of cognitive resources. PMID:26217203

  14. Steady-state turbulent flow of a conducting liquid in a longitudinal magnetic field with volume heat evolution. I. Analytical study of flow in the inwall region

    Energy Technology Data Exchange (ETDEWEB)

    Bortsaikin, S.M.; Levitan, Yu.S.

    1977-07-01

    An examination is made of steady-state turbulent flow of a conducting liquid in a cylindrical channel in a longitudinal magnetic field. The system of motion equations and energy can be recorded in a convenient integral form by using the Prandtl hypothesis for computing turbulent coefficients with rather simple assumptions about the nature of the velocity gradient. A small parameter in the equations can be easily identified in direct proximity to the channel's wall that makes it possible to find an approximate analytical solution to this problem in this region. 6 references, 1 figure.

  15. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    International Nuclear Information System (INIS)

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L1) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L2), has been synthesized and characterized. They are used as μ2-bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L1)(NO3)]n (1) and [Ag(L2)(NO3)]n (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L1 and L2) and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×104 and 2.17×103 times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L1 and L2 are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L1) and L2 are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ2-bridging ligands to prepare a pair of silver(I) polymeric isomers. • Significant enhancement of solid-state conductivity is observed for each polymeric isomer.

  16. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels.

    Science.gov (United States)

    Nolting, Andreas; Ferraro, Teresa; D'hoedt, Dieter; Stocker, Martin

    2007-02-01

    Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.

  17. Medical relief activities conducted by Nippon Medical School in the acute phase of the Great East Japan Earthquake 2011.

    Science.gov (United States)

    Fuse, Akira; Shuto, Yuki; Ando, Fumihiko; Shibata, Masafumi; Watanabe, Akihiro; Onda, Hidetaka; Masuno, Tomohiko; Yokota, Hiroyuki

    2011-01-01

    At 14:46 on March 11, 2011, the Great East Japan Earthquake and tsunami occurred off the coast of Honshu, Japan. In the acute phase of this catastrophe, one of our teams was deployed as a Tokyo Disaster Medical Assistance Team (DMAT) to Kudan Kaikan in Tokyo, where the ceiling of a large hall had partially collapsed as the result of the earthquake, to conduct triage at the scene: 6 casualties were assigned to the red category (immediate), which included 1 case of cardiopulmonary arrest and 1 of flail chest; 8 casualties in the yellow category (delayed); and 22 casualties in the green category (minor). One severely injured person was transported to our hospital. Separately, our medical team was deployed to Miyagi 2 hours after the earthquake in our multipurpose medical vehicle as part of Japan DMAT (J-DMAT). We were the first DMAT from the metropolitan area to arrive, but we were unable to start medical relief activities because the information infrastructure had been destroyed and no specific information had yet reached the local headquarters. Early next morning, J-DMAT decided to support Sendai Medical Center and search and rescue efforts in the affected area and to establish a staging care unit at Camp Kasuminome of the Japan Self-Defense Force. Our team joined others to establish the staging care unit. Because information was still confused until day 3 of the disaster and we could not adequately grasp onsite medical needs, our J-DMAT decided to provide onsite support at Ishinomaki Red Cross Hospital, a disaster base hospital, and relay information about its needs to the local J-DMAT headquarters. Although our medical relief teams were deployed as quickly as possible, we could not begin medical relief activities immediately owing to the severely damaged information infrastructure. Only satellite mobile phones could be operated, and information on the number of casualties and the severity of shortages of lifeline services could be obtained only through a "go and

  18. Models of Innovation Activity Firms and the Competitive State

    Directory of Open Access Journals (Sweden)

    Nekrasova Ekaterina, A.

    2015-12-01

    Full Text Available The paper clarified the concept of innovation activity of firms from the perspective of the model open innovation with traditional and alternative approaches to the methods of the protection of innovation activity results outlined. With the use of institutional tools, theoretical concepts and practical study the patterns of innovative activity of firms (external, internal & cooperative strategies are analyzed and the selection criteria for models of innovation are proposed on the basis of a comparison of transaction costs and benefits specific to the closed forms and conditions for cooperation. The forms of cooperation, their pros & cons are mentioned given the results of some empirical evidence. Practical recommendations for the Russian companies to organize their innovation activities are given, as well as on the improvement of competition policy with regard to the inclusion of innovation factor in the analysis of mergers in Russia (also based on the mechanism of the use of this factor by means of merger simulation models. The paper also suggests the criteria for the evaluation of collaborative R&D projects of firms as antitrust tools aimed to use the “rule of reason” when the decisions are made.

  19. State-related differences in the level of psychomotor activity in patients with bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria; Brage, Søren; Vinberg, Maj;

    2016-01-01

    -measured psychomotor activity in bipolar disorder. During a 12 weeks study, repeated measurements of heart rate and movement monitoring over several days were collected during different affective states from 19 outpatients with bipolar disorder. Outcomes included activity energy expenditure (AEE) and trunk...... acceleration (ACC). Symptoms were clinically assessed using Hamilton Depression Rating Scale (HDRS-17) and Young Mania Rating Scale (YMRS). Compared to patients in a euthymic state, patients in a manic state had significantly higher AEE. Compared to patients in a depressive state, patients in a manic state had...... states using a combined heart rate and movement sensor supports that psychomotor activity is a core symptom in bipolar disorder that is altered during affective states....

  20. State and trait anxiety level and increase of depression among mothers of children with attention deficit hyperactivity disorder and conduct disorder. Pilot study.

    Directory of Open Access Journals (Sweden)

    Tomasz Wolańczyk,

    2014-08-01

    Full Text Available Objectives: To evaluate anxiety level (as a trait and as a state and the intensity of depressive symptoms in mothers of children with hyperkinetic disorder (HD and with and without comorbid conduct disorder (CD; to determine the relationship between the intensity of anxiety and depression and intensity of symptoms of HD. Materials and methods: Beck Depression Inventory (BDI and STAI questionnaire to measure state-trait anxiety were filled by 24 mothers of children with HD and 26 mothers of children without HD. Mothers of children with HD were also asked to complete the Conners Questionnaire for Parents and Teachers (IOWA. Teachers were asked to complete the Conners Questionnaire for Teachers (RCTS. Results: 75% of HD subjects had a comorbid CD, in comparison with 19.2 % in the control group. No significant differences were found between the mothers of children with HD and the control group in the results of BDI scale and STAI questionnaire in anxiety state and anxiety trait subscales. The difference was found between mothers of children with CD and without CD in anxiety-state subscale in STAI questionnaire. No correlations were found between the number of depressive symptoms, anxiety as a state and as a trait and the results of Conners IOWA and RCTS. Conclusions: The presence of HD in children does not correlate with the level of depression and anxiety in their mothers. There is a relationship between the presence of CD in children and elevated levels of state anxiety in their mothers.

  1. Solid state lithium ionic conducting thin film Li{sub 1.4}Al{sub 0.4}Ge{sub 1.6}(PO{sub 4}){sub 3} prepared by tape casting

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Huang, Zheng; Cheng, Junfang [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yamamoto, Osamu; Imanishi, Nobuyuki [Department of Chemistry, Faculty of Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Chi, Bo, E-mail: chibo@hust.edu.cn [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Pu, Jian; Li, Jian [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-03-25

    Highlights: • Low cost lithium ion conductor LAGP sheet has been made by tape casting method. • LAGP shows a high ion conductivity of 3.38 × 10{sup −4} S cm{sup −1}, comparable with commercial Ohara LATP. • The thickness of the LAGP sheet can be controlled to about 75 μm. -- Abstract: Solid-state lithium ionic conducting ceramic thin film Li{sub 1.4}Al{sub 0.4}Ge{sub 1.6}(PO{sub 4}){sub 3} is prepared by tape casting method. The thermal decomposition of the green tape is investigated by TG/DTA analysis. And the sintering parameters are optimized in air. The resultant sample shows a total lithium ionic conductivity of 3.38 × 10{sup −4} S cm{sup −1} at 25 °C and activation energy of 30.57 kJ mol{sup −1}. The thickness of the tape sheet can be controlled to be about 75 μm. The ionic conductivity of the prepared sample reported in this study is comparable with those reported for commercial LATP plate, showing the potential application for lithium-air batteries.

  2. Overview of electromagnetic methods applied in active volcanic areas of western United States

    Science.gov (United States)

    Skokan, Catherine K.

    1993-06-01

    A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example — Mt. Konocti in the Mayacamas Mountains, California — gravity, magnetic, and seismic, as well as electromagnetic methods have all been used in an attempt to gain a better understanding of the subsurface structure. In each of these volcanic regions, anomalous zones were mapped. When conductive, these anomalies were interpreted to be correlated with hydrothermal activity and not to represent a magma chamber. Electrical and electromagnetic geophysical methods can offer valuable information in the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions.

  3. 1982 survey of United States uranium marketing activity

    International Nuclear Information System (INIS)

    This report is based on survey data from all utilities, reactor manufacturers, and uranium producers who market uranium. The survey forms are mailed in January of each year with updates in July of each year. This year 59 utilities, 5 reactor manufacturers and agents, and 57 uranium producers were surveyed. Completed survey forms were checked for errors, corrected as necessary, and processed. These data formed the basis for the development of the report. This report is intended for Congress, federal and state agencies, the nuclear industry, and the general public

  4. Monitoring and validating active site redox states in protein crystals.

    Science.gov (United States)

    Antonyuk, Svetlana V; Hough, Michael A

    2011-06-01

    High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  5. 34 CFR 403.71 - In what additional ways may funds be used under the State Programs and State Leadership Activities?

    Science.gov (United States)

    2010-07-01

    ... agencies; (b) The support for tech-prep education as described in 34 CFR part 406; (c)(1) The support of... State Programs and State Leadership Activities? 403.71 Section 403.71 Education Regulations of the... Secretary Assist Under the Basic Programs? State Programs and State Leadership Activities § 403.71 In...

  6. United States-Russia: Environmental management activities. Summer 1998

    International Nuclear Information System (INIS)

    A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications

  7. United States-Russia: Environmental management activities, Summer 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications.

  8. Steady-state entanglement activation in optomechanical cavities

    OpenAIRE

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2013-01-01

    Quantum discord, and a number of related indicators, are currently raising a relentless interest as a novel paradigm of non-classical correlations beyond entanglement. Beside merely fundamental aspects, various works have shown that discord is a valuable -- so far largely unexplored -- resource in quantum information processing. Along this line, quite a striking scheme is {entanglement activation}. An initial amount of discord between two disentangled parties of a multipartite system affects ...

  9. Influence of point defects on the phonon thermal conductivity and phonon density of states of Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bedoya-Martinez, O.N.; Hashibon, A.; Elsaesser, C. [Fraunhofer IWM, Freiburg (Germany)

    2016-03-15

    The influence of point defects on the lattice thermal conductivity and vibrational properties of Bi{sub 2}Te{sub 3} were studied by using equilibrium and non-equilibrium molecular-dynamics simulations. Three types of point defects at various concentrations were considered, namely Bi and Te vacancies and Bi anti-sites. It is shown that point defects can result in a reduction of up to 80% of the bulk thermal conductivity. A detailed analysis of the phonon density of states (PDOS) of the studied systems is provided. Element (Bi or Te) and orientation (in-plane or cross-plane) resolved PDOS were calculated. In agreement with experimental observations and other simulations, features in the PDOS were identified with specific atomic and orientation contributions. Systems containing point defects exhibit a broadening of the PDOS peaks as the defect concentration increases, which is due to the disorder induced by the defects. Such disorder leads to a higher phonon scattering and thus to a lower lattice thermal conductivity. Tuning the point defect type and concentrations during growth may, therefore, provide a route for optimizing Bi{sub 2}Te{sub 3} based thermoelectric devices. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. TiO 2 Conduction Band Modulation with In 2 O 3 Recombination Barrier Layers in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-21

    Atomic layer deposition (ALD) was used to grow subnanometer indium oxide recombination barriers in a solid-state dye-sensitized solar cell (DSSC) based on the spiro-OMeTAD hole-transport material (HTM) and the WN1 donor-π-acceptor organic dye. While optimal device performance was achieved after 3-10 ALD cycles, 15 ALD cycles (∼2 Å of In2O 3) was observed to be optimal for increasing open-circuit voltage (VOC) with an average improvement of over 100 mV, including one device with an extremely high VOC of 1.00 V. An unexpected phenomenon was observed after 15 ALD cycles: the increasing VOC trend reversed, and after 30 ALD cycles VOC dropped by over 100 mV relative to control devices without any In2O3. To explore possible causes of the nonmonotonic behavior resulting from In2O3 barrier layers, we conducted several device measurements, including transient photovoltage experiments and capacitance measurements, as well as density functional theory (DFT) studies. Our results suggest that the VOC gains observed in the first 20 ALD cycles are due to both a surface dipole that pulls up the TiO2 conduction band and recombination suppression. After 30 ALD cycles, however, both effects are reversed: the surface dipole of the In2O3 layer reverses direction, lowering the TiO 2 conduction band, and mid-bandgap states introduced by In 2O3 accelerate recombination, leading to a reduced V OC. © 2013 American Chemical Society.

  11. Predicting the activation states of the muscles governing upper esophageal sphincter relaxation and opening.

    Science.gov (United States)

    Omari, Taher I; Jones, Corinne A; Hammer, Michael J; Cock, Charles; Dinning, Philip; Wiklendt, Lukasz; Costa, Marcello; McCulloch, Timothy M

    2016-03-15

    The swallowing muscles that influence upper esophageal sphincter (UES) opening are centrally controlled and modulated by sensory information. Activation and deactivation of neural inputs to these muscles, including the intrinsic cricopharyngeus (CP) and extrinsic submental (SM) muscles, results in their mechanical activation or deactivation, which changes the diameter of the lumen, alters the intraluminal pressure, and ultimately reduces or promotes flow of content. By measuring the changes in diameter, using intraluminal impedance, and the concurrent changes in intraluminal pressure, it is possible to determine when the muscles are passively or actively relaxing or contracting. From these "mechanical states" of the muscle, the neural inputs driving the specific motor behaviors of the UES can be inferred. In this study we compared predictions of UES mechanical states directly with the activity measured by electromyography (EMG). In eight subjects, pharyngeal pressure and impedance were recorded in parallel with CP- and SM-EMG activity. UES pressure and impedance swallow profiles correlated with the CP-EMG and SM-EMG recordings, respectively. Eight UES muscle states were determined by using the gradient of pressure and impedance with respect to time. Guided by the level and gradient change of EMG activity, mechanical states successfully predicted the activity of the CP muscle and SM muscle independently. Mechanical state predictions revealed patterns consistent with the known neural inputs activating the different muscles during swallowing. Derivation of "activation state" maps may allow better physiological and pathophysiological interpretations of UES function.

  12. Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders

    Science.gov (United States)

    Rogachev, A. S.; Kuskov, K. V.; Moskovskikh, D. O.; Usenko, A. A.; Orlov, A. O.; Shkodich, N. F.; Alymov, M. I.; Mukasyan, A. S.

    2016-06-01

    The results of measurement of electric resistivity and thermal conductivity of materials obtained by spark plasma sintering from powders of Cu, Cr, and their mixtures in the range of 300-600 K are presented. It is shown that the grinding of powders in planetary mills results in a reasonably substantial change in the electric and thermal properties of materials: to increasing electric resistivity and decreasing thermal conductivity and temperature coefficients of electric resistivity. The possible causes of these effects are considered.

  13. THE MODERN STATE OF ENTERPRISE INNOVATION ACTIVITY IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Nurlan Kurmanov

    2015-09-01

    Full Text Available In the XXI century, the key to rapid socio-economic development is to have an effective innovation policy, aimed at introducing high "disruptive" technologies, new ways to organise and manage work, advanced inventions, and the means to progress scientific and technical achievements.The formation of an innovative economy in Kazakhstan is a complexity of economic, social, and political issues. An effective use of research findings and developments in the real economy is most important in terms of Kazakhstan’s successful competitiveness, assurance for high economic growth, improved quality of life, and to help realize other innovative priorities. In these circumstances, innovation management and development is becoming more relevant as the basis for developing Kazakh companies, by way of a defined set of relevant technical, operational, organizational, marketing, and financial operations.The purpose of this study is to identify characteristics and practical recommendations for the development and further improvement of management mechanisms relating to the innovative activity of enterprises in Kazakhstan. The study used a systematic approach of comparison, scientific abstraction, data collection, analysis and synthesis, applied expertise, and statistical methods. The core value of the work was to support the feasibility of a system for Kazakh enterprises to promote innovative activity and the development of high technologies.

  14. The research institutes as a form of scientific and economic State activity – the problem of their position and legal form

    Directory of Open Access Journals (Sweden)

    Małgorzata Cilak

    2015-12-01

    Full Text Available The research institutes are state-owned legal persons, created to conduct research focused on the economic use. They aren’t in public finance sector now. This might raise doubts. The article analyzes the legal status of research institutes and the character of their activities.

  15. Growth of MgF2 optical crystals and their ionic conductivity in the as-grown state and after partial pyrohydrolysis

    Science.gov (United States)

    Karimov, D. N.; Sorokin, N. I.; Chernov, S. P.; Sobolev, B. P.

    2014-11-01

    MgF2 single crystals have been grown from melt by the Bridgman technique in a fluorinating atmosphere. To control the presence of oxygen impurity, it was first suggested to measure the ionic conductivity in MgF2 crystals by impedance spectroscopy. The characteristics of ionic conductivity of " as grown" (i.e., without thermal treatment) crystals and crystals obtained by commercial vacuum technology practically coincide: the volume conductivity σv = 1.4 × 10-7 S/cm at 773 K and the ion-transport activation energy E a = 1.40 ± 0.05 eV. Annealing MgF2 crystals during electrophysical studies upon heating from 293 to 823 K in vacuum (residual pressure ˜1 Pa) for 4 h led to their partial pyrohydrolisis. The influence of this thermal treatment of MgF2 crystals on their optical transmission is studied in the wavelength range of 115-300 nm.

  16. Dark/light transition and vigilance states modulate jaw-closing muscle activity level in mice.

    Science.gov (United States)

    Katayama, Keisuke; Mochizuki, Ayako; Kato, Takafumi; Ikeda, Minako; Ikawa, Yasuha; Nakamura, Shiro; Nakayama, Kiyomi; Wakabayashi, Noriyuki; Baba, Kazuyoshi; Inoue, Tomio

    2015-12-01

    Bruxism is associated with an increase in the activity of the jaw-closing muscles during sleep and wakefulness. However, the changes in jaw-closing muscle activity across states of vigilance over a 24-h period are unclear. In this study, we investigated the effects of dark/light transition and sleep/wake state on EMG activity of the masseter (jaw-closing) muscle in comparison with the activity of the upper trapezius muscle (a neck muscle) over a 24-h period in mice. The activities of the masseter and neck muscles during wakefulness were much greater than during non-REM and REM sleep. In contrast, the activities of both muscles slightly, but significantly, decreased during the transition period from dark to light. Histograms of masseter activity during wakefulness and non-REM sleep showed bimodal distributions, whereas the neck muscle showed unimodal activation in all states. These results suggest that the activities of jaw-closing and neck muscles are modulated by both sleep/wake state and dark/light transition, with the latter being to a lesser degree. Furthermore, even during non-REM sleep, jaw-closing muscles display bimodal activation, which may contribute to the occurrence of exaggerated aberrant muscle activity, such as sleep bruxism. PMID:26188127

  17. A Bayesian Framework for the Classification of Microbial Gene Activity States

    Science.gov (United States)

    Disselkoen, Craig; Greco, Brian; Cook, Kaitlyn; Koch, Kristin; Lerebours, Reginald; Viss, Chase; Cape, Joshua; Held, Elizabeth; Ashenafi, Yonatan; Fischer, Karen; Acosta, Allyson; Cunningham, Mark; Best, Aaron A.; DeJongh, Matthew; Tintle, Nathan

    2016-01-01

    Numerous methods for classifying gene activity states based on gene expression data have been proposed for use in downstream applications, such as incorporating transcriptomics data into metabolic models in order to improve resulting flux predictions. These methods often attempt to classify gene activity for each gene in each experimental condition as belonging to one of two states: active (the gene product is part of an active cellular mechanism) or inactive (the cellular mechanism is not active). These existing methods of classifying gene activity states suffer from multiple limitations, including enforcing unrealistic constraints on the overall proportions of active and inactive genes, failing to leverage a priori knowledge of gene co-regulation, failing to account for differences between genes, and failing to provide statistically meaningful confidence estimates. We propose a flexible Bayesian approach to classifying gene activity states based on a Gaussian mixture model. The model integrates genome-wide transcriptomics data from multiple conditions and information about gene co-regulation to provide activity state confidence estimates for each gene in each condition. We compare the performance of our novel method to existing methods on both simulated data and real data from 907 E. coli gene expression arrays, as well as a comparison with experimentally measured flux values in 29 conditions, demonstrating that our method provides more consistent and accurate results than existing methods across a variety of metrics. PMID:27555837

  18. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    Science.gov (United States)

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  19. Cognitive functions and neuropsychological status of medical students with different attitudes to alcohol use: a study conducted at the Belarusian State Medical University, Minsk, Belarus.

    Science.gov (United States)

    Welcome, Menizibeya O; Razvodovsky, Yury E; Pereverzeva, Elena V; Pereverzev, Vladimir A

    2014-04-10

    This article presents findings on the effects of alcohol use on cognitive performance, functional (well-being, activity, mood) and neuropsychological status and anxiety levels of medical students. A total of 265 medical students (107 males and 158 females) from the Belarusian State Medical University, Minsk (Belarus) were administered questionnaire, containing the AUDIT, CAGE, MAST, and PAS, and other alcohol related questions. Academic Performance questionnaire was administered together with other tests. For analysis of cognitive functions, a "correction probe" test was used. The number of students who reported consumption of alcohol was 74 males and 142 females. Medical students who reported alcohol consumption had lower cognitive performance and academic success, poor self-assessment of their functional and neuropsychological states, compared to the non-alcohol users. The results of this study suggest an inverse dose-dependent relationship between alcohol consumption, and cognitive functions, academic performance and neuropsychological status of medical students.

  20. Effect of Human Activities on Forest Biodiversity in White Nile State, Sudan

    Directory of Open Access Journals (Sweden)

    El Gunaid F. Hassan

    2013-04-01

    Full Text Available This study was carried out in White Nile State to determine effects of human activities on forest biodiversity. The area is rich with natural forests. The forestland is continuously deforested and the remaining forests are degraded because of agricultural practices and the absence of management plan. This study aims to investigate the forest cover changes and understand the vegetation dynamics in three zones, zone (I which represents the tree cover that extends along khores and low lands, zone (II represents the scatter trees defined as trees outside forests including areas as open grazing land; zone (III is the agricultural land. Each of them is approximately 400 hectare. The components of each zone included land use categories of forest cover scattered. A social survey was conducted to assess the link between community practices and natural resource development. The questionnaire included a set of questions about tree and their status. The study reveals that the role of community participation is crucial in conservation and sustainable management of natural resources. However, this community solely relies on fuel wood as the main source of energy with a limited use of alternatives sources like kerosene and gas; this may necessitate a shift toward alternatives sources in order to reduce the consumption of wood.

  1. Intensive Training Induces Longitudinal Changes in Meditation State-related EEG Oscillatory Activity

    Directory of Open Access Journals (Sweden)

    Manish eSaggar

    2012-09-01

    Full Text Available The capacity to focus one’s attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG data were collected during six minutes of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool, was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

  2. Characterization of nimesulide/{beta}-cyclodextrin composite obtained by solid state activation

    Energy Technology Data Exchange (ETDEWEB)

    Magarotto, L. [Eurand Int. S.p.A., Unit of Trieste (Italy); Bertini, S.; Cosentino, C.; Torri, G. [Ist. Scientifico di Chimica e Biochimica ' G. Ronzoni' , Milano (Italy)

    2001-07-01

    The mechano-chemical activation was used to obtain a new composite of a anti-inflammatory drug (Nimesulide) and a polysaccharide carrier ({beta}-cyclodextrin). The original industrial process for activation, patented by Eurand Int. S.p.A., permits an improvement of the physico-chemical properties of the drug, which reaches a higher thermodynamic state (activation state). This work wants to demonstrate that the interaction between the drug and the carrier as a composite causes the thermodynamic activation of the Nimesulide as a new physical compound. (orig.)

  3. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  4. Study of Schottky contact between Au and NiO nanowire by conductive atomic force microscopy (C-AFM): The case of surface states

    Science.gov (United States)

    Zhang, Yidong

    2015-05-01

    In this work, NiO nanowires have been synthesized by a hydrothermal reaction of NiCl2 with Na2C2O4 in the presence of ethylene glycol at 180 °C for 12 h, then calcinated at 400 °C for 2 h. The NiO nanowires were analyzed by means of scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The resulting current-voltage (I-V) characteristics of the NiO nanowires exhibited a clear rectifying behavior. This rectify behavior was attributed to the formation of a Schottky contact between Au coated atomic force microscopy (AFM) tip and NiO nanowires (nano-M/SC) which was dominated by the surface states in NiO itself. Photo-assisted conductive AFM (PC-AFM) was used to demonstrate how the I-V characteristics are influenced by the surface states. Our I-V results also showed that the nano-M/SCs had a good photoelectric switching effect at reverse bias.

  5. Children’s Exposures to Pyrethroid Insecticides at Home: A Review of Data Collected in Published Exposure Measurement Studies Conducted in the United States

    Directory of Open Access Journals (Sweden)

    Marsha K. Morgan

    2012-08-01

    Full Text Available Pyrethroid insecticides are frequently used to control insects in residential and agriculture settings in the United States and worldwide. As a result, children can be potentially exposed to pyrethroid residues in food and at home. This review summarizes data reported in 15 published articles from observational exposure measurement studies conducted from 1999 to present that examined children’s (5 months to 17 years of age exposures to pyrethroids in media including floor wipes, floor dust, food, air, and/or urine collected at homes in the United States. At least seven different pyrethroids were detected in wipe, dust, solid food, and indoor air samples. Permethrin was the most frequently detected (>50% pyrethroid in these media, followed by cypermethrin (wipes, dust, and food. 3-phenoxybenzoic acid (3-PBA, a urinary metabolite of several pyrethroids, was the most frequently (≥67% detected pyrethroid biomarker. Results across studies indicate that these children were likely exposed to several pyrethroids, but primarily to permethrin and cypermethrin, from several sources including food, dust, and/or on surfaces at residences. Dietary ingestion followed by nondietary ingestion were the dominate exposure routes for these children, except in homes with frequent pesticide applications (dermal followed by dietary ingestion. Urinary 3-PBA concentration data confirm that the majority of the children sampled were exposed to one or more pyrethroids.

  6. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  7. Production of Cold-Active Bacterial Lipases through Semisolid State Fermentation Using Oil Cakes

    OpenAIRE

    Babu Joseph; Supriya Upadhyaya; Pramod Ramteke

    2011-01-01

    Production of cold active lipase by semisolid state fermentation involves the use of agroindustrial residues. In the present study, semisolid state fermentation was carried out for the production of cold active lipase using Micrococcus roseus, isolated from soil samples of Gangotri glaciers, Western Himalayas. Among various substrate tested, groundnut oil cake (GOC) favored maximal yield of lipases at 15 ± 1°C within 48 h. Supplementation of glucose 1% (w/v) as additional carbon source and am...

  8. Study of the influence of conductivity on the treatment of activated sludges; Estudio de la influencia de la conductividad en tratamientos de lodos activados

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Martinez Muro, M. A.; Sanchez Beltran, A. v.

    2003-07-01

    Summary: The object of the study is to evaluate the influence of conductivity on the treatment of activated sludge, and to discover its impacts on biological activity and the level of purification. The study is designed with short-term tests using re spirometry, and medium-term tests using a pilot plant as a laboratory. Given that re spirometric tests do not cover more than one generation of bacteria, meaning that the effects on cell growth and division do not appear, another round of tests using a pilot plant with a longer duration is proposed. Through the two groups of tests, it was shown that the impact of variations in conductivity on bacteria and protozoa is more pronounced in the case of brusque alterations, even if the levels reached are not high. Nonetheless, conductivity that is apparently very high does not necessarily suppose a worsening of purification conditions, as long as it increases or decreases gradually, or remains constant. (Author) 6 refs.

  9. Conduction mechanisms in P(VDF-TrFE)/gold nanowire composites: tunnelling and thermally-activated hopping process near the percolation threshold

    Science.gov (United States)

    Ramachandran, Laavanya; Lonjon, Antoine; Demont, Philippe; Dantras, Eric; Lacabanne, Colette

    2016-08-01

    High-aspect ratio gold nanowires were dispersed in a P(VDF-TrFE) matrix to form conducting polymer composites. The composites were found to follow a percolation law, with a low percolation threshold of 2.2%vol and attaining a conductivity value of 100 S m‑1. The temperature and frequency dependence of the composites were studied using broadband dielectric spectroscopy. Tunnelling was found to be the main charge transport mechanism at temperatures below ‑100 °C and a thermally-activated hopping mechanism was determined to be responsible for conduction at temperatures above ‑100 °C. The correlated barrier hopping model was found to be the best fit to explain the conduction mechanisms in the composites.

  10. State-Driven Activism: Interest Mobilization in Brazil's AIDS Policy Sector

    OpenAIRE

    Rich, Jessica Alexis Jolicoeur

    2012-01-01

    This study analyzes a new form of political mobilization in Latin America--in which social movements make aggressive policy demands on the state, even while relying on the state for financial support. This model of interest intermediation runs contrary to existing theories of social movements and interest groups, which predict that organizations will moderate their demands and activities as a consequence of state funding.I explain the development of this new model of interest intermediation t...

  11. 77 FR 69650 - Agency Information Collection Activities: Holders or Containers Which Enter the United States...

    Science.gov (United States)

    2012-11-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Holders or Containers... concerning the Holders or Containers which Enter the United States Duty Free. This request for comment is...: Title: Holders or Containers which Enter the United States Duty Free. OMB Number: 1651-0035. Form...

  12. Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Visser, J.; Rinzema, A.

    2004-01-01

    Polyol accumulation and metabolism were examined in Aspergillus oryzae cultured on whole wheat grains or on wheat dough as a model for solid-state culture. In solid-state fermentation (SSF), water activity (a(w)) is typically low resulting in osmotic stress. In addition to a high level of mannitol,

  13. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; Choi, Hee-Jung; Fung, Juan Jose;

    2011-01-01

    G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due...

  14. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  15. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    NARCIS (Netherlands)

    P.J. French (Pim); J. Bijman (Jan); M.J. Edixhoven (Marcel); A.B. Vaandrager (Arie); B.J. Scholte (Bob); S.M. Lohmann (Suzanne); A.C. Nairn; H.R. de Jonge (Hugo)

    1995-01-01

    textabstractType II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excis

  16. Conducting Museum Education Activities within the Context of Developing a Nature Culture in Primary School Students: MTA Natural History Museum Example

    Science.gov (United States)

    Dilli, Rukiye

    2016-01-01

    The present study, aiming to develop nature culture in primary school students and to help them to become acquainted with their close environment, is a quasi-experimental study. Museum education activities were conducted with the study group which consisted of 128 fourth-grade primary school students. At the end of the study, the students gained…

  17. Two high-field thermodynamically stable conductivity states in photoconductive CdS, one n-type and one p-type

    Energy Technology Data Exchange (ETDEWEB)

    Böer, Karl W. [Department of Physics and Astronomy, 217 Sharp Lab, University of Delaware, Newark, Delaware 19716 (United States)

    2015-08-28

    Photoconductive CdS is known to be n-type and develops high-field domains in the range of negative differential conductivities. These domains have been extensively discussed, and when remaining attached to the electrodes have been renamed Böer domains (a broader definition suggested earlier is misleading) [K. Thiessen, Phys. Status Solidi B 248, 2775 (2011)]. They are occurring at high applied voltage in a range at which the current becomes highly non-ohmic that is conventionally described as N-shaped when the conductance decreases with increasing bias or as S-shaped when the current starts to increase again. In this paper only such cases will be discussed in which the current stays below significant Joule heating (no current channel formation), and only for stationary electrode-attached high-field domains. These are the cathode-attached domains that are maintained by field-quenching and are thermodynamically stable. Their finding is summarized in the first segment of this paper. When the applied voltage is increased, an anode-attached hyper-high-field domain develops that is stabilized by a hole blocking anode and will be analyzed in more detail below. It will be shown that they are a thermodynamically stable p-type photoconductive state of CdS. These two new states can be used to determine the carrier densities and mobilities as function of the field and the effective work function in dependence of the spectral distribution of the optical excitation. In a thin slab adjacent to a blocking cathode, the quasi-Fermi levels are spread to a precise amount and are kept there in the entire high-field region. This opens the opportunity to analyze with small modulation of the excitation the trap transition coefficients near these quasi-Fermi levels separately, without broadening interference from other signals. This has already resulted in the discovery of an unusually sharp electron quenching level when the CdS was in a p-type state with an anode adjacent domain. It is

  18. Two high-field thermodynamically stable conductivity states in photoconductive CdS, one n-type and one p-type

    Science.gov (United States)

    Böer, Karl W.

    2015-08-01

    Photoconductive CdS is known to be n-type and develops high-field domains in the range of negative differential conductivities. These domains have been extensively discussed, and when remaining attached to the electrodes have been renamed Böer domains (a broader definition suggested earlier is misleading) [K. Thiessen, Phys. Status Solidi B 248, 2775 (2011)]. They are occurring at high applied voltage in a range at which the current becomes highly non-ohmic that is conventionally described as N-shaped when the conductance decreases with increasing bias or as S-shaped when the current starts to increase again. In this paper only such cases will be discussed in which the current stays below significant Joule heating (no current channel formation), and only for stationary electrode-attached high-field domains. These are the cathode-attached domains that are maintained by field-quenching and are thermodynamically stable. Their finding is summarized in the first segment of this paper. When the applied voltage is increased, an anode-attached hyper-high-field domain develops that is stabilized by a hole blocking anode and will be analyzed in more detail below. It will be shown that they are a thermodynamically stable p-type photoconductive state of CdS. These two new states can be used to determine the carrier densities and mobilities as function of the field and the effective work function in dependence of the spectral distribution of the optical excitation. In a thin slab adjacent to a blocking cathode, the quasi-Fermi levels are spread to a precise amount and are kept there in the entire high-field region. This opens the opportunity to analyze with small modulation of the excitation the trap transition coefficients near these quasi-Fermi levels separately, without broadening interference from other signals. This has already resulted in the discovery of an unusually sharp electron quenching level when the CdS was in a p-type state with an anode adjacent domain. It is

  19. A STATE AS AN ACTIVATOR OF SCIENTIFIC, TECHNICAL AND INNOVATION ACTIVITIES

    Directory of Open Access Journals (Sweden)

    O. Zhylinska

    2013-03-01

    Full Text Available Modern mechanisms and instruments of state regulation of science, technology and innovation are systematized from the point of view of market failures overcoming in these areas of the economy.

  20. The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites

    OpenAIRE

    Hendrickson, Eric B.; Edgerton, Jeremy R.; Jaeger, Dieter

    2010-01-01

    Conductance-based neuron models are frequently employed to study the dynamics of biological neural networks. For speed and ease of use, these models are often reduced in morphological complexity. Simplified dendritic branching structures may process inputs differently than full branching structures, however, and could thereby fail to reproduce important aspects of biological neural processing. It is not yet well understood which processing capabilities require detailed branching structures. T...

  1. Surface modification of polyacrylonitrile film by anchoring conductive polyaniline and determination of uricase adsorption capacity and activity

    Science.gov (United States)

    Bayramoğlu, Gülay; Metin, Ayşegul Ü.; Arıca, M. Yakup

    2010-09-01

    Polyacrylonitrile (PAN) films were modified with chemical polymerization of conductive polyaniline (PANI) in the presence of potassium dichromate as an oxidizing agent. The effect of aniline concentration on the grafting efficiency and on the electrical surface resistance of PAN and (PAN/PANI)-1-3 composite film was investigated. The surface resistances of the conductive composite films were found to be between 6.32 and 0.97 kΩ/cm. As the amount of grafted PANI increased on the PAN films, the electrical resistance of composite film decreased. The PAN/PANI composite films were also characterized using SEM and FTIR. The changes in the surface properties of the films were characterized by contact angle measurements. As expected, the PAN, PAN/PANI and PAN/PANI-uricase immobilized films, exhibited different contact angle values and surface free energy due to different interactive functional groups of the films. The conductive films were well characterized and used for immobilization of uricase. The amount of adsorbed enzyme increases with the increase of surface concentration of grafted fibrous polyaniline polymer. The maximum amount of immobilized enzyme onto composite film containing 2.4% PANI was about 216 μg/cm 2 (i.e., PAN/PANI-3). The immobilized uricase was reused 24 times in batch wise assay in a day. Finally, the immobilized uricase enzyme system was successfully fabricated and applied to determine the uric acid level in human serum samples.

  2. Lessons Learned From Conducting Educational Multi-Level Programs Of Lawyer’s Training: A Case Study Of Tomsk State University

    Directory of Open Access Journals (Sweden)

    Vladimir Utkini

    2012-10-01

    Full Text Available This   article   describes   the  experience   in  carrying   out of educational programs of barristers and Masters in the Institute  of  Law of  the oldest  educational  establishment in  Siberia,  Tomsk State University.  Due to  the reforms in Russian higher education that were launched some time ago, the majority of educational programs in higher professional  education  became two­level.  Tomsk State University joined in the activity at the beginning of the 1990s. A research group was set up whose task was to analyze the foreign educational systems and to  work  out  a scheme acceptable for one of the oldest universities of Russia. We  can not  but  admit the qualitatively different motivation for studying that professionally qualified law specialists and bachelors have. The former, who  are self­sufficient at the labor market from  the point  of  view of  modern Russian requirements, consider the master course to be the first step towards their future scientific­pedagogical activity and, while studying, start their research, pass candidate examinations. Master’s degree  course is  a really  elite  legal  education for them. Bachelors from non­state law schools, unfortunately, have a low level of fundamental and applied knowledge of law. For  most of them studying for Master’s degree at Tomsk State University is only a means of getting a prestigious state university degree which  proves to  be competitive at labor market.This   article   describes   the  experience   in  carrying   out of educational programs of barristers and Masters in the Institute  of  Law of  the oldest  educational  establishment in  Siberia,  Tomsk State University.  Due to  the reforms in Russian higher education that were launched some time ago, the majority of educational programs in higher professional  education  became two­level.  Tomsk State University joined in the activity at the

  3. THE STUDY OF CONDUCTING TRAINS MODES, WITH TAKING INTO ACCOUNT THE VALUE OF ACTIVE AND REACTIVE POWER

    OpenAIRE

    O. P. Ivanov

    2007-01-01

    The improved computation model for traction modes which takes into account the cost of both active and reactive energy in the conditions of application of variable tariffs for payment of electric power is developed.

  4. Behavioral state-specific inhibitory postsynaptic potentials impinge on cat lumbar motoneurons during active sleep.

    Science.gov (United States)

    Morales, F R; Boxer, P; Chase, M H

    1987-11-01

    High-gain intracellular records were obtained from lumbar motoneurons in intact, undrugged cats during naturally occurring states of wakefulness, quiet sleep, and active sleep. Spontaneous, discrete, inhibitory postsynaptic potentials (IPSPs) were found to impinge on lumbar motoneurons during all states of sleep and wakefulness. IPSPs which occurred during wakefulness and quiet sleep were of relatively low amplitude and had a low frequency of occurrence. During the state of active sleep there occurred a great increase in inhibitory input. This was the result of the appearance of large-amplitude IPSPs and of an increase in the frequency of low-amplitude IPSPs which were indistinguishable from those recorded during wakefulness and quiet sleep. In addition to a difference in amplitude, the time course of the large IPSPs recorded during active sleep further differentiated them from the smaller IPSPs recorded during wakefulness, quiet sleep, and active sleep; i.e., their rise-time and half-width were of longer duration and their rate-of-rise was significantly faster. We suggest that the large, active sleep-specific IPSPs reflect the activity of a group of inhibitory interneurons which are inactive during wakefulness and quiet sleep and which discharge during active sleep. These as yet unidentified interneurons would then serve as the last link in the brain stem-spinal cord inhibitory system which is responsible for producing muscle atonia during the state of active sleep. PMID:3666087

  5. Active zone impact on deformation state of non-rigid pavement

    Science.gov (United States)

    Mandula, Ján

    2014-06-01

    The paper deals with the design of non-rigid pavement, with emphasis on the effect of active zone on its deformation state. The concepts of determination of active zone are described. The results of numerical modelling of pavement laying on elastic subgrade are presented in the paper

  6. Active zone impact on deformation state of non-rigid pavement

    Directory of Open Access Journals (Sweden)

    Mandula Ján

    2014-06-01

    Full Text Available The paper deals with the design of non-rigid pavement, with emphasis on the effect of active zone on its deformation state. The concepts of determination of active zone are described. The results of numerical modelling of pavement laying on elastic subgrade are presented in the paper

  7. Natural Environments, Obesity, and Physical Activity in Nonmetropolitan Areas of the United States

    Science.gov (United States)

    Michimi, Akihiko; Wimberly, Michael C.

    2012-01-01

    Purpose: To assess the associations of the natural environment with obesity and physical activity in nonmetropolitan areas of the United States among representative samples by using 2 indices of outdoor activity potential (OAP) at the county level. Methods: We used the data from 457,820 and 473,296 noninstitutionalized adults aged over 18 years…

  8. Decreased electrophysiological activity represents the conscious state of emptiness in meditation.

    Science.gov (United States)

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful "thoughtless emptiness (TE)," a "focused attention," and an "open monitoring" task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness.

  9. Decreased Electrophysiological Activity Represents the Conscious State of Emptiness in Meditation

    Directory of Open Access Journals (Sweden)

    Thilo eHinterberger

    2014-02-01

    Full Text Available Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful ‘thoughtless emptiness (TE’, a ‘focused attention’, and an ‘open monitoring’ task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 hours of meditation experience.Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (pOur findings indicate that a conscious state of thoughtless emptiness reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness.

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United States

    International Nuclear Information System (INIS)

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Special nuclear material; Source material; By-product material; Agreement state programmes); 4. Nuclear installations (Initial licensing; Operation and inspection, including nuclear safety; Operating licence renewal; Decommissioning; Emergency response); 5. Radiological protection (Protection of workers; Protection of the public); 6. Radioactive waste management (High-level waste; Low-level waste; Disposal at sea; Uranium mill tailings; Formerly Utilized Sites Remedial Action Program - FUSRAP); 7. Non-proliferation and exports (Exports of source material, special nuclear material, production or utilisation facilities and sensitive nuclear technology; Exports of components; Exports of by-product material; Exports and imports of radiation sources; Conduct resulting in the termination of exports or economic assistance; Subsequent arrangements; Technology exports; Information and restricted data); 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Nuclear Regulatory Commission - NRC; Department of Energy - DOE; Department of Labor - DOL; Department of Transportation - DOT; Environmental Protection Agency - EPA); 2. Public and semi-public agencies: A. Cabinet-level departments (Department of

  11. Assessment of brain activities during an emotional stress state using fMRI

    International Nuclear Information System (INIS)

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  12. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.

    Science.gov (United States)

    Uda, T; Yoshida, M; Ishii, A; Kato, Y K

    2016-04-13

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric-field effects on various excitonic states by simultaneously measuring photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. Field-induced exciton dissociation can explain the photocurrent threshold field, and the edge of the E11 continuum states has been identified by extrapolating to zero threshold. PMID:26999284

  13. Hierarchical Model-Based Activity Recognition With Automatic Low-Level State Discovery

    Directory of Open Access Journals (Sweden)

    Justin Muncaster

    2007-09-01

    Full Text Available Activity recognition in video streams is increasingly important for both the computer vision and artificial intelligence communities. Activity recognition has many applications in security and video surveillance. Ultimately in such applications one wishes to recognize complex activities, which can be viewed as combination of simple activities. In this paper, we present a general framework of a Dlevel dynamic Bayesian network to perform complex activity recognition. The levels of the network are constrained to enforce state hierarchy while the Dth level models the duration of simplest event. Moreover, in this paper we propose to use the deterministic annealing clustering method to automatically define the simple activities, which corresponds to the low level states of observable levels in a Dynamic Bayesian Networks. We used real data sets for experiments. The experimental results show the effectiveness of our proposed method.

  14. Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel.

    Science.gov (United States)

    Williams, Jonathan K; Tietze, Daniel; Lee, Myungwoon; Wang, Jun; Hong, Mei

    2016-07-01

    Together with the influenza A virus, influenza B virus causes seasonal flu epidemics. The M2 protein of influenza B (BM2) forms a tetrameric proton-conducting channel that is important for the virus lifecycle. BM2 shares little sequence homology with AM2, except for a conserved HxxxW motif in the transmembrane (TM) domain. Unlike AM2, no antiviral drugs have been developed to block the BM2 channel. To elucidate the proton-conduction mechanism of BM2 and to facilitate the development of BM2 inhibitors, we have employed solid-state NMR spectroscopy to investigate the conformation, dynamics, and hydration of the BM2 TM domain in lipid bilayers. BM2 adopts an α-helical conformation in lipid membranes. At physiological temperature and low pH, the proton-selective residue, His19, shows relatively narrow (15)N chemical exchange peaks for the imidazole nitrogens, indicating fast proton shuttling that interconverts cationic and neutral histidines. Importantly, pH-dependent (15)N chemical shifts indicate that His19 retains the neutral population to much lower pH than His37 in AM2, indicating larger acid-dissociation constants or lower pKa's. We attribute these dynamical and equilibrium differences to the presence of a second titratable histidine, His27, which may increase the proton-dissociation rate of His19. Two-dimensional (1)H-(13)C correlation spectra probing water (1)H polarization transfer to the peptide indicates that the BM2 channel becomes much more hydrated at low pH than at high pH, particularly at Ser12, indicating that the pore-facing serine residues in BM2 mediate proton relay to the proton-selective histidine. PMID:27286559

  15. Altered baseline brain activity in children with bipolar disorder during mania state: a resting-state study

    Directory of Open Access Journals (Sweden)

    Lu D

    2014-02-01

    Full Text Available Dali Lu,1 Qing Jiao,2 Yuan Zhong,3,4 Weijia Gao,1 Qian Xiao,1 Xiaoqun Liu,1 Xiaoling Lin,5 Wentao Cheng,6 Lanzhu Luo,6 Chuanjian Xu,3 Guangming Lu,2 Linyan Su1 1Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China; 2Department of Radiology, Taishan Medical University, Taian, People's Republic of China; 3Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China; 4School of Psychology, Nanjing Normal University, Nanjing, People's Republic of China; 5School of Nursing of Central South University, Changsha, People's Republic of China; 6Department of Pediatric and Geriatric Psychiatry, Fuzhou Neuropsychiatric Hospital, Fuzhou, People's Republic of China Background: Previous functional magnetic resonance imaging (fMRI studies have shown abnormal functional connectivity in regions involved in emotion processing and regulation in pediatric bipolar disorder (PBD. Recent studies indicate, however, that task-dependent neural changes only represent a small fraction of the brain's total activity. How the brain allocates the majority of its resources at resting state is still unknown. We used the amplitude of low-frequency fluctuation (ALFF method of fMRI to explore the spontaneous neuronal activity in resting state in PBD patients. Methods: Eighteen PBD patients during the mania phase and 18 sex-, age- and education-matched healthy subjects were enrolled in this study and all patients underwent fMRI scanning. The ALFF method was used to compare the resting-state spontaneous neuronal activity between groups. Correlation analysis was performed between the ALFF values and Young Mania Rating Scale scores. Results: Compared with healthy controls, PBD patients presented increased ALFF in bilateral caudate and left pallidum as well as decreased ALFF in left precuneus

  16. Activity and relationships of muscular and cardiovascular systems in different states during muscular activity in athletes.

    Directory of Open Access Journals (Sweden)

    Pryimakov A.A.

    2012-11-01

    Full Text Available Revealed that the performance of high-power exercise on a bicycle ergometer to failure athletes skilled cyclists (15 men increases the activity and relationship of muscular and cardiovascular systems. At rest and fatigue manifests linear relationship between the two systems, during commissioning with stable condition - is exponential. The development of fatigue compensated without changing leadership of the quadriceps, biceps and calf muscles of the lower extremities in the efforts to change the relationship and partial role in various areas of cyclic motion, increasing their electrical activity. With the development of decompensated fatigue decreases the electrical activity and disturbed coordination of major muscles in the relationship right and left limbs.

  17. Determining a Magnetic Resonance Imaging Inflammatory Activity Acceptable State Without Subsequent Radiographic Progression in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Gandjbakhch, Frédérique; Haavardsholm, Espen A; Conaghan, Philip G;

    2014-01-01

    OBJECTIVE: To assess the predictive value of magnetic resonance imaging (MRI)-detected subclinical inflammation for subsequent radiographic progression in a longitudinal study of patients with rheumatoid arthritis (RA) in clinical remission or low disease activity (LDA), and to determine cutoffs...... for an MRI inflammatory activity acceptable state in RA in which radiographic progression rarely occurs. METHODS: Patients with RA in clinical remission [28-joint Disease Activity Score-C-reactive protein (DAS28-CRP) LDA state (2.6 ≤ DAS28-CRP ....4 (95% CI 1.72-11.4) for radiographic progression. CONCLUSION: High MRI synovitis score predicts radiographic progression in patients in clinical remission/LDA. A cutoff point for determining an MRI inflammatory activity acceptable state based on the RAMRIS synovitis score was established. Incorporating...

  18. The assessment of activities conducted by companies in social media in light of research concerning their users

    OpenAIRE

    Bogdan Gregor; Tomasz Kubiak

    2014-01-01

    Social media are not losing their popularity. Despite their long (sometimes a few years long) presence on the Internet, portals from this category are gradually strengthening their position with regard to the number of registered users. In July 2014 the biggest social media portal – Facebook – had 1,320,000,000 active accounts around the whole world. In Poland in July 2014 the number of active users of the portal reached 12,000,000. In the period from April 12 to May 25, 2014, the Department ...

  19. Thermal Conductivity and Spin State of the Spin Diamond-Chain System Azurite Cu3(CO3)2(OH)2

    Science.gov (United States)

    Hagiya, Yuta; Kawamata, Takayuki; Naruse, Koki; Ohno, Masumi; Matsuoka, Yoshiharu; Sudo, Hiroki; Nagasawa, Hideki; Kikuchi, Hikomitu; Sasaki, Takahiko; Koike, Yoji

    2016-03-01

    To investigate the spin state of azurite, Cu3(CO3)2(OH)2, we have measured the thermal conductivity along the c-axis, κc, perpendicular to the spin diamond chains. It has been found that the temperature dependence of κc shows a broad peak at ˜100 K, which is explained as being due to the strong phonon scattering by the strong spin fluctuation owing to the spin frustration at low temperatures below ˜100 K. Furthermore, it has been found that the temperature dependence of κc shows another peak at low temperatures below 20 K and that κc is suppressed by the application of magnetic field along the c-axis at low temperatures below ˜35 K. In high magnetic fields above ˜8 T at low temperatures below ˜6 K, it has been found that κc increases with increasing field. The present results have indicated that both spin-singlet dimers with a spin gap of ˜35 K and antiferromagnetically correlated spin chains with the antiferromagnetic exchange interaction of ˜5.4 K are formed at low temperatures, which is consistent with the recent conclusion by Jeschke et al. [ext-link ext-link-type="uri" xlink:href="http://doi.org/10.1103/PhysRevLett.106.217201" xlink:type="simple">Phys. Rev. Lett. 106, 217201 (2011)ext-link>] that the ground state of spins in azurite in zero field is a spin-fluid one. In addition, a new quantum critical line in magnetic fields at temperatures above 3 K has been proposed to exist.

  20. 77 FR 19231 - Takes of Marine Mammals Incidental to Specified Activities; Navy Training Conducted at the Silver...

    Science.gov (United States)

    2012-03-30

    ... is dictated by standard Navy protocols and accounts for multiple variables, such as the size and..., NMFS published a Federal Register notice (75 FR 64276) requesting comments from the public concerning... training activities at the SSTC is provided in the Federal Register notice for the proposed IHA (75...

  1. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); A. Smolenski; B.C. Tilly (Bernard); A.B. Houtsmuller (Adriaan); E.M.E. Ehlert (Ehrich); A.G. Bot (Alice); M.J. Edixhoven (Marcel); W.E. Boomaars (Wendy); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo)

    1998-01-01

    textabstractA recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cys

  2. 78 FR 40436 - Takes of Marine Mammals Incidental to Specified Activities; Navy Training Conducted at the Silver...

    Science.gov (United States)

    2013-07-05

    ... specified activity (other than commercial fishing) if certain findings are made and regulations are issued.... On April 24, 2013, NMFS published a Federal Register notice (78 FR 24161) requesting comments from... detonation training and pile driving, as summarized below (and detailed in the proposed IHA Federal...

  3. The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR function.

    Directory of Open Access Journals (Sweden)

    Angel G Valdivieso

    Full Text Available Cystic fibrosis (CF is a frequent and lethal autosomal recessive disease. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel. We have previously studied the differential expression of genes in CF and CF corrected cell lines, and found a reduced expression of MTND4 in CF cells. MTND4 is a mitochondrial gene encoding the MTND4 subunit of the mitochondrial Complex I (mCx-I. Since this subunit is essential for the assembly and activity of mCx-I, we have now studied whether the activity of this complex was also affected in CF cells. By using Blue Native-PAGE, the in-gel activity (IGA of the mCx-I was found reduced in CFDE and IB3-1 cells (CF cell lines compared with CFDE/6RepCFTR and S9 cells, respectively (CFDE and IB3-1 cells ectopically expressing wild-type CFTR. Moreover, colon carcinoma T84 and Caco-2 cells, which express wt-CFTR, either treated with CFTR inhibitors (glibenclamide, CFTR(inh-172 or GlyH101 or transfected with a CFTR-specific shRNAi, showed a significant reduction on the IGA of mCx-I. The reduction of the mCx-I activity caused by CFTR inhibition under physiological or pathological conditions may have a profound impact on mitochondrial functions of CF and non-CF cells.

  4. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  5. Conduct disorder

    Science.gov (United States)

    ... medicines or talk therapy may be used for depression and attention-deficit disorder. Many "behavioral modification" schools, "wilderness programs," and "boot camps" are sold to parents as solutions for conduct disorder. There is no research to ...

  6. Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.

    2011-01-01

    Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  7. Sports Management Faculty External Grant-Writing Activities in the United States

    Science.gov (United States)

    DeVinney, Timothy P.

    2012-01-01

    This study was conducted to fill a void in information, provide relevant, current data for faculty members related to external grant-writing activities related to the academic field of sport management and serve as a tool that may aid in the advancement of external grant-writing efforts within the field of sport management. All data is specific to…

  8. Features of competitive activity of highly qualified Greco-Roman style wrestler of different manner of conducting a duel

    Directory of Open Access Journals (Sweden)

    Tropin Y.N.

    2015-03-01

    Full Text Available Purpose: to analyze the technical and tactical training of Greco-Roman style wrestlers. Material : an analysis of 75 fights fighters winners (25 fight each style. Results : identified 10 main technical activities that are most commonly used in today's competitive activity of highly skilled fighters. It was found that for all the groups most fighters is received on the ground is a coup coasting. In the front - takedowns. Determined that in order to achieve victory GAME WRESTLERS use high-impact technical actions. POWER AND TEMPO - simple techniques. It was found that high-class fighters may lead the fight in different styles of confrontation. It depends on the personality of the opponent, subjective judging period, cramping, accounts for the fight and the level of competition. Conclusions : It was found that the most informative in assessing the technical and tactical capabilities fighters carries the final part of the competition. It is determined by the efficiency, effectiveness, technical arsenal.

  9. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance

    DEFF Research Database (Denmark)

    Willumsen, N J; Larsen, Erik Hviid

    1986-01-01

    , but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's. To partition the routes of the conductive Cl- ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potential. Va, and intracellular...

  10. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  11. Role of two-photon electronic transitions in the formation of active dynamic conductivity in a three-barrier resonance tunneling structure with an applied Dc electric field

    International Nuclear Information System (INIS)

    The theory of active dynamic conductivity in a three-barrier resonance tunneling structure subjected to the combined action of a weak electromagnetic field and a longitudinal dc electric field is developed with regard for the contribution of laser induced one- and two-photon electronic transitions with different frequencies. For this purpose, the full Schroedinger equation is solved in the effective mass approximation and with the use of the model of rectangular potential wells and barriers for an electron. The maximum contribution of two-photon transitions to the formation of the total active dynamic conductivity in laser-induced transitions is shown not to exceed 38%. Geometric configurations of the resonance tunneling structure, for which the laser radiation intensity increases due to laser induced two-photon electronic transitions, are determined

  12. Multi-dimensional construction of a novel active yolk@conductive shell nanofiber web as a self-standing anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Liu, Hao; Chen, Luyi; Liang, Yeru; Fu, Ruowen; Wu, Dingcai

    2015-11-01

    A novel active yolk@conductive shell nanofiber web with a unique synergistic advantage of various hierarchical nanodimensional objects including the 0D monodisperse SiO2 yolks, the 1D continuous carbon shell and the 3D interconnected non-woven fabric web has been developed by an innovative multi-dimensional construction method, and thus demonstrates excellent electrochemical properties as a self-standing LIB anode.A novel active yolk@conductive shell nanofiber web with a unique synergistic advantage of various hierarchical nanodimensional objects including the 0D monodisperse SiO2 yolks, the 1D continuous carbon shell and the 3D interconnected non-woven fabric web has been developed by an innovative multi-dimensional construction method, and thus demonstrates excellent electrochemical properties as a self-standing LIB anode. Electronic supplementary information (ESI) available: Experimental details and additional information about material characterization. See DOI: 10.1039/c5nr06531c

  13. Functional Apical Large Conductance, Ca2+-activated, and Voltage-dependent K+ Channels Are Required for Maintenance of Airway Surface Liquid Volume*

    OpenAIRE

    Manzanares, Dahis; Gonzalez, Carlos; Ivonnet, Pedro; Chen, Ren-Shiang; Valencia-Gattas, Monica; Gregory E. Conner; Larsson, H. Peter; Salathe, Matthias

    2011-01-01

    Large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca2+ are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K+ channels are recognized as modulators of ion transport in airway epithelial ...

  14. Thermal, mechanical, optical and conductivity studies of a novel NLO active L-phenylalanine L-phenylalaninium dihydrogenphosphate single crystal

    International Nuclear Information System (INIS)

    An efficient, novel, semi-organic, nonlinear optical (NLO) material L-phenylalanine L-phenylalaninium dihydrogenphosphate (LPADHP), single crystal of dimension 11x5x2 mm3, has been grown by the slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to monoclinic system with the space group P21. The functional groups present in the crystal were confirmed by the Fourier transform infrared technique. Optical absorption spectrum shows that the material possesses very low absorption in the entire visible region. Thermal analysis confirmed that the crystal is thermally stable up to 161 oC. The frequency dependent dielectric properties of the grown crystal were studied for various temperatures. The second harmonic generation (SHG) efficiency of the grown crystal is 1.2 times greater than that of the potassium dihydrogenphosphate (KDP) single crystal. The laser induced surface damage threshold for the grown crystal was found to be 6.3 GW cm-2 with Nd:YAG laser assembly AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  15. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    Science.gov (United States)

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state. PMID:16852701

  16. Steady state of active systems is characterized by unique effective temperature

    CERN Document Server

    Nandi, Saroj Kumar

    2016-01-01

    Understanding the properties of active matter systems, consisting of particles capable of taking up and dissipating energy and thus driven out of equilibrium, is important as it provides the possibility of a unified framework to analyze a diverse class of biological systems. Analysis of a large number of such systems shows an extension of equilibrium-like ideas are, sometimes, capable of capturing the steady state properties and a thermodynamic formulation of the problem might be possible. Investigating the detailed steady state properties and how the systems depart from equilibrium is important for such a formulation. Here we address the question through the framework of mode-coupling theory for dense active systems. We obtain a generic nonequilirbium theory for such systems and then taking the steady state limit of the theory we show that the system is characterized by a unique effective temperature, unlike other driven systems like a glass under shear. We discuss the differences of the steady states of an ...

  17. Solid State Inflation Balloon Active Deorbiter: Scalable Low-Cost Deorbit System for Small Satellites

    Science.gov (United States)

    Huang, Adam

    2016-01-01

    The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.

  18. Chronic salt-loading downregulates large-conductance Ca~(2+)-activated potassium channel in mesenteric arterial smooth muscle cells from SD rats

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.T...

  19. Report to the Department of Energy on the DOE/EPSCoR planning activities for the state of South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    An extensive review of the current status of energy-related research and educational activities within the state of South Dakota was carried out. Information exchange meetings were conducted at the major research institutions as well as with many representatives of state government. Visits were also made to professional educators who are deeply involved with the state`s principal minority group, the American Indian. Several activities in the human resource development area that will be carried out in the five-year implementation project were identified. Many of these will be closely coordinated with other efforts currently in progress under the auspices of the NSF SSI (Statewide Systemic Initiatives in Science, Mathematics, and Engineering Education) office. The authors will also work closely with AWU and other regional consortia to foster a higher level of participation in existing DOE programs and to develop adaptations and {open_quotes}follow-ons{close_quotes} that are tailored to the specific needs of South Dakota. Many of these programs will involve extensive interaction with DOE laboratories. Special programs will be carried out that are designed to keep a larger number of the Native American population in the science and engineering pipeline. An assessment of the research strengths of this state was made. With the assistance of external consultants, the authors identified two principal areas in which they have the potential to develop nationally competitive research programs that fall within DOE objectives. One is a comprehensive biomass systems study, and the other a water quality study as it relates to energy production.

  20. Regulation to create environments conducive to physical activity: understanding the barriers and facilitators at the Australian state government level.

    Directory of Open Access Journals (Sweden)

    Jane Shill

    Full Text Available INTRODUCTION: Policy and regulatory interventions aimed at creating environments more conducive to physical activity (PA are an important component of strategies to improve population levels of PA. However, many potentially effective policies are not being broadly implemented. This study sought to identify potential policy/regulatory interventions targeting PA environments, and barriers/facilitators to their implementation at the Australian state/territory government level. METHODS: In-depth interviews were conducted with senior representatives from state/territory governments, statutory authorities and non-government organisations (n = 40 to examine participants': 1 suggestions for regulatory interventions to create environments more conducive to PA; 2 support for preselected regulatory interventions derived from a literature review. Thematic and constant comparative analyses were conducted. RESULTS: POLICY INTERVENTIONS MOST COMMONLY SUGGESTED BY PARTICIPANTS FELL INTO TWO AREAS: 1 urban planning and provision of infrastructure to promote active travel; 2 discouraging the use of private motorised vehicles. Of the eleven preselected interventions presented to participants, interventions relating to walkability/cycling and PA facilities received greatest support. Interventions involving subsidisation (of public transport, PA-equipment and the provision of more public transport infrastructure received least support. These were perceived as not economically viable or unlikely to increase PA levels. Dominant barriers were: the powerful 'road lobby', weaknesses in the planning system and the cost of potential interventions. Facilitators were: the provision of evidence, collaboration across sectors, and synergies with climate change/environment agendas. CONCLUSION: This study points to how difficult it will be to achieve policy change when there is a powerful 'road lobby' and government investment prioritises road infrastructure over PA

  1. [Relationship among soil enzyme activities, vegetation state, and soil chemical properties of coal cinder yard].

    Science.gov (United States)

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2003-01-01

    From field investigation and laboratory analysis, the relationships among soil enzyme activities, vegetation state and soil chemical properties of coal cinder yard in thermal power station were studied. The results showed that vegetation on coal cinder yard was distributed in scattered patch mainly with single species of plant, and herbs were the dominant species. At the same time, the activity of three soil enzymes had a stronger relativity to environment conditions, such as vegetation state and soil chemical properties. The sensitivity of three soil enzymes to environmental stress was in order of urease > sucrase > catalase. The relativity of three soil enzymes to environmental factor was in order of sucrase > urease > catalase. Because of urease being the most susceptible enzyme to environmental conditions, and it was marked or utmost marked interrelated with vegetation state and soil chemical properties, urease activity could be used as an indicator for the reclamation of wasteland.

  2. Hidden State Conditional Random Field for Abnormal Activity Recognition in Smart Homes

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2015-03-01

    Full Text Available As the number of elderly people has increased worldwide, there has been a surge of research into assistive technologies to provide them with better care by recognizing their normal and abnormal activities. However, existing abnormal activity recognition (AAR algorithms rarely consider sub-activity relations when recognizing abnormal activities. This paper presents an application of the Hidden State Conditional Random Field (HCRF method to detect and assess abnormal activities that often occur in elderly persons’ homes. Based on HCRF, this paper designs two AAR algorithms, and validates them by comparing them with a feature vector distance based algorithm in two experiments. The results demonstrate that the proposed algorithms favorably outperform the competitor, especially when abnormal activities have same sensor type and sensor number as normal activities.

  3. Sleep: A synchrony of cell activity-driven small network states

    OpenAIRE

    Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.

    2013-01-01

    We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole...

  4. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  5. Noradrenaline activates a calcium-activated chloride conductance and increases the voltage-dependent calcium current in cultured single cells of rat portal vein.

    Science.gov (United States)

    Pacaud, P; Loirand, G; Mironneau, C; Mironneau, J

    1989-05-01

    1. Membrane responses were recorded by a patch pipette technique in cultured cells isolated from rat portal vein. Using the whole-cell mode, pressure ejections of noradrenaline evoked depolarization (current clamp) and inward current (voltage clamp) at membrane potentials of -60 to -70 mV. The noradrenaline-induced response was reversibly blocked by prazosin indicating that the response was mediated by alpha 1-adrenoceptors. 2. The ionic mechanism of the noradrenaline-induced inward current was investigated in potassium-free caesium-containing solutions. Alteration of the chloride equilibrium potential produced similar changes in the reversal potential of the noradrenaline-induced current, indicating that noradrenaline opened chloride-selective channels. There was no evidence implicating sodium or calcium as the charge-carrying ion. 3. Caffeine applied in the bathing solution also induced a transient increase in chloride conductance but the noradrenaline-induced response was lost after application of caffeine. This is interpreted to mean that the increase in chloride conductance induced by noradrenaline and caffeine can occur as a consequence of a rise in intracellular calcium concentration depending on release of calcium from the same intracellular stores. 4. In the presence of caffeine, noradrenaline increased both the voltage-dependent calcium and chloride membrane conductances during application of repetitive depolarizing pulses. It is concluded that in isolated cells of the rat portal vein the depolarization in response to noradrenaline is mediated by an increase in chloride conductance depending on both the calcium release from intracellular stores and the increase of the voltage-dependent calcium current. PMID:2470458

  6. Compact acid-induced state of Clitoria ternatea agglutinin retains its biological activity.

    Science.gov (United States)

    Naeem, A; Saleemuddin, M; Khan, R H

    2009-10-01

    The effects of pH on Clitoria ternatea agglutinin (CTA) were studied by spectroscopy, size-exclusion chromatography, and by measuring carbohydrate specificity. At pH 2.6, CTA lacks well-defined tertiary structure, as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of 50% native-like secondary structure. The mean residue ellipticity at 217 nm plotted against pH showed a transition around pH 4.0 with loss of secondary structure leading to the formation of an acid-unfolded state. This state is relatively less denatured than the state induced by 6 M guanidine hydrochloride. With a further decrease in pH, this unfolded state regains ~75% secondary structure at pH 1.2, leading to the formation of the A-state with native-like near-UV CD spectral features. Enhanced 8-anilino-1-naphthalene-sulfonate binding was observed in A-state, indicating a "molten-globule" like conformation with exposed hydrophobic residues. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a compact conformation at low pH. Size-exclusion chromatography shows the presence of a compact intermediate with hydrodynamic size corresponding to a monomer. Thermal denaturation of the native state was cooperative single-step transition and of the A-state was non-cooperative two-step transition. A-State regains 72% of the carbohydrate-binding activity. PMID:19916921

  7. Altered active zones, vesicle pools, nerve terminal conductivity, and morphology during experimental MuSK myasthenia gravis.

    Directory of Open Access Journals (Sweden)

    Vishwendra Patel

    Full Text Available Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK myasthenia gravis (MG. To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4% or complete (18% failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.

  8. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285

  9. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  10. Fluctuation conductivity and possible pseudogap state in FeAs-based superconductor EuFeAsO0.85F0.15

    Science.gov (United States)

    Solovjov, A. L.; Omelchenko, L. V.; Terekhov, A. V.; Rogacki, K.; Vovk, R. V.; Khlybov, E. P.; Chroneos, A.

    2016-07-01

    The study of excess conductivity σ \\prime (T) in the textured polycrystalline FeAs-based superconductor EuFeAsO0.85F0.15 ({T}{{c}}=11 {{K}}) prepared by the solid state synthesis is reported for the first time. The σ \\prime (T) analysis has been performed within the local pair (LP) model based on the assumption of the LPs formation in cuprate high-T c superconductors (cuprates) below the pseudogap (PG) temperature {T}* \\gg {T}{{c}}. Similarly to the cuprates, near {T}{{c}} σ \\prime (T) is adequately described by the 3D term of the Aslamasov-Larkin (AL) theory but the range of the 3D-AL fluctuations, {{Δ }}{T}3{{D}}, is relatively short. Above the crossover temperature {T}0≈ 11.7 {{K}} σ \\prime (T) is described by the 2D Maki-Thompson (MT) fluctuation term of the Hikami-Larkin theory. But enhanced 2D-MT fluctuation contribution being typical for the magnetic superconductors is observed. Within the LP model the PG parameter, {{{Δ }}}* (T), was determined for the first time. It is shown that {{{Δ }}}* (T) demonstrates the narrow maximum at {T}s≈ 160 {{K}} followed by the descending linear length down to {T}{SDW}={T}{NFe}≈ 133 {{K}}. Observed small {{Δ }}{T}3{{D}}, enlarged 2D σ \\prime (T) and linear {{{Δ }}}* (T) are considered to be the evidence of the enhanced magnetic interaction in EuFeAsO0.85F0.15. Importantly, the slop of the linear {{{Δ }}}* (T) and its length are found to be the same as it is revealed for SmFeAsO0.85. The results suggest both the similarity of the magnetic interaction processes in different Fe-pnictides and applicability of the LP model to the σ \\prime (T) analysis even in magnetic superconductors.

  11. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography

    OpenAIRE

    Crowe, David A.; Leuthold, Arthur C.; Georgopoulos, Apostolos P.

    2010-01-01

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermor...

  12. Cancer Internet Search Activity on a Major Search Engine, United States 2001-2003

    OpenAIRE

    Cooper, Crystale Purvis; Mallon, Kenneth P; Leadbetter, Steven; Pollack, Lori A.; Peipins, Lucy A.

    2005-01-01

    Background To locate online health information, Internet users typically use a search engine, such as Yahoo! or Google. We studied Yahoo! search activity related to the 23 most common cancers in the United States. Objective The objective was to test three potential correlates of Yahoo! cancer search activity—estimated cancer incidence, estimated cancer mortality, and the volume of cancer news coverage—and to study the periodicity of and peaks in Yahoo! cancer search activity. Methods Yahoo! c...

  13. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  14. Development of Hierarchical Polymer@Pd Nanowire‐Network: Synthesis and Application as Highly Active Recyclable Catalyst and Printable Conductive Ink

    Science.gov (United States)

    Mir, Sajjad Husain

    2016-01-01

    Abstract A facile one‐pot approach for preparing hierarchical nanowire‐networks of hollow polymer@Pd nanospheres is reported. First, polymer@Pd hollow nanospheres were produced through metal‐complexation‐induced phase separation with functionalized graft copolymers and subsequent self‐assembly of PdNPs. The nanospheres hierarchically assembled into the nanowire‐network upon drying. The Pd nanowire‐network served as an active catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. As low as 500 μmol % Pd was sufficient for quantitative reactions, and the origin of the high activity is ascribed to the highly active sites originating from high‐index facets, kinks, and coalesced structures. The catalyst can be recycled via simple filtration and washing, maintaining its high activity owing to the micrometer‐sized hierarchical structure of the nanomaterial. The polymer@Pd nanosphere also served as a printable conductive ink for a translucent grid pattern with excellent horizontal conductivity (7.5×105 S m−1). PMID:27551657

  15. Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor

    Science.gov (United States)

    Halab Shaeli Iessa, K.; Zhang, Yan; Zhang, Guoan; Xiao, Fei; Wang, Shuai

    2016-01-01

    We report the development of three-dimensional (3D) porous sponge-like ionic liquid (IL)-graphene hybrid material by integrating IL molecules and graphene nanosheets via self-assembly process. The as-obtained IL-graphene architecture possesses high surface area, efficient electron transport network and fast charge transfer kinetics owing to its highly porous structure, and unique hydrophilic properties derived from the IL anion on its surface, which endows it with high desire for supercapacitor application. Redox-active polyaniline (PANI) nanorods are further decorated on IL-graphene scaffold by electropolymerization. When utilized as freestanding 3D electrode for supercapacitor, the resultant PANI modified IL-graphene (PANI-IL-graphene) electrode exhibits a specific capacitance up to 662 F g-1 at the current density of 1.0 A g-1, with a high capacitance retention of 73.7% as current densities increase from 1.0 to 20 A g-1, and the capacitance degradation is less than 7.0% after 5000 charge-discharge cycles at 10 A g-1.

  16. Glucocorticoid-induced impairment of macrophage antimicrobial activity: mechanisms and dependence on the state of activation.

    Science.gov (United States)

    Schaffner, A; Schaffner, T

    1987-01-01

    Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.

  17. An experimental method to identify neurogenic and myogenic active mechanical states of intestinal motility

    Directory of Open Access Journals (Sweden)

    Marcello eCosta

    2013-04-01

    Full Text Available Excitatory and inhibitory enteric neural input to intestinal muscle acting on ongoing myogenic activity determines the rich repertoire of motor patterns involved in digestive function. The enteric neural activity cannot yet be established during movement of intact intestine in vivo or in vitro. We propose the hypothesis that is possible to deduce indirectly, but reliably, the state of activation of the enteric neural input to the muscle from measurements of the mechanical state of the intestinal muscle. The fundamental biomechanical model on which our hypothesis is based is the ‘three-element model’ proposed by Hill. Our strategy is based on simultaneous video recording of changes in diameters and intraluminal pressure with a fibre-optic manometry in isolated segments of rabbit colon. We created a composite spatiotemporal map (DPMap from diameter (DMap and pressure changes (PMaps. In this composite map rhythmic myogenic motor patterns can readily be distinguished from the distension induced neural peristaltic contractions. Plotting the diameter changes against corresponding pressure changes at each location of the segment, generates ‘orbits’ that represent the state of the muscle according to its ability to contract or relax actively or undergoing passive changes. With a software developed in MatLab, we identified twelve possible discrete mechanical states and plotted them showing where the intestine actively contracted and relaxed isometrically, auxotonically or isotonically, as well as where passive changes occurred or was quiescent. Clustering all discrete active contractions and relaxations states generated for the first time a spatio-temporal map of where enteric excitatory and inhibitory neural input to the muscle occurs during physiological movements. Recording internal diameter by an impedance probe proved equivalent to measuring external diameter, making possible to further develop similar strategy in vivo and humans.

  18. Identification of resting and active state EEG features of Alzheimer's disease using discrete wavelet transform.

    Science.gov (United States)

    Ghorbanian, Parham; Devilbiss, David M; Verma, Ajay; Bernstein, Allan; Hess, Terry; Simon, Adam J; Ashrafiuon, Hashem

    2013-06-01

    Alzheimer's disease (AD) is associated with deficits in a number of cognitive processes and executive functions. Moreover, abnormalities in the electroencephalogram (EEG) power spectrum develop with the progression of AD. These features have been traditionally characterized with montage recordings and conventional spectral analysis during resting eyes-closed and resting eyes-open (EO) conditions. In this study, we introduce a single lead dry electrode EEG device which was employed on AD and control subjects during resting and activated battery of cognitive and sensory tasks such as Paced Auditory Serial Addition Test (PASAT) and auditory stimulations. EEG signals were recorded over the left prefrontal cortex (Fp1) from each subject. EEG signals were decomposed into sub-bands approximately corresponding to the major brain frequency bands using several different discrete wavelet transforms and developed statistical features for each band. Decision tree algorithms along with univariate and multivariate statistical analysis were used to identify the most predictive features across resting and active states, separately and collectively. During resting state recordings, we found that the AD patients exhibited elevated D4 (~4-8 Hz) mean power in EO state as their most distinctive feature. During the active states, however, the majority of AD patients exhibited larger minimum D3 (~8-12 Hz) values during auditory stimulation (18 Hz) combined with increased kurtosis of D5 (~2-4 Hz) during PASAT with 2 s interval. When analyzed using EEG recording data across all tasks, the most predictive AD patient features were a combination of the first two feature sets. However, the dominant discriminating feature for the majority of AD patients were still the same features as the active state analysis. The results from this small sample size pilot study indicate that although EEG recordings during resting conditions are able to differentiate AD from control subjects, EEG activity

  19. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, Carlos R.; Parreira, Paulo S.; Lopes, Fabio [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada]. E-mails: appoloni@uel.br; parreira@uel.br; bonn@uel.br

    2007-07-01

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)

  20. Activities on archaeology, art and cultural heritage conservation at the Applied Nuclear Physics Laboratory (LFNA), State University of Londrina (UEL)

    International Nuclear Information System (INIS)

    The Laboratory of Applied Nuclear Physics from the State University of Londrina (LFNA/UEL) introduced Archaeometry and related issues pioneeringly among its main research lines in 1994. The current work aims at presenting an overview of the evolution of such activities and the development of human resources up to the present time. The activities related to Archaeology, Art and Cultural Heritage Conservation at the LFNA can be divided into five levels, as follows. (1) Study and implementation of experimental methodologies. (2) Related Basic Research - Physics issues involved in archaeometric applications have led to the need to conduct interesting specific basic research. (3) Works with specific materials - Among the several analysis conducted, the following should be mentioned: ceramics from the archaeological site Tupi Guarani Fazenda Sta. Dalmacia, PR; two archaeological sites in the Amazon Forest; objects from the MAE/USP collection; wall paintings in Imaculada Conceicao Church, SP; coins and other objects from the MHN/RJ; obsidians from Ecuador; etc. (4) Development of Human Resources. In this item there are two components: tutoring of scientific initiation students, Master's and Doctorate in atomic-nuclear methodologies applied to Archaeometry and a course of non-destructive nuclear techniques for the characterization of archaeological and art materials aimed at archaeologists and conservators, given since 1997. (5) Scientific collaborations - the construction of a common language between physicists and archeologists, conservators and other professionals involved in this area is an endeavor of mutual continuous learning and necessary conditions for the success of the projects. (author)